diff --git a/use_case_examples/deployment/breast_cancer/README.md b/use_case_examples/deployment/breast_cancer/README.md index a909ee3fe2..bdfdb04c7f 100644 --- a/use_case_examples/deployment/breast_cancer/README.md +++ b/use_case_examples/deployment/breast_cancer/README.md @@ -8,14 +8,57 @@ To run this example on AWS you will also need to have the AWS CLI properly setup To do so please refer to [AWS documentation](https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html). One can also run this example locally using Docker, or just by running the scripts locally. -1. To train your model you can use `train.py`, or `train_with_docker.sh` to use Docker (recommended way). +#### On the developer machine: + +1. To train your model you can + - use `train_with_docker.sh` to use Docker (recommended way), + - or, only if you know what you're doing and will manage synchronisation between versions, use `python train.py` + This will train a model and [serialize the FHE circuit](../../../docs/guides/client_server.md) in a new folder called `./dev`. -1. Once that's done you can use the script provided in Concrete ML in `use_case_examples/deployment/server/`, use `deploy_to_docker.py`. -- `python use_case_examples/deployment/server/deploy_to_docker.py --path-to-model ./dev` +#### On the server machine: + +1. Copy the './dev' directory from the developer machine. +1. If you need to delete existing Dockers: `docker rm -f $(docker ps -a -q)` +1. Launch the server via: + +``` +python ../server/deploy_to_docker.py --path-to-model ./dev +``` + +You will finally see some + +> INFO: Uvicorn running on http://0.0.0.0:5000 (Press CTRL+C to quit) + +which means the server is ready to server, on Port 5000. + +#### On the client machine: + +##### If you go for a Docker part on the client side: + +1. Launch the `build_docker_client_image.py` to build a client Docker image. +1. Run the client with `client.sh` script. This will run the container in interactive mode. +1. Then, in this Docker, you can launch the client script to interact with the server: + +``` +URL="" python client.py +``` + +where `` is the content of the `url.txt` file (if you don't set URL, the default is `0.0.0.0`; this defines the IP to use when running server in Docker on localhost). + +#### If you go for client side done in Python: + +1. Prepare the client side: + +``` +python3.8 -m venv .venvclient +source .venvclient/bin/activate +pip install -r client_requirements.txt +``` +1. Run the client script: -3. Once that's done you can launch the `build_docker_client_image.py` script to build a client Docker image. -1. You can then run the client by using the `client.sh` script. This will run the container in interactive mode. - To interact with the server you can launch the `client.py` script using `URL="" python client.py` where `` is the content of the `url.txt` file (default is `0.0.0.0`, ip to use when running server in Docker on localhost). +``` +URL="http://localhost:8888" python client.py +``` -And here it is you deployed a Concrete ML model and ran an inference using Fully Homormophic Encryption. +And here it is! Whether you use Docker or Python for the client side, you deployed a Concrete ML model and ran an inference using Fully Homormophic Encryption. In particular, you can see that the FHE predictions are correct. diff --git a/use_case_examples/deployment/breast_cancer/client.py b/use_case_examples/deployment/breast_cancer/client.py index a1b8d225bb..4b396fdb99 100644 --- a/use_case_examples/deployment/breast_cancer/client.py +++ b/use_case_examples/deployment/breast_cancer/client.py @@ -21,7 +21,7 @@ from concrete.ml.deployment import FHEModelClient -URL = os.environ.get("URL", f"http://localhost:5000") +URL = os.environ.get("URL", f"http://localhost:8888") STATUS_OK = 200 ROOT = Path(__file__).parent / "client" ROOT.mkdir(exist_ok=True) @@ -105,4 +105,13 @@ encrypted_result = result.content decrypted_prediction = client.deserialize_decrypt_dequantize(encrypted_result)[0] decrypted_predictions.append(decrypted_prediction) - print(decrypted_predictions) + print(f"Decrypted predictions are: {decrypted_predictions}") + + decrypted_predictions_classes = numpy.array(decrypted_predictions).argmax(axis=1) + print(f"Decrypted prediction classes are: {decrypted_predictions_classes}") + + # Let's check the results and compare them against the clear model + clear_prediction_classes = y[0:10] + accuracy = (clear_prediction_classes == decrypted_predictions_classes).mean() + print(f"Accuracy between FHE prediction and expected results is: {accuracy*100:.0f}%") + diff --git a/use_case_examples/deployment/breast_cancer/client.sh b/use_case_examples/deployment/breast_cancer/client.sh old mode 100644 new mode 100755 diff --git a/use_case_examples/deployment/breast_cancer/client_requirements.txt b/use_case_examples/deployment/breast_cancer/client_requirements.txt index fc58e57cf6..d1faae9a46 100644 --- a/use_case_examples/deployment/breast_cancer/client_requirements.txt +++ b/use_case_examples/deployment/breast_cancer/client_requirements.txt @@ -1,3 +1,6 @@ grequests requests tqdm +numpy +scikit-learn +concrete-ml \ No newline at end of file diff --git a/use_case_examples/deployment/breast_cancer/client_via_tfhe-rs.py b/use_case_examples/deployment/breast_cancer/client_via_tfhe-rs.py new file mode 100644 index 0000000000..256c54277d --- /dev/null +++ b/use_case_examples/deployment/breast_cancer/client_via_tfhe-rs.py @@ -0,0 +1,172 @@ +"""Client script. + +This script does the following: + - Query crypto-parameters and pre/post-processing parameters + - Quantize the inputs using the parameters + - Encrypt data using the crypto-parameters + - Send the encrypted data to the server (async using grequests) + - Collect the data and decrypt it + - De-quantize the decrypted results +""" + +import io +import os +from pathlib import Path + +import grequests +import numpy +import requests +from sklearn.datasets import load_breast_cancer +from tqdm import tqdm + +from concrete.ml.deployment import FHEModelClient + +URL = os.environ.get("URL", f"http://localhost:8888") +STATUS_OK = 200 +ROOT = Path(__file__).parent / "client" +ROOT.mkdir(exist_ok=True) + +encrypt_with_tfhe = False + +def to_tuple(x) -> tuple: + """Make the input a tuple if it is not already the case. + + Args: + x (Any): The input to consider. It can already be an input. + + Returns: + tuple: The input as a tuple. + """ + # If the input is not a tuple, return a tuple of a single element + if not isinstance(x, tuple): + return (x,) + + return x + +def serialize_encrypted_values( + *values_enc, +): + """Serialize encrypted values. + + If a value is None, None is returned. + + Args: + values_enc (Optional[fhe.Value]): The values to serialize. + + Returns: + Union[Optional[bytes], Optional[Tuple[bytes]]]: The serialized values. + """ + values_enc_serialized = tuple( + value_enc.serialize() if value_enc is not None else None for value_enc in values_enc + ) + + if len(values_enc_serialized) == 1: + return values_enc_serialized[0] + + return values_enc_serialized + +if __name__ == "__main__": + # Get the necessary data for the client + # client.zip + zip_response = requests.get(f"{URL}/get_client") + assert zip_response.status_code == STATUS_OK + with open(ROOT / "client.zip", "wb") as file: + file.write(zip_response.content) + + # Get the data to infer + X, y = load_breast_cancer(return_X_y=True) + assert isinstance(X, numpy.ndarray) + assert isinstance(y, numpy.ndarray) + X = X[-10:] + y = y[-10:] + + assert isinstance(X, numpy.ndarray) + assert isinstance(y, numpy.ndarray) + + # Create the client + client = FHEModelClient(path_dir=str(ROOT.resolve()), key_dir=str((ROOT / "keys").resolve())) + + # The client first need to create the private and evaluation keys. + serialized_evaluation_keys = client.get_serialized_evaluation_keys() + + assert