From ec58bcad207919f438a59146c0f2b9c7a4cdef22 Mon Sep 17 00:00:00 2001 From: Roman <56846628+RomanBredehoft@users.noreply.github.com> Date: Tue, 11 Jun 2024 16:35:36 +0200 Subject: [PATCH] feat: use composition for non-interactive encrypted training (#660) --- .gitignore | 5 +- Makefile | 2 +- deps_licenses/licenses_linux_user.txt | 20 +- deps_licenses/licenses_linux_user.txt.md5 | 2 +- deps_licenses/licenses_mac_intel_user.txt | 20 +- deps_licenses/licenses_mac_intel_user.txt.md5 | 2 +- deps_licenses/licenses_mac_silicon_user.txt | 21 +- .../licenses_mac_silicon_user.txt.md5 | 2 +- docs/advanced_examples/.gitignore | 5 + .../LogisticRegressionTraining.ipynb | 404 +++-- poetry.lock | 1447 ++++++++--------- pyproject.toml | 3 +- src/concrete/ml/common/utils.py | 11 +- src/concrete/ml/deployment/_utils.py | 52 + .../ml/deployment/fhe_client_server.py | 162 +- src/concrete/ml/onnx/convert.py | 1 + src/concrete/ml/pytest/torch_models.py | 38 +- src/concrete/ml/quantization/post_training.py | 5 +- .../ml/quantization/quantized_module.py | 158 +- src/concrete/ml/sklearn/linear_model.py | 211 ++- src/concrete/ml/torch/compile.py | 28 +- src/concrete/ml/torch/hybrid_model.py | 3 +- tests/deployment/test_client_server.py | 428 ++++- tests/sklearn/test_fhe_training.py | 131 +- tests/torch/test_brevitas_qat.py | 5 +- tests/torch/test_compile_torch.py | 151 ++ 26 files changed, 2196 insertions(+), 1121 deletions(-) create mode 100644 docs/advanced_examples/.gitignore create mode 100644 src/concrete/ml/deployment/_utils.py diff --git a/.gitignore b/.gitignore index 0e491e85b..06646f16e 100644 --- a/.gitignore +++ b/.gitignore @@ -141,6 +141,7 @@ dmypy.json # Experiments directory playground/ +.playground/ # File generated by benchmarks progress.json @@ -164,10 +165,6 @@ docs/index.rst .artifacts execution_time_of_individual_pytest_files.txt -# Docs: Advance Examples MNIST data -docs/advanced_examples/data/MNIST/ - - # Hybrid model artifacts use_case_examples/hybrid_model/clients/ use_case_examples/hybrid_model/compiled_models/ diff --git a/Makefile b/Makefile index 42e64715b..c790f2a7a 100644 --- a/Makefile +++ b/Makefile @@ -19,7 +19,7 @@ OPEN_PR="true" # Force the installation of a Concrete Python version, which is very useful with nightly versions # /!\ WARNING /!\: This version should NEVER be a wildcard as it might create some # issues when trying to run it in the future. -CONCRETE_PYTHON_VERSION="concrete-python==2.6.2.dev20240529" +CONCRETE_PYTHON_VERSION="concrete-python==2.6.2.dev20240605" # Force the installation of Concrete Python's latest version, release-candidates included # CONCRETE_PYTHON_VERSION="$$(poetry run python \ diff --git a/deps_licenses/licenses_linux_user.txt b/deps_licenses/licenses_linux_user.txt index 885e7757c..e2565c95c 100644 --- a/deps_licenses/licenses_linux_user.txt +++ b/deps_licenses/licenses_linux_user.txt @@ -1,21 +1,21 @@ Name, Version, License PyYAML, 6.0.1, MIT License brevitas, 0.8.0, UNKNOWN -certifi, 2023.7.22, Mozilla Public License 2.0 (MPL 2.0) +certifi, 2024.6.2, Mozilla Public License 2.0 (MPL 2.0) charset-normalizer, 3.3.2, MIT License coloredlogs, 15.0.1, MIT License -concrete-python, 2.6.2.dev20240529, BSD-3-Clause +concrete-python, 2.6.2.dev20240605, BSD-3-Clause dependencies, 2.0.1, BSD License dill, 0.3.8, BSD License -filelock, 3.13.4, The Unlicense (Unlicense) +filelock, 3.14.0, The Unlicense (Unlicense) flatbuffers, 24.3.25, Apache Software License -fsspec, 2024.3.1, BSD License -huggingface-hub, 0.22.2, Apache Software License +fsspec, 2024.6.0, BSD License +huggingface-hub, 0.23.3, Apache Software License humanfriendly, 10.0, MIT License hummingbird-ml, 0.4.8, MIT License idna, 3.7, BSD License importlib_resources, 6.4.0, Apache Software License -joblib, 1.4.0, BSD License +joblib, 1.4.2, BSD License jsonpickle, 3.0.4, BSD License mpmath, 1.3.0, BSD License networkx, 3.1, BSD License @@ -35,18 +35,18 @@ protobuf, 3.20.3, BSD-3-Clause psutil, 5.9.8, BSD License python-dateutil, 2.9.0.post0, Apache Software License; BSD License pytz, 2024.1, MIT License -requests, 2.32.2, Apache Software License +requests, 2.32.3, Apache Software License scikit-learn, 1.1.3, BSD License scipy, 1.10.1, BSD License six, 1.16.0, MIT License skl2onnx, 1.12, Apache Software License skops, 0.5.0, MIT skorch, 0.11.0, new BSD 3-Clause -sympy, 1.12, BSD License +sympy, 1.12.1, BSD License tabulate, 0.8.10, MIT License -threadpoolctl, 3.4.0, BSD License +threadpoolctl, 3.5.0, BSD License torch, 1.13.1, BSD License -tqdm, 4.66.2, MIT License; Mozilla Public License 2.0 (MPL 2.0) +tqdm, 4.66.4, MIT License; Mozilla Public License 2.0 (MPL 2.0) typing_extensions, 4.5.0, Python Software Foundation License tzdata, 2024.1, Apache Software License urllib3, 2.2.1, MIT License diff --git a/deps_licenses/licenses_linux_user.txt.md5 b/deps_licenses/licenses_linux_user.txt.md5 index bea83fe73..5099c4052 100644 --- a/deps_licenses/licenses_linux_user.txt.md5 +++ b/deps_licenses/licenses_linux_user.txt.md5 @@ -1 +1 @@ -137e9f0fb1ee91035add06b2a5f29d41 +ec95fa3cc4c56a7fe9a9e78bebb8c027 diff --git a/deps_licenses/licenses_mac_intel_user.txt b/deps_licenses/licenses_mac_intel_user.txt index 004034379..549ccdf18 100644 --- a/deps_licenses/licenses_mac_intel_user.txt +++ b/deps_licenses/licenses_mac_intel_user.txt @@ -1,21 +1,21 @@ Name, Version, License PyYAML, 6.0.1, MIT License brevitas, 0.8.0, UNKNOWN -certifi, 2023.7.22, Mozilla Public License 2.0 (MPL 2.0) +certifi, 2024.6.2, Mozilla Public License 2.0 (MPL 2.0) charset-normalizer, 3.3.2, MIT License coloredlogs, 15.0.1, MIT License -concrete-python, 2.6.2.dev20240529, BSD-3-Clause +concrete-python, 2.6.2.dev20240605, BSD-3-Clause dependencies, 2.0.1, BSD License dill, 0.3.8, BSD License -filelock, 3.13.4, The Unlicense (Unlicense) +filelock, 3.14.0, The Unlicense (Unlicense) flatbuffers, 24.3.25, Apache Software License -fsspec, 2024.3.1, BSD License -huggingface-hub, 0.22.2, Apache Software License +fsspec, 2024.6.0, BSD License +huggingface-hub, 0.23.3, Apache Software License humanfriendly, 10.0, MIT License hummingbird-ml, 0.4.8, MIT License idna, 3.7, BSD License importlib_resources, 6.4.0, Apache Software License -joblib, 1.4.0, BSD License +joblib, 1.4.2, BSD License jsonpickle, 3.0.4, BSD License mpmath, 1.3.0, BSD License networkx, 3.1, BSD License @@ -31,18 +31,18 @@ protobuf, 3.20.3, BSD-3-Clause psutil, 5.9.8, BSD License python-dateutil, 2.9.0.post0, Apache Software License; BSD License pytz, 2024.1, MIT License -requests, 2.32.2, Apache Software License +requests, 2.32.3, Apache Software License scikit-learn, 1.1.3, BSD License scipy, 1.10.1, BSD License six, 1.16.0, MIT License skl2onnx, 1.12, Apache Software License skops, 0.5.0, MIT skorch, 0.11.0, new BSD 3-Clause -sympy, 1.12, BSD License +sympy, 1.12.1, BSD License tabulate, 0.8.10, MIT License -threadpoolctl, 3.4.0, BSD License +threadpoolctl, 3.5.0, BSD License torch, 1.13.1, BSD License -tqdm, 4.66.2, MIT License; Mozilla Public License 2.0 (MPL 2.0) +tqdm, 4.66.4, MIT License; Mozilla Public License 2.0 (MPL 2.0) typing_extensions, 4.5.0, Python Software Foundation License tzdata, 2024.1, Apache Software License urllib3, 2.2.1, MIT License diff --git a/deps_licenses/licenses_mac_intel_user.txt.md5 b/deps_licenses/licenses_mac_intel_user.txt.md5 index bea83fe73..5099c4052 100644 --- a/deps_licenses/licenses_mac_intel_user.txt.md5 +++ b/deps_licenses/licenses_mac_intel_user.txt.md5 @@ -1 +1 @@ -137e9f0fb1ee91035add06b2a5f29d41 +ec95fa3cc4c56a7fe9a9e78bebb8c027 diff --git a/deps_licenses/licenses_mac_silicon_user.txt b/deps_licenses/licenses_mac_silicon_user.txt index 830fcb69a..549ccdf18 100644 --- a/deps_licenses/licenses_mac_silicon_user.txt +++ b/deps_licenses/licenses_mac_silicon_user.txt @@ -1,21 +1,21 @@ Name, Version, License PyYAML, 6.0.1, MIT License brevitas, 0.8.0, UNKNOWN -certifi, 2023.7.22, Mozilla Public License 2.0 (MPL 2.0) +certifi, 2024.6.2, Mozilla Public License 2.0 (MPL 2.0) charset-normalizer, 3.3.2, MIT License coloredlogs, 15.0.1, MIT License -concrete-python, 2.6.2.dev20240529, BSD-3-Clause +concrete-python, 2.6.2.dev20240605, BSD-3-Clause dependencies, 2.0.1, BSD License dill, 0.3.8, BSD License -filelock, 3.13.4, The Unlicense (Unlicense) +filelock, 3.14.0, The Unlicense (Unlicense) flatbuffers, 24.3.25, Apache Software License -fsspec, 2024.3.1, BSD License -huggingface-hub, 0.22.2, Apache Software License +fsspec, 2024.6.0, BSD License +huggingface-hub, 0.23.3, Apache Software License humanfriendly, 10.0, MIT License hummingbird-ml, 0.4.8, MIT License idna, 3.7, BSD License importlib_resources, 6.4.0, Apache Software License -joblib, 1.4.0, BSD License +joblib, 1.4.2, BSD License jsonpickle, 3.0.4, BSD License mpmath, 1.3.0, BSD License networkx, 3.1, BSD License @@ -31,21 +31,20 @@ protobuf, 3.20.3, BSD-3-Clause psutil, 5.9.8, BSD License python-dateutil, 2.9.0.post0, Apache Software License; BSD License pytz, 2024.1, MIT License -requests, 2.32.2, Apache Software License +requests, 2.32.3, Apache Software License scikit-learn, 1.1.3, BSD License scipy, 1.10.1, BSD License six, 1.16.0, MIT License skl2onnx, 1.12, Apache Software License skops, 0.5.0, MIT skorch, 0.11.0, new BSD 3-Clause -sympy, 1.12, BSD License +sympy, 1.12.1, BSD License tabulate, 0.8.10, MIT License -threadpoolctl, 3.4.0, BSD License +threadpoolctl, 3.5.0, BSD License torch, 1.13.1, BSD License -tqdm, 4.66.2, MIT License; Mozilla Public License 2.0 (MPL 2.0) +tqdm, 4.66.4, MIT License; Mozilla Public License 2.0 (MPL 2.0) typing_extensions, 4.5.0, Python Software Foundation License tzdata, 2024.1, Apache Software License urllib3, 2.2.1, MIT License xgboost, 1.6.2, Apache Software License z3-solver, 4.13.0.0, MIT License -zipp, 3.18.1, MIT License diff --git a/deps_licenses/licenses_mac_silicon_user.txt.md5 b/deps_licenses/licenses_mac_silicon_user.txt.md5 index bea83fe73..5099c4052 100644 --- a/deps_licenses/licenses_mac_silicon_user.txt.md5 +++ b/deps_licenses/licenses_mac_silicon_user.txt.md5 @@ -1 +1 @@ -137e9f0fb1ee91035add06b2a5f29d41 +ec95fa3cc4c56a7fe9a9e78bebb8c027 diff --git a/docs/advanced_examples/.gitignore b/docs/advanced_examples/.gitignore new file mode 100644 index 000000000..a91e15694 --- /dev/null +++ b/docs/advanced_examples/.gitignore @@ -0,0 +1,5 @@ +# MNIST data +data/MNIST/ + +# FHE training deployment files +fhe_training/ diff --git a/docs/advanced_examples/LogisticRegressionTraining.ipynb b/docs/advanced_examples/LogisticRegressionTraining.ipynb index 4ab0bd34c..4521b20a8 100644 --- a/docs/advanced_examples/LogisticRegressionTraining.ipynb +++ b/docs/advanced_examples/LogisticRegressionTraining.ipynb @@ -24,14 +24,20 @@ "source": [ "%matplotlib inline\n", "# Import dataset libraries and util functions\n", + "from pathlib import Path\n", + "from tempfile import TemporaryDirectory\n", + "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from matplotlib.colors import ListedColormap\n", "from matplotlib.lines import Line2D\n", "from sklearn import datasets\n", "from sklearn.linear_model import SGDClassifier as SklearnSGDClassifier\n", + "from sklearn.metrics import accuracy_score\n", "from sklearn.preprocessing import MinMaxScaler\n", "\n", + "from concrete import fhe\n", + "from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer\n", "from concrete.ml.sklearn import SGDClassifier\n", "\n", "\n", @@ -100,18 +106,18 @@ "\n", "\n", "# Load the Iris dataset\n", - "Xfull, y = datasets.load_iris(return_X_y=True)\n", - "Xfull = MinMaxScaler(feature_range=[-1, 1]).fit_transform(Xfull)\n", + "X_full, y_full = datasets.load_iris(return_X_y=True)\n", + "X_full = MinMaxScaler(feature_range=[-1, 1]).fit_transform(X_full)\n", "\n", "# Select petal length and petal width for visualization\n", - "X = Xfull[:, 2:4] # Petal length and petal width\n", + "X = X_full[:, 2:4] # Petal length and petal width\n", "\n", "# Filter the dataset for binary classification (Versicolor and Virginica)\n", "# These correspond to target labels 1 and 2 in the Iris dataset\n", - "binary_filter = (y == 1) | (y == 2)\n", + "binary_filter = (y_full == 1) | (y_full == 2)\n", "X_binary = X[binary_filter]\n", - "Xfull_binary = Xfull[binary_filter]\n", - "y_binary = y[binary_filter] - 1" + "X_full_binary = X_full[binary_filter]\n", + "y_binary = y_full[binary_filter] - 1" ] }, { @@ -144,15 +150,21 @@ "N_ITERATIONS = 15\n", "RANDOM_STATE = 42\n", "\n", - "sgd_clf_binary = SklearnSGDClassifier(random_state=RANDOM_STATE, max_iter=N_ITERATIONS)\n", - "sgd_clf_binary.fit(X_binary, y_binary)\n", - "y_pred = sgd_clf_binary.predict(X_binary)\n", - "accuracy = (y_pred == y_binary).mean()\n", + "np.random.seed(RANDOM_STATE)\n", + "\n", + "model_binary_sklearn = SklearnSGDClassifier(random_state=RANDOM_STATE, max_iter=N_ITERATIONS)\n", + "\n", + "model_binary_sklearn.fit(X_binary, y_binary)\n", + "\n", + "y_pred_binary_sklearn = model_binary_sklearn.predict(X_binary)\n", + "\n", + "accuracy_binary_sklearn = accuracy_score(y_binary, y_pred_binary_sklearn)\n", + "\n", "plot_decision_boundary(\n", " X_binary,\n", " y_binary,\n", - " clf=sgd_clf_binary,\n", - " accuracy=accuracy,\n", + " clf=model_binary_sklearn,\n", + " accuracy=accuracy_binary_sklearn,\n", " title=\"Scikit-Learn decision boundary\",\n", ")" ] @@ -175,31 +187,61 @@ "name": "stdout", "output_type": "stream", "text": [ - "Compiling training circuit ...\n", - "Compilation took 1.5863 seconds.\n", + "Compiling training circuit ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Compilation took 2.2126 seconds.\n", "Key Generation...\n", - "Key generation took 2.9771 seconds.\n", - "Training on encrypted data...\n", - "Iteration 0 took 3.3669 seconds.\n", - "Iteration 1 took 3.0545 seconds.\n", - "Iteration 2 took 2.7963 seconds.\n", - "Iteration 3 took 2.8256 seconds.\n", - "Iteration 4 took 2.5419 seconds.\n", - "Iteration 5 took 2.2143 seconds.\n", - "Iteration 6 took 2.2999 seconds.\n", - "Iteration 7 took 2.1388 seconds.\n", - "Iteration 8 took 2.1676 seconds.\n", - "Iteration 9 took 2.4134 seconds.\n", - "Iteration 10 took 2.2311 seconds.\n", - "Iteration 11 took 2.1930 seconds.\n", - "Iteration 12 took 2.2134 seconds.\n", - "Iteration 13 took 2.2318 seconds.\n", - "Iteration 14 took 2.6019 seconds.\n" + "Key generation took 3.1691 seconds.\n", + "Training on encrypted data...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0 took 4.52 seconds.\n", + "Iteration 1 took 2.95 seconds.\n", + "Iteration 2 took 3.87 seconds.\n", + "Iteration 3 took 2.72 seconds.\n", + "Iteration 4 took 3.58 seconds.\n", + "Iteration 5 took 2.48 seconds.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 6 took 2.40 seconds.\n", + "Iteration 7 took 2.40 seconds.\n", + "Iteration 8 took 2.47 seconds.\n", + "Iteration 9 took 2.76 seconds.\n", + "Iteration 10 took 2.41 seconds.\n", + "Iteration 11 took 2.31 seconds.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 12 took 2.31 seconds.\n", + "Iteration 13 took 2.61 seconds.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 14 took 2.59 seconds.