From b90962020c1bc377120c05bcff11755620bfe1d4 Mon Sep 17 00:00:00 2001
From: Zama Bot <64638994+zama-bot@users.noreply.github.com>
Date: Sat, 28 Sep 2024 22:09:01 +0200
Subject: [PATCH] Prepare release 1.7.0 (#900)
Co-authored-by: andrei-stoian-zama <95410270+andrei-stoian-zama@users.noreply.github.com>
---
...ncrete.ml.quantization.quantized_module.md | 18 +-
.../api/concrete.ml.sklearn.base.md | 208 +++++++++---------
2 files changed, 113 insertions(+), 113 deletions(-)
diff --git a/docs/references/api/concrete.ml.quantization.quantized_module.md b/docs/references/api/concrete.ml.quantization.quantized_module.md
index 71275b531..668c1c7b1 100644
--- a/docs/references/api/concrete.ml.quantization.quantized_module.md
+++ b/docs/references/api/concrete.ml.quantization.quantized_module.md
@@ -68,7 +68,7 @@ Get the post-processing parameters.
______________________________________________________________________
-
+
### method `bitwidth_and_range_report`
@@ -100,7 +100,7 @@ Check if the quantized module is compiled.
______________________________________________________________________
-
+
### method `compile`
@@ -142,7 +142,7 @@ Compile the module's forward function.
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -210,7 +210,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `forward`
@@ -258,7 +258,7 @@ Load itself from a string.
______________________________________________________________________
-
+
### method `post_processing`
@@ -280,7 +280,7 @@ For quantized modules, there is no post-processing step but the method is kept t
______________________________________________________________________
-
+
### method `pre_processing`
@@ -300,7 +300,7 @@ Apply pre-processing to the input values.
______________________________________________________________________
-
+
### method `quantize_input`
@@ -322,7 +322,7 @@ Take the inputs in fp32 and quantize it using the learned quantization parameter
______________________________________________________________________
-
+
### method `quantized_forward`
@@ -346,7 +346,7 @@ Forward function for the FHE circuit.
______________________________________________________________________
-
+
### method `set_inputs_quantization_parameters`
diff --git a/docs/references/api/concrete.ml.sklearn.base.md b/docs/references/api/concrete.ml.sklearn.base.md
index 30e8c2252..a27480819 100644
--- a/docs/references/api/concrete.ml.sklearn.base.md
+++ b/docs/references/api/concrete.ml.sklearn.base.md
@@ -314,7 +314,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -384,7 +384,7 @@ This step ensures that the fit method has been called.
______________________________________________________________________
-
+
## class `BaseClassifier`
@@ -612,7 +612,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -691,7 +691,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -701,7 +701,7 @@ post_processing(y_preds: 'ndarray') → ndarray
______________________________________________________________________
-
+
### method `predict`
@@ -714,7 +714,7 @@ predict(
______________________________________________________________________
-
+
### method `predict_proba`
@@ -760,13 +760,13 @@ This step ensures that the fit method has been called.
______________________________________________________________________
-
+
## class `QuantizedTorchEstimatorMixin`
Mixin that provides quantization for a torch module and follows the Estimator API.
-
+
### method `__init__`
@@ -874,7 +874,7 @@ Check if the model is fitted.
______________________________________________________________________
-
+
### method `compile`
@@ -893,7 +893,7 @@ compile(
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -951,7 +951,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -976,7 +976,7 @@ The fitted estimator.
______________________________________________________________________
-
+
### method `fit_benchmark`
@@ -1007,7 +1007,7 @@ The Concrete ML and equivalent skorch fitted estimators.
______________________________________________________________________
-
+
### method `get_params`
@@ -1029,7 +1029,7 @@ This method is overloaded in order to make sure that auto-computed parameters ar
______________________________________________________________________
-
+
### method `get_sklearn_params`
@@ -1059,7 +1059,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -1093,7 +1093,7 @@ Predict values for X, in FHE or in the clear.
______________________________________________________________________
-
+
### method `prune`
@@ -1121,7 +1121,7 @@ A new pruned copy of the Neural Network model.
______________________________________________________________________
-
+
### method `quantize_input`
@@ -1131,7 +1131,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `BaseTreeEstimatorMixin`
@@ -1139,7 +1139,7 @@ Mixin class for tree-based estimators.
This class inherits from sklearn.base.BaseEstimator in order to have access to scikit-learn's `get_params` and `set_params` methods.
-
+
### method `__init__`
@@ -1233,7 +1233,7 @@ Check if the model is fitted.
______________________________________________________________________
-
+
### method `compile`
@@ -1243,7 +1243,7 @@ compile(*args, **kwargs) → Circuit
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -1301,7 +1301,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -1338,7 +1338,7 @@ The Concrete ML and float equivalent fitted estimators.