isinstance(serialized_evaluation_keys, bytes) + + # Evaluation keys can be quite large files but only have to be shared once with the server. + + # Check the size of the evaluation keys (in MB) + print(f"Evaluation keys size: {len(serialized_evaluation_keys) / (10**6):.2f} MB") + + # Send this evaluation key to the server (this has to be done only once) + # send_evaluation_key_to_server(serialized_evaluation_keys) + + # Now we have everything for the client to interact with the server + + # We create a loop to send the input to the server and receive the encrypted prediction + execution_time = [] + encrypted_input = None + clear_input = None + + # Update all base64 queries encodings with UploadFile + response = requests.post( + f"{URL}/add_key", files={"key": io.BytesIO(initial_bytes=serialized_evaluation_keys)} + ) + assert response.status_code == STATUS_OK + uid = response.json()["uid"] + + inferences = [] + # Launch the queries + for i in tqdm(range(len(X))): + clear_input = X[[i], :] + + assert isinstance(clear_input, numpy.ndarray) + + quantized_input = to_tuple(client.model.quantize_input(clear_input)) + + # Here, we can encrypt with TFHE-rs instead of Concrete + if encrypt_with_tfhe: + pass + else: + encrypted_input = to_tuple(client.client.encrypt(*quantized_input)) + + encrypted_input = serialize_encrypted_values(*encrypted_input) + + # Debugging + if False: + print(f"Clear input: {clear_input}") + print(f"Quantized input: {quantized_input}") + print(f"Quantized input: {encrypted_input}") + + assert isinstance(encrypted_input, bytes) + + inferences.append( + grequests.post( + f"{URL}/compute", + files={ + "model_input": io.BytesIO(encrypted_input), + }, + data={ + "uid": uid, + }, + ) + ) + + # Unpack the results + decrypted_predictions = [] + for result in grequests.map(inferences): + if result is None: + raise ValueError("Result is None, probably due to a crash on the server side.") + assert result.status_code == STATUS_OK + + encrypted_result = result.content + decrypted_prediction = client.deserialize_decrypt_dequantize(encrypted_result)[0] + decrypted_predictions.append(decrypted_prediction) + print(f"Decrypted predictions are: {decrypted_predictions}") + + decrypted_predictions_classes = numpy.array(decrypted_predictions).argmax(axis=1) + print(f"Decrypted prediction classes are: {decrypted_predictions_classes}") + + # Let's check the results and compare them against the clear model + clear_prediction_classes = y[0:10] + accuracy = (clear_prediction_classes == decrypted_predictions_classes).mean() + print(f"Accuracy between FHE prediction and expected results is: {accuracy*100:.0f}%") + diff --git a/use_case_examples/deployment/breast_cancer/train.py b/use_case_examples/deployment/breast_cancer/train.py index 494354a2dd..da4c5d23d5 100644 --- a/use_case_examples/deployment/breast_cancer/train.py +++ b/use_case_examples/deployment/breast_cancer/train.py @@ -20,4 +20,4 @@ model.fit(X_train, y_train) model.compile(X_train) dev = FHEModelDev("./dev", model) - dev.save() + dev.save(via_mlir=True) diff --git a/use_case_examples/deployment/server/deploy_to_docker.py b/use_case_examples/deployment/server/deploy_to_docker.py index 881a3b9bcd..9dd1a93146 100644 --- a/use_case_examples/deployment/server/deploy_to_docker.py +++ b/use_case_examples/deployment/server/deploy_to_docker.py @@ -97,11 +97,13 @@ def main(path_to_model: Path, image_name: str): if args.only_build: return + PORT_TO_CHOOSE=8888 + # Run newly created Docker server try: with open("./url.txt", mode="w", encoding="utf-8") as file: - file.write("http://localhost:5000") - subprocess.check_output(f"docker run -p 5000:5000 {image_name}", shell=True) + file.write(f"http://localhost:{PORT_TO_CHOOSE}") + subprocess.check_output(f"docker run -p {PORT_TO_CHOOSE}:5000 {image_name}", shell=True) except KeyboardInterrupt: message = "Terminate container? (y/n) " shutdown_instance = input(message).lower()