\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsS0lEQVR4nOzdd3xN5x/A8c+9N3taCRIjBLVXiNoxYwW1aq+qXa0apaWoFq1qa6+26if2LDVbxNaookaJTcQeCSLr3uf3R+Q2V24WmXzfr1derXOe85zvuePc+73Pc75Ho5RSCCGEEEIIIYRIE9rMDkAIIYQQQgghXieSZAkhhBBCCCFEGpIkSwghhBBCCCHSkCRZQgghhBBCCJGGJMkSQgghhBBCiDQkSZYQQgghhBBCpCFJsoQQQgghhBAiDUmSJYQQQgghhBBpSJIsIYQQQgghhEhDkmQJkYYGDhxIo0aNMmx/PXv2xMPD46W2HT9+PBqNJm0DEq8VjUbD+PHjX2rbgIAANBoNAQEBaRpTZkjN46DRaBg8eHD6BpSO3n77bUaOHPlKfVy5cgWNRsMvv/ySNkGlUf8+Pj74+PikS0xJ+eWXX9BoNPz1118Zvu+0kFmPW3KuX7+OjY0NBw4cyOxQRAbbtm0bDg4O3L17N7NDSZIkWVnYxYsX6devH0WLFsXGxgYnJydq1qzJ9OnTefbsWWaH98oOHjzI+PHjefToUZr2G/eBptFo2L9/f4L1SikKFiyIRqOhRYsWJute5QvS5cuX+fHHH/n000+Ny0JCQhg/fjzHjx9/qT6FSM6yZcv44YcfMjuMNLVly5aXTu4yQnqdu+KSB3N/b7/9trFdz549cXBwSLSfF89jSfWr0WiYMmWKse0nn3zC7NmzuXXrVpoemxBp7YsvvqBatWrUrFnT7PoOHTqg0Wj45JNPMjiy19PGjRupXLkyNjY2FCpUiHHjxhETE5OibS9cuEC7du3ImTMndnZ21KpVi927dydo17NnT7PnqJIlS5q0a9KkCcWKFWPy5MlpcmzpxSKzAxDmbd68mfbt22NtbU337t0pW7YsUVFR7N+/nxEjRnD69GkWLFiQ2WG+koMHDzJhwgR69uxJjhw50rx/Gxsbli1bRq1atUyW79mzh+DgYKytrdN0f9OnT6dIkSLUq1fPuCwkJIQJEybg4eFBxYoV03R/AAsXLsRgMLzUtmPGjGHUqFFpHJHIaMuWLePUqVN89NFHmR1KmtmyZQuzZ8/OMonWs2fPsLD47+Myvc9dnTp1olmzZibLXFxc0qVfgEqVKhn/v1WrVjg5OTFnzhy++OKLV95neihcuDDPnj3D0tIyVdvt2LEjnSISGe3u3bssXryYxYsXm10fFhbGpk2b8PDwYPny5UyZMkVmbryCrVu30rp1a3x8fJg5cyYnT57kyy+/5M6dO8ydOzfJba9fv0716tXR6XSMGDECe3t7Fi1aROPGjdm5cyd16tQxaW9tbc2PP/5osszZ2TlBv/369WP48OFMmDABR0fHVz/IdCBJVhZ0+fJlOnbsSOHChdm1axf58+c3rhs0aBAXLlxg8+bNmRiheREREVhZWaHVZo0B0mbNmrF69WpmzJhh8gVp2bJleHl5ce/evTTbV3R0NEuXLqV///6v1E94eDh2dnYpbp/aLxnxWVhYmDwuIv0YDAaioqKwsbHJ7FDES8jo561y5cp07do1U/rVarW0a9eO//3vf0yYMCFLfjHVaDQv9ZxYWVmlQzQiNWJiYjAYDK/8XPj7+2NhYYGfn5/Z9WvXrkWv1/Pzzz9Tv3599u7dS926dV9pn+lBKUVERAS2traZHUqShg8fTvny5dmxY4fxe4OTkxOTJk3iww8/TDDSFN+UKVN49OgRp06d4q233gLg/fffp2TJkgwdOpSjR4+atLewsEjR+a9t27Z88MEHrF69mt69e7/C0aWfrPFtWJj45ptvePLkCT/99JNJghWnWLFifPjhh8Z/x8TEMHHiRDw9PbG2tsbDw4NPP/2UyMhIk+08PDxo0aIF+/fvx9vbGxsbG4oWLcr//ve/BPt49OgRQ4cOxcPDA2trawoUKED37t2NiUnc9RYrVqxgzJgxuLu7Y2dnR1hYGAB//vknTZo0wdnZGTs7O+rWrWsyb3r8+PGMGDECgCJFihiHhK9cuWJs4+/vj5eXF7a2tuTKlYuOHTty/fr1FD+OnTp14v79+/z+++/GZVFRUaxZs4bOnTunuJ+U2L9/P/fu3aNhw4bGZQEBAVStWhWAXr16GY8x7joCHx8fypYty9GjR6lTpw52dnbGqYa//vorzZs3x83NDWtrazw9PZk4cSJ6vd5kvy9ekxU3Lejbb79lwYIFxtdE1apVOXLkiMm25q7JiptmtGHDBsqWLYu1tTVlypRh27ZtCY45ICCAKlWqYGNjg6enJ/Pnz0/VdV6rV682Pr958uSha9eu3LhxI8HxOTg4cOPGDVq3bo2DgwMuLi4MHz48wWORmK1bt1K7dm3s7e1xdHSkefPmnD59+qX3YzAYmD59OuXKlcPGxgYXFxeaNGlicr1F3OO4dOlSypQpg7W1NVu3bsXDw4NWrVoliDEiIgJnZ2f69etnfGw1Gg0rV67k008/JV++fNjb29OyZUuT94CPjw+bN2/m6tWrxtdX/NdDZGQk48aNo1ixYlhbW1OwYEFGjhyZ4NwQGRnJ0KFDcXFxwdHRkZYtWxIcHJyixxcgODiY1q1bY29vj6urK0OHDk2wD4B9+/bRvn17ChUqZIxn6NChJtOfe/bsyezZs42PY9xfnG+//ZYaNWqQO3dubG1t8fLyYs2aNcnGOGPGDHQ6nckUv2nTpqHRaPj444+Ny/R6PY6OjiZTjOJfk5WScxeQovdQVtWoUSOuXr2aomnOjx49omfPnjg7O5MjRw569OiR6DTKs2fP0q5dO3LlyoWNjQ1VqlRh48aNZvtM6vPH3DVZt27dolevXhQoUABra2vy589Pq1atTJ4Xc9cW3blzh/fee4+8efNiY2NDhQoVEoyOpOa8mpTw8HD69etH7ty5cXJyonv37jx8+DBBuzlz5hjPG25ubgwaNCjBY+rh4UHPnj0TbPviMcadS1atWsVXX31FgQIFsLGxoUGDBly4cCHB9nHHZ2tri7e3N/v27UvQJioqis8//xwvLy+cnZ2xt7endu3aCaZ/xX/cfvjhB+PjFhgYiL29vcn3mDjBwcHodLpkp4Ft2LCBatWqJTptdunSpTRq1Ih69epRqlQpli5darbd2bNn6dChAy4uLtja2vLWW2/x2WefmbS5ceMG7733nvHzuEiRIgwYMICoqCgg8eub4y5diP8ajPsetn37dqpUqYKtrS3z588HYNGiRdSvXx9XV1esra0pXbp0oqNEW7dupW7dujg6OuLk5ETVqlVZtmwZAOPGjcPS0tLs9Up9+/YlR44cREREcPPmTc6ePUt0dLTZfcQ5c+YMZ86coW/fviY/zA4cOBClVLLn33379lGpUiVjggVgZ2dHy5Yt+fvvvzl//nyCbfR6vfH7ZGJcXV0pX748v/76a5LtMpP8jJ0Fbdq0iaJFi1KjRo0Ute/Tpw+LFy+mXbt2DBs2jD///JPJkyfz77//sn79epO2cfNi33vvPXr06MHPP/9Mz5498fLyokyZMgA8efKE2rVr8++//9K7d28qV67MvXv32LhxI8HBweTJk8fY38SJE7GysmL48OFERkZiZWXFrl27aNq0KV5eXowbNw6tVms8eezbtw9vb2/atGlDUFAQy5cv5/vvvzf2GTcl5quvvmLs2LF06NCBPn36cPfuXWbOnEmdOnU4duxYiqboeHh4UL16dZYvX07Tpk2B2BNTaGgoHTt2ZMaMGSl6fFPi4MGDaDQak2k3pUqV4osvvuDzzz+nb9++1K5dG8Dkeb1//z5NmzalY8eOdO3albx58wKxJ2cHBwc+/vhjHBwc2LVrF59//jlhYWFMnTo12XiWLVvG48eP6devHxqNhm+++YY2bdpw6dKlZEe/9u/fz7p16xg4cCCOjo7MmDGDtm3bcu3aNXLnzg3AsWPHaNKkCfnz52fChAno9Xq++OKLFE9p+uWXX+jVqxdVq1Zl8uTJ3L59m+nTp3PgwIEEz69er8fX15dq1arx7bff8scffzBt2jQ8PT0ZMGBAkvtZsmQJPXr0wNfXl6+//prw8HDmzp1LrVq1OHbsmElCktL9vPfee/zyyy80bdqUPn36EBMTw759+zh8+DBVqlQxttu1axerVq1i8ODB5MmThyJFitC1a1e++eYbHjx4QK5cuYxtN23aRFhYWIJf77766ivjNQV37tzhhx9+oGHDhhw/fhxbW1s+++wzQkNDCQ4O5vvvvwcwfukwGAy0bNmS/fv307dvX0qVKsXJkyf5/vvvCQoKYsOGDcb99OnTB39/fzp37kyNGjXYtWsXzZs3T9Fz+ezZMxo0aMC1a9cYMmQIbm5uLFmyhF27diVou3r1asLDwxkwYAC5c+cmMDCQmTNnEhwczOrVq4HYKSAhISH8/vvvLFmyJEEf06dPp2XLlnTp0oWoqChWrFhB+/bt+e2335KMuXbt2hgMBvbv32+8FnPfvn1otVqTL5LHjh3jyZMnCaawxEnu3AUpew8lJTw8PMFIu7Ozc4L3bmpH4831C5AjRw6TL09eXl4AHDhwwOSc9iKlFK1atWL//v3079+fUqVKsX79enr06JGg7enTp6lZsybu7u6MGjUKe3t7Vq1aRevWrVm7di3vvPMOkLrPn/jatm3L6dOn+eCDD/Dw8ODOnTv8/vvvXLt2LdHiQM+ePcPHx4cLFy4wePBgihQpwurVq+nZsyePHj1KkAS8ynkVYPDgweTIkYPx48dz7tw55s6dy9WrV42JEMR+YZ8wYQINGzZkwIABxnZHjhzhwIEDLz17YcqUKWi1WoYPH05oaCjffPMNXbp04c8//zS2+emnn+jXrx81atTgo48+4tKlS7Rs2ZJcuXJRsGBBY7uwsDB+/PFHOnXqxPvvv8/jx4/56aef8PX1JTAwMMHU+EWLFhEREUHfvn2xtramUKFCvPPOO6xcuZLvvvsOnU5nbLt8+XKUUnTp0iXRY4mOjubIkSOJnv9DQkLYvXu3MVnu1KkT33//PbNmzTIZQfvnn3+oXbs2lpaW9O3bFw8PDy5evMimTZv46quvjH15e3vz6NEj+vbtS8mSJblx4wZr1qwhPDz8pUbkzp07R6dOnejXrx/vv/++MfmYO3cuZcqUoWXLllhYWLBp0yYGDhyIwWBg0KBBxu1/+eUXevfuTZkyZRg9ejQ5cuTg2LFjbNu2jc6dO9OtWze++OILVq5caXJtZtyPzG3btsXGxobRo0ezePFiLl++nGQBrWPHjgGYfL4BuLm5UaBAAeP6xERGRpIzZ84Ey+Nm7Rw9epTixYsbl4eHh+Pk5ER4eDg5c+akU6dOfP3112YTai8vL5PPsixHiSwlNDRUAapVq1Ypan/8+HEFqD59+pgsHz58uALUrl27jMsKFy6sALV3717jsjt37ihra2s1bNgw47LPP/9cAWrdunUJ9mcwGJRSSu3evVsBqmjRoio8PNxkffHixZWvr6+xrVJKhYeHqyJFiqhGjRoZl02dOlUB6vLlyyb7uHLlitLpdOqrr74yWX7y5EllYWGRYPmLFi1apAB15MgRNWvWLOXo6GiMsX379qpevXrGx6N58+Ym2wJq0KBBSfZvTteuXVXu3LkTLD9y5IgC1KJFixKsq1u3rgLUvHnzEqyL/5jG6devn7Kzs1MRERHGZT169FCFCxc2/vvy5csKULlz51YPHjwwLv/1118VoDZt2mRcNm7cOPXiKQBQVlZW6sKFC8ZlJ06cUICaOXOmcZmfn5+ys7NTN27cMC47f/68srCwSNDni6KiopSrq6sqW7asevbsmXH5b7/9pgD1+eefmxwfoL744guTPipVqqS8vLyS3M/jx49Vjhw51Pvvv2+y/NatW8rZ2dlkeUr3s2vXLgWoIUOGJNhf/Nc7oLRarTp9+rRJm3PnzilAzZ0712R5y5YtlYeHR4L3l7u7uwoLCzO2W7VqlQLU9OnTjcuaN29u8hqIs2TJEqXVatW+fftMls+bN08B6sCBA0qp/84hAwcONGnXuXNnBahx48Yl6Du+H374QQFq1apVxmVPnz5VxYoVU4DavXu3cbm51/XkyZOVRqNRV69eNS4bNGhQoq+jF/uIiopSZcuWVfXr108yTr1er5ycnNTIkSOVUrHPV+7cuVX79u2VTqdTjx8/Vkop9d133ymtVqsePnxo3PbFxyGxc1dc25S8h8yJe/+a+4v/OMa9XpP6i38eS6pfQB06dChBLFZWVmrAgAFJxrthwwYFqG+++ca4LCYmRtWuXTvBea9BgwaqXLlyJucvg8GgatSooYoXL25clpLPn7jjiev/4cOHClBTp05NMt66deuqunXrGv8d99r19/c3LouKilLVq1dXDg4Oxvdeas6r5sR9Jnl5eamoqCjj8m+++UYB6tdff1VKxX4eW1lZqcaNGyu9Xm9sN2vWLAWon3/+2biscOHCqkePHskeY9y5pFSpUioyMtK4fPr06QpQJ0+eNB63q6urqlixokm7BQsWKMCkz5iYGJM2SsU+B3nz5lW9e/c2Lot73JycnNSdO3dM2m/fvl0BauvWrSbLy5cvb7Ivcy5cuJDk++nbb79Vtra2xucvKChIAWr9+vUm7erUqaMcHR1Nzj1KmZ7Lu3fvrrRarTpy5EiC/cS1M/dZqtR/z3v880Tc97Bt27YlaG/u/Ojr66uKFi1q/PejR4+Uo6Ojqlatmsnn54txV69eXVWrVs1k/bp160zOJXHnEXPnsfjiznfXrl1LsK5q1arq7bffTnJ7Pz8/lSNHDpPPsrgYAfXtt98al40aNUp98sknauXKlWr58uXGGGvWrKmio6MT9D1p0iQFqNu3bycZQ2aR6YJZTNzwaEov4tuyZQuAyXQXgGHDhgEkuHardOnSxhEViP319a233uLSpUvGZWvXrqVChQrGXxbje3FIvEePHiZziY8fP8758+fp3Lkz9+/f5969e9y7d4+nT5/SoEED9u7dm2yhhnXr1mEwGOjQoYNx+3v37pEvXz6KFy9utiJNYjp06MCzZ8/47bffePz4Mb/99luaTxWE2BEpc7/UJMfa2ppevXolWB7/MX38+DH37t2jdu3ahIeHc/bs2WT7fffdd03iiXvO4z/PiWnYsCGenp7Gf5cvXx4nJyfjtnq9nj/++IPWrVvj5uZmbFesWDHjiGFS/vrrL+7cucPAgQNNrqto3rw5JUuWNHu94YvXutWuXTvZY/n999959OgRnTp1Mnkd6XQ6qlWrZvZ1lNx+1q5di0ajYdy4cQm2ffG9UbduXUqXLm2yrESJElSrVs1k6sqDBw/YunUrXbp0SdBH9+7dTc4F7dq1I3/+/Mb3fVJWr15NqVKlKFmypMnx169fH8B4/HF9DRkyxGT7lBbS2LJlC/nz56ddu3bGZXZ2dvTt2zdB2/iv66dPn3Lv3j1q1KiBUirZX0PN9fHw4UNCQ0OpXbs2f//9d5LbabVaatSowd69ewH4999/uX//PqNGjUIpxaFDh4DY0a2yZcu+UkGL5N5Dyenbty+///67yV+FChVM2tjY2CRoE/eXmn5///33BK9TgJw5cyY7UrZlyxYsLCxMRhR0Oh0ffPCBSbsHDx6wa9cuOnToYDyf3bt3j/v37+Pr68v58+eNU4VT8/kTx9bWFisrKwICAsxOv0sq/nz58tGpUyfjMktLS4YMGcKTJ0/Ys2ePSftXOa9C7OMffyRqwIABWFhYGN+Df/zxB1FRUXz00Ucm1za///77ODk5vdK12L169TIZdXkx9rjzcv/+/U3axU0FjU+n0xnbGAwGHjx4QExMDFWqVDH7Pmzbtm2CWQ4NGzbEzc3N5Fx46tQp/vnnn2Svx7l//z5Aop+5S5cupXnz5sZzZ/HixfHy8jLZ1927d9m7dy+9e/emUKFCJtvHvc4MBgMbNmzAz88vwShO/HapVaRIEXx9fRMsj39uCw0N5d69e9StW5dLly4RGhoKxH6uPX78mFGjRiW4LjF+PN27d+fPP//k4sWLxmVLly6lYMGCxmvTfvnlF5RSyd4GJm46t7liYTY2NslWux4wYACPHj3i3Xff5dixYwQFBfHRRx8Zp9jH337y5MlMmTKFDh060LFjR3755Re++uorDhw4YHZaYtxrIC2vsU9LMl0wi3FycgJiv1inxNWrV9FqtRQrVsxkeb58+ciRIwdXr141Wf7iyQRiX6TxP5guXrxI27ZtU7T/IkWKmPw7bm6tuekicUJDQ5NMSM6fP49SymT4OL7UTJdwcXGhYcOGLFu2jPDwcPR6vcmXwbSklEr1Nu7u7manG5w+fZoxY8awa9euBPOS4062SXnxeY57vFPyBSS518idO3d49uxZgtccYHbZi+Jek/HnZ8cpWbJkgrL7cdc9JRZPYuJei3FJxYvi3mup2c/Fixdxc3MzmeqXmBffG3G6d+/O4MGDuXr1KoULF2b16tVER0fTrVu3BG1ffA9oNBqKFSuW4Pofc86fP8+///6b6BTOO3fuAP+dQ+InBWD++THn6tWrFCtWLMEXDnPbX7t2jc8//5yNGzcmeP5S8roG+O233/jyyy85fvy4yXVfKfnCU7t2bcaPH8+zZ8/Yt28f+fPnp3LlylSoUIF9+/bRqFEj9u/fT4cOHVIUS2JScp5NSvHixU2u7zRHp9Ml2+Zl+o2jlEr2Mb169Sr58+dPMI3nxef+woULKKUYO3YsY8eONdvXnTt3cHd3T9XnTxxra2u+/vprhg0bRt68eXn77bdp0aIF3bt3J1++fEnGX7x48QTFmkqVKmVcH9+rnFch4fvZwcGB/PnzG9/PiZ0braysKFq0aIJ4UiO52OP6fjFGS0tLihYtmqC/xYsXM23atATX9Jg775lbptVq6dKlC3PnzjUWfFq6dCk2Nja0b98+Rcdk7jP333//5dixY3Tv3t3kmjMfHx9mz55NWFiYyQ8eZcuWTbT/u3fvEhYWlmSbl5HYZ8OBAwcYN24chw4dIjw83GRdaGgozs7OxqQpuZjeffddPvroI5YuXcrnn39OaGgov/32G0OHDk11chiX/Jm7zjYlRTuaNm3KzJkzGTVqFJUrVwZivyt89dVXjBw5MsnbUQAMHTqUsWPH8scff9CxY0eTdXGvgaxYoAckycpynJyccHNz49SpU6naLqUvsPhzn+N7mQQBSPDmihulmjp1aqIly5N7QxkMBjQaDVu3bjUbb3Lbv6hz5868//773Lp1i6ZNm6ZLyeXcuXOn6hfUOOZOTo8ePaJu3bo4OTnxxRdf4OnpiY2NDX///TeffPJJikq2v8rznNavkVeVWDzJiXuclixZYvaL1ouVFV92P4lJ7IOnY8eODB06lKVLl/Lpp5/i7+9PlSpVUpzUpJTBYKBcuXJ89913ZtfHv8YiI+j1eho1asSDBw/45JNPKFmyJPb29ty4cYOePXum6HW9b98+WrZsSZ06dZgzZw758+fH0tKSRYsWGS/6TkqtWrWIjo7m0KFD7Nu3z/hrfu3atdm3bx9nz57l7t27JqP9LyOrvYdexqNHjxK9/im14p7b4cOHm/0FH1L2A01SPvroI/z8/NiwYQPbt29n7NixTJ48mV27diV5XVlqZKXnNbHPfL1ebzbOtIzd39+fnj170rp1a0aMGIGrq6uxWEX8kZM4iZ0Lu3fvztSpU9mwYQOdOnVi2bJltGjRwmy57vjirms095nr7+8PxH4xHzp0aIL1a9euNTt75FUk9VyYY+7xuHjxIg0aNKBkyZJ89913FCxYECsrK7Zs2cL333+f6lu15MyZkxYtWhiTrDVr1hAZGflSVUvjCrDdvHkzwefGzZs38fb2TraPwYMH06tXL/755x+srKyoWLEiP/30ExA7wyMptra25M6dmwcPHiRYF/caSKtzVVqTJCsLatGiBQsWLODQoUNUr149ybaFCxfGYDBw/vx5469vALdv3+bRo0cULlw41fv39PRMdZIXf1uITRaT+8U0sROTp6cnSimKFCmS7JsvJd555x369evH4cOHWbly5Sv3Z07JkiVZunSp8demOC/z60pAQAD3799n3bp1JhffX758OU1ifVWurq7Y2NiYrUxlbtmL4l6T586dSzDKdO7cuZd6zZoT91p0dXVN9S/+SfW5ffv2BIUrUiNXrlw0b96cpUuX0qVLFw4cOJDozYRfrLqklOLChQuUL1/euCyp99GJEydo0KBBkq/DuHPIxYsXTRK9c+fOpeh4ChcuzKlTpxKMfLy4/cmTJwkKCmLx4sV0797duNzc9LbE4l27di02NjZs377dZOrKokWLUhSrt7c3VlZW7Nu3j3379hmrBNapU4eFCxeyc+dO47+TklV/NU0rN27cICoqyuQzxZzChQuzc+dOnjx5YvLj14vPfdxIiKWlZbLvxVf9/Bk2bBjDhg3j/PnzVKxYkWnTphm/eJuL/59//sFgMJiMZsVNyU6rc1Gc8+fPm9xH8cmTJ9y8edN477L458b4o0dRUVFcvnzZ5LHLmTOn2SqOV69eNTvylJy4fZ8/f97kvBwdHc3ly5dNpquuWbOGokWLsm7dOpP3grlp1EkpW7YslSpVYunSpRQoUIBr164xc+bMZLcrVKgQtra2CT4TlVIsW7aMevXqMXDgwATbTZw4kaVLl9KrVy/jY5TUa83FxQUnJ6dkX49xo4KPHj0y+RE3NSOPmzZtIjIyko0bN5qMOr44rT3uc+3UqVPJ/jDRvXt3WrVqxZEjR1i6dCmVKlUyFjhLjbgfzP/66y+ThCokJITg4GCzU8PNsbe3N/lO+8cff2Bra5vozaTjxE0xNjcr4/Lly+TJkydN7iOYHuSarCxo5MiR2Nvb06dPH27fvp1g/cWLF5k+fTqA8eT84pe0uF+vU1ohLL62bdty4sSJBJUJIflfvby8vPD09OTbb7/lyZMnCdbHLylqb28PkOCDok2bNuh0OiZMmJBgf0op43zslHJwcGDu3LmMHz8+0XtqvKrq1aujlEpwv4fEjjEpcb84xj/2qKgo5syZ8+qBpoG4aUobNmwgJCTEuPzChQts3bo12e2rVKmCq6sr8+bNM5l+sHXrVv7999+Xes2a4+vra7yPh7kStebK2yanbdu2KKWYMGFCgnWp+UW4W7dunDlzhhEjRqDT6RJMgYjzv//9z2Tq8Jo1a7h586bJtW/29vZmp9p16NCBGzdusHDhwgTrnj17xtOnTwGMfb1YbTOxxO9FzZo1IyQkxGS+fHh4eIKbpZt7XSuljOey+BJ73+h0OjQajckvxFeuXElxdSkbGxuqVq3K8uXLuXbtmslI1rNnz5gxYwaenp5mb52RkvheF3HnseQq3DZr1oyYmBiTMtN6vT7BF2VXV1d8fHyYP38+N2/eTNBP/Pfiy3z+hIeHExERYbLM09MTR0dHs1Oc4sd/69Ytkx/fYmJimDlzJg4ODml+X6UFCxaYnIvmzp1LTEyM8T3YsGFDrKysmDFjhsmx/vTTT4SGhpqcGz09PTl8+LCxjDjETqVNzW1O4qtSpQouLi7MmzfPpM9ffvnF7PsQTJ+PP//803hdY2p069aNHTt28MMPP5A7d+4UXddraWlJlSpVTG6bAbHT7a5cuUKvXr1o165dgr93332X3bt3ExISgouLC3Xq1OHnn3/m2rVrJv3EHZdWq6V169Zs2rQpwb7it4tLfOKu94TYa04Tu1GyOeYe09DQ0AQ/IDVu3BhHR0cmT56c4DX/4vujadOm5MmTh6+//po9e/YkGMVKaQn3MmXKULJkSRYsWGBy7p07dy4ajcbkEozQ0FDOnj2b7PTvgwcPsm7dOt577z3jD9MRERFmL5WZOHEiSimaNGmSYN3Ro0eTHYzITDKSlQV5enqybNky3n33XUqVKkX37t0pW7YsUVFRHDx40FhiFqBChQr06NGDBQsWGKeZBQYGsnjxYlq3bm3yq1lKjRgxgjVr1tC+fXt69+6Nl5cXDx48YOPGjcybNy/BBdjxabVafvzxR5o2bUqZMmXo1asX7u7u3Lhxg927d+Pk5MSmTZuA/8oEf/bZZ3Ts2BFLS0v8/Pzw9PTkyy+/ZPTo0Vy5coXWrVvj6OjI5cuXWb9+PX379mX48OGpOqakrhF70V9//cWXX36ZYLmPjw+1atUyu02tWrXInTs3f/zxh8mvgJ6enuTIkYN58+bh6OiIvb091apVS3RONsR+scmZMyc9evRgyJAhaDQalixZkqWmGo0fP54dO3ZQs2ZNBgwYgF6vZ9asWZQtWzbZe+tYWlry9ddf06tXL+rWrUunTp2MJdw9PDzMTvF4GU5OTsydO5du3bpRuXJlOnbsiIuLC9euXWPz5s3UrFmTWbNmparPevXq0a1bN2bMmMH58+dp0qQJBoOBffv2Ua9ePZNyuUlp3rw5uXPnZvXq1TRt2hRXV1ez7XLlykWtWrXo1asXt2/f5ocffqBYsWK8//77xjZeXl6sXLmSjz/+mKpVq+Lg4ICfnx/dunVj1apV9O/fn927d1OzZk30ej1nz55l1apVxvu0VKxYkU6dOjFnzhxCQ0OpUaMGO3fuTNGoJMRelD9r1iy6d+/O0aNHyZ8/P0uWLElwU+2SJUvi6enJ8OHDuXHjBk5OTqxdu9bslJ+4c8OQIUPw9fU1JqLNmzfnu+++o0mTJnTu3Jk7d+4we/ZsihUrxj///JOieGvXrs2UKVNwdnamXLlyQGwS8NZbb3Hu3Dmz9x5KLL4Xz11xyVdW9ffff5sd1fH09DT5ovL7779TqFChZKfZ+fn5UbNmTUaNGsWVK1coXbo069atM/sFa/bs2dSqVYty5crx/vvvU7RoUW7fvs2hQ4cIDg7mxIkTwMt9/gQFBdGgQQM6dOhA6dKlsbCwYP369dy+fTvRHzAgthDF/Pnz6dmzJ0ePHsXDw4M1a9YYR5dTWoAqpaKiooxxnjt3jjlz5lCrVi1atmwJxI6cjB49mgkTJtCkSRNatmxpbFe1alWTL8l9+vRhzZo1NGnShA4dOnDx4kX8/f0TXFuZUpaWlnz55Zf069eP+vXr8+6773L58mUWLVqUYGSsRYsWrFu3jnfeeYfmzZtz+fJl5s2bR+nSpc3+uJqUzp07M3LkSNavX8+AAQNSfM11q1at+Oyzz4zXWEFsYQedTpfoD3UtW7bks88+Y8WKFXz88cfMmDGDWrVqUblyZfr27UuRIkW4cuUKmzdvNn6OTZo0iR07dlC3bl3jrTBu3rzJ6tWr2b9/Pzly5KBx48YUKlSI9957z/jD2c8//2z8vEmJxo0bY2VlhZ+fH/369ePJkycsXLgQV1dXkx8mnJyc+P777+nTpw9Vq1alc+fO5MyZkxMnThAeHm6S2FlaWtKxY0dmzZqFTqczKfACpLiEO8ReAtKyZUsaN25Mx44dOXXqFLNmzaJPnz4mI97r16+nV69eLFq0yHguvXr1Kh06dKBly5bky5eP06dPM2/ePMqXL8+kSZOM2966dYtKlSrRqVMn482Nt2/fzpYtW2jSpEmCe0zeuXOHf/75x6S8fZaTrrULxSsJCgpS77//vvLw8FBWVlbK0dFR1axZU82cOdOkDG50dLSaMGGCKlKkiLK0tFQFCxZUo0ePNmmjlPmS5UolLPmqlFL3799XgwcPVu7u7srKykoVKFBA9ejRQ927d08p9V9Z2NWrV5uN/dixY6pNmzYqd+7cytraWhUuXFh16NBB7dy506TdxIkTlbu7u9JqtQlKia5du1bVqlVL2dvbK3t7e1WyZEk1aNAgde7cuSQft/gl3JOSWAn3xP4mTpyYZH9DhgxRxYoVS7D8119/VaVLlzaWN48rO1y3bl1VpkwZs30dOHBAvf3228rW1la5ubmpkSNHGkvevljK2VwJd3OljHmhDHViJdzNlbA3Vy54586dqlKlSsrKykp5enqqH3/8UQ0bNkzZ2NiYPaYXrVy5UlWqVElZW1urXLlyqS5duqjg4GCTNj169FD29vYJtk2sZK45u3fvVr6+vsrZ2VnZ2NgoT09P1bNnT/XXX3+91H5iYmLU1KlTVcmSJZWVlZVycXFRTZs2VUePHjW2SexxjG/gwIEKUMuWLTMbM6CWL1+uRo8erVxdXZWtra1q3rx5gnLDT548UZ07d1Y5cuRQgMnrISoqSn399deqTJkyytraWuXMmVN5eXmpCRMmqNDQUGO7Z8+eqSFDhqjcuXMre3t75efnp65fv57gNZOYq1evqpYtWyo7OzuVJ08e9eGHH6pt27YleL2eOXNGNWzYUDk4OKg8efKo999/31jePH6575iYGPXBBx8oFxcXpdFoTJ6Dn376SRUvXlxZW1urkiVLqkWLFqXq9bB582YFqKZNm5os79OnjwLUTz/9lGAbc49DYueu1LyHXpTU+ze+xF6v8eNNTQn3+HHp9XqVP39+NWbMmCRjiHP//n3VrVs35eTkpJydnVW3bt3UsWPHEjynSil18eJF1b17d5UvXz5laWmp3N3dVYsWLdSaNWsS9JnU58+LJdzv3bunBg0apEqWLKns7e2Vs7OzqlatmsltBZQy/1l3+/Zt1atXL5UnTx5lZWWlypUrlyDu1JxXzYn7TNqzZ4/q27evypkzp3JwcFBdunRR9+/fT9B+1qxZqmTJksrS0lLlzZtXDRgwwOSWAnGmTZum3N3dlbW1tapZs6b666+/Ei3h/uJn9YuPYZw5c+aoIkWKKGtra1WlShW1d+/eBH0aDAY1adIkVbhwYWVtba0qVaqkfvvtt1R9HsXXrFkzBaiDBw8m2S6+27dvKwsLC7VkyRKlVOy5Lnfu3Kp27dpJblekSBFVqVIl479PnTql3nnnHZUjRw5lY2Oj3nrrLTV27FiTba5evaq6d++uXFxclLW1tSpatKgaNGiQSRn7o0ePqmrVqikrKytVqFAh9d133yVawt3c9zCllNq4caMqX768srGxUR4eHurrr79WP//8s9ky6xs3blQ1atRQtra2ysnJSXl7e6vly5cn6DMwMFABqnHjxgnWpbSEe5z169erihUrKmtra1WgQAE1ZswYk1sSKPXfaz3+6+rBgweqVatWKl++fMrKykoVKVJEffLJJwlKuj98+FB17dpVFStWTNnZ2Slra2tVpkwZNWnSpAT7UUqpuXPnKjs7uwT9ZCUapbLQz+NCZGOXLl2iZMmSbN26lQYNGmR2OJmidevWnD592uwd3IWpoUOH8tNPP3Hr1q0Eoz4BAQHUq1eP1atXp1s1TCHM2bBhA507d+bixYvJTpsUIi288847nDx5MsWj53Hee+89goKCTG4mLkydOHGCihUr8r///c9sBdvsrFKlSvj4+PD9999ndiiJkmuyhEgjRYsW5b333mPKlCmZHUqGePHeGOfPn2fLli34+PhkTkDZSEREBP7+/rRt2zZBgiVEZvr6668ZPHiwJFgiQ9y8eZPNmze/VAIwbtw4jhw5woEDB9IhstfDwoULcXBwoE2bNpkdSpratm0b58+fZ/To0ZkdSpLkmiwh0lD8C8Bfd0WLFqVnz57G+7fMnTsXKysrRo4cmdmhZVl37tzhjz/+YM2aNdy/f58PP/wws0MSwsTLFC8QIrUuX77MgQMH+PHHH7G0tKRfv36p7qNQoUIJij+IWJs2beLMmTMsWLCAwYMHZ/nrRVOrSZMmqb7+LzNIkiWEeClNmjRh+fLl3Lp1C2tra6pXr86kSZMSvYm0gDNnztClSxdcXV2ZMWNGoveSE0KI19mePXvo1asXhQoVYvHixUneNFqk3gcffMDt27dp1qyZ2Wq4ImPINVlCCCGEEEIIkYbkmiwhhBBCCCGESEOSZAkhhBBCCCFEGpIkSwghsqnx48ej0WgyOwx8fHxeuqqkj48PZcuWTduAhBBCiEwmSZYQIlu7cuUKGo2Gb7/9NrNDEekoJCSE8ePHc/z48XTf144dO3jvvfcoW7YsOp0ODw+PVPexceNGKleujI2NDYUKFWLcuHHExMQkaPfo0SP69u2Li4sL9vb21KtXj7///jtBOw8PDzQaTYK//v37v8whAm/OcaZF/Im5ePEinTt3xtXVFVtbW4oXL85nn32WoN2sWbMoVaoU1tbWuLu78/HHH/P06VOTNnHnMnN/K1aseOVjFUJkLKkuKIQQ4pXs2LEj3fcREhLChAkT8PDwSPeqjMuWLWPlypVUrlwZNze3VG+/detWWrdujY+PDzNnzuTkyZN8+eWX3Llzx+Q2DwaDgebNm3PixAlGjBhBnjx5mDNnDj4+Phw9ejRBpc6KFSsybNgwk2UlSpR4uYPkzTnOV40/McePH8fHxwd3d3eGDRtG7ty5uXbtGtevXzdp98knn/DNN9/Qrl07PvzwQ86cOcPMmTM5ffo027dvT9Bvp06daNasmcmy6tWrv9rBCiEynhJCiGzs8uXLClBTp07N1DgMBoMKDw/P0H2OGzdOZffTeN26dVWZMmWSbXfkyBEFqEWLFqV7TDdu3FBRUVFKKaWaN2+uChcunKrtS5curSpUqKCio6ONyz777DOl0WjUv//+a1y2cuVKBajVq1cbl925c0flyJFDderUyaTPwoULq+bNm7/E0STuTTnOxKQ0fnP0er0qW7asqlatWpLv+5CQEGVhYaG6detmsnzmzJkKUBs3bjQuyyrnMiFE2pDpgkKIN0JkZCTjxo2jWLFiWFtbU7BgQUaOHElkZKRJu0WLFlG/fn1cXV2xtramdOnSZn/V9vDwoEWLFmzfvp0qVapga2vL/PnzCQgIQKPRsGrVKr766isKFCiAjY0NDRo04MKFCwn6+fPPP2nSpAnOzs7Y2dlRt25dDhw4kKDd/v37qVq1KjY2Nnh6ejJ//vwUHfeMGTPQ6XQ8evTIuGzatGloNBo+/vhj4zK9Xo+joyOffPKJcZnBYOCHH36gTJky2NjYkDdvXvr168fDhw9N9mHumqyrV6/SsmVL7O3tcXV1ZejQoWzfvh2NRkNAQECCOM+cOUO9evWws7PD3d2db775xrguICCAqlWrAtCrVy/jFKpffvkFgPPnz9O2bVvy5cuHjY0NBQoUoGPHjoSGhhr7uHfvHmfPniU8PDzZx8zNzQ1LS8tk25lz5swZzpw5Q9++fbGw+G+yyMCBA1FKsWbNGuOyNWvWkDdvXtq0aWNc5uLiQocOHfj1118TvDYBoqKiEkwze1lvynG+avzm7Nixg1OnTjFu3DhsbW0JDw9Hr9cnaHfo0CFiYmLo2LGjyfK4fyc2DfDp06dERUWl9rCEEFmIJFlCiNeewWCgZcuWfPvtt/j5+TFz5kxat27N999/z7vvvmvSdu7cuRQuXJhPP/2UadOmUbBgQQYOHMjs2bMT9Hvu3Dk6depEo0aNmD59usk0tilTprB+/XqGDx/O6NGjOXz4MF26dDHZfteuXdSpU4ewsDDGjRvHpEmTePToEfXr1ycwMNDY7uTJkzRu3Jg7d+4wfvx4evXqxbhx41i/fn2yx167dm0MBgP79+83Ltu3bx9arZZ9+/YZlx07downT55Qp04d47J+/foxYsQIatasyfTp0+nVqxdLly7F19eX6OjoRPf59OlT6tevzx9//MGQIUP47LPPOHjwoEkCF9/Dhw9p0qQJFSpUYNq0aZQsWZJPPvmErVu3AlCqVCm++OILAPr27cuSJUtYsmQJderUISoqCl9fXw4fPswHH3zA7Nmz6du3L5cuXTJJLOOuiYn/uKaHY8eOAVClShWT5W5ubhQoUMC4Pq5t5cqV0WpNP4q9vb0JDw8nKCjIZPmuXbuws7PDwcEBDw8Ppk+fnk5Hkbzsfpypid+cP/74AwBra2uqVKmCvb09dnZ2dOzYkQcPHhjbxSWQtra2Jtvb2dkBcPTo0QR9T5gwAQcHB2xsbKhatWqGTMcVQqSDTB5JE0KIV5KSKTZLlixRWq1W7du3z2T5vHnzFKAOHDhgXGZu6o+vr68qWrSoybLChQsrQG3bts1k+e7duxWgSpUqpSIjI43Lp0+frgB18uRJpVTs9MLixYsrX19fZTAYTPZfpEgR1ahRI+Oy1q1bKxsbG3X16lXjsjNnziidTpfsdEG9Xq+cnJzUyJEjjfvNnTu3at++vdLpdOrx48dKKaW+++47pdVq1cOHD5VSSu3bt08BaunSpSb9bdu2LcHyunXrqrp16xr/PW3aNAWoDRs2GJc9e/ZMlSxZUgFq9+7dJtsC6n//+59xWWRkpMqXL59q27atcVli0wWPHTuWYCqaOXFTK+PvOyVSO41u6tSpClDXrl1LsK5q1arq7bffNv7b3t5e9e7dO0G7zZs3J3ht+fn5qa+//lpt2LBB/fTTT6p27doKMD6vr+pNOc6Xid+cli1bKkDlzp1bdenSRa1Zs0aNHTtWWVhYqBo1ahjf00ePHlWAmjhxosn2ce8jBwcH47KrV6+qxo0bq7lz56qNGzeqH374QRUqVEhptVr122+/pcFRCyEykoxkCSFee6tXr6ZUqVKULFmSe/fuGf/q168PwO7du41t4//iHBoayr1796hbty6XLl0ymX4GUKRIEXx9fc3us1evXlhZWRn/Xbt2bQAuXboExF40f/78eTp37sz9+/eNMT19+pQGDRqwd+9eDAYDer2e7du307p1awoVKmTsr1SpUonuOz6tVkuNGjXYu3cvAP/++y/3799n1KhRKKU4dOgQEDu6VbZsWXLkyGF8zJydnWnUqJHJY+bl5YWDg4PJY/aibdu24e7uTsuWLY3LbGxseP/99822d3BwoGvXrsZ/W1lZ4e3tbXyskuLs7AzA9u3bk5wKOH78eJRSL11qPqWePXsGxI5wvMjGxsa4Pq5tYu3i9wWxVfBGjhxJq1at6N27N3v27MHX15fvvvuO4ODgtD6MZGX340xN/OY8efIEgKpVq+Lv70/btm354osvmDhxIgcPHmTnzp0AVK5cmWrVqvH111+zaNEirly5wtatW+nXrx+WlpYm+ylUqBDbt2+nf//++Pn58eGHH3Ls2DFcXFwSFAIRQmR9kmQJIV5758+f5/Tp07i4uJj8xVUsu3PnjrHtgQMHaNiwIfb29uTIkQMXFxc+/fRTALNJVmLiJ0QAOXPmBDBez3T+/HkAevTokSCuH3/8kcjISEJDQ7l79y7Pnj1LUIEN4K233krR8deuXZujR4/y7Nkz9u3bR/78+alcuTIVKlQwThncv3+/MRGMiy80NBRXV9cE8T158sTkMXvR1atX8fT0THAPr2LFipltX6BAgQRtc+bMmeDaL3OKFCnCxx9/zI8//kiePHnw9fVl9uzZCZ6rjBKXpJu7zigiIsIkibe1tU20Xfy+zNFoNAwdOpSYmBiz17ilt+xynA8ePODWrVvGv7jXRWriNydufadOnUyWd+7cGYCDBw8al61du5YKFSrQu3dvihQpgp+fHx06dKBSpUo4ODgkuZ9cuXLRq1cvzp07lynJtBDi5UkJdyHEa89gMFCuXDm+++47s+sLFiwIxN7zpkGDBpQsWZLvvvuOggULYmVlxZYtW/j+++8xGAwm2yX1RUyn05ldrpQyxgQwderUREuSOzg4mP0SmFq1atUiOjqaQ4cOsW/fPmMyVbt2bfbt28fZs2e5e/euSZJlMBhwdXVl6dKlZvt0cXF55bjiJPdYJWfatGn07NmTX3/9lR07djBkyBAmT57M4cOHKVCgQJrFmRL58+cH4ObNm8bXVZybN2/i7e1t0vbmzZsJ+ohbllxZ9bj+418DlFGyy3G2adOGPXv2GP/do0cPfvnll1TFb05czHnz5jVZ7urqCmDyA4G7uzv79+/n/Pnz3Lp1i+LFi5MvXz7c3NxSVJo+/vFn9OtZCPHyJMkSQrz2PD09OXHiBA0aNEgwYhLfpk2biIyMZOPGjSYjUUlNjXuVmACcnJxo2LBhou1cXFywtbU1jnzFd+7cuRTty9vbGysrK/bt28e+ffsYMWIEAHXq1GHhwoXGqU3xi154enryxx9/ULNmzWR/1X9R4cKFOXPmDEopk8fbXHXFlErqeQMoV64c5cqVY8yYMRw8eJCaNWsyb948vvzyy5fe58uIS5j/+usvky/qISEhBAcH07dvX5O2+/btw2AwmBSF+PPPP7Gzs0v2C3jcdMq0THhTKrsc57Rp00wSnrjkKDXxm+Pl5cXChQu5ceOGyfKQkJBEYy1evLhxRPrMmTPcvHmTnj17JnsMmfk8CyFenkwXFEK89jp06MCNGzdYuHBhgnXPnj0zloqOG1GJP4ISGhrKokWL0jwmLy8vPD09+fbbb43Xd8R39+5dY0y+vr5s2LCBa9euGdf/+++/Zm9kak5clbLly5dz7do1k5GsZ8+eMWPGDDw9PY2/7kPsY6bX65k4cWKC/mJiYkwq973I19eXGzdusHHjRuOyiIgIs49/Stnb2wMk2G9YWBgxMTEmy8qVK4dWqzUZBUxNCfeUio6O5uzZsyajNGXKlKFkyZIsWLDApKT33Llz0Wg0tGvXzrisXbt23L59m3Xr1pnEuXr1avz8/IzXCz148CBBefDo6GimTJmClZUV9erVS7NjMic7H6eXlxcNGzY0/pUuXTrV8YeGhnL27FmTKaitWrXC2tqaRYsWmYxw//jjjwA0atQo0ZgMBgMjR47Ezs6O/v37G5fHvefju3HjBj///DPly5c3eX8KIbI+GckSQrwWdu7cabzGI77WrVvTrVs3Vq1aRf/+/dm9ezc1a9ZEr9dz9uxZVq1aZbzXVePGjbGyssLPz49+/frx5MkTFi5ciKurq9npTq9Cq9Xy448/0rRpU8qUKUOvXr1wd3fnxo0b7N69GycnJzZt2gTElnTetm0btWvXZuDAgcTExDBz5kzKlCnDP//8k6L91a5dmylTpuDs7Ey5cuWA2KlNb731FufOnUvwi3rdunXp168fkydP5vjx4zRu3BhLS0vOnz/P6tWrmT59uskX0fj69evHrFmz6NSpEx9++CH58+dn6dKlxkIHyY1KmePp6UmOHDmYN28ejo6O2NvbU61aNU6cOMHgwYNp3749JUqUICYmhiVLlqDT6Wjbtq1x+1mzZjFhwgR2796dbPGLf/75x5ggXrhwgdDQUOOIWIUKFfDz8wNivwCXKlXKOAUtztSpU2nZsiWNGzemY8eOnDp1ilmzZtGnTx9KlSplbNeuXTvefvttevXqxZkzZ8iTJw9z5sxBr9czYcIEY7uNGzfy5Zdf0q5dO4oUKcKDBw9YtmwZp06dYtKkSeTLl8/Y9sqVKxQpUiRBTG/ycSYmpfGvX7+eXr16sWjRIuP7JF++fHz22Wd8/vnnNGnShNatW3PixAkWLlxIp06djPd1A/jwww+JiIigYsWKREdHs2zZMgIDA1m8eLHJiPnIkSONU5bd3Ny4cuUK8+fP5+nTp5larl8I8ZIys7ShEEK8qrgS7on9LVmyRCmlVFRUlPr6669VmTJllLW1tcqZM6fy8vJSEyZMUKGhocb+Nm7cqMqXL69sbGyUh4eH+vrrr9XPP/+sAHX58mVju8KFC6vmzZsniCeuhPuLJcXj4jRXgrxNmzYqd+7cytraWhUuXFh16NBB7dy506Tdnj17lJeXl7KyslJFixZV8+bNM5YlT4m4ctlNmzY1Wd6nTx8FqJ9++snsdgsWLFBeXl7K1tZWOTo6qnLlyqmRI0eqkJAQY5sXS7grpdSlS5dU8+bNla2trXJxcVHDhg1Ta9euVYA6fPiwybZlypRJsN8ePXokKCn+66+/qtKlSysLCwvjY3np0iXVu3dv5enpqWxsbFSuXLlUvXr11B9//GGybWpKuC9atCjR11OPHj2M7eKe0/jL4qxfv15VrFhRWVtbqwIFCqgxY8aoqKioBO0ePHig3nvvPZU7d25lZ2en6tatq44cOWLS5q+//lJ+fn7K3d1dWVlZKQcHB1WrVi21atWqBP2dPHlSAWrUqFFynCmQkvjjHqcX37sGg0HNnDlTlShRQllaWqqCBQsmun2FChWUvb29cnR0VA0aNFC7du1KEMuyZctUnTp1lIuLi7KwsFB58uRR77zzjjp69OgrHaMQInNolErhlcVCCCHEK/jhhx8YOnQowcHBuLu7Z3Y4r6U5c+YYR0ReLMrwOnlTjlMIkX3JNVlCCCHS3Iv3GYqIiGD+/PkUL15cEqx0tHv3boYMGfLaJx5vynEKIbIvGckSQgiR5po2bUqhQoWoWLEioaGh+Pv7c/r0aZYuXWq8l5AQQgjxupLCF0IIIdKcr68vP/74I0uXLkWv11O6dGlWrFjBu+++m9mhCSGEEOlORrKEEEIIIYQQIg3JNVlCCCGEEEIIkYYkyRJCCCGEEEKINCTXZCXDYDAQEhKCo6PjS91AUwghhBBCCPF6UErx+PFj3Nzc0GoTH6+SJCsZISEhFCxYMLPDEEIIIYQQQmQR169fp0CBAomulyQrGY6OjgBc//lnnOzsMjmadHL0KABfXugIxYoB4OWVmQEJIYQQQgiR9YSHh9G7d0FjjpAYSbKSETdF0MnO7vVNsqytY/9j6QDWTgC8rocqhBBCCCHEq0ruMiIpfCGEEEIIIYQQaUiSLCGEEEIIIYRIQ5JkCSGEEEIIIUQakmuyhBBCCCGEyBIUWm0MGo0euXNQxlMKlNJhMFgAr/YESJIlhBBCCCFEJtNqo3ByuomtbbgkWJlIKXj2zI6wsPwYDFYv3Y8kWUIIIYQQQmQqA3nyXMbBQUfOnG5YWFjxqiMp4mUoYmKiePjwLlZWl7lzpzgve3WVJFlCCCGEEEJkIp0uCgsLA3nyFMTaWu6jk5msrGzR6SyJiLiKTheFXm/zUv1I4QshhBBCCCEyUdz0QI0mbb6aazSg1SLTDl9S3PPwKo+fjGQJIYQQQgiRzWk0YGkJ1rpodNaWxuX6yGgi9ZZER8debyQyhiRZQgghhBBCZGMWFmBvExP7j7XrYM0aePgQcuZE264dtm3bYmsFTyMsiInJ3FjfFJJkCSGEEEIIkU1ZWIC9nQG27UDTuzfcvm2yXrNmDeTNi/r5Z+ybNOFpuDZTEq2cOTX4+6+nefPWGb/zTCDXZAkhhBBCCJENaTTPR7C2bUPTsmWCBMvo9u3Y9du2YW8Tk+bXat2+fYuRIz+gYsWi5M1rTZkyBenY0Y89e3am7Y5eklKKSZM+p2TJ/OTPb0vr1g25ePF8uu5TkiwhhBBCCCGyIcvnl15pevcGvT7pxno9mvfeM9kuLVy7doV69bzYt28XX3wxlQMHTrJmzTZq167HiBGD0m5Hr2D69G+YP38G3303j99//xM7O3vatvUlIiIi3fYpSZYQQgghhBDZkLUuGtauTXwE60W3bsG6dbHbpZFhwwai0Wj4449AWrZsS7FiJShVqgyDBn3M778fTnS7ceM+oUqVEri52VGxYlG++mos0dH/xXXy5An8/OpRsKAjhQo54ePjxbFjfwFw7dpVOnb0w8MjJ+7u9lSvXoYdO7aY3Y9SinnzfmD48DE0a9aKsmXLM3fu/7h1K4TNmzek2ePwIrkmSwghhBBCiCwoR47kWljGFrlIBc2aNeg6dCCHtfn1jx6lvK+HDx+wc+c2xoz5Cnt7+wTrnZ1zJLqto6Mjs2f/Qv78bpw+fZKPPnofBwdHPvxwJAB9+3ahfPlKTJs2F51Ox8mTx7GwiB2CGzFiENHRUWzevBd7e3vOnj2Dvb2D2f1cvXqZ27dv4ePTMF5cznh5VePIkUO0bdsx5QecCpJkCSGEEEIIkV09fJi+7ZNw6dIFlFKUKFEy1dsOHz7G+P+FCnlw4cJw1q1bYUyybty4xpAhI4x9e3oWN7YPDr5Gy5ZtKVOmHAAeHkUT3c/t27cAcHHJa7Lc1TUvd+7cSnXcKSVJlhBCCCGEEFlQUqNKGg04OwM5c6au0+ftQ0Nf/b5Z6hU6WLduJfPnz+DKlYs8ffqEmJgYHB2djOsHDvyYIUP6sHLlEurWbUjr1u0pUsQTgH79hjBs2AB27dqBj09D/PzaUrZs+Vc7mDQm12QJIYQQQgiRzSgVe6Nh1a5d6rZr1y52uzS4MbGnZ3E0Gg1BQWdTtV1g4CH69u1Co0bNWLHiN/bsOcawYZ8RFRVlbDNq1HgOHTpN48bN2bdvF2+/XZrfflsPQPfufTh27BLvvtuNM2dOUr9+FRYsmGl2X3nz5gPg7l3T69bu3LmNq2u+VMWdGpJkCSGEEEIIkQ1F6i2hbVvImzf5xgD58kGbNrHbpYGcOXNRv74vP/00m6dPnyZYHxr6yOx2gYEHKViwMMOHf0alSlXw9CzO9etXE7QrVqwEAwcOZd26HbRo0YalSxcZ1xUoUJDevfuzZMk6Bg0axuLFC83uq3DhIuTNm8+knHxYWBhHj/5J1arVU3nEKSdJlhBCCCGEENlQXDE+9fPPoNMl3VinQ/30k8l2aeHbb2ej1+tp2NCbjRvXcvHiec6d+5f582fQuLH5JKZo0eIEB19j7doVXL58kfnzZxhHqQCePXvGiBGD2b8/gGvXrnL48AGOHTtCiRKlABg9+iN27tzO1auXOXHib/bv381bb5Uyuy+NRkP//h/x7bdfsmXLRk6fPsmAAd3Jl88tXW+MLNdkCSGEEEIIkQ0pBU8jLLBv0gS1cWPsfbBumSnmkC9fbILVpAlPw7VpMlUwjodHUQIC/mbatK8YM2YYt2/fJE8eFypU8GLatLlmt2nWrCUDBgxl5MjBREVF0qhRc0aMGMuUKeMB0Ol0PHhwn/79u3P37m1y585DixZtGD16AgB6vZ4RIwYREhKMo6MTDRo0YdKk7xON8cMPRxIe/pShQ/sSGvqIt9+uxZo127CxsUm7B+IFGvUqV6y9AcLCwnB2diZ0xQqc7OwyO5z0ERgIwNigblCiBADe3pkZkBBCCCHEm8PCIgJX18sULFgEK6vUf/G3sAB7m5jYf6xbh2bNmtgqgjlzxl6z1aYNEJuQxcSkZeSvp6ioCK5fv8ydO0WIiTF9PsLDw+jY0ZnQ0FCcnJwS6UFGsoQQQgghhMjWYmIg7KkFlpZg3eoddB06GNcZIqOJjLIgXk0JkQEkyRJCCCGESIZSiitX/iEs7B4uLoVwcyue/EZZmF6v5+LFozx79gR39xLkyVPgpfq5cSOIe/eu4+TkgodHOTQaTRpHKlJKKYiKgigs0UTElnhXCpRKmyIXInWyVZK1d+9epk6dytGjR7l58ybr16+ndevWSW4TEBDAxx9/zOnTpylYsCBjxoyhZ8+eGRKvEEIIIbK/I0d+Y9Gi0QQHnzIue+utWvTt+x3Fi1fNxMhezvbtC1m+/EsePLj2fIkGL6/m9Os3nXz5Er+pa3xnzx7mxx+HERR00LisYMHy9O49BS+vpukQtUiN2OQqs6N4s2Wr6oJPnz6lQoUKzJ49O0XtL1++TPPmzalXrx7Hjx/no48+ok+fPmzfvj2dIxVCCCHE62D//tVMnNiSGzfcgO3ARWA158+HM2qUD0FBgZkcYeqsWTOF2bP78uBBbWA/cAFYyLFjpxk+vCZ3715Lpgc4e/YQn35ajwsXooA1xD4mWwkOduGLL1pw+PCG9DwEIbKFbDWS1bRpU5o2TfmvI/PmzaNIkSJMmzYNgFKlSrF//36+//57fH190ytMIYQQQrwGYmKimTdvCNAGpVbx32/TRTEYmgO1WbhwGFOn7su8IFPh4cNb+Pt/DnwCTIm3xhODwY8nTyqxfPkEhgz5Kcl+5s//CL2+PErtAeKKAhRFqUZAG+bO/YCqVVug02Wrr5lCpKlsNZKVWocOHaJhw4Ymy3x9fTl06FAmRSSEEEKI7OLo0a2Ehd0CxpPwK5MtBsMozp3bT3DwuYwP7iUEBPijlAUwysxaVwyGQQQELCMyMjzRPq5ePcXFi4Eo9Sn/JVhxdMA4Hj4M5vjx39MucCGyodc6ybp16xZ5X7gDdt68eQkLC+PZs2dmt4mMjCQsLMzk740QFGT8T1CQsaq7EEII8ca6e/cqGo01UDaRFlWM7bKDO3euotUWA3Ik0qIKMTERhIbeTbSP/6YTVkmkRSVAw5072eMxeV1pNKDVxv5XZI7XOsl6GZMnT8bZ2dn4V7BgwcwOKf15e0OJEniHrKdEyG4IuUFAgCRaQggh3mxOTi4oFQkkdp3SBWO77MDJKQ9KXQciEmlxAY1Gi4NDziT7iHU+kRaXARWvncgoGg1YWYGtLTg7g5NT7H9tbWOXS8KVsV7rJCtfvnzcvn3bZNnt27dxcnLC1tbW7DajR48mNDTU+Hf9+vWMCDXzeXvjN7I0E93m0RV/fNhNQAD4+0uyJYQQ4s1UtWoLrK0dgWlm1hrQaKbh5laaokUrZnBkL6du3c4YDI8Ac9dcPUOrnUXVqi2xs0v8BqvFilUhb97ixD4m5srXfYutbQ6qVGmWJjGLlLGwAHv72GRqwwZo3x4aNoz974YNscvt7WPbiYzxWidZ1atXZ+fOnSbLfv/9d6pXr57oNtbW1jg5OZn8vVG6dsXP5wkT3ebhw3+jWv7+mR2YEEIIkbFsbR3o1GksMAP4CIj74fUM0BGlttGz56Rsc28oN7fiNGrUB43mI2AScJ/YROkQGk1TdLordOr0eZJ9aLVaevWaDPwGdAbOPl9zDRgMzKVz53FYW9ul12GIF1hYgJ0d7NgBBQpAx46wZg3s3Bn7344dY5fv2BHbLrMSrZw5NWzevCFzdp4JslWS9eTJE44fP87x48eB2BLtx48f59q12GH80aNH0717d2P7/v37c+nSJUaOHMnZs2eZM2cOq1atYujQoZkRfvbh7Q1du5qMahFyQ0a1hBBCvHHeeWc4PXt+g7X1z0AhNBpboAyOjnsZPnw5b7/dKrNDTJWBA+fSosUgdLoJgMvz46lBnjzBTJiwDU/PSsn2UaNGWz7+2B8Hh51Aqed9FMbaegnvvfcdLVt+mM5HIeJoNGBjA9u2QcuW8MIELqPbt2PXb9sW2z6tfxe4ffsWI0d+QMWKRcmb15oyZQrSsaMfe/bsTH7jDLBp0zratGlM0aK5yZlTw8mTx9N9nxqlss+tygICAqhXr16C5T169OCXX36hZ8+eXLlyhYCAAJNthg4dypkzZyhQoABjx45N1c2Iw8LCcHZ2JnTFCpzs3sBfZQIDISiITSGV8acrIbjj5gYlSsTmYkIIIcSbIDz8MUeObCI09C6uroXx8mqGpaVVZof10kJD73LkyG88e/aYAgVKUaFCA7Ta1P32Hh0dyV9/beHu3Ws4O7tSrVpLbGzs0yni15uFRQSurpcpWLAIVlYvVm1MnJVV7F+BAoknWPHlywfXr0NUVOxfWrh27QpNmtTE2TkHo0d/QenS5YiOjmbXru0sXryAwMDY0c6cOTX4+6+nefPWabPjVFixYgnXrl0mXz43PvzwffbuPUa5chUTbR8VFcH165e5c6cIMTGmz0d4eBgdOzoTGhqa5Iy3bJVkZYY3PsmKExjIpgAHAvEmiBKE4I6PjyRaQgghhBCv6mWTLFvb2GuuOnZM+b5WroRWrSCRQtup1r59M86c+YfAwHPY25sm2aGhj3B2zgEkTLLGjfuEzZvXExISjKtrPtq378LIkZ9jaWkJwMmTJ/j00484fvwvNBoNRYsW5/vv51OpUhWuXbvKyJGDOXx4P9HRURQq5MGECVNp3DjpawGvXbtChQpFMiTJksvfRMp4e+PnDX7+89gUUplAvAkIqEdQkIxqCSGEEEKkhxw5km+zZk3q+lyzBjp0AGtr8+sfPUp5Xw8fPmDnzm2MGfNVggQLMCZY5jg6OjJ79i/kz+/G6dMn+eij93FwcOTDD0cC0LdvF8qXr8S0aXPR6XScPHkcC4vYBGzEiEFER0exefNe7O3tOXv2DPb2DikPPANIkiVSp2tX/AID8Quax9gQCAopQUCIO0FB0LVrZgcnhBBCCPFmefgwfdsn5dKlCyilKFGiZKq3HT58jPH/CxXy4MKF4axbt8KYZN24cY0hQ0YY+/b0LG5sHxx8jZYt21KmTDkAPDyKvsphpAtJskTqeXuDtzcT441qBYWUwN/fXUa1hBBCCCHSSFKjShpN7H2wciZ+WzOz4tqHhsKrXjT0KlcdrVu3kvnzZ3DlykWePn1CTEwMjo7/Tb8bOPBjhgzpw8qVS6hbtyGtW7enSBFPAPr1G8KwYQPYtWsHPj4N8fNrS9my5V/tYNJYtqouKLKYeOXeu+JvUu5dqhAKIYQQQqQfpSAyEtq1S9127drFbpcWVRk8PYuj0WgICjqbfON4AgMP0bdvFxo1asaKFb+xZ88xhg37jKh41ThGjRrPoUOnady4Ofv27eLtt0vz22/rAejevQ/Hjl3i3Xe7cebMSerXr8KCBTNf/YDSkCRZ4tU8L/fu5/PEpNx7QIAkWkIIIYQQ6Umvh7ZtIW/elLXPlw/atIndLi3kzJmL+vV9+emn2Tx9+jTB+tDQR2a3Cww8SMGChRk+/DMqVaqCp2dxrl+/mqBdsWIlGDhwKOvW7aBFizYsXbrIuK5AgYL07t2fJUvWMWjQMBYvXpg2B5VGJMkSacPbG7+RpU3urSWjWkIIIYQQ6Sc6Ova/P/8MOl3SbXU6+Okn0+3Swrffzkav19OwoTcbN67l4sXznDv3L/Pnz6Bx4+pmtylatDjBwddYu3YFly9fZP78GcZRKoBnz54xYsRg9u8P4Nq1qxw+fIBjx45QokQpAEaP/oidO7dz9eplTpz4m/37d/PWW6USjfHhwwecPHmcs2fPAHD+/DlOnjzO7du30u6BeIEkWSJtxZtCGH9Uy98/swMTQgghhHi9KAUREdCkCWzcGDtSZU6+fLHrmzSJbZ+WN3Dy8ChKQMDf1KpVjzFjhlGjRlnatGnEnj07mTZtrtltmjVryYABQxk5cjB16lTkzz8PMmLEWON6nU7Hgwf36d+/O1WrlqB37w40bNiU0aMnAKDX6xkxYhDVqpWiXbsmeHqW4Ntv5yQa49atG6lTpxLvvtscgPfe60idOpVYtGhe2j0QL5D7ZCVD7pP1Cvz9/yuMQQlwk8IYQgghhBAvetn7ZP23Pdg832zdutgy7Q8fxha5aNcudoogxCZYMTFpGPhrSu6TJbK2eOXeN4VUxj+kq7HcuyRbQgghhBBpIyYGnj4FS8vYGw136PDfushIiIqK/RMZR5Iskb6el3v3CwyEAH9jufeAEHfjaiGEEEII8WqU+i+RioiILfGuVNpODRQpJ0mWyBje3vh5g1+8e2sFBNSTUS0hhBBCiDQmyVXmk8IXImNJYQwhhBBCCPGakyRLZLzn99aKX+6dkBtS7l0IIYQQb6S4USepR5c1xD0Pr/J0SJIlMk+8Ua2u+JuMakmyJYQQQog3hcFgicEAUVHhmR2KIPZ5MBhin5eXJddkicwlhTGEEEII8YZTSseTJzm4d+8OAFZWdmg0mkyO6s2jlCIqKpx79+7w5EkOlErmDs9JkCRLZA1SGEMI8YYLDj7L9u0LCQ4+i62tAzVqtOXtt9/BwuLlf0kV8OjRHRYtGsHx479jMOgpUKAkvXp9S4kSVTM7NCFMPHkSeyfhmJg7aGWuWaYxGODJkxzG5+Nlyc2IkyE3I84EgYEQFMTYkP4EUYIQ3HFzg65dMzswIYRIHytXfsnSpWPRavNgMNREq72JwRBIwYLl+OKLbeTO7ZbZIWZLhw6tZ8qUjigVDdQCnIBdQAS+vn0ZNGhe5gYohBkajR6tNhoZyMp4SsVOEUxqBCulNyOWJCsZkmRlIn9/46hWECXAzV1GtYQQr509e5YzbVpn4HPgU8D6+ZqjaLWt8PBw4/vv/5SpQ6n06NEdevQoiFLFgV8Bz+drwoAPgcUMGjQPX9++mRajECL7SWmSJYORIuuSwhhCiNecUoo1a75Bo2kKTOC/BAvAC4PhFy5dOsKpU3syKcLsa9GiEc9HsOInWBA7mvUjUIzlyydmSmxCiNefJFkia3te7t3P54lJufeAAEm0hBDZ36NHt7l69ThK9UykRQN0Onf++mtLRob1Wjhx4g+gJqYJVhwd0IsHD0IyNighxBtDCl+I7EEKYwghXkMxMVHP/88xkRYawCFeO5FSer2e2FGrxDgAcsWEECJ9yEiWyF7iTSGMP6rl75/ZgQkhROrlyuWGk1M+YFMiLc6h15+jWLEqGRnWa6FAgZLAbmKvwTLnV6ytk0rChBDi5UmSJbKf51MI467Viku25FotIUR2o9NZ0KxZPzSan4GAF9aGo9EMwtHRlZo122VCdNnbe+99C0QAHwD6F9b6AzupX79zhsclhHgzSJIlsi8pjCGEeA20bz+asmVro9E0BNoBs4ExaLUlsLQ8zKhRK7GyssnkKLOfYsWq0LRpf2AJ8BbwFTADaAB0I1++4vTrNyszQxRCvMakhHsypIR7NhEYyKYAB2O59xDc8fGRa7WEENlDdHQUO3YsZPPm+YSE/Iu1tQO1a7ejdethz6e9iZf1++8/sWzZBO7fDwEMWFs7Ub9+Z/r1m4VW7vgqhEgluU9WGpEkK5uJd2+tAOrh5iaFMYQQQgghRNqQ+2SJN5MUxhBCCCGEEJlMkizx+pHCGEIIIYQQIhNJkiVeX1IYQwghhBBCZAK5GbF4vXl7x97IODAQAvxjC2OElCAgxN24WgghhBBCiLQkSZZ4M3h74+cNfv7z/iuMEVCPoCApjCGEEEIIIdKWTBcUbxYpjCGEEEIIIdKZJFnizSOFMYQQQgghRDqSJEu8uaQwhhBCCCGESAdyTZZ4s0lhDCGEEEIIkcYkyRICpDCGEEIIIYRIMzJdUIj4pDCGEEIIIYR4RZJkCfEiKYwhhBBCCCFegSRZQiRGCmMIIYQQQoiXINdkCZEUKYwhhBBCCCFSSZIsIVJCCmMIIYQQQogUkumCQqSGFMYQQqSjZ8+eEBx8lnv3gl+6D71eT0jIBUJCzqPXx7x0P/fv3yA4+CzPnj156T6ePHnI9ev/8ujRnZfuIyt59OgO16//y5MnjzI1Dr0+hpCQ84SEXECv12dqLK/bcyzSR1RUBMHB57h9+wpKqcwOJ0PISJYQqfV8CuHEeKNaQSEl8Pd3l1EtIcRLCQ29i7//GHbt8ic6OhyAYsWq0anTWKpWbZ6iPvR6Pb/++h2//jqThw+vA5AzZwFatvyA1q2HodPpUtTPX39tYdmyiVy4cBgAS0s76tXrQteuX5Ijh2uK+ggJOc+SJWM4dGgdBkNsolehgi9du07grbeqpaiPrOTcuT/x9/+cEyd2AKDVWlCjRlu6dv0SN7diGRaHXh/Dhg3T+PXXmTx6dAOAXLkK0arVB7RsOTTFz3FauHEjiP/97zMOH16PUrGJXsWKTejWbSLFi1fJsDhE1vbs2ROWLx/P9u0/8ezZIwAKFChLhw6j8PHpkrnBpTONelPSyZcUFhaGs7MzoStW4GRnl9nhiKwmMBCCgtgUUhl/uhKCO25uMoVQCJFyYWH3GDasBnfvPsBgGAL4ALfQaOaiVABDhvxMw4a9kuxDKcW0ad3Yu3c50BN49/maVWg0v1CzZnuGD1+KVpv0BJZdu/7HDz/0RKOpg1IDADcgAK12Bnny5ODbbw8km2gFB59lxIhaPHvmiMHwEVAZOI9WOwON5iwTJmylfPl6yT4uWcWJE7sYP74ZSpXEYPgQKAb8jVb7A7a2j5k6dT8FCpRM9zgMBgPfftuFAwdWo1QvoAOggJXAL9St25mPP/4fGo0m3WO5du0MI0fWJiLC+flzXAkIQqudjlZ7ni++2E7ZsnXSPQ6RtUVEPOXTTxtw6dJpDIaBQFMgFI3mZ5TaSNeuX9Ghw6eZHWaqhYeH0bGjM6GhoTg5OSXaTpKsZEiSJVIkMJBNAQ6xo1qUIAR3fHwk0RJCJG/evMFs27YcgyEQ8Iy3RgF9sLRcweLFN3BwyJFoH0eObGbixBbAcqDjC2tXAx347LNfqVatZaJ9PH0aSo8e7kRFtQN+xvSKgktotd40btyegQPnJnk8Y8Y05tSpaxgMh4Cc8dZEotE0JU+eqyxceD7ZhC8r0Ov1vP9+ce7fL4JSWwDreGsfoNVWp1w5DyZO3J7usRw+/CuTJrUm9vls98La5UBnPv98M1WqNEv3WEaPrs+//97CYDgI5Ii3JgKNxhdX15vMn382WzzHIv2sXj0Zf/8JKHUA8Hph7VjgK+bPP0/+/J5mts66UppkyatfiLTg7Y3fyNIm99aScu9CiORERUWwc+f/nv/K++IXDQ3wFTExUezZszTJfrZtW4BWW4WECRZAe7Rab7ZtW5hkH3v2LCM6OhKYRMKvB0UxGAaxa5c/kZHhifZx69Zl/vnndwyGMZgmWADWKDWJu3cvceLEziRjySr++Wcn9+5dRqnJmCZYALkwGD7jxIkd3L59Jd1j2bp1AVptNRImWAAd0Wors3XrgnSPIyTkPKdP78ZgGItpggVgg1Jfcfv2eU6d2pPusYisbcuWBSjVmYQJFsBotNoc/P77TxkdVoaRJEuItCSFMYQQqfDw4S0iIx8DtRNpkQ+d7i1CQoKS7OfatXMYDIn1AQZDHa5fT7qPkJAgtNpixE4RNKcOUVFPePjwVqJ93Lx5/vn/JRZLNTQay2SPJ6u4cSMIjcYKqJpIi9gpcSEh5xNZn3aCg4OSeI41GAx1CA5O/8f1v2NNLJaagCbbPMcifcTERHP//hUSf53YoVTV1/p1IkmWEGnN2xu6djUZ1SLkhoxqCSESsLOLm2pyI5EW0RgMt7C1TXxKCoCDg3MSfQAEY2+fdB92ds4odQeISrQPAFtbxyT7iJVYLHdQKjrecWdtdnZOKBUF3E2kRbCxXXqzt0/+Oc6IOJJ/jm8CKtnXrHi96XQWWFrakvjrRKHVBr/WrxNJsoRIL/FGtbribzKqJcmWEALA0TEX5co1QKudA5grt74Sg+E+tWp1SLKfOnU6oNFsAK6bWRuMRrOeunWT7qNmzXYYDA+Ivb7nRXq02jmUKVMPZ2eXRPsoVqwKuXMXBmYm0mI2lpa2VK3aIslYsoqqVVtgYWEDzE6kxSzy5ClCsWLpX02vbt32aDTrMP+l9Roaza/JPsdp4a23qpEzZwESf45nYWlplyHXhomsS6PRUKtWe7TaHwFzU4wD0OvPJHtuy84kyRIiPT0f1fLzeWIyqhUQIImWECJWp05jUeoY0Am4/HxpJPALWm0/3n67LR4e5ZLso1Gj3uTIkRetthGwj9iiGQrYj1bbmBw5XGjU6L0k+yhcuCzVq7dHqx1IbOGLyOdrLgOdUeovOnUam2QfOp2OLl3GASuAj4C4eyeFAV8DX9Gq1Uc4OLx4vVbW5OiYi1atPgS+BL4BHj9fcwf4EFhJly6fZ0jp9EaN+uDsnAettjFwgP+e471otY3JmTM/DRv2Tvc4dDoLOnf+HFgKfMx/o3xhxF7PN4U2bYY9H3kTb7K2bUei091Fo/EDTj9fGgOsQ6vtQPHi1alUqXEmRpi+pLpgMqS6oEhT/v7Ge2sFUE/KvQshADh4cC3Tp/fh2bNQdLoiKHUfgyGUGjU6MHToIqytk//8CQk5z8SJ73Djxml0uvyABr0+BDe30owdux539xLJ9hEZ+YwffujFgQMr0Wqd0GjyoNdfxsbGiQ8//JGaNc0VXUjo11+/Z/HiT9Hr9eh0hTAYbqJUBH5+H9Kr19QMvZ/Tq9Lr9fz883B++20GGo0NWm1+9Ppr6HQ6evSYTKtWH2VYLMHB5/jyy3cICfkXnc4NUOj1NylQoCxjxqzDza14hsWyfv00liz5DL1eodMVRK8PAaJo3XooPXp8LZUFBQCnTu1hypSOhIXdQqfzQKnHGAz3KVeuIZ98sgInp9yZHWKqSQn3NCJJlkhzz++tNTakv7Hcu5sbdO2a2YEJITJTRMRTDhxYTXDwWWxsHKhRoy0FC5ZKVR8Gg4ETJ3Zy+nRsZbcyZepQoULDVH/hDQ4+y8GDa3n27DEFCpSkZs322NjYp6qPx48fsHfvcu7evYazswu1a3ckT54CqeojK7l79zr7968kNPQuLi6FqFOnE46OuTI8jtjn+A9OndqDRqOhbFkfypevnylJTVjYffbuXc69e9dxdnalTp2O5M7tnuFxiKwtOjqKP//cwMWLx7CysqFq1RYUK2au4mD2IElWGpEkS6SbeKNaQZQAN3cZ1RJCCCGEyMJe2/tkzZ49Gw8PD2xsbKhWrRqByVzY8sMPP/DWW29ha2tLwYIFGTp0KBERERkUrRBJkMIYQgghhBCvJYvMDiA1Vq5cyccff8y8efOoVq0aP/zwA76+vpw7dw5XV9cE7ZctW8aoUaP4+eefqVGjBkFBQfTs2RONRsN3332XCUcgxAu8vWNvZBwYCAH+saNaISUICHE3rhZCCCGEENlLtpouWK1aNapWrcqsWbOA2HnJBQsW5IMPPmDUqFEJ2g8ePJh///2XnTv/u7P8sGHD+PPPP9m/f3+K9inTBUWGksIYQgghhBBZ1ms3XTAqKoqjR4/SsGFD4zKtVkvDhg05dOiQ2W1q1KjB0aNHjVMKL126xJYtW2jWLPF7N0RGRhIWFmbyJ0SGiTeFMH65d3//zA5MCCGEEEKkVLaZLnjv3j30ej158+Y1WZ43b17Onj1rdpvOnTtz7949atWqhVKKmJgY+vfvz6effprofiZPnsyECRPSNHYhUuX5FMKJ/vP+K4wRUgJ/fymMIYQQQgiRHWSbkayXERAQwKRJk5gzZw5///0369atY/PmzUycODHRbUaPHk1oaKjx7/r16xkYsRDxSGEMIYQQQohsKduMZOXJkwedTsft27dNlt++fZt8+fKZ3Wbs2LF069aNPn36AFCuXDmePn1K3759+eyzz8zeU8La2hpra+u0PwAhXoYUxhBCCCGEyHayzUiWlZUVXl5eJkUsDAYDO3fupHr16ma3CQ8PT5BIxd1lPhvV+xAiNtEaWdo4quXDbhnVEkIIIYTIorJNkgXw8ccfs3DhQhYvXsy///7LgAEDePr0Kb169QKge/fujB492tjez8+PuXPnsmLFCi5fvszvv//O2LFj8fPzMyZbQmQrUhhDCCGEECLLyzbTBQHeffdd7t69y+eff86tW7eoWLEi27ZtMxbDuHbtmsnI1ZgxY9BoNIwZM4YbN27g4uKCn58fX331VWYdghCvTgpjCCGEEEJkadnqPlmZQe6TJbK0wEAICmJTSGX86UoI7nJvLSGEEEKIdJLS+2Rlq5EsIcQLpDCGEEIIIUSWI0mWEK8Db2/8vMEv3hTCgIB6BAXJqJYQQgghREbLVoUvhBDJkMIYQgghhBCZTpIsIV433t7QtatJuXdCbki5dyGEEEKIDCLTBYV4XXXtil9gIH5BsVMI/UO6EhDiLlMIhRBvFIPBwN9/b+Ovv7YQExNFsWJe1K3bBVtbhwyPJTT0Lrt2LebGjXPY2jpSo0Y7SpasjkajyfBYxOtNKcWZM/s5eHAtkZFPKViwNPXqdcfJKXdmh/bGkOqCyZDqguK1EBjIpgCH2MIYlCAEd3x8JNESQrze7t69xvjxfly//g86XXHAEb3+OLa2TowcuRwvryYZFsu2bQtYsGAIer0GrbYccBO9Ppjy5RsxevRq7O2dMywW8Xp7/PgBX37Zhn//3YNOVwhwxWD4B51Oy6BB82jQoEdmh5itpbS6oEwXFOJN4O2N38jSJlMI467VkimEQojXUXR0JGPG+HLjRhhwAL3+HHr9UeAyERE1+eqrd7hy5WSGxBIYuIk5c/oRE9MLpYLR6wPR668CGzh1KpBvvumcIXGI159SikmT2nHu3ClgM3r9ZfT6IygVTExMZ6ZP78WxY79ndphvBEmyhHiTSGEMIcQb4uDBddy8eRaDYQNQA4ibklcIpdZiMORlw4bvMiSWFSsmodH4AHOAuOlaWqAVBsMCjh3bwsWLxzIkFvF6O3v2EKdP78Zg+AVoxn9f9V2AhWi1b7Nq1eRMi+9NIkmWEG8aKYwhhHgD/PnnBjSat4EKZtZaYzD05MCBdekex8OHt7hw4TBK9eO/RC++Nmi1eTh8eH26xyJef4cPb0CncyM2wXqRFoPhfU6f3s2TJw8zOrQ3jiRZQryp4o1qdcXfZFRLki0hRHYXEfEUpVySaOFKdHR4hsQRK7FYLNBochEZmf6xiNdfZORTIA+Jf8V3fd7uWUaF9MaSJEuIN9nzUS0/nycmo1oBAZJoCSGyt0KFyqDV7gfMf5nUaH6nQIEy6R5H7tzu2Ng4A38k0uIyev15ChVK/1jE669QoTLo9aeBkERa/I69fR6cnZP6AUKkBUmyhBBSGEMI8drx9e2LwfAIGAe8WEh5B0ptpHnz/ukeh5WVDY0b90KrnQucfmFtNBrNcGxtnalVq0O6xyJef3XrdsHKygYYDuhfWHscrfZHmjTpg4WFZSZE92aRJEsI8Z/4hTHur5HCGEKIbCt/fk969/4WmIpGUw/4BVgL9ESjaUHlyk1p1Oi9DImlY8dxuLsXRqutDnwEbADmoNVWQaPZyNChi7Cxsc+QWMTrzd7emY8++hmNZhVarTcwj9jX22C02lp4eJSifftPMzfIN4TcJysZcp8s8cby92dTSGXjvbVwc5ebGAshsp0//9zImjVTOXduPwC5c3vQosUAWrUamqG/5j99GsqaNVPYtu1Hnj69B2jw8mpOhw6jKVWqRobFId4Mp07tZdWqyRw/vh1QODq60rTp+7Rp8wl2do6ZHV62ltL7ZEmSlQxJssQbLTAQgoLYFFIZf7oSgjtubkiyJYTIdsLDw4iJicLBIRdabeZN5NHr9Tx58gAbG3usreV7hUhfERFPiYwMx8EhFzqdLrPDeS2kNMmyyMCYhBDZjbd37PVagYEQ4B87qhVSgoAQd+NqIYTIDuzsEv8ylJF0Op0UHRAZxsbGXqaiZhJJsoQQyfP2xs8b/PznGacQBgTUIyhIRrWEEEIIIV4khS+EECkXvzBGvHLvUhhDCCGEEOI/kmQJIVLn+b214pd7J+SGlHsXQgghhHhOkiwhxMuJN6rVFX+TUS1JtoQQQgjxJpNrsoQQL08KYwghhBBCJCBJlhDi1UlhDCGEEEIII5kuKIRIO/ELY9xfI4UxhBBCCPFGkiRLCJG24gpjlFsthTGEEEII8UaSJEsIkT6kMIYQQggh3lByTZYQIv1IYQwhhBBCvIEkyRJCpD8pjCGEEEKIN4hMFxRCZBwpjCGEEEKIN4AkWUKIjCWFMYQQQgjxmpMkSwiROaQwhhBCCCFeU5JkCSEyz/NRLT+fJyajWgEBkmgJ8TowGAw8fRqKXh/z0n0opQgPf0xUVMQrxRIVFUF4+GOUUi/dh14fw9OnoRgMhleKJS1ERoYTGRme2WGIdCTPcfYmhS+EEJlPCmMI8Vp5+PA2a9dO4fffF/Ps2UMsLW2pU6cj7duPxs2teIr60Otj2LJlDhs3zub27SAAypVrQNu2I6hc2TfFsfz993bWrp3KyZM7AcibtwQtWw6iWbOB6HQp+xp040YQa9ZMYe/eFURHP8PWNieNG/ekTZtPyJkzb4pjeVVKKQIC/NmwYTqXLx8FoGjRqrzzzkfUqdMJjUaTYbGI9KGUYteu/7Fhw3SuXj0GgKenN++8M5Tatd+V5zgb0ahX+UnnDRAWFoazszOhK1bgZGeX2eEI8foLDISgIMaebE9Q7uqE4I6bG3TtmtmBCSFS4t69YEaMqMXDh48xGPoAlYHzaLXzsbZ+wqRJu/D0rJRkH3p9DJMnt+fIkU0o1QFoATxGq/0Fg+Ew/fvPplmzgcnGsnnzbObPH4xW+zYGQ0/AEdiERrMab++WjBq1KtlE6+LFvxk9uj5RUU4YDP2AYsDfaLU/kjOnE1On7iNPngIpeWheiVKKH38cyqZN09Fomj1/XBQazUqU2sY77wynV6+p6R6HSD9KKebP/4AtW2aj0TRHqfaAAY1mBUrtoG3bUfToMTmzw3zjhYeH0bGjM6GhoTg5OSXaTpKsZEiSJUQm8fc3jmoFUQLc3GVUS4hs4Kuv2nDkyBEMhoNAwXhrQtFqG+DmFsns2f8k+Yv8tm0LmDNnALARaB5vjQI+QqOZxYIFF8mb1yPRPm7duky/fsVQ6gPgeyD+/n4DWjJ48AIaN+6TaB9KKQYOLMfNm7YYDDuB+F+orqHV1sTb25tPP12baB9p5cSJnYwd2xCYDbyYYE4HPmLSpD2ULVsn3WMR6ePvv7czfnwTYB7Q74W104DhTJmyn9Kla2Z8cMIopUmWXJMlhMiapDCGENnO/fs3CAz8FYNhDKYJFoAzBsPXBAef4syZ/Un289tvc9Fo/DBNsCA2UZqERuPIjh0Lk+xjx46FaDSOwCRMEyyAFmg0Ldi0aU6SfZw5s58bN05jMHyDaYIFUAiD4VP+/PNX7t8PSbKftLB581y02rLAADNrh6DVvsWWLUkfj8jaYp/jikBfM2uHotMVY8uWuRkclXhZkmQJIbIuKYwhRLZy7doZlDIAjRNpUR+w4OrVk4n2oZTi+vV/UCqxPuwxGGpz5UrifQBcufIPBkMdwPwsFKV8uX49+T40GkvAJ5EWviil5/r1M0n2kxYuXfoHg8GXhAkjgAaDwZeLF5M+HpG1xT7HjTH/HGvR6325dEme4+xCCl8IIbI+KYwhRLZgbW37/P8eAEXMtAgFYrCysjWzLpZGo8HS0paoqAdJtLmHtXWhJGOxsrJFqw0h8UKA97G0TDyOuD6Uinkedw6zfcS1S2+xj+39JFrcj/f4i+wo9vlL/HUP9+Q5zkZkJEsIkX3Em0Loc3+NyRRCIUTmK17cG0fHvEBiU/l+Qqu1xMuraZL9vP12K3S6X4AoM2tPodRhqlVrlWQf1aq1en5d2Gkza6PQahfz9ttJ9+Hl1RStVgf8nEiLH3FyykeJEun/S0+NGq3QatcAD82svYdWu54aNZI+HpG1xT7Hq4hN6l90B43mV3mOsxFJsoQQ2cvzKYQTy602mUIo12oJkfksLa1o124EMB+YCsTd2yoG8Eej+YyGDXuTM2e+JPt5553hKHUN6ATcirfmKFrtO+TNW5waNdom2UfNmu1wdS2GVtsa+DvemptoNJ3QaIJ5551hSfaRK1d+GjbsjUbzKbAU0D9fEwF8AyygXbsRWFhYJtlPWmjSpD/W1pZotX7ApXhrLqDVtsDW1hZfX3PX8ojsolmzgVhZaZ4/x5fjrQlCq22BnZ1DkoVaRNYiSZYQInuSwhhCZEmtW39M69bDgJFote5otXXQ6TyAblSv3op+/aYn24enZyVGjVqNldV2NJqCaLU10OnKAVXIm9eCiRO3Y2lpnWQfVlY2fPnldvLmtQC80OnKodXWQKMphKXlDkaNWk3RohWTjaVfvxlUr94S6IpOVxittg5arTvwCe+8M5xWrYYm20dayJ3bjS++2Iq9/XmgGFptVXS6KkBxHByu8sUX2zL0nl0i7eXJU4AvvtiKnd1ZwBOt1vv5c/wWjo43+PLL7Tg7u2R2mCKFpIR7MqSEuxDZQGAgmwIcjOXeQ3DHx0eu1RIiM4WEnGfnzl+4c+cqzs4u+Ph0pVgxr1T18eTJI3bv/h8XLvyFpaU1Vao0p2rVFim+iTDE3nPryJHf+OuvzURHR1KsWBXq1euOg0OOVMVy4cJRAgL8CQ29i6trYRo06IWbW7FU9ZEWIiOfsX//Sk6eDECj0VC2rA+1anWQa3VeI5GR4ezdu4LTp/ei0WgoX74+NWu2x8rKJrNDE8h9stKMJFlCZCPx7q0VQD3c3KQwhhBCCCHSjtwnSwjx5pHCGEIIIYTIAiTJEkK8XqQwhhBCCCEymSRZQojXkxTGEEIIIUQmkZsRCyFeX97esTcyDgyEAP/YwhghJQgIcTeuFkIIIYRIa5JkCSFef97e+HmDn/+8/wpjBNQjKEgKYwghhBAi7cl0QSHEm0MKYwghhBAiA0iSJYR4s0hhDCGEEEKkM0myhBBvJimMIYQQQoh0ItdkCSHeXFIYQwghhBDpQJIsIYSQwhhCCCGESEMyXVAIIeJIYQwhhBBCpIFsl2TNnj0bDw8PbGxsqFatGoHJXDzx6NEjBg0aRP78+bG2tqZEiRJs2bIlg6IVQmQ7UhhDCCGEEK8oWyVZK1eu5OOPP2bcuHH8/fffVKhQAV9fX+7cuWO2fVRUFI0aNeLKlSusWbOGc+fOsXDhQtzd3TM4ciFEtiOFMYQQQgjxkjRKKZXZQaRUtWrVqFq1KrNmzQLAYDBQsGBBPvjgA0aNGpWg/bx585g6dSpnz57F0tLypfYZFhaGs7MzoStW4GRn90rxCyGyqcBANgU4xBbGoAQhuOPjI9dqCSGEEG+a8PAwOnZ0JjQ0FCcnp0TbZZuRrKioKI4ePUrDhg2Ny7RaLQ0bNuTQoUNmt9m4cSPVq1dn0KBB5M2bl7JlyzJp0iT0en2i+4mMjCQsLMzkTwjxhvP2xm9kaeOolg+7ZVRLCCGEEInKNtUF7927h16vJ2/evCbL8+bNy9mzZ81uc+nSJXbt2kWXLl3YsmULFy5cYODAgURHRzNu3Diz20yePJkJEyakefxCiNdA1674BQbiFzSPsSfvE0R1AkLcCQqCrl0zOzjxsi5f/oe//tpMTEwUnp6V8fJqhk6nS1UfDx/e5sCB1YSF3SVPnoLUrNkee3vnVPURFRXB4cMbCA4+i62tA2+//Q7583umqg+lFKdP7+P06b0opShbtg5lytRBo9Gkqh8h3kQPHtzk4ME1hIXdw8WlMDVrtsfOzjGzw3ppISEXOHx4PRERTylUqDTVqrXC0tI6s8N6Y2Sb6YIhISG4u7tz8OBBqlevblw+cuRI9uzZw59//plgmxIlShAREcHly5eNH5jfffcdU6dO5ebNm2b3ExkZSWRkpPHfYWFhFCxYUKYLCiFM+fsby70HUQLc3KXcezbz5MlDvvmmM8ePb0OrdUKjsUWvv03u3IX55JMVlCz5drJ9GAwGli37nDVrvkEpDVqtC3r9LaysbOjV62uaNx+UolgCAzfx/fe9efr0HjqdG0o9wmB4Rt26XfnggwVYWdkk28etW5eZNKkdV678jVabC9BgMNyncOFKfPbZGvLlK5qiWIR40xgMBhYvHsWvv36PUjq02jzo9TexsrLj/fe/w9f3/cwOMVUiI58xY0Yf9u1bhlZrj0bjjF4fgqOjKx9//AteXk0zO8Rs7bWbLpgnTx50Oh23b982WX779m3y5ctndpv8+fNTokQJk18kS5Uqxa1bt4iKijK7jbW1NU5OTiZ/QgiRgBTGyNb0ej3jx7fgn3+OACswGO6h198CjvDwoTuff+5LSMj5ZPtZtepLVq36CoPhU5S6iV4fDFwlKqo78+cPZufOxcn2cebMfiZNakN4eHXgX/T6GxgMd4E57N27mh9+6JVsH0+fhjJ6dH2uXQsFdmAw3H3ex+9cv/6E0aPr8+TJo2T7EeJN5O8/hvXrv8VgGIdSt56/j68QFdWR2bP7snfviswOMVWmTevGgQMbgAUYDHfR628Ap3nypAoTJ7bi7NnDmRzhmyHbJFlWVlZ4eXmxc+dO4zKDwcDOnTtNRrbiq1mzJhcuXMBgMBiXBQUFkT9/fqysrNI9ZiHEa+55uXc/nycm5d4DAiTRyuqOHdtOUNBBDIbVwLtAXHGkKhgM24iKcmDDhmlJ9hEeHsaaNd8AI4DxQK7na9yB2UB7/P3HJ3kdMMDy5ROBcii1Fij5fKkd0B+l5rB//wquXTuTZB9//LGIBw9uYDD8DjQi9uNdAzTEYPidBw9C+OOPn5PsQ4g3UVjYfTZs+B74DBgD5Hi+piCwAGjJkiXjyCYTv7h06TiHD6/FYJgPvA/YPl9TGqXWAyVZufKrzAvwDZJtkiyAjz/+mIULF7J48WL+/fdfBgwYwNOnT+nVK/ZXvu7duzN69Ghj+wEDBvDgwQM+/PBDgoKC2Lx5M5MmTWLQoJRN3xBCiBSRwhjZzr59K9FqywE+ZtY6YjD0IiAg6V+vjxzZTFTUU+BDM2s1wBDu37/C+fNHEu3jyZOHnDixA4NhIP8levF1QavNxf79K5OMZc+elSjVEihiZm1hlGrNnj1J9yHEm+jIkU3ExEQCH5hZG/s+vn07iEuXjmdsYC9p//5VaLUuxP549CIrDIYBHD26mfBwKeyW3rJN4QuAd999l7t37/L5559z69YtKlasyLZt24zFMK5du4ZW+1/eWLBgQbZv387QoUMpX7487u7ufPjhh3zyySeZdQhCiNeZFMbINp4+fYTBUIjYL1HmFCYiIhSDwWDyufJiH7G/Vbol2sd/7RKLI9SkbUJWaDT5k+wD4PHjh4D5WR1x/T9+fCLJPoR4Ez158giNxhalXBNpkfz7OCt5+vQRGo075n+0gdjjUTx79hg7O7kkJj1lqyQLYPDgwQwePNjsuoCAgATLqlevzuHDMvdUCJFBvL3B25uJ/v5sCrkYWxgjpAT+/lIYIyvJn78YWq0/BkMUYG76+AFcXDwTTbDi+gAD8CdgrkjGgeftEq8QmCNHXqys7ImK2k/sNL8X3cFgCCJfvr6J9gFQoEBx7t49QLzZ8Sa02gO4u6euUqEQbwI3t2IoFQ4cAyqZaRH7Ps4uhWPy5y+GwfAzcB/IbabFAaytnXByypPBkb15stV0QSGEyDakMEaW1rhxHwyGO8D3ZtYeQ6NZQbNmSVcUK1++PnnyFEGjGQu8WEwpDK32K0qXroubW/FE+7C2tqV+/W5otXOAqy+sVcA4dDodPj5JD4U2afI+BkMgsM7M2l8xGA7RpEn2qpAmREaoXLkJOXK4o9F8BkS/sPYRWu1kKlTwxdU1sdHmrKVevW5otQqYQOw5JL7LaLXzaNSoh5RyzwCSZAkhRHqRwhhZVsGCpWjXbjQwCugEbAcOA2PQan0oUqQczZubnzURR6fTMWTIAjSaPWi1NYClwBFgPlptVaysrtOv34xkY+nUaTy5cjmi1VYDvgYCgV/RaJoC8+jb9wccHXMl2UfVqi2oXr0dGs27wCBgD7AXGIxG045q1dpQrVqrZGMR4k2j01k8fx//jkZTG1hO7Pt4LlptFWxs7tC3r7kfY7ImZ2cX+vT5DpiJRtMC2ETsOWUyWu3b5MmTi3ffHZu5Qb4hss19sjJLWFgYzs7Ocp8sIcSri3dvrQDq4eaGTCHMREoptm9fyJo133DnzkUArK0dadSoJ127fpni6xXOnDnAkiVjOX16NwAajZYqVVrQo8ckChUqk6I+Hjy4yeLFo9m7dwV6fey9GgsVqkDnzp9To0abFPWh18ewevVkNm2azePHsbc7cXTMi5/fQNq1G42FRWLXaAghTp3aw5Iln/Pvv3uB2Pext3crevSYTIECb2VydKm3f/9qli+fyPXrJwGwsLChbt1OdO8+mZw582ZydNlbSu+TJUlWMiTJEkKkqcBACApi7Mn2BOWuTgjuuLlJYYzMZDAYCAkJIjo6kvz5i2FjY/9S/dy7F0xo6F1y5XJ76S8xT5484s6dK9jYOJA/vycaTWKFORIXHR1FSEgQAG5uJbC0lFuWCJFSd+9eJyzsHrlzu5MjR2LFMLIHpRQ3b14kIuIJefMWwd7eObNDei1IkpVGJMkSQqSLwEA2BTjEFsagBLhJYQwhhBAiq0tpkiXXZAkhRGbw9pbCGEIIIcRrKtuVcBdCiNfG83LvfoGBEOBvLPceEOJuXC2EEEKI7EeSLCGEyGze3vh5g5//vP8KYwTUIyhICmMIIYQQ2ZFMFxRCiKwi3r21fO6vMZlCKIQQQojsQ5IsIYTISp7fW2tiudUm99aSa7WEEEKI7EOSLCGEyIrijWpJYQwhhBAie5FrsoQQIquSwhhCCCFEtiRJlhBCZHVSGEMIIYTIVmS6oBBCZBdSGEMIIYTIFiTJEkKI7CSuMEbbE1IYQwghhMiiJMkSQojsyNtbCmMIIYQQWZRckyWEENmVFMYQQgghsiRJsoQQIruTwhhCCCFEliLTBYUQ4nUhhTGEEEKILEGSLCGEeJ1IYQwhhBAi08l0QSGEeB15e+NHIH5BsVMI/UO6EhDiLlMI08GjR3f47beZ7Nzpz+PHd8mduyCNG/eiadMB2Nk5pqiPiIhw5szpz8GDG4iKCkej0VGo0Fu89973VKzYIJ2PwNStW5fYuPEH9u5dQ0TEY9zd36Jp0740bNgLCwvLDI1FZF3h4Y/ZunUuO3Ys4v796zg6utCwYTdatPgAZ2eXzA5PiEynUUqpzA4iKwsLC8PZ2ZnQFStwsrPL7HCEECL1AgPZFOAQWxiDEoTgjo+PJFpp4datS3zyiQ+hoQ8xGLoAJYBjaDSrKFCgJFOm7MbRMVeSfYSHP6Fv32KEhd0BmgL1gVvAz0Ao/fvPpFmzAel9KACcPXuIzz9vQlSUNQZDd8ANjSYApX6jYkVfxo79FUtLqwyJRWRdYWH3GT26HsHBQSjVAagIBKHVLiVHjlxMmRJAvnxFMjlKIdJHeHgYHTs6ExoaipOTU6LtJMlKhiRZQojXhr//f4UxqIebm4xqvaoRI2px/vxtDIYAwD3emtNotXWpVasJw4cnfVHc2LGNOHFiN7AFaBxvzWOgGRpNIMuX38XOLvEP87QQHR1F795FePy4KAbDFiD+KNwfaDTN6dTpMzp2/Dxd4xBZ37ffdmH//h3PX/dl4q0JRqv1oXjx/Eydui+TohMifaU0yZJrsoQQ4k0hhTHS1MWLxzh37gAGw1RMEyyAMhgMn7F//yoePbqTaB9RURH8889e4D1MEyyITXIWoFQU//vfZ2kauzl//rmB0NAQDIZ5mCZYAA1Rqje//TYPvT4m3WMRWdfDh7fZv38VBsMYTBMsgAIYDN9w7tx+Ll8+kRnhCZFlSJIlhBBvEimMkWbOnz8CaIAWibRojcEQzeXLxxPt4/LlEygVBbRKpEUpoAhnzx54lVBTJCgoEJ3Ok4RfnOO0JizsJvfuBad7LCLrunz5OAZDDIm/Zv0ADUFBckIRbzZJsoQQ4k3k7W0c1eqKv8moliRbKaPTWQAKiEikRTgAWm3iNaYsLa1N2iYU279Wq3u5IFMh9nginu/TnPB47cSb6r/nP7HXbOxrSF4n4k0nSZYQQrypno9q+fk8MRnVCgiQRCslKlZsiEajBZYk0uJ/2Ng489Zb1RLtw8OjPBYW9sAvibTYA9ykVq0OrxRrSlSq5ItefwPYZXa9RvM/3N3LkDv3i1MjxZukRIlqWFs7Af9LpMUSNBotFSo0zMiwhMhyJMkSQog3nbc3fiNLG0e1fNgto1op4OJSiFq13kWr/QT4I94aBSxDo/mOFi0GYmNjn2gfWq2WBg26ApuBSUB0vLWngG5YWjrQuvWwdDgCU+XK+VCkiBdabW/gn3hrooGvUWoD7doNR6PRpHssIuuytXWgRYuBaDTTgOX8N/KpgN/RakdRq1ZHXFwKZl6QQmQBkmQJIYSIJYUxUm3QoPmUKuUFNEKrrQx0QqstCXShZs12dOnyRbJ9DBgwh1KlagGfEVtAoyNQCyiHTnefSZP+QKtN/49rjUbD2LEbyJfPHqiARlMH6IhW6wGMon37T6lfv0e6xyGyvi5dvqBmzbZAZ7TaUsS+7r2AxpQqVYXBg+dncoRCZD4p4Z4MKeEuhHgjvXBvLdzcpdx7IvR6PX//vZVdu5bw6NFdXF0L0qhRb8qUqZOqUZ/9+1exYsVE7t27iZWVJdWqtaJHjyk4OORIv+D/3959h0dVbX0c/85MSAOS0CERpQtIkeJgBCQISjMXFRWQKCIWLFiwYaGJCHZUEGzIyw1SryhBQWmhiUZpIi3SSwidhBBImXPePxIiwVSYkvL7PE+eezn7zM46s2OSlXXO2jlIS0thzZq5rF49h+TkM9SseS1dujxKnTrXuzUOKdpM02TLlpUsXjyFo0cPUKFCVTp2vJ+WLbtis7n+GUIRT9E+WU6iJEtESq2YGIiNJSquJZFEEEeI9tYSEZFSraBJllq/iIhIzuz2jOe1YmIgOjKjqhXXgOi4kKxhERER+TclWSIikje7nXA7hEdOJiquJTHYiY7uSGysqloiIiI5UeMLEREpGDXGEBERKZBCJVnnzp1j9erVbN269V9j58+fZ9q03PZMEBGREiFzb63RvTZl21tL7d5FRET+UeAkKzY2lkaNGnHzzTfTtGlTOnTowOHDh7PGExISGDBggEuCFBGRIsZuz6pqRRCZraqlZEtEREq7AidZL7/8Mk2aNOHo0aPs2LGD8uXL07ZtW/bv3+/K+EREpKjKrGqFhyVlq2pFRyvREhGR0q3AjS9++eUXlixZQuXKlalcuTJRUVE88cQTtG/fnuXLl1O2bO472ouISAmmxhgiIiLZFLiSde7cOby8/snJLBYLkyZNIjw8nA4dOhAbG+uSAEVEpJhQYwwRERGgEJWshg0b8scff9CoUaNsxydMmADAf/7zH+dGJiIixU/m3lqjY2KIit6VtbdWZGSIqloiIlJqFLiSdeeddzJjxowcxyZMmEDfvn0xTdNpgYmISDGmxhgiIlKKWUxlRnlKTEwkMDCQhJkzCfD393Q4IiLFT0wMUdHlMqpaNCCOEMLCVNUSEZHiJzk5kT59AklISCAgICDX8wp8u6CIiMhlUWMMEREpZQq1GbGIiMhlU2MMEREpJZRkiYiI+2TurTW616Zse2vpWS0RESlJlGSJiIj7qTGGiIiUYHomS0REPCOz3Xt4TAxER2a1e4+OC8kazs/s2WOJiZlPmTLe9Or1Mq1bdy90GLt3b+SHHyaSlpZCixa30bFjRKHncAbTNNmyZRUHD27Hz68crVp1o1y5Ch6JpSiJjp7O+vU/UaaMD926PU69ei0LPceJE3Fs3LiY9PRU6tVrTd26LVwQaf4y1nglBw/uwM+vfOYaB3kklqSkU6xbt5Bz55K46qqGXHddeywWi0dicYYTJw6xceMS0tNTqV//BurUud7TIUkpd1ndBf/73/8yefJk9uzZw9q1a7nmmmsYP348tWvXpmfPnq6I02PUXVBExE0iI/9pjEFHgoNzb4yxfHkk48cPxDRTLzpqwde3PJ98spFq1Wrn++kSE0/y0kuhxMX9Dfzzo9DHJ4ChQ2fSqlW3K7+mAtq+fS3jxw8kLm4bYAFMypTx4z//eZqIiDHYbDa3xVJUbNiwmLfeuoeUlISLjlqoXr0e7733CwEBlfOdIyUlmUmTnmL58mmYpiPreP36oTz//P8RHFzfBZHnbOvWNXz00cMcPrydf9bYnzvueJb77nvDbWvscDiIjHyN+fM/Ji3tXFYswcGNePbZKTRseKNb4nCW8+fP8umnT7BixfRsa9ygwU08//w0atSo68HopCQqaHfBQt8uOGnSJIYMGUL37t05ffo0DkfGF3RQUBDjx4+/7IBFRKSUK2BjjE2blvHhhwMwzauAeUAqcBoYz/nzqQwa1IjU1NRLZ8/GMAyeeKIxcXH7gPeBk0AaMJ+UlOqMGtWTnTv/cPol5mTPnj95/fVbiY8PApYD6cBh0tJe4H//e5cvv3zWLXEUJTt3rmfkyNtJSakCfE/G2pwCPiQ+/gBPPNEEwzDynMM0Td56626io2dhmu9nvj4N+I5du07y8ssdOHnysKsvBYBduzYwbNhtHDlSCVhBxhrHkZb2HHPmjGPKlOfdEgfAF188w7ffvkda2ovA4cxYlhMfH8Trr3dmz54/3RbLlTIMgzFj7mLlyv9hmh+S8X0gFZjHzp3HePnlDpw6Fe/ZIKXUKnSS9cknn/DFF1/w2muvZfurS+vWrdm8ebNTgxMRkVKmAI0xPvggAvAFVgN3AGWAQOBpYC4ORwqfffZknp9mwYJPSEw8AswAngMqkHEHfTiwCvBn4sRBrrjCf/nmm5Gkp4dgGEuAMDJ+NFcH3gDe44cfJhIfv8ctsRQVn376GKZ5YY3/Q8baBAHPALNITDzC/Pnj85zjzz+XsWHDQgxjRubrgjLn6YlhRHPmzLl853CWb74ZicNxDYaxGLiZjDWuAbwJjGPBgk84enSfy+M4fHgXP/74Kab5HjCKjK8zKxCGYSwmPT2EmTPfcHkczrJp0xI2bfoZw5gNDCbj+0AZ4A4MI5rExDNERX3s2SCl1Cp0krVnzx5atPj3vcw+Pj6cPXvWKUGJiEgpl0djjFOnjgMPkvFL6qW6A9eyatXMPKdfuHASUJuMJO1SVYGH2bXL9X/RP3s2gZiY+RjGU0BOt6Q/htVanhUrprs8lqJk585NwENAtRxGw4G6LFw4Oc85oqMjsVobZp5/qeoYRn+WLJl2xbHmJynpFH/8sQDDGAz45XDG41gs/qxcOcPlsaxY8Q1WawDwaA6jZTGMp/j11+9ITk50eSzOsHz5f7FamwA53dobjGHcz5Il/3V3WCLAZSRZtWvXZuPGjf86vmjRIho1auSMmERERLKqWuFhSdmqWhm3NzXM5UUWoDFpaXnfLnj27GmgUeb5ObkWSCM9Pf3yYi+gpKRTmc+R5HY9/lgsNUlIOOrSOIqSjNsA08hYg5xkrHFyckIu4xlOnz6KYVxLXmt85ozr39fExBOYpkHu11MOiyXELWuckHAUi6UmOSf0ANdimg6Skk65PBZnyFjjBnh6jUVyUujugkOGDOHJJ5/k/PnzmKZJTEwMM2bMYOzYsXz55ZeuiFFEREozu51wO4RHTiYqriWz8QLW53KyAazDxyenisE/AgKqcPr0BsAB5NRwYAMWizdeXq5twhsQUBmbzQeHYwNwaw5nnMYwdlO5cn+XxlGUWK1WLBYfTHNjLmc4gPX5Nr6oXPkqbLafM58dz3mNK1SoeWXBFkBQUFWs1jIYxkbglhzOOIlh7KNyZdfHUrlyTUxzN5BAxq11l9qAzeZToKYiRUHGGq/A4TDIuW6wgYoVXf++iuSk0JWshx9+mLfffpvXX3+d5ORk7rvvPiZNmsRHH31Enz59XBFjNhMnTqRWrVr4+vrSpk0bYgq4ocrMmTOxWCzccccdrg1QRERcI7OqVdu/DDAdiM3hpOnAfrp1eyzPqe6668JD/1NzGN0NTKVRozZXFm8B+PmVo127e7BaJwAncjjjfSyWNMLCPNNW3lMaN74R+D9gZw6j/wUOceedL+Q5R6dOA3A49maef6mdWK3T6dr1oSsNNV/+/gG0bXs3VuvHZDRYudS7WCwOOnTo5/JYwsIiMM0UMpq9XOoEVusEbr65N76+ZV0eizN07vwQDscu4JscRndgscykS5cB7g5LBChkkpWens60adPo3Lkzf//9N0lJScTHx3Pw4EEGDhzoqhizzJo1iyFDhjBixAjWr19P8+bN6dKlC0eP5l0K3rt3Ly+88ALt27d3eYwiIuJCdjvfjR1LRjXjJmACsB/YArwEPIiPTzkiIt7Kc5pbbnmAGjUakPFsygvAX5nzfAqEYrWaDB78leuu4yL9+o3C3/88VutNXEgg4A9gIPAmffoMo2LFnJ4/K7meeeZrbDYLGWs8kX/W+EVgINWq1eWWW/Ku7l17bRvCwh4AHs583ZbMeSZitbanatWa3H77YFdeRpZ+/d7Azy8Jq7UtGX8IOAT8TsazheO4776RBAVVdXkclSoF06fPMGA0GV9ff2TG8l+s1pvw90+hb9+RLo/DWRo1uombb74Pi2UA8DKwFdgHfILVejM1atSie/e8m+CIuEqh98ny9/dn27ZtXHPNNa6KKVdt2rThhhtuYMKECUDGfds1a9Zk8ODBDB06NMfXOBwObr75Zh566CFWrVrF6dOn+e677wr8ObVPlohI0bNm61ZufX0Y59LT+WePKxt+fjUYPHgb7dqVy3eO1NRURoy4lS1bfiHjOS8ACxUqhDBy5A/Urt3MRdH/28GDO5g06Sk2b16SdSwgoAZ9+rxKjx5PFutNYi/X3r1/MXJkN06ePMQ/a+xF48ahvPHGEry9vfOdw+FwMHPmKObP/4Rz504DYLHYuPHGO3n88YluSWwuOHhwe+YaL806FhgYTN++r9Ot2yC3rbFpmvzww0RmznyLxMR/Wtg3a3Yrjz8+gZCQBm6Jw1kcjnS++WYEUVETOX8+4zk9q9WL0NC7GDRoAoGBVTwcoZQ0Bd0nq9BJVlhYGM8++6zbb7tLTU3F39+fuXPnZvvc/fv35/Tp03z//fc5vm7EiBH8+eefzJs3jwcffDDfJCslJYWUlJSsfycmJlKzZk0lWSIiRdDiDRuYNmcOR4/5Uf+qZznm14E4QggLy3kT45wkJh5n6dL/IyXlLK1bd6devdYujTkvhw/v4tChHfj6lqNhw1C8vMp4LJaiYufO9fzxxwK8vf3o3HnAZT0vlJKSzPbta0lPT6VWreZUqhTsgkgLJi5uJ3Fxsfj5lefaa2/02Bqnp6exfftazp9PIiTk2mK/ae/582fZseNX0tNTqV37+lJX/RX3KWiSVegnep944gmef/55Dh48SKtWrShbNvt9u82aueYvf8ePH8fhcFCtWvZ2rtWqVWP79u05vmb16tV89dVXOXZDzM3YsWMZNWrUlYQqIiJucmuLFtx6YVuRyEii4g4Qg53o6I7ExkKDBvknWwEBlbnzTvdtBpuXGjXqFvtfdp2tXr2W1KvX8orm8PHxp3nzTk6K6MoEB9cjOLiep8PAy6sMTZrc7OkwnMbXt2yRWWMRuIwk60Jzi6effjrrmMViwTRNLBZLZhcfzztz5gz3338/X3zxBZUrF/yvXq+88gpDhgzJ+veFSpaIiBRxERGEx8QQHjuZYZtPEEso0XEhxMZCROnqGyEiIh5W6CRrzx7P7DpfuXJlbDYbR44cyXb8yJEjVK9e/V/n79q1i7179xIe/s8mhBl7b4CXlxc7duygbt1//7XQx8cHHx8fJ0cvIiJuYbeD3c7omBiioncRg53YuAZERoYUqKolIiLiDIVOsjzR8ALA29ubVq1asXTp0qxnsgzDYOnSpTz11FP/Or9hw4Zs3rw527HXX3+dM2fO8NFHH6k6JSJSktnthJNR1YqKa0lkXERWVUvJloiIuFqhk6xp06blOf7AAw9cdjD5GTJkCP3796d169bY7XbGjx/P2bNnGTBgQNbnDgkJYezYsfj6+tKkSZNsrw8KCgL413ERESmBMqta4TExEB2ZVdWKjgvJGhYREXGFQidZzzzzTLZ/p6WlkZycjLe3N/7+/i5Nsnr37s2xY8cYPnw48fHxXH/99SxatCirGcb+/fuxWgu9v7KIiJRkdjvhdgiPzKhqFbYxhoiISGEVuoV7Tv7++28ef/xxXnzxRbp06eKMuIoM7ZMlIlKCxMRAbCzDNt9DbKVQ4gghOFiNMUREpGBctk9Wbv744w8iIiJybadeXCnJEhEpgWJiiIoul3ELIQ0gWI0xREQkfwVNspx2b52XlxdxcXHOmk5ERMR17HbCw5IYHTyZCCIh7hDR0RAZmVHsEhERuRKFfiZr/vz52f5tmiaHDx9mwoQJtG3b1mmBiYiIuJQaY4iIiIsUOsm60D79AovFQpUqVbjlllt4//33nRWXiIiIe6gxhoiIOFmhk6wLG/qKiIiUKBERhMdk7K01bPMJYgnN2ltLjTFERKQwCv1M1htvvEFycvK/jp87d4433njDKUGJiIh4hN0OERGM7rWJCCIJYznEHdKzWiIiUiiF7i5os9k4fPgwVatWzXb8xIkTVK1aFYfD4dQAPU3dBUVESqnMdu9RcS2JJCKr3btuIRQRKb0K2l2w0LcLmqaJxWL51/FNmzZRsWLFwk4nIiJSNKkxhoiIXKYCJ1kVKlTAYrFgsVho0KBBtkTL4XCQlJTEoEGDXBKkiIiIx6gxhoiIFFKBk6zx48djmiYPPfQQo0aNIjAwMGvM29ubWrVqERoa6pIgRUTkym07cICJP/zA4o1bMU2TW5o34snu3Wlaq5anQysecmmMsXXrWapV+y8rlk4l4fQRKletRafbHqZdu3vx8irj6ahFRMQDCv1M1ooVK7jpppsoU6Z0/ODQM1kiUhLMWLGC+z8cj4VKpBu9ACtetm9xGEf4avBTDOjc2dMhFi8xMURFl2N5an2mbn6ZhHO76A5ci8l6q5XlhkHT69ozfOQifHz0s0NEpKQo6DNZhe4u2KFDh6wE6/z58yQmJmb7EBGRomXHwYPc/+F4HEY/0o0DwKfABNId+zDNgQz8ZAKb9uzxdJjFi91OeFgS2/c9gfe53fyJSRQm7wHLDIMVwK5tvzBlyvOejlRERDyg0ElWcnIyTz31FFWrVqVs2bJUqFAh24eIiBQtny5ciIUKwOeA90UjZYBPsVmq88mCHzwTXDG2IziYhUeO8B4G110ydjPwiuFg2ZKvSUo67YHoRETEkwqdZL344ossW7aMSZMm4ePjw5dffsmoUaMIDg5m2rRprohRRESuwNJNW0k37gB8chj1It24m6Wbtro5quJv1daM9+zuXMbvBVLSUti58w+3xSQiIkVDoZOsqKgoPv30U3r16oWXlxft27fn9ddf56233mL69OmuiFFERFwsh505xEmWLvV0BCIi4m6FTrJOnjxJnTp1AAgICODkyZMAtGvXjpUrVzo3OhERuWKdmjfGZp0HpOQwmo6XbS6dmzd2d1jFXvvGGe/ZnFzGZwHeljJUSAkmMjJjb2MRESkdCp1k1alThz2ZD0g3bNiQ2bNnAxkVrqCgIKcGJyIiV+6Jbt2A08AjZE+00oDHcRjxPNWjhydCK9auveoqurdowYtWK39dMrYCGGexMLDO1TzkFQVxh4iORsmWiEgpUegka8CAAWzatAmAoUOHMnHiRHx9fXnuued48cUXnR6giIhcmWuvuorIIc9hs36Dl7Um8DjwJF7Wq7FapjDl6cE0q13b02EWS18/9xxVQ0JoDoRbLDwPdLRaCQPaNG7Me+PGER6WRASRhLE8K9lSoiUiUrIVep+sS+3bt49169ZRr149mjVr5qy4igztkyUiJcX2gweZ+MMP/LxhC6Zp0ql5I57s0YMm11zj6dCKteSUFCKXL+e/S5dy9PRprq5alYduu42727aljJfXPydGRhIV15IY7ETTkeBgaNAA7HbPxS4iIoVT0H2yrijJOn/+PL6+vpf78mJBSZaIiDhNTAzExjJs8z3EVgoljhCCgyEiwtOBiYhIQbhsM2KHw8Ho0aMJCQmhXLly7N69G4Bhw4bx1VdfXX7EIiIiJZ3dDhERjO61KdsthHpWS0SkZCl0kjVmzBimTp3KO++8g7f3P5taNmnShC+//NKpwYmIiJRIdjvhYUmMDp5MBJFqjCEiUsIUOsmaNm0an3/+Of369cNms2Udb968Odu3b3dqcCIiIiVWZlVLjTFEREoer/xPye7QoUPUq1fvX8cNwyAtLc0pQYmIiJQadjvhdgiPnPxPY4zojsTGqjGGiEhxVehKVuPGjVm1atW/js+dO5cWLVo4JSgREZFSJ7OqNTp4MmEn5ma7hVBERIqXQleyhg8fTv/+/Tl06BCGYfDtt9+yY8cOpk2bxoIFC1wRo4iISOlgt4PdzuiYGKKidxGDndi4BkRGhqiqJSJSjBS6ktWzZ0+ioqJYsmQJZcuWZfjw4Wzbto2oqChuvfVWV8QoIiJSulzaGGPzn2qMISJSjBS4krV7925q166NxWKhffv2LF682JVxiYiIlG6ZVa3wmBiIXkgMJ4iNa0B0XEjWsIiIFE0FrmTVr1+fY8eOZf27d+/eHDlyxCVBiYiISCa7nfCXGmdVtcJYrqqWiEgRV+AkyzTNbP/+8ccfOXv2rNMDEhERkRyoMYaISLFR6GeyRERExEMy99Ya3WtTtr21VNUSESlaCpxkWSwWLBbLv46JiIiIm13aGOOiqpaSLRERzytw4wvTNHnwwQfx8fEB4Pz58wwaNIiyZctmO+/bb791boQiIiLyb9kaY0RmtXtXYwwREc8rcJLVv3//bP+OiIhwejAiIiJSSHY74XYIj5xMVFxLYrATHd2R2Fi0t5aIiIdYzEs7Wkg2iYmJBAYGkjBzJgH+/p4OR0REJHcxMRAby7DN9xBbKZQ4QggOBv1dVETEOZKTE+nTJ5CEhAQCAgJyPa/AlSwRESn+TiUlERMbi2ma3FC/PpXy+AHhapv37mXfsWNULl8ee4MGWK3qxbQzLo4dhw5Rzs+Pmxo2pIxXIX9MZ95CODomhqjoXVm3EEZGhqiqVUTExf3NoUOx+PmVp2HDULy8yng6JBFxASVZIiKlQHJKCi9MmcLUxYs5l54OgI/NRkTHjox/5BHK+fm5LZZftm3jmcmT+WPPnqxjdatUYeyAAdzTrp3b4ihKdhw8yBOffsqyv/7KOlY9IIBX+/ThqR49Ct9oym4nnBjCYzNuIYzc3I3ouGa6hdCDDhzYxqefPsmWLcuzjgUE1KBv39fo3v0JNRMTKWH0Z0MRkRIu3eEgfNQopv30E6+lp7MT2AW84XAwe9kyug4fTkpamltiWbt9O51eew3b3r3MB+KAlUCTY8e49513+O/y5fnMUPLsOnyYdi++yKGtW4kEDgF/AD0SE3n68895Y+bMy5s4s917eFgSEZUWZrV7j45WB0J3i4v7mxdfbMe2bfHAN2Ss8u8kJnbls8+eYs6ctzwcoYg4m57JyoeeyRKR4m7WqlX0efddlgEdLxn7FQgFvn7mGR7s1MnlsbR94QXSdu5klWHgc9FxE7gf+KlsWQ5Om4ZPmdJzC9X977/PilWr2GAYVLpkbBgwzmpl/5Qp1KhY8co+UWTkP40x6EhwsKpa7vLuu/exZs0vGMYGoMIlo69gtb7P118foEKFap4IT0QKoaDPZKmSJSJSwn3988+0t1r/lWAB3Ah0sViY8tNPLo9jx8GD/BIby8uXJFgAFjISiuNnz7Lg999dHktRkXTuHLNXr+apHBIsgBcAbyAyOvrKP1lmVWt08GTCTszNtreWuE5yciJr1szFMJ7m3wkWwEuYpo0VK6a7OzQRcSElWSIiJdzBY8e43jByHW9hmhw8dsz1cZw4AcD1uYxfC/hZLBw8ftzlsRQVxxMTSXU4aJHLeCBQ22LhgLPek8xbCEf32kQEkVm3EGoTY9c5ffoohpFG7l/5FbBaa3HixEE3RiUirqYkS0SkhKtaoQI78niofrvFQtWgINfHERgIwI5cxvcB50wz67zSoGL58tgsFrbnMp4MHHDFe2K3Z1W1IojMVtVSsuVcAQGVsFis5P6Vn4RpHiAwsKo7wxIRF1OSJSJSwt3fqROLTZMNOYxtBaJMkwduvdXlcTS55hqaX30171ksOHIYfxcI8PHhP23auDyWoiLA35+ebdowwWrlbA7jk4EzhkG/Dh2c/8kvboxxUVVLjTGcq1y5CrRufTtW6ydkpM2X+hTTPEeHDve5OzQRcSElWSIiJVzfm2+mRa1a3Ga1MoWMX/POAdOATlYrDUNCeKBjTk9sOZfFYuHthx5iBdDTYuEPMhpe7AQGAROBURERlPX1dXksRcmIvn055OVFZ4uFZYBBRtfFYcCLwJM9elC7enXXBWC3E/5S46yqVhjLVdVysn79RmGz7cNqvRWI5p9Vfg0Yyu23P02VKld7MkQRcTJ1F8yHuguKSElwIjGRhz/+mO9jYrj4m373Fi34+rnn3HK74AXzf/uNwZMmsf/kyaxjFfz8GBkRweDbby+V+wX9un07A8ePZ2tcXNYx/zJleKZnT0b364fNZnNPIDExEBvLsM33EFsplDhCCA6GiAj3fPqSbNu2X/joo4eJi9uWdczbuyx33PEs9933hjbjFikmCtpdUElWPpRkiUhJsuvwYVZu2YJpmrRr3JgGISEeicPhcLBk0yb2HT1K5YAAurVqhZ/PpT0HSxfTNFmzbRvbDhygnK8v3Vq1IqhcOc8EExNDVHQ5YrATSwMIDlG7dycwTZMtW1Zx6NAO/PzK06pVN8qWLT3PIIqUBEqynERJloiIlEqZVa2ouJZEnuhGXKVm2ltLREq9giZZXm6MSURERIoLuz3jea2YGIheSAwniI1rQHRcSNawiIjkTEmWiIiI5M5uJ9wO4ZGTiYprSQx2oqM7EhurqpaISG70lKWIiIjkL7Pd++jgyYSdmJttby0REclOSZaIiIgUTObeWqN7bcq2t5bavYuIZKckS0RERArHbs+qakUQCZv/1N5aIiIXKXZJ1sSJE6lVqxa+vr60adOGmDy+m3/xxRe0b9+eChUqUKFCBTp37pzn+SIiIlJAmVWt8LAkIiotzKpqRUcr0RIRKVZJ1qxZsxgyZAgjRoxg/fr1NG/enC5dunD06NEcz4+OjqZv374sX76ctWvXUrNmTW677TYOHTrk5shFRERKKLud8JcaZ1W1wliuqpaIlHrFap+sNm3acMMNNzBhwgQADMOgZs2aDB48mKFDh+b7eofDQYUKFZgwYQIPPPBAgT6n9skSEREpoMy9tYZtvofYSqHEEUJwMEREeDowERHnKOg+WcWmkpWamsq6devo3Llz1jGr1Urnzp1Zu3ZtgeZITk4mLS2NihUr5npOSkoKiYmJ2T5ERESkANQYQ0QEKEZJ1vHjx3E4HFSrVi3b8WrVqhEfH1+gOV5++WWCg4OzJWqXGjt2LIGBgVkfNWvWvKK4RURESh01xhCRUq7YJFlXaty4ccycOZN58+bh6+ub63mvvPIKCQkJWR8HDhxwY5QiIiIlhBpjiEgp5uXpAAqqcuXK2Gw2jhw5ku34kSNHqF69ep6vfe+99xg3bhxLliyhWbNmeZ7r4+ODj4/PFccrIiIiZFS17BAeOZmouJbEYCc6uiOxsdCgQUYuJiJS0hSbSpa3tzetWrVi6dKlWccMw2Dp0qWEhobm+rp33nmH0aNHs2jRIlq3bu2OUEVERORSmVWt0cGTCTsxN6uqFRnp6cBERJyv2FSyAIYMGUL//v1p3bo1drud8ePHc/bsWQYMGADAAw88QEhICGPHjgXg7bffZvjw4XzzzTfUqlUr69mtcuXKUa5cOY9dh4iISKlkt4PdzuiYGKKidxGDndi4BkRGhqiqJSIlSrFKsnr37s2xY8cYPnw48fHxXH/99SxatCirGcb+/fuxWv8pzk2aNInU1FTuvvvubPOMGDGCkSNHujN0ERERucBuJ5wYwmMzbiGM3NyN6LhmuoVQREqMYrVPlidonyyR0isxOZnI6GgWxMSQkprK9XXr8ljXrjQICfF0aJdlyuLFPPXZZ6SkpgLgXaYMHwwcyOPduxd4jpS0NOasXs2c1as5k5xMg5o1ebRLF1rWrVvgOUzTZNWWLUxZsoR98fFUDgqiX1gYt99wA142W6Gv60ocPH6c5778khWbN2M4HNQODmbcAw/Q6frrCzyHw+Hghz/+4L/LozlyOpFaVSszoHMnwpo2xWKxFHiejbt38/lPP7Fl/yEC/H25+6ZQerdvj6+392VcWTESE0NUdLmMqhYNiCOEsDAlWiJSNBV0nywlWflQkiVSOm3eu5euw4ZxJCGBThYLQabJUquVk4bBJ489xpM9eng6xEJp/dxzbNi1Cy+gKxkP5C4CUoGGNWuyZeLEfOc4dOIEt732Glvj4mhvsRBimqy22TjocPDinXfy9oMP5ptUpDscDBg/nsgVK6hvtdLaMNhptfK7YdD22mv5YeRIAsuWdcIV52/26tVEvPsuDtOkMxAI/AwkAH1vvplvXngh3znOJCfT/Y0xrN66GZu1BQ6jIV7WdaQbsdzbrj2RQ56jjFfeN42YpsnrkZG8NWcOXtYapBsdsFriMMyV1K1+FcvGjOLqKlWccclFW2TkP40x6EhwsKpaIlL0lLjNiEVE3OVcSgrdR4ygypkz7AJ+Mk1mAQcMg8HAU599xtJNmzwcZcGNmzOHDbt2cStwGPgemJf5/28Hth84wAtTpuQ5h2ma3PXmm5yJj2cTsNI0mQHscTh4D3h33jy+Wrw431hGz5rFjBUrmAbsMAy+AWIMgxXAlr//5qHx46/gSgvueGIi97/7Lo1Nk73AT8BsMt6Tp4AZK1cy/vvv853n4Qmfsnb7XmAJDmM98A3pxnZgBnPWrGX49On5zvHf5ct5a84cYCzpxj5gBoa5AviLfUdt3P7GW5SKv4eqMYaIlCBKskRELjFr9WoOnjrFHMPgmouO+wHjgZZWKx/Mm+eZ4C7D8G++wQ+YA1S86HgQMJOMCs74+fPznGP11q3E7NrFV4bBxRtheAHPA3cD782dm2cycC4lhQnz5/M0cD9wcc3rZuB9w2Deb7+x6/DhAl/b5XphyhTSTJNvgYu3nPcDPgKaAO/MnZvnHPuOHmXOmtU4jHeATheNWIA+mOYQJvzwE2fPn891DtM0GTf3OyyWcGAoUOai0etIN6ayed8ulv35Z6Gur9jK3FtrdK9NRBCZtbeWNjEWkeJGSZaIyCV+Wr+eUKuV+jmMWYD7DYOfNmzAMAx3h3Z5HA7uBsrnMOQH9AFs+VzLTxs2UN1mo3Mu4w8AO+Lj2Xf0aK5zrNu1i5PJydyfy3hfMn4oLd64Mc9YnGHJpk3cBNTJYcwKPAjEJyTkucZLN23CNA0gIpczHiDpfBK/7diR6xzxp06x7eBeTLN/Lmd0wMt2FYvWr891jhLJbs+qakUQCZv/zKpqKdkSkeKgWHUXFBFxh3SHA788KjL+gMM0i80tXBYykqncFORp03SHA1+yV58u5nfReXnNcfG5l/IGbBZLnnM4i2EYeV63H2Bmnndx19qLZcRpAXxzmSXjM6Tnkaj9c625vSsWLPi65T0pcjLbvYfHxED0QmI4QWxcA6LjQrKGRUSKKlWyREQuYW/QgDXA8VzG51kstK5dG5ubO+FdrjTgOyA9hzEDmJvL2MXs9euz1+Egt5vWvgOqlS/PNVWr5jpH02uuwcdmI7cnnRYBqaaJvUGDfKK5cs1q1WIFcDKX8W+BQB8fvPJoWpERpwlE5XLGPLysXlxfu3aucwRXrEi1oMpkvIM52UqaYydt3PCeFFl2O+EvNc6qaoWxXFUtESnylGSJiFxiQOfO2Ly8eIyM7nsXmwYsMk2e+s9/PBDZ5bm3bVviyXji5+LamwmMBPYBnVu0yHOOcLudmhUqMMhqJeGSsWXAlxYLj/XokWcnvUoBAfQLC2Oc1cqlbUMOA89brdjr1uWG+jndqOlc7w8cSDowiIwk9GJfA0uB+265Jc85rq9Th9Brr8PL+gJw8JLRv7BZx3Bvu7ZUDQrKdQ6bzcbg27titUwlo/3Gxc5gtT5GlcBK3BUamu81lXhqjCEixYhauOdDLdxFSqf5v/3GPePGUR2IcDgIBH6wWllpGAzs3JkvBg8u1B5InhbYpw+Jyck0BO4j4y9sM4G/AH9vb87m0+QBICY2li7DhuGVksL9hkEwsNJiYYFpcmvz5swfPhyfMmXynON0UhKdXn2Vzfv20cs0aQ3sBKZbrZQvX54Vb79NveDgK73cAnl56lTe/fZbgoH+ZDQA+R74BWgUEsJfEyfmeqvgBXvi42n78mscTUjGYfQDGgDrsVrm0qjmVawcO5qK5XN6Gu4fqWlp3DFmHAvX/4HV0hXDvAU4jM06Dd8y5/j5jeHc1KiRMy655Lhkby2CQ9TuXUTcQvtkOYmSLJHS6889e/goKoqoX38lJS2NFnXq8ER4OPe0bVusEqwLOrzyCqu3bMm6hcEAWtevz2/vv1/gOfbEx/PxggXMWbmSxHPnaBAczKPdujGgc+d894O64Oz583z+0098tWgR+44do3L58kR06sRTPXpQrUKFwl/YFZi9ejWvTZvGvvh4TCDA358Hb72VdwcMyDfBuuBYQgITfviBKUuiOZGYQEilKjzWtROPdelC+QL+3EhLT2fasmVM/PFndhw6SFkfP/rcHMoz4eHUrVHjCq6wBIuJgdhYouJaEnmiG3GVmmlvLRFxOSVZTqIkS0REpAi7pKoVRwhhYUq0RMQ1CppkqbugiIiIFF92O+F2CI+cTFRcS2KwEx3dkdhYVbVExHPU+EJERESKPzXGEJEiREmWiIiIlAx2O0REMLrXpqx278QdUrt3EXE7JVkiIiJSstjtWVWtCCJh85/aW0tE3ErPZImIiEjJY7dnJFsxMRC9kBhOEBvXgOi4kKxhERFXUZIlIiIiJZcaY4iIB+h2QRERESn51BhDRNxISZaIiIiUDmqMISJuoiRLREREShc1xhARF1OSJSIiIqVPZlUrPCyJWU3HZFW1oqOVaInIlVPjCxERESm9MrsQjlZjDBFxIlWyRERERNQYQ0ScSEmWiIiICKgxhog4jZIsERERkYupMYaIXCE9kyUiIiJyqcxntcJjYiB6ITGcIDauAdFxIVnDIiK5UZIlIk5lmia74+NJSE6mVtWqVCxf3tMhlRj7jhzhl+3bqVi+PLdefz1Wq2duRjBNk12HD3Pm3DmuuYI13rJ/Pxt376ZO9eqENmx4WXOcPX+ev+Pi8Pby4tqQEGw222XNIyWbw+Fgx6FDpKanUz84mLK+vgV/sd1OuB3C1RhDRApBSZaIOE1UTAwjIyNZv3cvAGWsVu5u25ZxDz7I1VWqeDa4YuzPPXu466232HPkCEbmsbJeXjzSvTsfPvywW2P57tdfGTV9Ohv37QMy1viedu14+8EHuapy5QLNseD333n044+JT0jAzDwW5OvLiH79eLZnzwLNkXTuHK9HRvL1zz+TmJICQK1KlXjh7rt5ont3LBZLoa9NSh7TNJm0cCHj5n7HgePxAPj7+PPwbZ14s18/yvv7F3yyiAjCY2IIj53MsM0niCWU6LgQYmMhIsJFFyAixZbFNE0z/9NKr8TERAIDA0mYOZOAwnwzFill/m/pUh786CM6WSw8ZZpcBawC3rdaISCAte+/T00lWoW2Zf9+Wj/9NGUNg5eAjsAR4FNgIXBP27bMfvllt8QyZfFiBn7yCbdaLDxpmoQAK8lYY1tgIGs/+ICQSpXynOP7337j7jFjqAm8BNwA7AQ+AH4HRvTty4i+ffOc41xKCre8+ip/7drF04ZBOHAWmApEAkN69uT9gQOv8GqlJHjp6695d948oB/wIFAeiMJm/YjrawezctwY/H18Cj9xTAxR0eWIwU4sDSA4RFUtkVIiOTmRPn0CSUhIICAgINfzlGTlQ0mWSP7OJCcT0r8/d6Wk8DVwcQ3hMNDaaqXTzTczbcgQD0VYfDUbPJgD+/axAah10XETeJqMZOuviRNpVLOmS+NIOHuWkP796ZOayhdkX+NDZKxxt44dmfLMM3nOU6VvXyqcPUsMEHTR8XTgP8BSi4WEOXPw9fbOdY4PvvuOoV9/zRrT5IZLxj4EhgAbP/qI5rVrF/j6pOT5c88emj/zDPAu8MIlo+uwWm7i7Qf78cKdd17eJ4iJgdhYouJaEnmiG3GVmhEcrFsIRUq6giZZ6i4oIlds1urVnE1J4U2y//INUAN4xjCYvWoVicnJHoiu+EpMTmbrvn08SfYECzLe5xGADXhl2jSXxzJj5UpS0tJ4g3+vcQgw2DCYsWIFZ/JY45V//cXxs2d5newJFmTcu/4mkGqajJs7N89Yvli4kF45JFgATwHBVitf/PRT3hckJd6XixfjZa0G5JT4t8Iw72HSj4sv/xNktnsPD0tiVtMxWe3eo6PVgVBElGSJiBPsPHyYa2w2rsplvC2Q4nBw6MQJd4ZV7G07cAAHGe9fTioD9YHd8fEuj2VXfDy1rVaCcxlvC5xPT+fwqVO5zvFbbGzWuTlpCXgDmzOf98o1liNHaJfLWBmgjWGw6/DhPOeQkm/n4XjSjRvJ+KrISVv2HnXC18mFvbUy272HsVzt3kVESZaIXLmgsmU5ZprkVsO48CtzoG65LZQaFSsCsD+X8TQybsd0x63MQWXLcsQ0OZ/LeEHWuEaFCkDu13MESAUq5dOtMMjfn7zSsH1WK0HlyuU5h5R8FcqVxWbdm8cZ+yjv58Svk8yq1ujgyYSdmJtV1YqMdN6nEJHiQ0mWiFyxe9q25axh8HUOYw5ggtVK+4YNCc6nKYJkd3WVKlQNCOATMpKPS80ATgHPFbAj35W4t107Eg2D/8thLB2YaLXS8brrqJaZSOWkT/v2+FmtjAdyehj4EzJ+KL1y9915xtK7QwemWq2czmFsNbDeMOjTvn2ec0jJ17tdOxzGJjLas1wqAS/r10SE5VZXvUwXqlq9NmVVtYg7pKqWSCmkJEtErljdGjUY0KkTQywWPgKSMo/HAr2B30yTEf36eS7AYmzM/fezFbgD2Jp5LBn4DHgUqFmxIr1uusnlcdQPDqZ/x448bbHwCRnd/AB2APcC60yT4ffdl+ccXl5ePNy9O/OBh4EDmcdPAW8AbwGhjRpRu3r1POcZ0rMnaT4+3Ga18isZCVsaMAe402rFXrcuPW7I6YktKU16tG7NDfUbYrPeCcwm46vEBH7DZr0NX+9khtxxh2s+ud2eVdWKIBI2/6lbCEVKGXUXzIe6C4oUTGpaGk9NnsxXS5bgDVSwWjnscFCpbFk+GzzYLYlASfXGzJm8+c03pAFVgDPAeaBO1ar8/sEHVMyju5EzpaSl8eSkSUxZsgRfi4WgzDWuXLYsXzzzDHfceGOB5nnggw/4Jjoag4znyk6RUfG0N2jA6nHj8PLKfwvH9bt2ce/Ysew6epSqNhvnTJMzhsFtzZrxzUsvUclN74kUbSfPnKHPux+weOM6bNZyWCx+pDuOcXWVGvxv6Au0rl/f9UFc0u49jhDCwtSBUKS4Ugt3J1GSJVI4+48d43+//EJicjL1g4O5KzQ0z3bcUjBJyckM/+YbNuzeTTk/P57r2ZNbmjXzSCx7jxxh3q+/kpicTIPgYO68jDWOO3GC16dPZ/fhw1QJDGREnz40qVWrUHM4HA5+3riR3//+G28vL7q1aqW27ZKjP/fs4cd160hNT6d1vXp0adECm83m3iAiI4mKa0kMdqLpqHbvIsWUkiwnUZIlIiIiTpG5t9awzfcQWymUOEIIDoaICE8HJiIFpX2yRERERIoSNcYQKTWUZImIiIi4kxpjiJR4SrJERERE3C2zqhUelsSspmOyqlrR0Uq0REqC/Fs4iYiIiIhr2O1gtzM6cvI/jTGiOxIbq8YYIsWZKlkiIiIinpZZ1RodPJmwE3OzqlqRkZ4OTEQuh5IsERERkaJAjTFESgwlWSIiIiJFiRpjiBR7SrJEREREiho1xhAp1tT4QkRERKSoUmMMkWJJlSwRERGRok6NMUSKFSVZIiIiIsWBGmOIFBtKskRERESKEzXGECnylGSJiIiIFDdqjCFSpKnxhYiIiEhxpcYYIkWSKlkiIiIixZ0aY4gUKapkiXjYxt27+e/y5cSfPs1VlSrxYKdONKpZ09NheVTk8uUMnTaNU0lJ+Hl781jXrrxx333YbLYCz7H/2DGe/+or1u/ahc1m4/bWrXkzIgJ/X98Cz3E+NZVRM2bw7dq1pDkcNL3mGj4YOJC6NWoU6nqmR0fz/nffcTIpiWpBQYzo04furVsXao7DJ0/y9ZIlbD1wgHJ+fvQKDaVT8+ZYrQX/W9m5lBRmr17N8s2bMU2Tm6+7jr4dOuDv41PgOUzTJHrzZuasWUNicjLXhoQwoHNnrqpcuVDXIyIucKGqFRNDVPQuYrATG9eAyMgQVbVE3Mximqbp6SAKY+LEibz77rvEx8fTvHlzPvnkE+x5fNeYM2cOw4YNY+/evdSvX5+3336b7t27F/jzJSYmEhgYSMLMmQT4+zvjEkQASEtP56GPPiJyxQpq2Gw0ME22AscMgye6deOTxx4r1C/QJYHD4eCagQM5dPIkAUAzYDcQB/h7eRH7+eeEFOCX+VEzZjB6xgwAWgNJwBbA12rlu+HD6dKyZb5zrNm2jdtefZVkh4OGQBDwB2AAz/znP3zw8MP5zpGUnEyTwYPZd+wYVYH6wFbgFNDsmmtY9+GHeHnl/7euyQsX8vRnn1EGaAUcsViIdTi4sV49okaOpHJAQL5zrNu5k/BRozickEBrqxUr8LthULlcOb4bNoybGjXKd45TSUncMXo0K7dto67NRohpsh44Z5q8+9BDPNezZ75ziIibxMRAbCxRcS2JPNGNuErNCA7WLYQiVyo5OZE+fQJJSEggII+fv8XqN7hZs2YxZMgQRowYwfr162nevDldunTh6NGjOZ7/yy+/0LdvXwYOHMiGDRu44447uOOOO/jrr7/cHLnIv7309dfMWrmSKcB+h4Now+CgYfAxMGnhQt6cPdvTIbpdqyFDOHTyJGOAeGAVsB+YBTjS02n8xBP5zjFv7VremDGDbsAB4FfgL2ATUNMw6PnGGxxPTMxzjuTz57n11Vep7HAQA2wD1gKHgHuA8fPn89XixfnG0vbllzl07BhTM1+7GjgMjAc279tH9zfeyHeOH37/nccnTeJRwyDOMFhpGGx3OFgK7N69m7vefJP8/lZ29PRpugwbRs0zZ/ibjOTqN8NgF9AwOZnuI0Zw8PjxfGPp8/bb/LVjB4uAvx0OVmTG9IxpMuSrr5i7Zk2+c4iIm6gxhohHFask64MPPuCRRx5hwIABNG7cmMmTJ+Pv78+UKVNyPP+jjz6ia9euvPjiizRq1IjRo0fTsmVLJkyY4ObIRbI7eeYMkxcuZLhpMoB/7tv1BgYDzwLj583jXEqKp0J0u6Rz59iyZw/9gVcBv8zjNuBe4D3gzPnzzP/ttzzneXnqVKoDc4GLb+prBvwApBoGL02dmuccr0dGcs7h4DvghouOVwUigXrAqG++yXOOHYcO8de+fbwB9OefNfYBngGeAqI3buR0UlKe84ybPZubLRY+AQIzj1mAW4CphsGq7dv5Zdu2POf44uefSU5OZoFhUO+i47WB+YaBkZrK5EWL8pxj3c6d/LxpE18YBl0yYwAoT8badLFYeGvmzHwTPhFxswt7a2W2ew9judq9i7hBsUmyUlNTWbduHZ07d846ZrVa6dy5M2vXrs3xNWvXrs12PkCXLl1yPR8gJSWFxMTEbB8izvbzhg2cT08ntxvOHgZOnTvHqq1b3RmWR7377bekA4/kMt6fjG9Yo2fNynOevYcP8xAZycyl6gPtgYV//JHnHPN+/ZXrgRY5jHmRsT4HT5zAMIxc5/ho/nyMzHNz8jCQBnlWxE4kJrJ6xw4eNs2spOZiXYCrbDa+zyfx/P6XX7jDNKmSw1gQcK9h8H0+Vaj5MTFUttnI6YZAC/CwabJh3z4OnTiR5zwi4iFqjCHiVsUmyTp+/DgOh4Nq1aplO16tWjXi4+NzfE18fHyhzgcYO3YsgYGBWR81S3kDAnGNc6mpAFTMZbzShfNKUSXr9NmzwD/XfqlyQBkymlHkxSD39xWgCpCenp7nHKnp6bnGARkxmvnMc/b8eQAq5DEHwJlz53KdI7+vE2vm/OfyeU/OpaTk+Z5UIv+vtXMpKQSSUVnMbQ4KEIuIeNCFqlavTVlVLeIOqaol4gLFJslyl1deeYWEhISsjwMHDng6JCmBmteuDcBPuYxfuHGraa1a7ginSOjVti0W/rn2S60GzgOhDRvmOU85Hx8W5jJ2DlgCXFO9ep5zXBsSwi9AbnXsH8loxOHt7Z3rHGFNmwLwcy7jF67z1hY51csyVK9QgarlyuX6dbIf2OJw0Cyfr5Nmdevys9VKTnU3E1hotdKsbt2856hVi10OB3/nMr4ICPLzo6a6DIoUfXZ7VlUrgkjY/KduIRRxsmKTZFWuXBmbzcaRI0eyHT9y5AjVc/mFqXr16oU6H8DHx4eAgIBsHyLO1rJuXex16/Kq1crJS8YOA6OsVro0b06dfJKBkuTm667D39ubt8joKHixM8AQMipZEx59NM957u3QgcXAt5ccN4HhQAIw9v7785zjnQEDOA+8CP9KTH4CvgO659Oeq/8tt1C+TBleIqOb4MUOASOBagEBtM2jq5+XzcYj3bvzldXK75eMpQHPAeV8fel78815xvJ49+78bRh8mMPYZGCzYTAon66rd7dtS+WyZXnWYuHSmtcmYJLVyoDbbsM3j8RTRIoQNcYQcalik2R5e3vTqlUrli5dmnXMMAyWLl1KaGhojq8JDQ3Ndj7A4sWLcz1fxJ2mPPcch/38aGK1MgKYCbwCNLNaSQ0IYNKTT3o4QvebP2wYp4HmwPNkvCdjgIbABuDle+/Ns3oEGUnY1ZUqcTdwNxmNKj4DQslo0HBHmzZ5Vo8AWterx/0dO/I5GS3gPwWmA32BHkCVgAD+79ln85zDarXy9fPPsyMz/lGZ1zMUaAIcs1j432uv5TkHwCt3303zunW52WLhEWAG8CFwvdXKfKuVaUOGUM7PL8852jVuzMu9evECcJvFwhRgKtDdYuEJ4Onbb+fW66/Pcw5fb28iX3yRpVYrza1W3s+M5XHgJquV+ldfzci+ffO9HhEpYtQYQ8QlitU+WbNmzaJ///589tln2O12xo8fz+zZs9m+fTvVqlXjgQceICQkhLFjxwIZLdw7dOjAuHHj6NGjBzNnzuStt95i/fr1NGnSpECfU/tkiSvtiY/n7W+/JXLZMs6mphLo60v/W2/l5bvuIrhSXk8FlVy/7tjBnW+9xfFTp0gn4y9BZX19eX/gQB7p0qVAc6SmpvLA+PFErV1LssMBQCV/fwb37MmIQiQC7377Le/9738cPXMGAD+rlS433MD0558v8KbG0Zs38/ikSfx98CAOMhpnNK1ThylPP831deoUaI7klBQ+/P57PvvhBw6cOoXNYqFnmza81KsXba69tkBzmKbJ7NWr+XDePH7buROAVrVr88wddxARFobFklNrjX9bv2sXb8+dy7dr15JuGAQHBvJIt248f8cdlNf3SJHiLXNvrWGb7yG2UihxhBAcDBERng5MpOgo6D5ZxSrJApgwYULWZsTXX389H3/8MW3atAEgLCyMWrVqMfWi9sxz5szh9ddfz9qM+J133tFmxFLkOBwOzqakUM7Xt9RtQJyb1NRU9h49Ss1KlfDLp1KTG8MwOJ6YiK+39xX995uUnExyaiqVAwIue31SU1M5fuYMVQMDC7QBcU5M0yTp3Dl8vb0pc5lzwD9NLvx8curBWDDpDgfnUlIo5+dX4ARNRIqJmBiiossRg51YGkBwiDYxFslUYpMsd1OSJSIiIqVOZlUrKq4lkSe6EVepGcHBKNmSUq+gSZb+ZC4iIiIi2akxhsgVufz7TURERESkZLPbwW5ndORkouJaEoOd6OiOxMaqqiWSF1WyRERERCRvmVWt0cGTCTsxN6uqFRnp6cBEiiYlWSIiIiKSvwvt3nttymr3TtwhtXsXyYGSLBEREREpOLs9q6oVQSRs/lN7a4lcQkmWiIiIiBSOGmOI5EmNL0RERETk8qgxhkiOVMkSERERkSujxhgi2SjJEhEREZErp8YYIlmUZImIiIiI86gxhoiSLBERERFxMjXGkFJOjS9ERERExDXUGENKKVWyRERERMS11BhDShklWSIiIiLiemqMIaWIkiwRcbqz589z5NQp0h2Oy54jNS2NI6dOcS4lxYmRXZ7E5GSOJSRgGIZH40h3ODh6+jRJ5855NA5nKUprLCJupMYYUgromSwRcZpft2/nrdmz+WHdOgzTpKK/PwNuu43X7r2XCuXKFWiO+FOneHPWLKYtXcqZlBS8rFbuvPFGXu/dm2a1a7v4CrL74fffeXvOHFZt3w7AVRUqMKhHD1648058ypRxWxxnkpMZO3cuXy5axLGkJAC6NG/OK71706FJE7fF4SxxJ07w5uzZ/HfpUpJSU/GyWul100283rs3Ta65xtPhiYg7ZD6rFR4TQ3jsGIbFDSI2rgHRcSFZwyLFmcU0TdPTQRRliYmJBAYGkjBzJgH+/p4OR6TIWvD779w1ZgwNgccMg6uAVcCXVish1auz8p13qBQQkOccB48fp92LL3L21CkGGQY3ALuASVYrh2w2fho9mnaNG7v+YoAJCxYw+PPPaW+1MsAwCAJ+BKZZLNzcpAkLRo50S6KVmJxMx6FDid2/n4cMg1uAeOALq5WNpsn0F16gd/v2Lo/DWfYfO0a7F17gfEICgwyD1sBOMtb4sJcXi998k9CGDT0dpoi4W2TkP40x6EhwsBpjSNGUnJxInz6BJCQkEJDH7zVKsvKhJEskf+dTU7mqf3/aJicz1zS5OPXYAdxktdK7Sxc+ffzxPOe5e+xYfvvtN9ZmJmkXJANdLRYOVa7M3198gdXq2jud9x87Rp2HH+Yp0+RDwHLRWDRwq8XCuw89xLM9e7o0DoCXp07l0+++Y7Vh0Pyi4w7gfiDK25tD06YVm+9Pd775Juv/+IO1hkHwRcfPAl2sVo5WqcL2zz5z+RqLSBEUEwOxsQzbfA+xlUKJI4TgYIiI8HRgIv8oaJKln2IicsXmrlnDibNnef+SBAvgWmCwYfDfpUs5e/58rnPEnzrFd7/+ytBLEiwAf+Ad02T3sWMs3rjRucHn4Muff6asxcKbZE+wAMKAu02TyT/84PI40tLT+eqnn3j0kgQLwAa8B5xLTWV6dLTLY3GGQydOMP/333n1kgQLoCwwzjD4+8gRlm/e7InwRMTT1BhDShAlWSJyxbbs308tm416uYx3BpJSUzlw/Hiuc8QeOoTDNOmUy3gboKzVytYDB64w2vxt2b+fG02T3J4i6wzsiI/HcQWNPQriyOnTnDh7Ntf3JBi4zmZzy3viDDsOHsTIY43bAr4WS7G5HhFxETXGkBJASZaIXLGyvr6cMk1Scxk/mvm//j4+ec5x8bmXSgTOG0aeczhLWV9fjlourWH94yjg4+Xl8lvaLlxrbu+JARwn7/e1KMlvjU8DKaaJv7e3u0ISkaIqs6oVHpbErKZjsqpa0dFKtKR4UJIlIlfsztBQEgyD2TmMmcBnFgutatemZuXKuc5xfe3aXFOpEp/lMj4FwGIh/IYbrjzgfNx5441sNAxy+jmeCkyxWrkrNBRLHomYM1QsX56wxo35wmolp+bxC4A4h4O7QkNdGoeztKpXj5oVKuS6xl8CXlYrPdywxiJSTFy4hTCzqhXGclW1pFhQkiUiV+y6q6/mTrudJ6xW5pLRlAHgJPA08LNp8lqfPnkmJTabjVd79+Yb4HUyKlcAacDXwCsWCw917kxwpUquu5BM4XY7zWrWpJfVygoyEkWAA8C9Fgv7LRZeuOsul8cB8Erv3qw1DB7mnwqQQUaCNcBqpVOTJtgbNHBLLFfKy2bjld69mQaMAM5kHk8FvgJet1h4+LbbqF6hgsdiFJEiKrOqNTp4MmEn5mZVtSIjPR2YSM7UXTAf6i4oUjBJ587R5+23+WH9eoJtNoKBvwwDw2rlw0ce4Ynu3fOdwzRNxsyezchvvsHPYqGhxcJ+4KjDwX0338yUZ55x2/5UcSdOED5qFOv37qWOzUYgsMnhoJyvL9NffJHb3Vht+b+lSxk0cSKGw0FTq5WjwAGHg47XXcf/XnutwHuQFQWmafLGzJm8MXMm/plrvA845nAQ0aEDXz39NN5u3INMRIqhmBiiossRg51YGkBwiNq9i9uohbuTKMkSKZzf//6bWatWkZicTP3gYPrfcgtVg4IKNcfB48f5v2XL2Hv0KJXKl6dfhw40rVXLJfHmxTAMlm7aRNTvv5OSlkaLOnXo16ED5T3wveBEYiL/Xb6crQcOUM7Pj16hodzUqJHLb1l0lQPHjvF/y5ax79gxKpcvT7+wMG1ELCIFl9nuPSquJZEnuhFXqZn21hK3UJLlJEqyRERERIqoC3trxQ0ilgbEEUJYmBItcZ2CJlleboxJRERERMR57Haw2xkdOZmouJbEYCc6uiOxsapqiWep8YWIiIiIFG9qjCFFjJIsERERESn+LrR777Upq907cYfU7l08QkmWiIiIiJQcdntWVSuCSNj8p/bWErdTkiUiIiIiJUtmVSs8LIlZTcdkVbWio5VoiXuo8YWIiIiIlExqjCEeokqWiIiIiJRsaowhbqYkS0RERERKPjXGEDdSkiUiIiIipYcaY4gbKMkSERERkdJFjTHExdT4QkRERERKJzXGEBdRJUtERERESjc1xhAnU5IlIiIiIqLGGOJESrJERERERC5QYwxxAiVZIiIiIiIXU2MMuUJqfFEKnEtJYe4vv/DXvn34+/hwx4030rx2bU+HJUWMYRgs+/NPlm/ejGmatG3UiK4tW2Kz2Qo1z46DB5n7yy8knD1Lg5AQerdrR3l/fxdFLSIi4kJqjCGXyWKapunpIIqyxMREAgMDSZg5k4Bi+Ivigt9/p//773MyOZk6NhunTJNThkF4q1ZEvvhisbwmcb7d8fHcMXo0mw8coIbNhg046HBQv1o15g0bxnVXX53vHOdTU3n444+ZvnIlAVYrVSwW9jgclPXxYdKTT9IvLMzl1yEiIuIyMTEQG8uwzfcQWymUOEIIDoaICE8HJu6UnJxInz6BJCQkEBAQkOt5ul2wBPttxw7uGjOGdufO8Tewy+HgiGHwDbBiwwbuHTsW5diSmJxM51df5fyhQ0QDhxwO9jscrAX8jh2j86uvcvT06XzneeSTT/jfqlV8DhwxDHY6HOwFeqakcP8HH7Bo3TpXXoaIiIhrqTGGFIKSrBLsrdmzuRaYa5rUyzxWBugLTDUMftq0id927PBcgFIkTFu2jP3Hj/OTYdABsGR+3Aj8bBgkJiXx2aJFec4Re+gQkStW8LFp8gjgm3m8JvB/QHuLhdEzZrjwKkRERNxEjTGkAJRklVDJKSks+OMPHjMMyuQw3hO4ymZj9po17g5NipjZK1fSA8jpKb1qwD2GwewVK/KcY+6aNZS3Wrk/hzEr8IRp8ktsLIdOnLjygEVERDxNjTEkH0qySqiz589jmCYhuYxbgWAybhWT0i3x7Nlcv04AriL/r5PEc+eobLFkVbBymoMCzCMiIlKsXLiFMLOqFcZyVbUEUJJVYlUsV45KZcuyKpfxk8CfhkGD4GB3hiVFUIOaNVlltZLb03krrFYaXHVVLqMZrg0JYZ/Dwb7c5gB8vby4qlKlKwlVRESkaMqsao0OnkzYiblZVa3ISE8HJp6iJKuEstlsDOzShS+tVrZeMmYCwwHDauXBTp08EJ0UJY927cpfhsH/5TD2PbDaMHise/c857i3XTvK+/oyFHBcMrYf+Nhq5b6wMLVyFxGRkkuNMeQiSrJKsFfuvptaISG0tVp5nYxqwhzgNouFicCHjzxC1aAgj8YontepeXMGdu7MQ0B/YCHwM/AocLfFQq8bb+TOG2/Mc46yvr58Nngwsy0WbrZamQ6sBN4EbrBa8a9YkTH35/TEloiISAmjxhiC9snKV3HfJ+tUUhLDp0/n/5Ys4UxKCgCt69Th1d69uTM01MPRSVFhGAYfR0Xx0XffsTezOUVIUBBPhofz4l134VXADYkXb9jA6BkzWLV9OwB+ZcrQt0MH3oyIoEbFii6LX0REpEi6sLdW3CBiaUAcIYSFaRPj4qyg+2QpycpHcU+yLkhOSeHg8eP4+/hwVeXKng5HiiiHw8Heo0cxTZNa1aoVOLm61OGTJ0lMTiakUiXK+fk5OUoREZFiJjKSqLiWxGAnmo4EB0ODBkq2iiMlWU5SUpIsEREREfGgC1WtzfcQWymUOEIIDoaICE8HJoVR0CSr2DyTdfLkSfr160dAQABBQUEMHDiQpKSkPM8fPHgw1157LX5+flx99dU8/fTTJCQkuDFqERERERHUGKOUKTZJVr9+/diyZQuLFy9mwYIFrFy5kkcffTTX8+Pi4oiLi+O9997jr7/+YurUqSxatIiBAwe6MWoRERERkYuoMUapUCxuF9y2bRuNGzfm999/p3Xr1gAsWrSI7t27c/DgQYILuNfTnDlziIiI4OzZs3h5eRXoNbpdUERERERcQo0xip0Sdbvg2rVrCQoKykqwADp37ozVauW3334r8DwX3oy8EqyUlBQSExOzfYiIiIiION2FWwgzq1phLFdVq4QoFklWfHw8VatWzXbMy8uLihUrEh8fX6A5jh8/zujRo/O8xRBg7NixBAYGZn3UrFnzsuMWEREREclXRETWLYRhJ+ZC3KGsZEuKJ48mWUOHDsViseT5sT1zv50rkZiYSI8ePWjcuDEjR47M89xXXnmFhISErI8DBw5c8ecXEREREcmTGmOUKAV7MMlFnn/+eR588ME8z6lTpw7Vq1fn6NGj2Y6np6dz8uRJqlevnufrz5w5Q9euXSlfvjzz5s2jTJkyeZ7v4+ODj49PgeIXEREREXEqu51wYgiPnUxUXEsiN3cjOq4ZsbHaW6s48WiSVaVKFapUqZLveaGhoZw+fZp169bRqlUrAJYtW4ZhGLRp0ybX1yUmJtKlSxd8fHyYP38+vr6+TotdRERERMQl7PaMZCsmhvDYMRmNMeIaEB0XkjUsRVuxeCarUaNGdO3alUceeYSYmBjWrFnDU089RZ8+fbI6Cx46dIiGDRsSk1lPTUxM5LbbbuPs2bN89dVXJCYmEh8fT3x8PA6Hw5OXIyIiIiKSv5waY/zvhG4hLAaKRZIFMH36dBo2bEinTp3o3r077dq14/PPP88aT0tLY8eOHSQnJwOwfv16fvvtNzZv3ky9evWoUaNG1oeesxIRERGRYuPixhiZz2qpMUbRViz2yfIk7ZMlIiIiIkVGTAxR0eWIwU4sDSA4RM9quVGJ2idLRERERETIeFYrs6oVQSRs/lN7axVBSrJERERERIqTzGe1wsOSmNV0TLZbCJVoFQ0e7S4oIiIiIiKXKbML4ejIjHbvMdiJ/l8zYmMr6RZCD1MlS0RERESkOFNjjCJHlSwpVuJOnOChjz9mxaZNnDcMygCNa9dm4qBBtG3UyK2xRC5fzuuRkRw8dgwDKOftTa/27fns8cfx9vZ2Wxxp6el8+fPPTP7hB7YcPEhZHx/uuukmnr/zTppcc43b4nCWxORkJixYwFeLFrH3xAkqlS3LfR078vwdd1CzAPvqAZimycyVK5kQFcXvO3fiZbPRtWVLnr/zTto2buziKxAREfGAC1WtmBiiondlNMaIa0BkpBpjeIK6C+ZD3QWLjj3x8TR78klS09LoC7QB9gBfAmeAGS+9xN3t2rkllhenTOH9777jGmAgUAH4AVgE1KxUib8/+8wtiVZqWho9R49m8aZN9AQ6mSZHgalWK0esVuYPG8atLVq4PA5nOXnmDB2HDiX24EH6miZ2YBfwtdWK1d+fZWPH5ps4mqbJoIkT+fznn+lssfAf0+QsEGm1stUw+HLwYB669VZ3XI6IiIhnxMRAbCxRcS2JPNGNuErNCA5GyZYTFLS7oJKsfCjJKjoaDhrE4bg4VgNNLzp+EugI7LTZOPO//2G1uvYu2B2HDtH48ce5G4gEylw09i1wN9C3QwemP/+8S+MAGDd3LsP/+19+NE06X3T8PHCXxcKvfn4cmDqVsr6+Lo/FGQaMH8/86GhWGgbXXXT8BHCL1YoZHMymiROxWCy5zjF79Wp6v/MOXwMPXnTcAB4HvrJY2Pn559SqVs0VlyAiIlJ0ZCZbw+IGEUsD4gghLEyJ1pVQC3cpUfYdOcLfcXG8TPYEC6Ai8BGQ7HAwfv58l8cy5KuvsAETyZ5gAdwFhAPfr1nj8jgMw+DTqCjuvyTBAvAFJpomp5OTmblypctjcYaTZ84wY8UKXrokwQKoBLxvGGw+eJDVW7fmOc/EqCjCrNZsCRZkfLP7AChnsfD5Tz85LW4REZEiK7ML4YV272EsJ/p/J9Tu3Q2UZEmx8NPGjRhkJDA56QD4A0v//NPlsWzeu5dQoHIu4z2Bs+npJCUnuzSOYwkJHDh1Ktf3pDbQzGbjj507XRqHs2zZv58UhyPX6+kE+Fks+V7Pul27CDeMHMfKArcYBn/8/fcVxSoiIlKsqDGG2ynJkmLBP/P5pjO5jKcAaYBvmUtrS85XxmYjMY/xCzF6e7m2r4x35rXm9p6YmWPebnhPnOHC+5Xb9ZwjY43ze1+9bbZc5wA4Y7HgU0zeExEREae5UNXqtSmrqkXcIVW1XERJlhQLd4WG4m2xMDWX8Vlk/AI+qGtXl8fS44Yb2AhszmHMAL4GqgYEuLzxRYVy5bixXj2mWizk9GDlamC3w0GP1q1dGoeztKhTh2rly+e6xjMAh2nStWXLPOfpbrfzX5uN9BzG9gPLTJMeN9xwZcGKiIgUV3Z7VlUrgkjY/GdWVUvJlvMoyZJiwd/Xl1tbteILYAJk/QJtAkuAwUBIUJBbOum9FRGBr9XKXcD2i44nAU8Cm4CXevVyeRwAL91zD8tMk1fIqPRcsAGIsFq5/ppr6Ny8uVtiuVLeZcrw3F138RnwKdnX+CdgiNVKr9BQ6taokec8z/XsyV7D4EHg9EXH9wB3Wq1UDQigX4cOTo9fRESk2MisaoWHJTGr6ZhstxAq0XIOdRfMh7oLFh3p6em0fO45Nu/bRzUyWrjvBLYCFfz82DhhAlcXcB+lK7V4wwbCR40ixTAIJaP5xnIyEp2IsDCmDRniljgA3ps3j5e+/pogq5V2hsERq5UYw6BxcDCLRo8u8N5SRYFhGDz12WdMWriQq2w2Wjkc7LRa2WIYdLzuOr4bNqxA/x3OWrWKBz74AC/DIMw0OWuxsNI0qR4YyMI33qB57dpuuBoREZFiIjKSqLiWxGAn+kQzgptWUrv3XKiFu5MoySp6ZqxYwdi5c4k/dYryfn4M6NyZob164eXiZ6AudTIxkaHTpvHjunWkp6dTPziYdwYMILRhQ7fGAbAzLo4vfv6ZLfv3U9bXl7tCQ7nzxhuLzfNYl1q/axdfLV7M3iNHqJRZebr1+usL1Z7/8MmTfPnzz/z+99+U8fKia8uW3NehQ7FpZy8iIuJWF9q9b76H2EqhxBFCcDBERHg6sKJFSZaTKMkSERERkVIjJoao6HLEYCeWBhAcoqrWRbRPloiIiIiIFI4aYziFkiwREREREfmHGmNcMfc+xCIiIiIiIsWD3Q52O6MjJ//TGON/zYiNVWOM/KiSJSIiIiIiucusao0OnpytqhUZ6enAii4lWSIiIiIikrfMWwhH99pEBJFZyZae1cqZkiwRERERESkYNcYoECVZIiIiIiJScGqMkS81vhARERERkcJTY4xcqZIlIiIiIiKXT40x/kVJloiIiIiIXBk1xshGtwuKiIiIiIhz2O2EE0N4bMYthJGbuxEd14zYWE8H5hxpaQU7T0mWiIiIiIg4T+azWuExMYTHjmFY3CAgxNNROUUKSQU6T0mWiIiIiIg430WNMUqKRNJ4twDnKckSERERERHXiYjwdATOk5wM8+ble5oaX4iIiIiIiDiRkiwREREREREnUpIlIiIiIiLiREqyREREREREnEhJloiIiIiIiBMpyRIREREREXEiJVkiIiIiIiJOpCRLRERERETEiZRkiYiIiIiIOJGSLBERERERESdSkiUiIiIiIuJEXp4OoKgzTROAxORkD0ciIiIiIiKedCEnuJAj5MZi5ndGKXfw4EFq1qzp6TBERERERKSIOHDgAFdddVWu40qy8mEYBnFxcZQvXx6LxZLnuYmJidSsWZMDBw4QEBDgpgglP1qXoknrUjRpXYomrUvRpHUpmrQuRVNJWRfTNDlz5gzBwcFYrbk/eaXbBfNhtVrzzFJzEhAQUKy/eEoqrUvRpHUpmrQuRZPWpWjSuhRNWpeiqSSsS2BgYL7nqPGFiIiIiIiIEynJEhERERERcSIlWU7k4+PDiBEj8PHx8XQochGtS9GkdSmatC5Fk9alaNK6FE1al6KptK2LGl+IiIiIiIg4kSpZIiIiIiIiTqQkS0RERERExImUZImIiIiIiDiRkiwREREREREnUpJ1hU6ePEm/fv0ICAggKCiIgQMHkpSUVKDXmqZJt27dsFgsfPfdd64NtJQp7LqcPHmSwYMHc+211+Ln58fVV1/N008/TUJCghujLnkmTpxIrVq18PX1pU2bNsTExOR5/pw5c2jYsCG+vr40bdqUH3/80U2Rli6FWZcvvviC9u3bU6FCBSpUqEDnzp3zXUe5PIX97+WCmTNnYrFYuOOOO1wbYClV2HU5ffo0Tz75JDVq1MDHx4cGDRroe5kLFHZdxo8fn/UzvmbNmjz33HOcP3/eTdGWfCtXriQ8PJzg4OAC/14bHR1Ny5Yt8fHxoV69ekydOtXlcbqVKVeka9euZvPmzc1ff/3VXLVqlVmvXj2zb9++BXrtBx98YHbr1s0EzHnz5rk20FKmsOuyefNm86677jLnz59v7ty501y6dKlZv359s1evXm6MumSZOXOm6e3tbU6ZMsXcsmWL+cgjj5hBQUHmkSNHcjx/zZo1ps1mM9955x1z69at5uuvv26WKVPG3Lx5s5sjL9kKuy733XefOXHiRHPDhg3mtm3bzAcffNAMDAw0Dx486ObIS7bCrssFe/bsMUNCQsz27dubPXv2dE+wpUhh1yUlJcVs3bq12b17d3P16tXmnj17zOjoaHPjxo1ujrxkK+y6TJ8+3fTx8TGnT59u7tmzx/zpp5/MGjVqmM8995ybIy+5fvzxR/O1114zv/322wL9Xrt7927T39/fHDJkiLl161bzk08+MW02m7lo0SL3BOwGSrKuwNatW03A/P3337OOLVy40LRYLOahQ4fyfO2GDRvMkJAQ8/Dhw0qynOxK1uVis2fPNr29vc20tDRXhFni2e1288knn8z6t8PhMIODg82xY8fmeP69995r9ujRI9uxNm3amI899phL4yxtCrsul0pPTzfLly9v/t///Z+rQiyVLmdd0tPTzZtuusn88ssvzf79+yvJcoHCrsukSZPMOnXqmKmpqe4KsVQq7Lo8+eST5i233JLt2JAhQ8y2bdu6NM7SqiC/17700kvmddddl+1Y7969zS5durgwMvfS7YJXYO3atQQFBdG6deusY507d8ZqtfLbb7/l+rrk5GTuu+8+Jk6cSPXq1d0RaqlyuetyqYSEBAICAvDy8nJFmCVaamoq69ato3PnzlnHrFYrnTt3Zu3atTm+Zu3atdnOB+jSpUuu50vhXc66XCo5OZm0tDQqVqzoqjBLnctdlzfeeIOqVasycOBAd4RZ6lzOusyfP5/Q0FCefPJJqlWrRpMmTXjrrbdwOBzuCrvEu5x1uemmm1i3bl3WLYW7d+/mxx9/pHv37m6JWf6tNPzM12+PVyA+Pp6qVatmO+bl5UXFihWJj4/P9XXPPfccN910Ez179nR1iKXS5a7LxY4fP87o0aN59NFHXRFiiXf8+HEcDgfVqlXLdrxatWps3749x9fEx8fneH5B10zydznrcqmXX36Z4ODgf/1wlMt3OeuyevVqvvrqKzZu3OiGCEuny1mX3bt3s2zZMvr168ePP/7Izp07eeKJJ0hLS2PEiBHuCLvEu5x1ue+++zh+/Djt2rXDNE3S09MZNGgQr776qjtClhzk9jM/MTGRc+fO4efn56HInEeVrBwMHToUi8WS50dBfyG51Pz581m2bBnjx493btClgCvX5WKJiYn06NGDxo0bM3LkyCsPXKSEGDduHDNnzmTevHn4+vp6OpxS68yZM9x///188cUXVK5c2dPhyEUMw6Bq1ap8/vnntGrVit69e/Paa68xefJkT4dWqkVHR/PWW2/x6aefsn79er799lt++OEHRo8e7enQpARTJSsHzz//PA8++GCe59SpU4fq1atz9OjRbMfT09M5efJkrrcBLlu2jF27dhEUFJTteK9evWjfvj3R0dFXEHnJ5sp1ueDMmTN07dqV8uXLM2/ePMqUKXOlYZdKlStXxmazceTIkWzHjxw5kusaVK9evVDnS+Fdzrpc8N577zFu3DiWLFlCs2bNXBlmqVPYddm1axd79+4lPDw865hhGEBG1X7Hjh3UrVvXtUGXApfz30