diff --git a/conftest.py b/conftest.py index 32ba7bae0..1558dd054 100644 --- a/conftest.py +++ b/conftest.py @@ -9,7 +9,6 @@ import pytest import torch from concrete.fhe import Graph as CPGraph -from concrete.fhe import ParameterSelectionStrategy from concrete.fhe.compilation import Circuit, Configuration from concrete.fhe.mlir.utils import MAXIMUM_TLU_BIT_WIDTH from sklearn.datasets import make_classification, make_regression @@ -147,9 +146,6 @@ def pytest_sessionfinish(session: pytest.Session, exitstatus): # pylint: disabl def default_configuration(): """Return the default test compilation configuration.""" - # Remove parameter_selection_strategy once it is set to multi-parameter in Concrete Python - # by default - # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/3860 # Parameter `enable_unsafe_features` and `use_insecure_key_cache` are needed in order to be # able to cache generated keys through `insecure_key_cache_location`. As the name suggests, # these parameters are unsafe and should only be used for debugging in development @@ -158,7 +154,6 @@ def default_configuration(): enable_unsafe_features=True, use_insecure_key_cache=True, insecure_key_cache_location="ConcreteNumpyKeyCache", - parameter_selection_strategy=ParameterSelectionStrategy.MULTI, ) diff --git a/src/concrete/ml/common/utils.py b/src/concrete/ml/common/utils.py index 4414056fb..5e08cbe71 100644 --- a/src/concrete/ml/common/utils.py +++ b/src/concrete/ml/common/utils.py @@ -2,7 +2,6 @@ import enum import string -import warnings from functools import partial from types import FunctionType from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union @@ -587,43 +586,9 @@ def all_values_are_of_dtype(*values: Any, dtypes: Union[str, List[str]]) -> bool return all(_is_of_dtype(value, supported_dtypes) for value in values) -def set_multi_parameter_in_configuration(configuration: Optional[Configuration], **kwargs): - """Build a Configuration instance with multi-parameter strategy, unless one is already given. - - If the given Configuration instance is not None and the parameter strategy is set to MONO, a - warning is raised in order to make sure the user did it on purpose. - - Args: - configuration (Optional[Configuration]): The configuration to consider. - **kwargs: Additional parameters to use for instantiating a new Configuration instance, if - configuration is None. - - Returns: - configuration (Configuration): A configuration with multi-parameter strategy. - """ - assert ( - "parameter_selection_strategy" not in kwargs - ), "Please do not provide a parameter_selection_strategy parameter as it will be set to MULTI." - if configuration is None: - configuration = Configuration( - parameter_selection_strategy=ParameterSelectionStrategy.MULTI, **kwargs - ) - - elif configuration.parameter_selection_strategy == ParameterSelectionStrategy.MONO: - warnings.warn( - "Setting the parameter_selection_strategy to mono-parameter is not recommended as it " - "can deteriorate performances. If you set it voluntarily, this message can be ignored. " - "Else, please set parameter_selection_strategy to ParameterSelectionStrategy.MULTI " - "when initializing the Configuration instance.", - stacklevel=2, - ) - - return configuration - - -# Remove this function once Concrete Python fixes the multi-parameter bug with fully-leveled +# Remove this function once Concrete Python fixes the multi-parameter bug with KNN # circuits -# TODO: https://github.com/zama-ai/concrete-ml-internal/issues/3862 +# FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/3978 def force_mono_parameter_in_configuration(configuration: Optional[Configuration], **kwargs): """Force configuration to mono-parameter strategy. diff --git a/src/concrete/ml/quantization/quantized_module.py b/src/concrete/ml/quantization/quantized_module.py index d0456a6bd..0fb81e4de 100644 --- a/src/concrete/ml/quantization/quantized_module.py +++ b/src/concrete/ml/quantization/quantized_module.py @@ -24,7 +24,6 @@ check_there_is_no_p_error_options_in_configuration, generate_proxy_function, manage_parameters_for_pbs_errors, - set_multi_parameter_in_configuration, to_tuple, ) from .base_quantized_op import ONNXOpInputOutputType, QuantizedOp @@ -639,11 +638,6 @@ def compile( # Find the right way to set parameters for compiler, depending on the way we want to default p_error, global_p_error = manage_parameters_for_pbs_errors(p_error, global_p_error) - # Remove this function once the default strategy is set to multi-parameter in Concrete - # Python - # TODO: https://github.com/zama-ai/concrete-ml-internal/issues/3860 - configuration = set_multi_parameter_in_configuration(configuration) - # Jit compiler is now deprecated and will soon be removed, it is thus forced to False # by default self.fhe_circuit = compiler.compile( diff --git a/src/concrete/ml/sklearn/base.py b/src/concrete/ml/sklearn/base.py index 052343d84..eaf228def 100644 --- a/src/concrete/ml/sklearn/base.py +++ b/src/concrete/ml/sklearn/base.py @@ -38,7 +38,6 @@ force_mono_parameter_in_configuration, generate_proxy_function, manage_parameters_for_pbs_errors, - set_multi_parameter_in_configuration, ) from ..onnx.convert import OPSET_VERSION_FOR_ONNX_EXPORT from ..onnx.onnx_model_manipulations import clean_graph_after_node_op_type, remove_node_types @@ -1363,27 +1362,6 @@ def _get_module_to_compile(self) -> Union[Compiler, QuantizedModule]: return compiler def compile(self, *args, **kwargs) -> Circuit: - - # Factorize this in the base class once Concrete Python fixes the multi-parameter bug - # with fully-leveled circuits - # TODO: https://github.com/zama-ai/concrete-ml-internal/issues/3862 - # Remove this function once the default strategy is set to multi-parameter in Concrete - # Python - # TODO: https://github.com/zama-ai/concrete-ml-internal/issues/3860 - # If a configuration instance is given as a positional parameter, set the strategy to - # multi-parameter - if len(args) >= 2: - configuration = set_multi_parameter_in_configuration(args[1]) - args_list = list(args) - args_list[1] = configuration - args = tuple(args_list) - - # Else, retrieve the configuration in kwargs if it exists, or create a new one, and set the - # strategy to multi-parameter - else: - configuration = kwargs.get("configuration", None) - kwargs["configuration"] = set_multi_parameter_in_configuration(configuration) - BaseEstimator.compile(self, *args, **kwargs) # Check that the graph only has a single output @@ -1638,26 +1616,6 @@ def _inference(self, q_X: numpy.ndarray) -> numpy.ndarray: y_pred += self._q_bias return y_pred - # Remove this function once Concrete Python fixes the multi-parameter bug with fully-leveled - # circuits and factorize it in the base class - # TODO: https://github.com/zama-ai/concrete-ml-internal/issues/3862 - def compile(self, *args, **kwargs) -> Circuit: - # If a configuration instance is given as a positional parameter, set the strategy to - # multi-parameter - if len(args) >= 2: - configuration = force_mono_parameter_in_configuration(args[1]) - args_list = list(args) - args_list[1] = configuration - args = tuple(args_list) - - # Else, retrieve the configuration in kwargs if it exists, or create a new one, and set the - # strategy to multi-parameter - else: - configuration = kwargs.get("configuration", None) - kwargs["configuration"] = force_mono_parameter_in_configuration(configuration) - - return BaseEstimator.compile(self, *args, **kwargs) - class SklearnLinearRegressorMixin(SklearnLinearModelMixin, sklearn.base.RegressorMixin, ABC): """A Mixin class for sklearn linear regressors with FHE. diff --git a/tests/sklearn/test_sklearn_models.py b/tests/sklearn/test_sklearn_models.py index 307e412d3..065eeb214 100644 --- a/tests/sklearn/test_sklearn_models.py +++ b/tests/sklearn/test_sklearn_models.py @@ -39,7 +39,6 @@ import pandas import pytest import torch -from concrete.fhe import ParameterSelectionStrategy from sklearn.decomposition import PCA from sklearn.exceptions import ConvergenceWarning, UndefinedMetricWarning from sklearn.metrics import make_scorer, matthews_corrcoef, top_k_accuracy_score @@ -1056,19 +1055,6 @@ def check_exposition_structural_methods_decision_trees(model, x, y): ) -def check_mono_parameter_warnings(model, x, default_configuration): - """Check that setting voluntarily a mono-parameter strategy properly raises a warning.""" - - # Set the parameter strategy to mono-parameter - default_configuration.parameter_selection_strategy = ParameterSelectionStrategy.MONO - - with pytest.warns( - UserWarning, - match="Setting the parameter_selection_strategy to mono-parameter is not recommended.*", - ): - model.compile(x, default_configuration) - - @pytest.mark.parametrize("model_class, parameters", sklearn_models_and_datasets) @pytest.mark.parametrize( "n_bits", @@ -1668,35 +1654,3 @@ def test_exposition_structural_methods_decision_trees( print("Run check_exposition_structural_methods_decision_trees") check_exposition_structural_methods_decision_trees(model, x, y) - - -@pytest.mark.parametrize("model_class, parameters", sklearn_models_and_datasets) -def test_mono_parameter_warnings( - model_class, - parameters, - load_data, - is_weekly_option, - default_configuration, - verbose=True, -): - """Test that setting voluntarily a mono-parameter strategy properly raises a warning.""" - - # Remove this once Concrete Python fixes the multi-parameter bug with fully-leveled circuits - # TODO: https://github.com/zama-ai/concrete-ml-internal/issues/3862 - # Linear models are manually forced to use mono-parameter - if is_model_class_in_a_list(model_class, get_sklearn_linear_models()): - return - - # KNN is manually forced to use mono-parameter - # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/3978 - if is_model_class_in_a_list(model_class, get_sklearn_neighbors_models()): - return - - n_bits = min(N_BITS_REGULAR_BUILDS) - - model, x = preamble(model_class, parameters, n_bits, load_data, is_weekly_option) - - if verbose: - print("Run check_mono_parameter_warnings") - - check_mono_parameter_warnings(model, x, default_configuration) diff --git a/tests/torch/test_hybrid_converter.py b/tests/torch/test_hybrid_converter.py index 99b784e23..429fce176 100644 --- a/tests/torch/test_hybrid_converter.py +++ b/tests/torch/test_hybrid_converter.py @@ -6,7 +6,7 @@ import pytest import torch -from concrete.fhe import Configuration, ParameterSelectionStrategy +from concrete.fhe import Configuration from transformers import GPT2LMHeadModel, GPT2Tokenizer from concrete.ml.torch.hybrid_model import HybridFHEModel @@ -20,7 +20,6 @@ def run_hybrid_model_test( # Multi-parameter strategy is used in order to speed-up the FHE executions configuration = Configuration( single_precision=False, - parameter_selection_strategy=ParameterSelectionStrategy.MULTI, ) # Create a hybrid model diff --git a/use_case_examples/cifar/cifar_brevitas_training/evaluate_one_example_fhe.py b/use_case_examples/cifar/cifar_brevitas_training/evaluate_one_example_fhe.py index b90fc15c7..245111516 100644 --- a/use_case_examples/cifar/cifar_brevitas_training/evaluate_one_example_fhe.py +++ b/use_case_examples/cifar/cifar_brevitas_training/evaluate_one_example_fhe.py @@ -80,7 +80,6 @@ def wrapper(*args, **kwargs): enable_unsafe_features=True, use_insecure_key_cache=True, insecure_key_cache_location=KEYGEN_CACHE_DIR, - parameter_selection_strategy=fhe.ParameterSelectionStrategy.MULTI, ) print("Compiling the model.") diff --git a/use_case_examples/cifar/cifar_brevitas_training/evaluate_torch_cml.py b/use_case_examples/cifar/cifar_brevitas_training/evaluate_torch_cml.py index 95d6136d2..059771e66 100644 --- a/use_case_examples/cifar/cifar_brevitas_training/evaluate_torch_cml.py +++ b/use_case_examples/cifar/cifar_brevitas_training/evaluate_torch_cml.py @@ -3,7 +3,7 @@ import numpy as np import torch -from concrete.fhe import Configuration, ParameterSelectionStrategy +from concrete.fhe import Configuration from models import cnv_2w2a from torch.utils.data import DataLoader from tqdm import tqdm @@ -106,7 +106,6 @@ def main(args): cfg = Configuration( verbose=True, show_optimizer=args.show_optimizer, - parameter_selection_strategy=ParameterSelectionStrategy.MULTI, ) for rounding_threshold_bits in rounding_threshold_bits_list: diff --git a/use_case_examples/cifar/cifar_brevitas_with_model_splitting/infer_fhe.py b/use_case_examples/cifar/cifar_brevitas_with_model_splitting/infer_fhe.py index 7d872f0ae..d2c14e717 100644 --- a/use_case_examples/cifar/cifar_brevitas_with_model_splitting/infer_fhe.py +++ b/use_case_examples/cifar/cifar_brevitas_with_model_splitting/infer_fhe.py @@ -8,7 +8,7 @@ import torch import torchvision import torchvision.transforms as transforms -from concrete.fhe import Circuit, Configuration, ParameterSelectionStrategy +from concrete.fhe import Circuit, Configuration from model import CNV from concrete.ml.deployment.fhe_client_server import FHEModelDev @@ -54,10 +54,7 @@ def main(): train_features_sub_set = model.clear_module(train_sub_set) # Multi-parameter strategy is used in order to speed-up the FHE executions - configuration = Configuration( - show_optimizer=True, - parameter_selection_strategy=ParameterSelectionStrategy.MULTI, - ) + configuration = Configuration(show_optimizer=True) compilation_onnx_path = "compilation_model.onnx" print("Compiling the model ...") diff --git a/use_case_examples/cifar/cifar_brevitas_with_model_splitting/infer_fhe_simulation.py b/use_case_examples/cifar/cifar_brevitas_with_model_splitting/infer_fhe_simulation.py index 3cc8c62ec..b537b9837 100644 --- a/use_case_examples/cifar/cifar_brevitas_with_model_splitting/infer_fhe_simulation.py +++ b/use_case_examples/cifar/cifar_brevitas_with_model_splitting/infer_fhe_simulation.py @@ -8,7 +8,6 @@ import torch import torchvision from brevitas import config -from concrete.fhe import Configuration, ParameterSelectionStrategy from model import CNV from scipy.special import softmax from torch.backends import cudnn @@ -110,14 +109,6 @@ def main(): with torch.no_grad(): train_features_sub_set = net.clear_module(train_sub_set) - optional_kwargs = {} - - # Multi-parameter strategy is used in order to speed-up the FHE executions - optional_kwargs["configuration"] = Configuration( - dump_artifacts_on_unexpected_failures=True, - parameter_selection_strategy=ParameterSelectionStrategy.MULTI, - ) - compilation_onnx_path = "compilation_model.onnx" print("Compiling the model") start_compile = time.time() @@ -126,7 +117,6 @@ def main(): quantized_numpy_module = compile_brevitas_qat_model( torch_model=net.encrypted_module, torch_inputset=train_features_sub_set, - **optional_kwargs, output_onnx_file=compilation_onnx_path, ) diff --git a/use_case_examples/mnist/MnistInFHE.ipynb b/use_case_examples/mnist/MnistInFHE.ipynb index df3820acf..d1406beaf 100644 --- a/use_case_examples/mnist/MnistInFHE.ipynb +++ b/use_case_examples/mnist/MnistInFHE.ipynb @@ -22,7 +22,7 @@ "import torch\n", "\n", "# Concrete-Python\n", - "from concrete.fhe import Configuration, ParameterSelectionStrategy\n", + "from concrete.fhe import Configuration\n", "\n", "# The QAT model\n", "from model import MNISTQATModel # pylint: disable=no-name-in-module\n", @@ -168,7 +168,6 @@ " enable_unsafe_features=True,\n", " use_insecure_key_cache=True,\n", " insecure_key_cache_location=\"/tmp/keycache\",\n", - " parameter_selection_strategy=ParameterSelectionStrategy.MULTI,\n", " )\n", "\n", " if use_simulation:\n",