______________________________________________________________________
-
+
### classmethod `from_sklearn_model`
@@ -1407,7 +1407,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -1417,7 +1417,7 @@ post_processing(y_preds: 'ndarray') → ndarray
______________________________________________________________________
-
+
### method `predict`
@@ -1430,7 +1430,7 @@ predict(
______________________________________________________________________
-
+
### method `quantize_input`
@@ -1440,7 +1440,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `BaseTreeRegressorMixin`
@@ -1448,7 +1448,7 @@ Mixin class for tree-based regressors.
This class is used to create a tree-based regressor class that inherits from sklearn.base.RegressorMixin, which essentially gives access to scikit-learn's `score` method for regressors.
-
+
### method `__init__`
@@ -1542,7 +1542,7 @@ Check if the model is fitted.
______________________________________________________________________
-
+
### method `compile`
@@ -1552,7 +1552,7 @@ compile(*args, **kwargs) → Circuit
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -1610,7 +1610,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -1647,7 +1647,7 @@ The Concrete ML and float equivalent fitted estimators.
______________________________________________________________________
-
+
### classmethod `from_sklearn_model`
@@ -1716,7 +1716,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -1726,7 +1726,7 @@ post_processing(y_preds: 'ndarray') → ndarray
______________________________________________________________________
-
+
### method `predict`
@@ -1739,7 +1739,7 @@ predict(
______________________________________________________________________
-
+
### method `quantize_input`
@@ -1749,7 +1749,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `BaseTreeClassifierMixin`
@@ -1759,7 +1759,7 @@ This class is used to create a tree-based classifier class that inherits from sk
Additionally, this class adjusts some of the tree-based base class's methods in order to make them compliant with classification workflows.
-
+
### method `__init__`
@@ -1877,7 +1877,7 @@ Check if the model is fitted.
______________________________________________________________________
-
+
### method `compile`
@@ -1887,7 +1887,7 @@ compile(*args, **kwargs) → Circuit
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -1945,7 +1945,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -1982,7 +1982,7 @@ The Concrete ML and float equivalent fitted estimators.
______________________________________________________________________
-
+
### classmethod `from_sklearn_model`
@@ -2051,7 +2051,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -2061,7 +2061,7 @@ post_processing(y_preds: 'ndarray') → ndarray
______________________________________________________________________
-
+
### method `predict`
@@ -2074,7 +2074,7 @@ predict(
______________________________________________________________________
-
+
### method `predict_proba`
@@ -2098,7 +2098,7 @@ Predict class probabilities.
______________________________________________________________________
-
+
### method `quantize_input`
@@ -2108,7 +2108,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `SklearnLinearModelMixin`
@@ -2116,7 +2116,7 @@ A Mixin class for sklearn linear models with FHE.
This class inherits from sklearn.base.BaseEstimator in order to have access to scikit-learn's `get_params` and `set_params` methods.
-
+
### method `__init__`
@@ -2246,7 +2246,7 @@ Compile the model.
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -2304,7 +2304,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -2341,7 +2341,7 @@ The Concrete ML and float equivalent fitted estimators.
______________________________________________________________________
-
+
### classmethod `from_sklearn_model`
@@ -2410,7 +2410,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -2458,7 +2458,7 @@ Predict values for X, in FHE or in the clear.
______________________________________________________________________
-
+
### method `quantize_input`
@@ -2468,7 +2468,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `SklearnLinearRegressorMixin`
@@ -2476,7 +2476,7 @@ A Mixin class for sklearn linear regressors with FHE.
This class is used to create a linear regressor class that inherits from sklearn.base.RegressorMixin, which essentially gives access to scikit-learn's `score` method for regressors.
-
+
### method `__init__`
@@ -2606,7 +2606,7 @@ Compile the model.
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -2664,7 +2664,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -2701,7 +2701,7 @@ The Concrete ML and float equivalent fitted estimators.
______________________________________________________________________
-
+
### classmethod `from_sklearn_model`
@@ -2770,7 +2770,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -2818,7 +2818,7 @@ Predict values for X, in FHE or in the clear.
______________________________________________________________________
-
+
### method `quantize_input`
@@ -2828,7 +2828,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `SklearnLinearClassifierMixin`
@@ -2838,7 +2838,7 @@ This class is used to create a linear classifier class that inherits from sklear
Additionally, this class adjusts some of the tree-based base class's methods in order to make them compliant with classification workflows.
-
+
### method `__init__`
@@ -2992,7 +2992,7 @@ Compile the model.
______________________________________________________________________
-
+
### method `decision_function`
@@ -3016,7 +3016,7 @@ Predict confidence scores.
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -3074,7 +3074,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -3111,7 +3111,7 @@ The Concrete ML and float equivalent fitted estimators.
______________________________________________________________________
-
+
### classmethod `from_sklearn_model`
@@ -3180,7 +3180,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -3190,7 +3190,7 @@ post_processing(y_preds: 'ndarray') → ndarray
______________________________________________________________________
-
+
### method `predict`
@@ -3203,7 +3203,7 @@ predict(
______________________________________________________________________
-
+
### method `predict_proba`
@@ -3216,7 +3216,7 @@ predict_proba(
______________________________________________________________________
-
+
### method `quantize_input`
@@ -3226,7 +3226,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `SklearnSGDRegressorMixin`
@@ -3234,7 +3234,7 @@ A Mixin class for sklearn SGD regressors with FHE.
This class is used to create a SGD regressor class what can be exported to ONNX using Hummingbird.
-
+
### method `__init__`
@@ -3364,7 +3364,7 @@ Compile the model.
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -3422,7 +3422,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -3459,7 +3459,7 @@ The Concrete ML and float equivalent fitted estimators.
______________________________________________________________________
-
+
### classmethod `from_sklearn_model`
@@ -3528,7 +3528,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -3576,7 +3576,7 @@ Predict values for X, in FHE or in the clear.
______________________________________________________________________
-
+
### method `quantize_input`
@@ -3586,7 +3586,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `SklearnSGDClassifierMixin`
@@ -3594,7 +3594,7 @@ A Mixin class for sklearn SGD classifiers with FHE.
This class is used to create a SGD classifier class what can be exported to ONNX using Hummingbird.
-
+
### method `__init__`
@@ -3748,7 +3748,7 @@ Compile the model.
______________________________________________________________________
-
+
### method `decision_function`
@@ -3772,7 +3772,7 @@ Predict confidence scores.
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -3830,7 +3830,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -3867,7 +3867,7 @@ The Concrete ML and float equivalent fitted estimators.
______________________________________________________________________
-
+
### classmethod `from_sklearn_model`
@@ -3936,7 +3936,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `post_processing`
@@ -3946,7 +3946,7 @@ post_processing(y_preds: 'ndarray') → ndarray
______________________________________________________________________
-
+
### method `predict`
@@ -3959,7 +3959,7 @@ predict(
______________________________________________________________________
-
+
### method `predict_proba`
@@ -3972,7 +3972,7 @@ predict_proba(
______________________________________________________________________
-
+
### method `quantize_input`
@@ -3982,7 +3982,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `SklearnKNeighborsMixin`
@@ -3990,7 +3990,7 @@ A Mixin class for sklearn KNeighbors models with FHE.
This class inherits from sklearn.base.BaseEstimator in order to have access to scikit-learn's `get_params` and `set_params` methods.
-
+
### method `__init__`
@@ -4118,7 +4118,7 @@ Compile the model.
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -4176,7 +4176,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -4235,7 +4235,7 @@ This method is used to instantiate a scikit-learn model using the Concrete ML mo
______________________________________________________________________
-
+
### method `get_topk_labels`
@@ -4279,7 +4279,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `majority_vote`
@@ -4299,7 +4299,7 @@ Determine the most common class among nearest neighborsfor each query.
______________________________________________________________________
-
+
### method `post_processing`
@@ -4321,7 +4321,7 @@ For KNN, the de-quantization step is not required. Because \_inference returns t
______________________________________________________________________
-
+
### method `predict`
@@ -4334,7 +4334,7 @@ predict(
______________________________________________________________________
-
+
### method `quantize_input`
@@ -4344,7 +4344,7 @@ quantize_input(X: 'ndarray') → ndarray
______________________________________________________________________
-
+
## class `SklearnKNeighborsClassifierMixin`
@@ -4352,7 +4352,7 @@ A Mixin class for sklearn KNeighbors classifiers with FHE.
This class is used to create a KNeighbors classifier class that inherits from SklearnKNeighborsMixin and sklearn.base.ClassifierMixin. By inheriting from sklearn.base.ClassifierMixin, it allows this class to be recognized as a classifier."
-
+
### method `__init__`
@@ -4480,7 +4480,7 @@ Compile the model.
______________________________________________________________________
-
+
### method `dequantize_output`
@@ -4538,7 +4538,7 @@ Dump itself to a string.
______________________________________________________________________
-
+
### method `fit`
@@ -4597,7 +4597,7 @@ This method is used to instantiate a scikit-learn model using the Concrete ML mo
______________________________________________________________________
-
+
### method `get_topk_labels`
@@ -4641,7 +4641,7 @@ Load itself from a dict.
______________________________________________________________________
-
+
### method `majority_vote`
@@ -4661,7 +4661,7 @@ Determine the most common class among nearest neighborsfor each query.
______________________________________________________________________
-
+
### method `post_processing`
@@ -4683,7 +4683,7 @@ For KNN, the de-quantization step is not required. Because \_inference returns t
______________________________________________________________________
-
+
### method `predict`
@@ -4696,7 +4696,7 @@ predict(
______________________________________________________________________
-
+
### method `quantize_input`