uNGjUoU6YMNpst61ijRo2Ij48nNTUVb29vl8ZcGlzOugwbNoz777+fhx9+GICmTZty9uxZHn30UV577TWsVtUc3C23n/kBAQEloooFqmTlqEqVKjRs2DDPD29vb0JDQzl9+jTr1q3Leu2yZcswDIM2bdrkOPfQoUP5888/2bhxY9YHwIcffsjXX3/tjssrtly5LpBRwbrtttvw9vZm/vz5+kv9FfD29qZVq1YsXbo065hhGCxdupTQ0NAcXxMaGprtfIDFixfner4U3uWsC8A777zD6NGjWbRoUbZnHcU5CrsuDRs2ZPPmzdl+jvznP/+hY8eObNy4kZo1a7oz/BLrcv57adu2LTt37sxKegFiY2OpUaOGEiwnuZx1SU5O/lcidSERNk3TdcFKrkrFz3xPd94o7rp27Wq2aNHC/O2338zVq1eb9evXz9Yq/ODBg+a1115r/vbbb7nOgboLOl1h1yUhIcFs06aN2bRpU3Pnzp3m4cOHsz7S09M9dRnF2syZM00fHx9z6tSp5tatW81HH33UDAoKMuPj403TNM3777/fHDp0aNb5a9asMb28vMz33nvP3LZtmzlixAi1cHeBwq7LuHHjTG9vb3Pu3LnZ/rs4c+aMpy6hRCrsulxK3QVdo7Drsn//frN8+fLmU089Ze7YscNcsGCBWbVqVfPNN9/01CWUSIVdlxEjRpjly5c3Z8yYYe7evdv8+eefzbp165r33nuvpy6hxDlz5oy5YcMGc8OGDSZgfvDBB+aGDRvMffv2maZpmkOHDjXvv//+rPMvtHB/8cUXzW3btpkTJ05UC3fJ7sSJE2bfvn3NcuXKmQEBAeaAAQOy/fKxZ88eEzCXL1+e6xxKspyvsOuyfPlyE8jxY8+ePZ65iBLgk08+Ma+++mrT29vbtNvt5q+//po11qFDB7N///7Zzp89e7bZoEED09vb27zuuuvMH374wc0Rlw6FWZdrrrkmx/8uRowY4f7AS7jC/vdyMSVZrlPYdfnll1/MNm3amD4+PmadOnXMMWPG6I91LlCYdUlLSzNHjhxp1q1b1/T19TVr1qxpPvHEE+apU6fcH3gJldvvURfWoX///maHDh3+9Zrrr7/e9Pb2NuvUqWN+/fXXbo/blSymqTqpiIiIiIiIs+iZLBERERERESdSkiUiIiIiIuJESrJEREREREScSEmWiIiIiIiIEynJEhERERERcSIlWSIiIiIiIk6kJEtERERERMSJlGSJiIiIiIg4kZIsEREpFh588EEsFsu/Pnbu3OmU+adOnUpQUJBT5rpcK1euJDw8nODgYCwWC999951H4xERkcujJEtERIqNrl27cvjw4WwftWvX9nRY/5KWlnZZrzt79izNmzdn4sSJTo5IRETcSUmWiIgUGz4+PlSvXj3bh81mA+D777+nZcuW+Pr6UqdOHUaNGkV6enrWaz/44AOaNm1K2bJlqVmzJk888QRJSUkAREdHM2DAABISErIqZCNHjgTIsaIUFBTE1KlTAdi7dy8Wi4VZs2bRoUMHfH19mT59OgBffvkljRo1wtfXl4YNG/Lpp5/meX3dunXjzTff5M4773TCuyUiIp7i5ekARERErtSqVat44IEH+Pjjj2nfvj27du3i0UcfBWDEiBEAWK1WPv74Y2rXrs3u3bt54okneOmll/j000+56aabGD9+PMOHD2fHjh0AlCtXrlAxDB06lPfff58WLVpkJVrDhw9nwoQJtGjRgg0bNvDII49QtmxZ+vfv79w3QEREihQlWSIiUmwsWLAgW/LTrVs35syZw6hRoxg6dGhW8lKnTh1Gjx7NSy+9lJVkPfvss1mvq1WrFm+++SaDBg3i008/xdvbm8DAQCwWC9WrV7+s2J599lnuuuuurH+PGDGC999/P+tY7dq12bp1K5999pmSLBGREk5JloiIFBsdO3Zk0qRJWf8uW7YsAJs2bWLNmjWMGTMma8zhcHD+/HmSk5Px9/dnyZIljB07lu3bt5OYmEh6enq28SvVunXrrP9/9uxZdu3axcCBA3nkkUeyjqenpxMYGHjFn0tERIo2JVkiIlJslC1blnr16v3reFJSEqNGjcpWSbrA19eXvXv3cvvtt/P4448zZswYKlasyOrVqxk4cCCpqal5JlkWiwXTNLMdy6mxxYWE70I8AF988QVt2rTJdt6FZ8hERKTkUpIlIiLFXsuWLdmxY0eOCRjAunXrMAyD999/H6s1o+fT7Nmzs53j7e2Nw+H412urVKnC4cOHs/79999/k5ycnGc81apVIzg4mN27d9OvX7/CXo6IiBRzSrJERKTYGz58OLfffjtXX301d999N1arlU2bNvHXX3/x5ptvUq9ePdLS0vjkk08IDw9nzZo1TJ48OdsctWrVIikpiaVLl9K8eXP8/f3x9/fnlltuYcKECYSGhuJwOHj55ZcpU6ZMvjGNGjWKp59+msDAQLp27UpKSgp//PEHp06dYsiQITm+JikpKdu+X3v27GHjxo1UrFiRq6+++sreJBERcRu1cBcRkWKvS5cuLFiwgJ9//pkbbriBG2+8kQ8//JBrrrkGgObNm/PBBx/w9ttv06RJE6ZPn87YsWOzzXHTTTcxaNAgevfuTZUqVXjnnXcAeP/996lZsybt27fnvvvu44UXXijQM1wPP/wwX375JV9//TVNmzalQ4cOTJ06Nc99vf744w9atGhBixYtABgyZAgtWrRg+PDhl/vWiIiIB1jMS280FxERERERkcumSpaIiIiIiIgTKckSERERERFxIiVZIiIiIiIiTqQkS0RERERExImUZImIiIiIiDiRkiwREREREREnUpIlIiIiIiLiREqyREREREREnEhJloiIiIiIiBMpyRIREREREXEiJVkiIiIiIiJOpCRLRERERETEif4fnrFO0e7Y9P4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADvZElEQVR4nOzdd3xN5x/A8c+9N3uaQWKE2KsIUXuLTWvUqtHaVKlRWmqrFrVqlqqKvalVK7ZGFVUrNhF7JCKRyL3P74/I/eXKzSKR4ft+vfJqnfOc53zPHefe732e8z0apZRCCCGEEEIIIUSy0KZ2AEIIIYQQQgiRkUiSJYQQQgghhBDJSJIsIYQQQgghhEhGkmQJIYQQQgghRDKSJEsIIYQQQgghkpEkWUIIIYQQQgiRjCTJEkIIIYQQQohkJEmWEEIIIYQQQiQjSbKEEEIIIYQQIhlJkiVEMurTpw/16tV7Z/vr0qUL7u7ub7Tt6NGj0Wg0yRuQyFA0Gg2jR49+o219fX3RaDT4+voma0ypISmPg0ajoV+/fikbUAr68MMPGTp06Fv1cf36dTQaDb/99lvyBJVM/desWZOaNWumSEzx+e2339BoNPz999/vfN/JIbUet4TcunULGxsbDh8+nNqhiHfs3LlzWFhY8N9//6V2KPGSJCsNu3LlCj179qRAgQLY2Njg5ORElSpVmDFjBmFhYakd3ls7cuQIo0eP5unTp8nab/QHmkaj4dChQ7HWK6XIkycPGo2GJk2amKx7my9I165dY+HChXzzzTfGZYGBgYwePZpTp069UZ9CJGT58uVMnz49tcNIVtu2bXvj5O5dSKlzV3TyYO7vww8/NLbr0qULDg4Ocfbz+nksvn41Gg2TJk0ytv3666+ZPXs2d+/eTdZjEyK5jR07looVK1KlShWz69u0aYNGo+Hrr79+x5FlTJs3b6ZcuXLY2NiQN29eRo0aRWRkZKK2vXz5Mq1atSJz5szY2dlRtWpV9u3bZ9LGYDDw22+/0axZM/LkyYO9vT0lS5Zk/PjxvHjxwqRt8eLFady4Md99912yHV9KsEjtAIR5W7dupXXr1lhbW9OpUydKlixJREQEhw4dYsiQIZw9e5YFCxakdphv5ciRI4wZM4YuXbqQKVOmZO/fxsaG5cuXU7VqVZPl+/fvJyAgAGtr62Td34wZM8ifPz+1atUyLgsMDGTMmDG4u7tTpkyZZN0fwC+//ILBYHijbUeMGMGwYcOSOSLxri1fvpz//vuPAQMGpHYoyWbbtm3Mnj07zSRaYWFhWFj8/+Mypc9d7dq1o1GjRibLsmfPniL9ApQtW9b4/82bN8fJyYk5c+YwduzYt95nSsiXLx9hYWFYWlomabs///wzhSIS79qDBw9YsmQJS5YsMbs+ODiYLVu24O7uzooVK5g0aZLM3HgL27dvp0WLFtSsWZNZs2Zx5swZxo8fz/3795k7d2682966dYtKlSqh0+kYMmQI9vb2LF68mPr167Nnzx6qV68OQGhoKF27duXDDz+kV69euLi4cPToUUaNGsWePXvYu3evyXPYq1cvGjVqxJUrV/Dw8EjR439TkmSlQdeuXaNt27bky5ePvXv3kitXLuO6vn37cvnyZbZu3ZqKEZr34sULrKys0GrTxgBpo0aNWLNmDTNnzjT5grR8+XI8PT15+PBhsu3r5cuXLFu2jF69er1VP6GhodjZ2SW6fVK/ZMRkYWFh8riIlGMwGIiIiMDGxia1QxFv4F0/b+XKlaNjx46p0q9Wq6VVq1b8/vvvjBkzJk1+MdVoNG/0nFhZWaVANCIpIiMjMRgMb/1c+Pj4YGFhQdOmTc2uX7duHXq9nl9//ZXatWtz4MABatSo8Vb7TAlKKV68eIGtrW1qhxKvwYMHU7p0af7880/j9wYnJycmTpzIl19+SdGiRePcdtKkSTx9+pT//vuPIkWKANC9e3eKFi3KwIEDOXHiBBD1/jx8+DCVK1c2btu9e3fc3d2NiVbdunWN6+rWrUvmzJlZsmRJmv1BKG18GxYmfvzxR0JCQli0aJFJghWtYMGCfPnll8Z/R0ZGMm7cODw8PLC2tsbd3Z1vvvmG8PBwk+3c3d1p0qQJhw4dwsvLCxsbGwoUKMDvv/8eax9Pnz5l4MCBuLu7Y21tTe7cuenUqZMxMYm+3mLlypWMGDECNzc37OzsCA4OBuCvv/6iQYMGODs7Y2dnR40aNUzmTY8ePZohQ4YAkD9/fuO0levXrxvb+Pj44Onpia2tLVmyZKFt27bcunUr0Y9ju3btePToEbt27TIui4iIYO3atbRv3z7R/STGoUOHePjwockJwNfXlwoVKgDQtWtX4zFGX0dQs2ZNSpYsyYkTJ6hevTp2dnbGqYabNm2icePGuLq6Ym1tjYeHB+PGjUOv15vs9/VrsqKnBU2ZMoUFCxYYXxMVKlTg+PHjJtuauyYreprRxo0bKVmyJNbW1pQoUYIdO3bEOmZfX1/Kly+PjY0NHh4ezJ8/P0nXea1Zs8b4/GbLlo2OHTty+/btWMfn4ODA7du3adGiBQ4ODmTPnp3BgwfHeizisn37dqpVq4a9vT2Ojo40btyYs2fPvvF+DAYDM2bMoFSpUtjY2JA9e3YaNGhgcr1F9OO4bNkySpQogbW1Ndu3b8fd3Z3mzZvHivHFixc4OzvTs2dP42Or0WhYtWoV33zzDTlz5sTe3p5mzZqZvAdq1qzJ1q1buXHjhvH1FfP1EB4ezqhRoyhYsCDW1tbkyZOHoUOHxjo3hIeHM3DgQLJnz46joyPNmjUjICAgUY8vQEBAAC1atMDe3h4XFxcGDhwYax8ABw8epHXr1uTNm9cYz8CBA02mP3fp0oXZs2cbH8fov2hTpkyhcuXKZM2aFVtbWzw9PVm7dm2CMc6cOROdTmcyxW/q1KloNBq++uor4zK9Xo+jo6PJFKOY12Ql5twFJOo9lFbVq1ePGzduJGqa89OnT+nSpQvOzs5kypSJzp07xzmN8sKFC7Rq1YosWbJgY2ND+fLl2bx5s9k+4/v8MXdN1t27d+natSu5c+fG2tqaXLly0bx5c5Pnxdy1Rffv3+fzzz8nR44c2NjY8MEHH8QaHUnKeTU+oaGh9OzZk6xZs+Lk5ESnTp148uRJrHZz5swxnjdcXV3p27dvrMfU3d2dLl26xNr29WOMPpesXr2aCRMmkDt3bmxsbKhTpw6XL1+OtX308dna2uLl5cXBgwdjtYmIiOC7777D09MTZ2dn7O3tqVatWqzpXzEft+nTpxsfNz8/P+zt7U2+x0QLCAhAp9Px/fffx/EoRtm4cSMVK1aMc9rssmXLqFevHrVq1aJYsWIsW7bMbLsLFy7Qpk0bsmfPjq2tLUWKFOHbb781aXP79m0+//xz4+dx/vz56d27NxEREUDc1zdHX7oQ8zUY/T1s586dlC9fHltbW+bPnw/A4sWLqV27Ni4uLlhbW1O8ePE4R4m2b99OjRo1cHR0xMnJiQoVKrB8+XIARo0ahaWlJQ8ePIi1XY8ePciUKRMvXrzgzp07XLhwgZcvX5rdR7Rz585x7tw5evToYfLDbJ8+fVBKJXj+PXjwIGXLljUmWAB2dnY0a9aMf/75h0uXLgFRSVbMBCvaRx99BMD58+dNlltaWlKzZk02bdoU7/5Tk/yMnQZt2bKFAgUKmH2xmdOtWzeWLFlCq1atGDRoEH/99Rfff/8958+fZ8OGDSZto+fFfv7553Tu3Jlff/2VLl264OnpSYkSJQAICQmhWrVqnD9/ns8++4xy5crx8OFDNm/eTEBAANmyZTP2N27cOKysrBg8eDDh4eFYWVmxd+9eGjZsiKenJ6NGjUKr1RpPHgcPHsTLy4uPP/4Yf39/VqxYwbRp04x9Rk+JmTBhAiNHjqRNmzZ069aNBw8eMGvWLKpXr87JkycTNUXH3d2dSpUqsWLFCho2bAhEnZiCgoJo27YtM2fOTNTjmxhHjhxBo9GYTLspVqwYY8eO5bvvvqNHjx5Uq1YNwOR5ffToEQ0bNqRt27Z07NiRHDlyAFEnZwcHB7766iscHBzYu3cv3333HcHBwUyePDnBeJYvX86zZ8/o2bMnGo2GH3/8kY8//pirV68mOPp16NAh1q9fT58+fXB0dGTmzJm0bNmSmzdvkjVrVgBOnjxJgwYNyJUrF2PGjEGv1zN27NhET2n67bff6Nq1KxUqVOD777/n3r17zJgxg8OHD8d6fvV6Pd7e3lSsWJEpU6awe/dupk6dioeHB7179453P0uXLqVz5854e3vzww8/EBoayty5c6latSonT540SUgSu5/PP/+c3377jYYNG9KtWzciIyM5ePAgx44do3z58sZ2e/fuZfXq1fTr149s2bKRP39+OnbsyI8//sjjx4/JkiWLse2WLVsIDg6ONcowYcIE4zUF9+/fZ/r06dStW5dTp05ha2vLt99+S1BQEAEBAUybNg3A+KXDYDDQrFkzDh06RI8ePShWrBhnzpxh2rRp+Pv7s3HjRuN+unXrho+PD+3bt6dy5crs3buXxo0bJ+q5DAsLo06dOty8eZP+/fvj6urK0qVL2bt3b6y2a9asITQ0lN69e5M1a1b8/PyYNWsWAQEBrFmzBoCePXsSGBjIrl27WLp0aaw+ZsyYQbNmzejQoQMRERGsXLmS1q1b88cff8Qbc7Vq1TAYDBw6dMh4LebBgwfRarUmXyRPnjxJSEiIcQrL6xI6d0Hi3kPxCQ0NjTXS7uzsHOu9m9TReHP9AmTKlMnky5OnpycAhw8fNjmnvU4pRfPmzTl06BC9evWiWLFibNiwgc6dO8dqe/bsWapUqYKbmxvDhg3D3t6e1atX06JFC9atW2f8IpWUz5+YWrZsydmzZ/niiy9wd3fn/v377Nq1i5s3b8ZZHCgsLIyaNWty+fJl+vXrR/78+VmzZg1dunTh6dOnsZKAtzmvAvTr149MmTIxevRoLl68yNy5c7lx44YxEYKoL+xjxoyhbt269O7d29ju+PHjHD58+I1nL0yaNAmtVsvgwYMJCgrixx9/pEOHDvz111/GNosWLaJnz55UrlyZAQMGcPXqVZo1a0aWLFnIkyePsV1wcDALFy6kXbt2dO/enWfPnrFo0SK8vb3x8/OLNTV+8eLFvHjxgh49emBtbU3evHn56KOPWLVqFT/99BM6nc7YdsWKFSil6NChQ5zH8vLlS44fPx7n+T8wMJB9+/YZk+V27doxbdo0fv75Z5MRtH///Zdq1aphaWlJjx49cHd358qVK2zZsoUJEyYY+/Ly8uLp06f06NGDokWLcvv2bdauXUtoaOgbjchdvHiRdu3a0bNnT7p3725MPubOnUuJEiVo1qwZFhYWbNmyhT59+mAwGOjbt69x+99++43PPvuMEiVKMHz4cDJlysTJkyfZsWMH7du359NPP2Xs2LGsWrXK5NrM6B+ZW7ZsiY2NDcOHD2fJkiVcu3Yt3gJaJ0+eBDD5fANwdXUld+7cxvVxCQ8PJ3PmzLGWR8/aOXHiBIUKFYpz++jrQ8299z09Pdm0aRPBwcE4OTnFG0eqUCJNCQoKUoBq3rx5otqfOnVKAapbt24mywcPHqwAtXfvXuOyfPnyKUAdOHDAuOz+/fvK2tpaDRo0yLjsu+++U4Bav359rP0ZDAallFL79u1TgCpQoIAKDQ01WV+oUCHl7e1tbKuUUqGhoSp//vyqXr16xmWTJ09WgLp27ZrJPq5fv650Op2aMGGCyfIzZ84oCwuLWMtft3jxYgWo48ePq59//lk5OjoaY2zdurWqVauW8fFo3LixybaA6tu3b7z9m9OxY0eVNWvWWMuPHz+uALV48eJY62rUqKEANW/evFjrYj6m0Xr27Kns7OzUixcvjMs6d+6s8uXLZ/z3tWvXFKCyZs2qHj9+bFy+adMmBagtW7YYl40aNUq9fgoAlJWVlbp8+bJx2enTpxWgZs2aZVzWtGlTZWdnp27fvm1cdunSJWVhYRGrz9dFREQoFxcXVbJkSRUWFmZc/scffyhAfffddybHB6ixY8ea9FG2bFnl6ekZ736ePXumMmXKpLp3726y/O7du8rZ2dlkeWL3s3fvXgWo/v37x9pfzNc7oLRarTp79qxJm4sXLypAzZ0712R5s2bNlLu7e6z3l5ubmwoODja2W716tQLUjBkzjMsaN25s8hqItnTpUqXVatXBgwdNls+bN08B6vDhw0qp/59D+vTpY9Kuffv2ClCjRo2K1XdM06dPV4BavXq1cdnz589VwYIFFaD27dtnXG7udf39998rjUajbty4YVzWt2/fOF9Hr/cRERGhSpYsqWrXrh1vnHq9Xjk5OamhQ4cqpaKer6xZs6rWrVsrnU6nnj17ppRS6qefflJarVY9efLEuO3rj0Nc567otol5D5kT/f419xfzcYx+vcb3F/M8Fl+/gDp69GisWKysrFTv3r3jjXfjxo0KUD/++KNxWWRkpKpWrVqs816dOnVUqVKlTM5fBoNBVa5cWRUqVMi4LDGfP9HHE93/kydPFKAmT54cb7w1atRQNWrUMP47+rXr4+NjXBYREaEqVaqkHBwcjO+9pJxXzYn+TPL09FQRERHG5T/++KMC1KZNm5RSUZ/HVlZWqn79+kqv1xvb/fzzzwpQv/76q3FZvnz5VOfOnRM8xuhzSbFixVR4eLhx+YwZMxSgzpw5YzxuFxcXVaZMGZN2CxYsUIBJn5GRkSZtlIp6DnLkyKE+++wz47Lox83JyUndv3/fpP3OnTsVoLZv326yvHTp0ib7Mufy5cvxvp+mTJmibG1tjc+fv7+/AtSGDRtM2lWvXl05OjqanHuUMj2Xd+rUSWm1WnX8+PFY+4luZ+6zVKn/P+8xzxPR38N27NgRq72586O3t7cqUKCA8d9Pnz5Vjo6OqmLFiiafn6/HXalSJVWxYkWT9evXrzc5l0SfR8ydx2KKPt/dvHkz1roKFSqoDz/8MN7tmzZtqjJlymTyWRYdI6CmTJkS7/Z169ZVTk5OJufkaMuXL1eA+uuvv+LtI7XIdME0Jnq6naOjY6Lab9u2DcBkugvAoEGDAGJdu1W8eHHjiApE/fpapEgRrl69aly2bt06PvjgA+MvizG9PiTeuXNnk7nEp06d4tKlS7Rv355Hjx7x8OFDHj58yPPnz6lTpw4HDhxIsFDD+vXrMRgMtGnTxrj9w4cPyZkzJ4UKFYo1JSE+bdq0ISwsjD/++INnz57xxx9/JPtUQYgakTL3S01CrK2t6dq1a6zlMR/TZ8+e8fDhQ6pVq0ZoaCgXLlxIsN9PPvnEJJ7o5zzm8xyXunXrmlxEWrp0aZycnIzb6vV6du/eTYsWLXB1dTW2K1iwoHHEMD5///039+/fp0+fPibXVTRu3JiiRYuavd7w9WvdqlWrluCx7Nq1i6dPn9KuXTuT15FOp6NixYpmX0cJ7WfdunVoNBpGjRoVa9vX3xs1atSgePHiJssKFy5MxYoVTaauPH78mO3bt9OhQ4dYfXTq1MnkXNCqVSty5cplfN/HZ82aNRQrVoyiRYuaHH/t2rUBjMcf3Vf//v1Ntk9sIY1t27aRK1cuWrVqZVxmZ2dHjx49YrWN+bp+/vw5Dx8+pHLlyiilEvw11FwfT548ISgoiGrVqvHPP//Eu51Wq6Vy5cocOHAAiJp68ujRI4YNG4ZSiqNHjwJRo1slS5Z8q4IWCb2HEtKjRw927dpl8vfBBx+YtLGxsYnVJvovKf3u2rUr1usUIHPmzAmOlG3btg0LCwuTEQWdTscXX3xh0u7x48fs3buXNm3aGM9nDx8+5NGjR3h7e3Pp0iXjVOGkfP5Es7W1xcrKCl9fX7PT7+KLP2fOnLRr1864zNLSkv79+xMSEsL+/ftN2r/NeRWiHv+YI1G9e/fGwsLC+B7cvXs3ERERDBgwwOTa5u7du+Pk5PRW12J37drVZNTl9dijz8u9evUyaRc9FTQmnU5nbGMwGHj8+DGRkZGUL1/e7PuwZcuWsWY51K1bF1dXV5Nz4X///ce///6b4HWDjx49AojzM3fZsmU0btzYeO4sVKgQnp6eJvt68OABBw4c4LPPPiNv3rwm20e/zgwGAxs3bqRp06axRnFitkuq/Pnz4+3tHWt5zHNbUFAQDx8+pEaNGly9epWgoCAg6nPt2bNnDBs2LNZ1iTHj6dSpE3/99RdXrlwxLlu2bBl58uQxXpv222+/oZRK8DYw0dO5zRULs7GxSbDade/evXn69CmffPIJJ0+exN/fnwEDBhin2Me3/cSJE9m9ezeTJk0ye06Ofg0k5zX2yUmmC6Yx0cOdz549S1T7GzduoNVqKViwoMnynDlzkilTJm7cuGGy/PWTCUS9SGN+MF25coWWLVsmav/58+c3+Xf03Fpz00WiBQUFxZuQXLp0CaVUnMPHSZkukT17durWrcvy5csJDQ1Fr9ebfBlMTkqpJG/j5uZmdrrB2bNnGTFiBHv37jUm3tGiT7bxef15jn68E/MFJKHXyP379wkLC4v1mgPMLntd9Gsy5vzsaEWLFo1Vdj/6uqe44olL9GsxOql43etTCxKznytXruDq6moy1S8ur783onXq1Il+/fpx48YN8uXLx5o1a3j58iWffvpprLavvwc0Gg0FCxaMdf2POZcuXeL8+fNxTuG8f/8+8P9zyOvVmcw9P+bcuHGDggULxvrCYW77mzdv8t1337F58+ZYz19iXtcAf/zxB+PHj+fUqVMm130l5gtPtWrVGD16NGFhYRw8eJBcuXJRrlw5PvjgAw4ePEi9evU4dOgQbdq0SVQscUnMeTY+hQoVMrm+0xydTpdgmzfpN5pSKsHH9MaNG+TKlSvWdTGvP/eXL19GKcXIkSMZOXKk2b7u37+Pm5tbkj5/ollbW/PDDz8waNAgcuTIwYcffkiTJk3o1KkTOXPmjDf+QoUKxSrWVKxYMeP6mN7mvAqx388ODg7kypXL+H6O69xoZWVFgQIFYsWTFAnFHt336zFaWlpSoECBWP0tWbKEqVOnxrqmx9x5z9wyrVZLhw4dmDt3rrHg07Jly7CxsaF169aJOiZzn7nnz5/n5MmTdOrUyeSas5o1azJ79mzjtLLo5LJkyZJx9v/gwQOCg4PjbfMm4vpsOHz4MKNGjeLo0aOEhoaarAsKCsLZ2dmYNCUU0yeffMKAAQNYtmwZ3333HUFBQfzxxx8MHDgwyclhdPJn7jrbxBTtaNiwIbNmzWLYsGGUK1cOiPquMGHCBIYOHRrndXWrVq1ixIgRfP7553FODY1+DaTFAj0gSVaa4+TkhKura5JvsJbYF1jMuc8xvUmCAMR6c0WPUk2ePDnOkuXx3d8lug+NRsP27dvNxpvQ9q9r37493bt35+7duzRs2DBFSi5nzZo1Sb+gRjN3cnr69Ck1atTAycmJsWPH4uHhgY2NDf/88w9ff/11okq2v83znNyvkbcVVzwJiX6cli5davaL1uuVFd90P3GJ64Onbdu2DBw4kGXLlvHNN9/g4+ND+fLlE53UJJbBYKBUqVL89NNPZtfHvMbiXdDr9dSrV4/Hjx/z9ddfU7RoUezt7bl9+zZdunRJ1Ov64MGDNGvWjOrVqzNnzhxy5cqFpaUlixcvNl70HZ+qVavy8uVLjh49ysGDB42/5lerVo2DBw9y4cIFHjx4YDLa/ybS2nvoTTx9+jTO65+SKvq5HTx4sNlf8CFxP9DEZ8CAATRt2pSNGzeyc+dORo4cyffff8/evXvjva4sKdLS8xrXZ75erzcbZ3LG7uPjQ5cuXWjRogVDhgzBxcXFWKwi5shJtLjOhZ06dWLy5Mls3LiRdu3asXz5cpo0aRJr5Ox10dc1mvvM9fHxAWDgwIEMHDgw1vp169aZnT3yNuJ7Lswx93hcuXKFOnXqULRoUX766Sfy5MmDlZUV27ZtY9q0aUm+VUvmzJlp0qSJMclau3Yt4eHhb1S1NLoA2507d2J9bty5cwcvL68E++jXrx9du3bl33//xcrKijJlyrBo0SIgaobH63bt2kWnTp1o3Lgx8+bNi7Pf6NdAcp2rkpskWWlQkyZNWLBgAUePHqVSpUrxts2XLx8Gg4FLly4Zf30DuHfvHk+fPiVfvnxJ3r+Hh8cb30U7+tdwJyenBH8xjevE5OHhgVKK/Pnzm33zJdVHH31Ez549OXbsGKtWrXrr/swpWrQoy5YtM/7aFO1Nfl3x9fXl0aNHrF+/3uTi+2vXriVLrG/LxcUFGxsbs5WpzC17XfRr8uLFi7FGmS5evPhGr1lzol+LLi4uSf7FP74+d+7cGatwRVJkyZKFxo0bs2zZMjp06MDhw4fjvJlw9GhcNKUUly9fpnTp0sZl8b2PTp8+TZ06deJ9HUafQ65cuWKS6F28eDFRx5MvXz7++++/WCMfr29/5swZ/P39WbJkCZ06dTIuNze9La54161bh42NDTt37jSZurJ48eJExerl5YWVlRUHDx7k4MGDxiqB1atX55dffmHPnj3Gf8cnrf5qmlxu375NRESEyWeKOfny5WPPnj2EhISY/Pj1+nMfPRJiaWmZ4HvxbT9/Bg0axKBBg7h06RJlypRh6tSpxi/e5uL/999/MRgMJqNZ0VOyk+tcFO3SpUsm91EMCQnhzp07xnuXxTw3xhw9ioiI4Nq1ayaPXebMmc1Wcbxx44bZkaeERO/70qVLJuflly9fcu3aNZPpqmvXrqVAgQKsX7/e5L1gbhp1fEqWLEnZsmVZtmwZuXPn5ubNm8yaNSvB7fLmzYutrW2sz0SlFMuXL6dWrVr06dMn1nbjxo1j2bJldO3a1fgYxfday549O05OTgm+HqNHBZ8+fWryI25SRh63bNlCeHg4mzdvNhl1fH1ae/Tn2n///ZfgDxOdOnWiefPmHD9+nGXLllG2bFljgbOkiP7B/O+//zZJqAIDAwkICDA7Ndwce3t7k++0u3fvxtbWNtbNpP/66y8++ugjypcvz+rVq+O91cy1a9fQarXJ8l0xJcg1WWnQ0KFDsbe3p1u3bty7dy/W+itXrjBjxgwA48n59S9p0b9eJ7ZCWEwtW7bk9OnTsSoTQsK/enl6euLh4cGUKVMICQmJtT5mSVF7e3uAWB8UH3/8MTqdjjFjxsTan1LKOB87sRwcHJg7dy6jR4+O854ab6tSpUoopYz3e4gW1zHGJ/oXx5jHHhERwZw5c94+0GQQPU1p48aNBAYGGpdfvnyZ7du3J7h9+fLlcXFxYd68eSbTD7Zv38758+ff6DVrjre3t/E+HuZK1Jorb5uQli1bopRizJgxsdYl5RfhTz/9lHPnzjFkyBB0Oh1t27Y12+733383mTq8du1a7ty5Y3Ltm729vdmpdm3atOH27dv88ssvsdaFhYXx/PlzAGNfr1fbjCvxe12jRo0IDAw0KeMbGhoa62bp5l7XSinjuSymuN43Op0OjUZj8gvx9evXTSolxsfGxoYKFSqwYsUKbt68aTKSFRYWxsyZM/Hw8DB764zExJdRRJ/HEqpw26hRIyIjI03KTOv1+lhflF1cXKhZsybz58/nzp07sfqJ+V58k8+f0NBQXrx4YbLMw8MDR0dHs1OcYsZ/9+5dkx/fIiMjmTVrFg4ODsl+X6UFCxaYnIvmzp1LZGSk8T1Yt25drKysmDlzpsmxLlq0iKCgIJNzo4eHB8eOHTOWEYeoqbRJuc1JTOXLlyd79uzMmzfPpM/ffvvN7PsQTJ+Pv/76y3hdY1J8+umn/Pnnn0yfPp2sWbMm6rpeS0tLypcvb3LbDIiabnf9+nW6du1Kq1atYv198skn7Nu3j8DAQLJnz0716tX59ddfuXnzpkk/0cel1Wpp0aIFW7ZsibWvmO2iE5/o6z0h6prTuG6UbI65xzQoKCjWD0j169fH0dGR77//PtZr/vX3R8OGDcmWLRs//PAD+/fvjzWKldgS7iVKlKBo0aIsWLDA5Nw7d+5cNBqNySUYQUFBXLhwIcHp30eOHGH9+vV8/vnnJj9MR38HcHd3548//khwKuKJEycoUaJEgqOfqUVGstIgDw8Pli9fzieffEKxYsXo1KkTJUuWJCIigiNHjhhLzAJ88MEHdO7cmQULFhinmfn5+bFkyRJatGhh8qtZYg0ZMoS1a9fSunVrPvvsMzw9PXn8+DGbN29m3rx5sS7Ajkmr1bJw4UIaNmxIiRIl6Nq1K25ubty+fZt9+/bh5OTEli1bgP+XCf72229p27YtlpaWNG3aFA8PD8aPH8/w4cO5fv06LVq0wNHRkWvXrrFhwwZ69OjB4MGDk3RM8V0j9rq///6b8ePHx1pes2ZNqlatanabqlWrkjVrVnbv3m3yK6CHhweZMmVi3rx5ODo6Ym9vT8WKFeOckw1RX2wyZ85M586d6d+/PxqNhqVLl6apqUajR4/mzz//pEqVKvTu3Ru9Xs/PP/9MyZIlE7y3jqWlJT/88ANdu3alRo0atGvXzljC3d3d3ewUjzfh5OTE3Llz+fTTTylXrhxt27Yle/bs3Lx5k61bt1KlShV+/vnnJPVZq1YtPv30U2bOnMmlS5do0KABBoOBgwcPUqtWLZNyufFp3LgxWbNmZc2aNTRs2BAXFxez7bJkyULVqlXp2rUr9+7dY/r06RQsWJDu3bsb23h6erJq1Sq++uorKlSogIODA02bNuXTTz9l9erV9OrVi3379lGlShX0ej0XLlxg9erVxvu0lClThnbt2jFnzhyCgoKoXLkye/bsSdSoJERdlP/zzz/TqVMnTpw4Qa5cuVi6dGmsm2oXLVoUDw8PBg8ezO3bt3FycmLdunVmp/xEnxv69++Pt7e3MRFt3LgxP/30Ew0aNKB9+/bcv3+f2bNnU7BgQf79999ExVutWjUmTZqEs7MzpUqVAqKSgCJFinDx4kWz9x6KK77Xz13RyVda9c8//5gd1fHw8DD5hXnXrl3kzZs3wWl2TZs2pUqVKgwbNozr169TvHhx1q9fb/YL1uzZs6latSqlSpWie/fuFChQgHv37nH06FECAgI4ffo08GafP/7+/tSpU4c2bdpQvHhxLCws2LBhA/fu3YvzBwyIKkQxf/58unTpwokTJ3B3d2ft2rXG0eXEFqBKrIiICGOcFy9eZM6cOVStWpVmzZoBUSMnw4cPZ8yYMTRo0IBmzZoZ21WoUMHkS3K3bt1Yu3YtDRo0oE2bNly5cgUfH59Y11YmlqWlJePHj6dnz57Url2bTz75hGvXrrF48eJYI2NNmjRh/fr1fPTRRzRu3Jhr164xb948ihcvbvbH1fi0b9+eoUOHsmHDBnr37p3oa66bN2/Ot99+a1K6e9myZeh0ujh/qGvWrBnffvstK1eu5KuvvmLmzJlUrVqVcuXK0aNHD/Lnz8/169fZunWr8XNs4sSJ/Pnnn9SoUcN4K4w7d+6wZs0aDh06RKZMmahfvz558+bl888/N/5w9uuvvxo/bxKjfv36WFlZ0bRpU3r27ElISAi//PILLi4uJj9MODk5MW3aNLp160aFChVo3749mTNn5vTp04SGhpokdpaWlrRt25aff/4ZnU5nUuAFSHQJd4i6BKRZs2bUr1+ftm3b8t9///Hzzz/TrVs3kxHvDRs20LVrVxYvXmw8l964cYM2bdrQrFkzcubMydmzZ5k3bx6lS5dm4sSJxm2fPXuGt7c3T548YciQIbEKvbx+nnr58iX79+83O2qZZqRs8ULxNvz9/VX37t2Vu7u7srKyUo6OjqpKlSpq1qxZJmVwX758qcaMGaPy58+vLC0tVZ48edTw4cNN2ihlvmS5UrFLviql1KNHj1S/fv2Um5ubsrKyUrlz51adO3dWDx8+VEr9vyzsmjVrzMZ+8uRJ9fHHH6usWbMqa2trlS9fPtWmTRu1Z88ek3bjxo1Tbm5uSqvVxiolum7dOlW1alVlb2+v7O3tVdGiRVXfvn3VxYsX433cYpZwj09cJdzj+hs3bly8/fXv318VLFgw1vJNmzap4sWLG8ubR5cdrlGjhipRooTZvg4fPqw+/PBDZWtrq1xdXdXQoUONJW9fL+VsroS7uVLGvFaGOq4S7uZK2JsrF7xnzx5VtmxZZWVlpTw8PNTChQvVoEGDlI2Njdljet2qVatU2bJllbW1tcqSJYvq0KGDCggIMGnTuXNnZW9vH2vbuErmmrNv3z7l7e2tnJ2dlY2NjfLw8FBdunRRf//99xvtJzIyUk2ePFkVLVpUWVlZqezZs6uGDRuqEydOGNvE9TjG1KdPHwWo5cuXm40ZUCtWrFDDhw9XLi4uytbWVjVu3DhWueGQkBDVvn17lSlTJgWYvB4iIiLUDz/8oEqUKKGsra1V5syZlaenpxozZowKCgoytgsLC1P9+/dXWbNmVfb29qpp06bq1q1bsV4zcblx44Zq1qyZsrOzU9myZVNffvml2rFjR6zX67lz51TdunWVg4ODypYtm+revbuxvHnMct+RkZHqiy++UNmzZ1cajcbkOVi0aJEqVKiQsra2VkWLFlWLFy9O0uth69atClANGzY0Wd6tWzcFqEWLFsXaxtzjENe5KynvodfF9/6NKa7Xa8x4k1LCPWZcer1e5cqVS40YMSLeGKI9evRIffrpp8rJyUk5OzurTz/9VJ08eTLWc6qUUleuXFGdOnVSOXPmVJaWlsrNzU01adJErV27Nlaf8X3+vF7C/eHDh6pv376qaNGiyt7eXjk7O6uKFSua3FZAKfOfdffu3VNdu3ZV2bJlU1ZWVqpUqVKx4k7KedWc6M+k/fv3qx49eqjMmTMrBwcH1aFDB/Xo0aNY7X/++WdVtGhRZWlpqXLkyKF69+5ttnz11KlTlZubm7K2tlZVqlRRf//9d5wl3F//rH79MYw2Z84clT9/fmVtba3Kly+vDhw4EKtPg8GgJk6cqPLly6esra1V2bJl1R9//JGkz6OYGjVqpAB15MiReNvFdO/ePWVhYaGWLl2qlIo612XNmlVVq1Yt3u3y58+vypYta/z3f//9pz766COVKVMmZWNjo4oUKaJGjhxpss2NGzdUp06dVPbs2ZW1tbUqUKCA6tu3r0kZ+xMnTqiKFSsqKysrlTdvXvXTTz/FWcLd3PcwpZTavHmzKl26tLKxsVHu7u7qhx9+UL/++qvZMuubN29WlStXVra2tsrJyUl5eXmpFStWxOrTz89PAap+/fqx1iW2hHu0DRs2qDJlyihra2uVO3duNWLECJNbEij1/9d6zNfV48ePVfPmzVXOnDmVlZWVyp8/v/r6669jlXRPynlKKaW2b9+uAHXp0qVExZ8aNEqloZ/HhUjHrl69StGiRdm+fTt16tRJ7XBSRYsWLTh79mysa4lEbAMHDmTRokXcvXs31qiPr68vtWrVYs2aNSlWDVMIczZu3Ej79u25cuVKgtMmhUgOH330EWfOnEn06Hm0zz//HH9/f5ObiQtTp0+fpkyZMvz+++9mK9imZy1atECj0ZidWpxWyDVZQiSTAgUK8PnnnzNp0qTUDuWdeP3eFpcuXWLbtm3UrFkzdQJKR168eIGPjw8tW7aMlWAJkZp++OEH+vXrJwmWeCfu3LnD1q1b3ygBGDVqFMePH+fw4cMpEFnG8Msvv+Dg4MDHH3+c2qEkq/Pnz/PHH38wbty41A4lXnJNlhDJKOYF4BldgQIF6NKli/H+LXPnzsXKyoqhQ4emdmhp1v3799m9ezdr167l0aNHfPnll6kdkhAm3qR4gRBJde3aNQ4fPszChQuxtLSkZ8+eSe4jb968sYo/iChbtmzh3LlzLFiwgH79+qX560WTqlixYkRGRqZ2GAmSJEsI8UYaNGjAihUruHv3LtbW1lSqVImJEyfGeRNpAefOnaNDhw64uLgwc+bMOO8lJ4QQGdn+/fvp2rUrefPmZcmSJfHeNFok3RdffMG9e/do1KiR2Wq44t2Qa7KEEEIIIYQQIhnJNVlCCCGEEEIIkYwkyRJCCCGEEEKIZCRJlhBCpFOjR49Go9GkdhjUrFnzjatK1qxZk5IlSyZvQEIIIUQqkyRLCJGuXb9+HY1Gw5QpU1I7FJGCAgMDGT16NKdOnXon+zty5AhVq1bFzs6OnDlz0r9/f0JCQhK17b179+jatSsuLi7Y2tpSrlw51qxZk+B29erVQ6PR0K9fv3jbHTp0CI1Gg0aj4eHDh4mKKS6bN2+mXLly2NjYkDdvXkaNGpXoql2XL1+mVatWZM6cGTs7O6pWrcq+ffvi3ebly5cUL148Ue/ZZcuWodFocHBwSPTxJIXBYODHH38kf/782NjYULp0aVasWJGobWvWrGl8Dl7/s7S0NGnr7u5utl2vXr3M9r17925q166Ns7Mzjo6OeHp6smrVqrc+XiHEuyXVBYUQQryVP//8M8X3ERgYyJgxY3B3d0/xqoynTp2iTp06FCtWjJ9++omAgACmTJnCpUuX2L59e7zbBgcHU7VqVe7du8eXX35Jzpw5Wb16NW3atGHZsmW0b9/e7Hbr169PVPl0g8HAF198gb29Pc+fP3+j44u2fft2WrRoQc2aNZk1axZnzpxh/Pjx3L9/P8HbUdy6dYtKlSqh0+kYMmQI9vb2LF68mPr167Nnzx6qV69udrtZs2Zx8+bNBGMLCQlh6NChKVp6+ttvv2XSpEl0796dChUqsGnTJtq3b49Go6Ft27YJbtutWzeTZc+fP6dXr17Ur18/VvsyZcowaNAgk2WFCxeO1W7x4sV8/vnn1KtXj4kTJ6LT6bh48SK3bt16gyMUQqQqJYQQ6di1a9cUoCZPnpyqcRgMBhUaGvpO9zlq1CiV3k/jNWrUUCVKlEiw3fHjxxWgFi9enOIxNWzYUOXKlUsFBQUZl/3yyy8KUDt37ox32x9//FEBas+ePcZler1eVahQQeXMmVOFh4fH2iYsLEy5u7ursWPHKkD17ds3zv7nzp2rsmbNqr788ksFqAcPHrzBEUYpXry4+uCDD9TLly+Ny7799lul0WjU+fPn4922T58+ysLCQl24cMG47Pnz5ypPnjyqXLlyZre5d++ecnZ2Nh5nfO/Zr7/+WhUpUkR16NBB2dvbJ/HIEhYQEKAsLS1NHmuDwaCqVaumcufOrSIjI5Pc59KlSxWgli1bZrI8X758qnHjxgluf+3aNWVra6v69++f5H0LIdIemS4ohHgvhIeHM2rUKAoWLIi1tTV58uRh6NChhIeHm7RbvHgxtWvXxsXFBWtra4oXL272V313d3eaNGnCzp07KV++PLa2tsyfPx9fX180Gg2rV69mwoQJ5M6dGxsbG+rUqcPly5dj9fPXX3/RoEEDnJ2dsbOzo0aNGhw+fDhWu0OHDlGhQgVsbGzw8PBg/vz5iTrumTNnotPpePr0qXHZ1KlT0Wg0fPXVV8Zler0eR0dHvv76a+Myg8HA9OnTKVGiBDY2NuTIkYOePXvy5MkTk32Yuybrxo0bNGvWDHt7e1xcXBg4cCA7d+5Eo9Hg6+sbK85z585Rq1Yt7OzscHNz48cffzSu8/X1pUKFCgB07drVON3qt99+A+DSpUu0bNmSnDlzYmNjQ+7cuWnbti1BQUHGPh4+fMiFCxcIDQ2N9/EKDg5m165ddOzYEScnJ+PyTp064eDgwOrVq+Pd/uDBg2TPnp3atWsbl2m1Wtq0acPdu3fZv39/rG1+/PFHDAYDgwcPjrfvx48fM2LECMaOHUumTJnibZuQc+fOce7cOXr06IGFxf8ntfTp0welFGvXro13+4MHD1K2bFmKFCliXGZnZ0ezZs34559/uHTpUqxthg0bRpEiRejYsWO8fV+6dIlp06bx008/mcSWnDZt2sTLly/p06ePcZlGo6F3794EBAS80U2Zly9fjr29Pc2bNze7PiIiIt7Rx3nz5qHX6xk7diwQNZqn5C47QqRbkmQJITI8g8FAs2bNmDJlCk2bNmXWrFm0aNGCadOm8cknn5i0nTt3Lvny5eObb75h6tSp5MmThz59+jB79uxY/V68eJF27dpRr149ZsyYYTKNbdKkSWzYsIHBgwczfPhwjh07RocOHUy237t3L9WrVyc4OJhRo0YxceJEnj59Su3atfHz8zO2O3PmDPXr1+f+/fuMHj2arl27MmrUKDZs2JDgsVerVg2DwcChQ4eMyw4ePIhWq+XgwYPGZSdPniQkJMRkmlfPnj0ZMmQIVapUYcaMGXTt2pVly5bh7e3Ny5cv49zn8+fPqV27Nrt376Z///58++23HDlyxCSBi+nJkyc0aNCADz74gKlTp1K0aFG+/vpr49S8YsWKGb949ujRg6VLl7J06VKqV69OREQE3t7eHDt2jC+++ILZs2fTo0cPrl69apJY/vzzzxQrVszkcTXnzJkzREZGUr58eZPlVlZWlClThpMnT8a7fXh4OLa2trGW29nZAXDixAmT5Tdv3mTSpEn88MMPZreLaeTIkeTMmZOePXvG2y4xoo/j9eN0dXUld+7cyX6cfn5+LFmyhOnTpydYrGXAgAHUqlWLRo0aJXgcb+rkyZPY29tTrFgxk+VeXl7G9Unx4MEDdu3aRYsWLcxOcdy7dy92dnY4ODjg7u7OjBkzYrXZvXs3RYsWZdu2beTOnRtHR0eyZs3KyJEjMRgMSYpHCJEGpPZQmhBCvI3ETBdcunSp0mq16uDBgybL582bpwB1+PBh4zJzU/68vb1VgQIFTJbly5dPAWrHjh0my/ft26cAVaxYMZOpYTNmzFCAOnPmjFIqampSoUKFlLe3tzIYDCb7z58/v6pXr55xWYsWLZSNjY26ceOGcdm5c+eUTqdLcLqgXq9XTk5OaujQocb9Zs2aVbVu3VrpdDr17NkzpZRSP/30k9JqterJkydKKaUOHjxodurTjh07Yi2vUaOGqlGjhvHfU6dOVYDauHGjcVlYWJgqWrSoAtS+fftMtgXU77//blwWHh6ucubMqVq2bGlcFtd0wZMnTypArVmzJt7HIXpqZcx9m7NmzRoFqAMHDsRa17p1a5UzZ854t//iiy+UVqtV169fN1netm1bBah+/fqZLG/VqpWqXLmy8d/EMV3w9OnTSqfTGacrRh/Pm04XnDx5sgLUzZs3Y62rUKGC+vDDD+PdvmnTpipTpkwqODjYZHmlSpUUoKZMmWJcZjAYlJeXl2rXrp1SKv737B9//KEsLCzU2bNnlVJKde7cOUWmCzZu3DjWe1qpqCmPgBo2bFiS+ps1a5YC1LZt22Kta9q0qfrhhx/Uxo0b1aJFi1S1atUUYHxPRnNyclKZM2dW1tbWauTIkWrt2rWqffv2bxSPECL1yUiWECLDW7NmDcWKFaNo0aI8fPjQ+Bc9pStmRbSYv84HBQXx8OFDatSowdWrV02mnwHkz58fb29vs/vs2rUrVlZWxn9Xq1YNgKtXrwJRxRUuXbpE+/btefTokTGm58+fU6dOHQ4cOIDBYECv17Nz505atGhB3rx5jf0VK1Yszn3HpNVqqVy5MgcOHADg/PnzPHr0iGHDhqGUMk6LOnjwICVLljROQ1uzZg3Ozs7Uq1fP5DHz9PTEwcEh3ipyO3bswM3NjWbNmhmX2djY0L17d7PtHRwcTKaQWVlZ4eXlZXys4uPs7AzAzp07450KOHr0aJRSCZaaDwsLA8Da2jrWOhsbG+P6uHTr1g2dTkebNm04cuQIV65c4fvvvzeOOsbcft++faxbt47p06fH2ydA//79adiwodmiCm/ibY+zd+/ePH36lE8++YSTJ0/i7+/PgAED+Pvvv036B/jtt984c+YMP/zwQ7x9RkREMHDgQHr16kXx4sWTekhJEhYWFuexR69PiuXLl5M9e3bq1asXa93mzZsZOnQozZs357PPPmP//v14e3sbi6pECwkJ4cmTJ4wZM4axY8fSsmVLli1bRoMGDZgxYwbPnj1L4lEKIVKTJFlCiAzv0qVLnD17luzZs5v8RVf3un//vrHt4cOHqVu3Lvb29mTKlIns2bPzzTffAJhNsuISMyECyJw5M4Dxeqboa1Y6d+4cK66FCxcSHh5OUFAQDx48ICwsjEKFCsXaR8zrYeJTrVo1Tpw4QVhYGAcPHiRXrlyUK1eODz74wDhl8NChQ8ZEMDq+oKAgXFxcYsUXEhJi8pi97saNG3h4eMSaFlawYEGz7XPnzh2rbebMmWNd+2VO/vz5+eqrr1i4cCHZsmXD29ub2bNnx3quEis6yX79Wj2AFy9eJDilr3Tp0ixfvpwrV65QpUoVChYsyMyZM42JVHQ58sjISPr378+nn35qvN4sLqtWreLIkSNMnTr1DY7IvLc9zoYNGzJr1iwOHDhAuXLlKFKkCFu3bmXChAnA/48zODiY4cOHM2TIEPLkyRNvn9OmTePhw4eMGTPmTQ7JrLt375r8RSdPtra2cR579PrEunr1KkePHuWTTz5J1DVkGo2GgQMHEhkZaXJ9YvQ+27VrZ9K+Xbt2hIWFJXkKoxAidUkJdyFEhmcwGChVqhQ//fST2fXRX/6uXLlCnTp1KFq0KD/99BN58uTBysqKbdu2MW3atFjXRcT3RUyn05ldrl5dyB7d1+TJk+MsSe7g4GD2i2BSVa1alZcvX3L06FEOHjxoTKaqVavGwYMHuXDhAg8ePDBJsgwGAy4uLixbtsxsn9mzZ3/ruKIl9FglZOrUqXTp0oVNmzbx559/0r9/f77//nuOHTtG7ty5kxRLrly5ALhz506sdXfu3MHV1TXBPlq1akWzZs04ffo0er2ecuXKGb9MRyf2v//+OxcvXmT+/Plcv37dZPtnz55x/fp1XFxcsLOzY8iQIbRu3RorKytj2+jrzW7dukVERESi4orrOF9Pfu7cuWO8Nik+/fr1o2vXrvz777/Ga9YWLVpkcpxTpkwhIiKCTz75xBh79OjNkydPuH79Oq6uroSFhTF+/Hj69OlDcHAwwcHBwP+LP1y/fh07OztcXFze6DijLV68mC5dupArVy727duHUsokwY9+3pPyeC5fvhwg1jWX8Yl+zB8/fmxc5urqyqVLl8iRI4dJ2+hjTsyPDkKItEOSLCFEhufh4cHp06epU6dOvBfdb9myhfDwcDZv3mwyEpXQDVbfNCYAJycn6tatG2e77NmzY2tra7Za28WLFxO1Ly8vL6ysrDh48CAHDx5kyJAhAFSvXp1ffvmFPXv2GP8dM77du3dTpUqVJP2qD5AvXz7OnTsX6wusueqKiZVQsYRSpUpRqlQpRowYwZEjR6hSpQrz5s1j/PjxSdpPyZIlsbCw4O+//6ZNmzbG5REREZw6dcpkWXysrKxMRqh2794NYHyub968ycuXL6lSpUqsbX///Xd+//13NmzYQIsWLbh16xbLly83fpmPKXpEMqk3aY5O7P/++2+ThCowMJCAgAB69OiRqH7s7e2pVKmS8d+7d+/G1tbWeFw3b97kyZMnlChRIta2EydOZOLEiZw8eZJMmTIREhLCjz/+aFJZMlr+/Plp3rw5GzduTMJRwq5du0z+HR1HmTJlWLhwIefPnzeZmvjXX38Z1yfW8uXL8fDw4MMPP0z0NtFTYWP+WOHp6cmlS5e4ffs2BQoUMC4PDAyM1VYIkfbJdEEhRIbXpk0bbt++zS+//BJrXVhYmLGscvSISswRlKCgIBYvXpzsMXl6euLh4cGUKVMICQmJtf7BgwfGmLy9vdm4caPJTVzPnz/Pzp07E7UvGxsbKlSowIoVK7h586bJSFZYWBgzZ87Ew8PD5Ff/Nm3aoNfrGTduXKz+IiMjTSr3vc7b25vbt2+zefNm47IXL16YffwTK7pi2+v7DQ4OJjIy0mRZqVKl0Gq1JqOAiS3h7uzsTN26dfHx8TG5Bmbp0qWEhITQunVr47LQ0FAuXLjAw4cP4+3z0qVLzJs3jyZNmhhHeNq2bcuGDRti/QE0atSIDRs2ULFiRQCz7aKrYv7+++9MmzYt3v2bU6JECYoWLcqCBQvQ6/XG5XPnzkWj0dCqVSvjsqCgIC5cuJDgFMwjR46wfv16Pv/8c+O1cv37948Ve/TtB7p06cKGDRvInz8/Li4uZo+zVq1a2NjYsGHDBoYPH57k46xbt67JX/RrvHnz5lhaWjJnzhxjW6UU8+bNw83NjcqVKxuX37lzhwsXLpitqHny5EnOnz8f502mHz9+bPL4Arx8+ZJJkyZhZWVFrVq1jMujn9Po0UCIGlFevHgxWbJkwdPTM8nHL4RIRalWckMIIZJBdKWyBg0aqHHjxsX6O3PmjNLr9apRo0ZKo9Gotm3bqlmzZqnp06erXr16qSxZsqjjx48rpZS6cOGCsrKyUqVKlVI///yzmjRpkvLw8FAffPCBAtS1a9eM+43rBqPR1QVfr3YXHWfM6nj79u1TNjY2Km/evGrUqFFqwYIFatSoUap69eqqSZMmxnanT582tps0aZIaP368ypEjhypdunSib0Y8bNgwBShnZ2el1+uNy4sUKaIA1aVLl1jb9OzZUwGqYcOGatq0aernn39WX375pXJ1dTU5vterCz579ky5u7srW1tbNWzYMDVjxgzl5eWlypQpowDl6+trsq25mxF37txZ5cuXz/jviIgIlSlTJlWkSBG1cOFCtWLFCnX16lW1YcMG5ebmpgYMGKDmzJmjZs6cqSpUqKAsLS3V0aNHjdsntrqgUkqdOHFCWVtbq7Jly6q5c+eqb7/9VtnY2Kj69eubtIt+rkeNGmWyvFixYuq7775TCxcuVN9++63KkiWLypcvnwoICEhw3yRwM+LXj+f16oJxxWTOli1blEajUbVr11YLFixQ/fv3V1qtVnXv3t2k3eLFi2O9dq9fv668vLzU+PHj1cKFC9XAgQOVra2tKlu2bKyKg69Lyg3E46ouaC6mpBoyZIgCVI8ePdQvv/yiGjdubLaiZufOnWO9/6MNGjRIASY3ZX49Tg8PD/X111+refPmqYkTJ6qSJUsqQE2cONGkrcFgUHXq1FEajUb16NFDzZ49W9WrV08Bav78+W98nEKI1CFJlhAiXYv+whbX39KlS5VSUV/Sf/jhB1WiRAllbW2tMmfOrDw9PdWYMWNUUFCQsb/Nmzer0qVLKxsbG+Xu7q5++OEH9euvv6ZIkqVUVAnyjz/+WGXNmlVZW1urfPnyqTZt2qg9e/aYtNu/f7/y9PRUVlZWqkCBAmrevHnGL9qJsXXrVmPCFFO3bt0UoBYtWmR2uwULFihPT09la2urHB0dValSpdTQoUNVYGCgsc3rSZZSSl29elU1btxY2draquzZs6tBgwapdevWKUAdO3bMZNvEJFlKKbVp0yZVvHhxZWFhYXwsr169qj777DPl4eGhbGxsVJYsWVStWrXU7t27TbZNSpKlVFQJ+8qVKysbGxuVPXt21bdv31jJQ1wJTdu2bVWePHmUlZWVcnV1Vb169VL37t1L1H7fNsnasmWLAtS8efMStb8NGzaoMmXKKGtra5U7d241YsQIFRERYdLGXELz+PFj1bx5c5UzZ05lZWWl8ufPr77++usEEyylkifJii6Z/votFJJCr9eriRMnqnz58ikrKytVokQJ5ePjYzYGc0mWXq9Xbm5uqly5cnHu4++//1ZNmzZVbm5uysrKSjk4OKiqVauq1atXm23/7Nkz9eWXXxof11KlSpmNSQiR9mmUktuJCyGESHnTp09n4MCBBAQE4ObmltrhZEhDhw5lxYoVXL582WyJ8oyiTZs2XL9+PcGbSwshRGqRwhdCCCGSXVhYmEnBjBcvXjB//nwKFSokCVYK2rdvHyNHjszQCZZSCl9fX3x8fFI7FCGEiJMkWUIIIZLdxx9/TN68eSlTpgxBQUH4+Phw4cKFOEvCi+Rx/Pjx1A4hxWk0mnjv0yaEEGmBJFlCCCGSnbe3NwsXLmTZsmXo9XqKFy/OypUrjRXUhBBCiIxMrskSQgghhBBCiGQk98kSQgghhBBCiGQkSZYQQgghhBBCJCO5JisBBoOBwMBAHB0d0Wg0qR2OEEIIIYQQIpUopXj27Bmurq5otXGPV0mSlYDAwEDy5MmT2mEIIYQQQggh0ohbt26RO3fuONdLkpUAR0dHAG79+itOdnapHI14IydOALCdBqy6XJ6CBcHTM5VjEkIIIYQQ6U5oaDCffZbHmCPERZKsBERPEXSys5MkK716dVNOOxywtHTC2hrkqRRCCCGEEG8qocuIpPCFEEIIIYQQQiQjSbKEEEIIIYQQIhlJkiWEEEIIIYQQyUiuyRJCCCGEECJNUGi1kWg0euTOQe+eUqCUDoPBAni7J0CSLCGEEEIIIVKZVhuBk9MdbG1DJcFKRUpBWJgdwcG5MBis3rgfSbKEEEIIIYRIVQayZbuGg4OOzJldsbCw4m1HUsSbUERGRvDkyQOsrK5x/34h3vTqKkmyhBBCCCGESEU6XQQWFgayZcuDtbXcZyY1WVnZotNZ8uLFDXS6CPR6mzfqRwpfCCGEEEIIkYqipwdqNMnz1VyjAa0WmXb4hqKfh7d5/GQkSwghhBBCiHROowFLS7DWvURnbWlcrg9/Sbjekpcvo643Eu+GJFlCCCGEEEKkYxYWYG8TGfWPdeth7Vp48gQyZ0bbqhW2LVtiawXPX1gQGZm6sb4vJMkSQgghhBAinbKwAHs7A+z4E81nn8G9eybrNWvXQo4cqF9/xb5BA56HalMl0cqcWYOPzwYaN27x7neeCuSaLCGEEEIIIdIhjebVCNaOHWiaNYuVYBnduxe1fscO7G0ik/1arXv37jJ06BeUKVOAHDmsKVEiD23bNmX//j3Ju6M3pJRi4sTvKFo0F7ly2dKiRV2uXLmUovuUJEsIIYQQQoh0yPLVpVeazz4DvT7+xno9ms8/N9kuOdy8eZ1atTw5eHAvY8dO5vDhM6xdu4Nq1WoxZEjf5NvRW5gx40fmz5/JTz/NY9euv7Czs6dlS29evHiRYvuUJEsIIYQQQoh0yFr3Etati3sE63V378L69VHbJZNBg/qg0WjYvduPZs1aUrBgYYoVK0Hfvl+xa9exOLcbNeprypcvjKurHWXKFGDChJG8fPn/uM6cOU3TprXIk8eRvHmdqFnTk5Mn/wbg5s0btG3bFHf3zLi52VOpUgn+/HOb2f0opZg3bzqDB4+gUaPmlCxZmrlzf+fu3UC2bt2YbI/D6+SaLCGEEEIIIdKgTJkSamEZVeQiCTRr16Jr04ZM1ubXP32a+L6ePHnMnj07GDFiAvb29rHWOztninNbR0dHZs/+jVy5XDl79gwDBnTHwcGRL78cCkCPHh0oXbosU6fORafTcebMKSwsoobghgzpy8uXEWzdegB7e3suXDiHvb2D2f3cuHGNe/fuUrNm3RhxOePpWZHjx4/SsmXbxB9wEkiSJYQQQgghRHr15EnKto/H1auXUUpRuHDRJG87ePAI4//nzevO5cuDWb9+pTHJun37Jv37DzH27eFRyNg+IOAmzZq1pESJUgC4uxeIcz/37t0FIHv2HCbLXVxycP/+3STHnViSZAkhhBBCCJEGxTeqpNGAszOQOXPSOn3VPijo7e+bpd6ig/XrVzF//kyuX7/C8+chREZG4ujoZFzfp89X9O/fjVWrllKjRl1atGhN/vweAPTs2Z9Bg3qzd++f1KxZl6ZNW1KyZOm3O5hkJtdkCSGEEEIIkc4oFXWjYdWqVdK2a9UqartkuDGxh0chNBoN/v4XkrSdn99RevToQL16jVi58g/27z/JoEHfEhERYWwzbNhojh49S/36jTl4cC8fflicP/7YAECnTt04efIqn3zyKefOnaF27fIsWDDL7L5y5MgJwIMHptet3b9/DxeXnEmKOykkyRJCCCGEECIdCtdbQsuWkCNHwo0BcuaEjz+O2i4ZZM6chdq1vVm0aDbPnz+PtT4o6KnZ7fz8jpAnTz4GD/6WsmXL4+FRiFu3bsRqV7BgYfr0Gcj69X/SpMnHLFu22Lgud+48fPZZL5YuXU/fvoNYsuQXs/vKly8/OXLkNCknHxwczIkTf1GhQqUkHnHiSZIlhBBCCCFEOhRdjE/9+ivodPE31ulQixaZbJccpkyZjV6vp25dLzZvXseVK5e4ePE88+fPpH5980lMgQKFCAi4ybp1K7l27Qrz5880jlIBhIWFMWRIPw4d8uXmzRscO3aYkyePU7hwMQCGDx/Anj07uXHjGqdP/8OhQ/soUqSY2X1pNBp69RrAlCnj2bZtM2fPnqF3707kzOmaojdGlmuyhBBCCCGESIeUgucvLLBv0AC1eXPUfbDuminmkDNnVILVoAHPQ7XJMlUwmrt7AXx9/2Hq1AmMGDGIe/fukC1bdj74wJOpU+ea3aZRo2b07j2QoUP7ERERTr16jRkyZCSTJo0GQKfT8fjxI3r16sSDB/fImjUbTZp8zPDhYwDQ6/UMGdKXwMAAHB2dqFOnARMnToszxi+/HEpo6HMGDuxBUNBTPvywKmvX7sDGxib5HojXaNTbXLH2HggODsbZ2ZmglStxsrNL7XDEm/DzA2ALTfHx96JwYfDySuWYhBBCCCFesbB4gYvLNfLkyY+VVdK/+FtYgL1NZNQ/1q9Hs3ZtVBXBzJmjrtn6+GMgKiGLjEzOyDOmiIgX3Lp1jfv38xMZafp8hIYG07atM0FBQTg5OcXRg4xkCSGEEEIIka5FRkLwcwssLcG6+Ufo2rQxrjOEvyQ8woIYNSXEOyBJlhBCCCFEApRSXL/+L8HBD8mePS+uroUS3igN0+v1XLlygrCwENzcCpMtW+436uf2bX8ePryFk1N23N1LodFokjlSkVhKQUQERGCJ5kVUiXelQKnkKXIhkiZdJVkHDhxg8uTJnDhxgjt37rBhwwZatGgR7za+vr589dVXnD17ljx58jBixAi6dOnyTuIVQgghRPp3/PgfLF48nICA/4zLihSpSo8eP1GoUIVUjOzN7Nz5CytWjOfx45uvlmjw9GxMz54zyJkz7pu6xnThwjEWLhyEv/8R47I8eUrz2WeT8PRsmAJRi6SISq5SO4r3W7qqLvj8+XM++OADZs+enaj2165do3HjxtSqVYtTp04xYMAAunXrxs6dO1M4UiGEEEJkBIcOrWHcuGbcvu0K7ASuAGu4dCmUYcNq4u/vl8oRJs3atZOYPbsHjx9XAw4Bl4FfOHnyLIMHV+HBg5sJ9AAXLhzlm29qcflyBLCWqMdkOwEB2Rk7tgnHjm1MyUMQIl1IVyNZDRs2pGHDxP86Mm/ePPLnz8/UqVMBKFasGIcOHWLatGl4e3unVJhCCCGEyAAiI18yb15/4GOUWs3/f5sugMHQGKjGL78MYvLkg6kXZBI8eXIXH5/vgK+BSTHWeGAwNCUkpCwrVoyhf/9F8fYzf/4A9PrSKLUfiC4KUACl6gEfM3fuF1So0ASdLl19zRQiWaWrkaykOnr0KHXr1jVZ5u3tzdGjR1MpIiGEEEKkFydObCc4+C4wmthfmWwxGIZx8eIhAgIuvvvg3oCvrw9KWQDDzKx1wWDoi6/vcsLDQ+Ps48aN/7hyxQ+lvuH/CVY0HTCKJ08COHVqV/IFLkQ6lKGTrLt375LjtTtg58iRg+DgYMLCwsxuEx4eTnBwsMmfyAD8/aP+Xv2vX/qa3SGEECIVPHhwA43GGigZR4vyxnbpwf37N9BqCwKZ4mhRnsjIFwQFPYizj/9PJywfR4uygIb799PHY5JRaTSg1Ub9V6SODJ1kvYnvv/8eZ2dn41+ePHlSOyTxtry8oHBhmrKFwoH7IPA2vr6SaAkhhIifk1N2lAoH4rpO6bKxXXrg5JQNpW4BL+JocRmNRouDQ+Z4+4hyKY4W1wAVo514VzQasLICW1twdgYnp6j/2tpGLZeE693K0ElWzpw5uXfvnsmye/fu4eTkhK2trdlthg8fTlBQkPHv1q1b7yJUkdK8vKBjR8a5zqMjPtRkH76+4OMjyZYQQgjzKlRogrW1IzDVzFoDGs1UXF2LU6BAmXcc2ZupUaM9BsNTwNw1V2FotT9ToUIz7OzivsFqwYLlyZGjEFGPibnydVOwtc1E+fKNkiVmkTgWFmBvH5VMbdwIrVtD3bpR/924MWq5vX1UO/FuZOgkq1KlSuzZs8dk2a5du6hUqVKc21hbW+Pk5GTyJzKQjh1pWjOEca7zqPlorXFUy8cntQMTQgiR1tjaOtCu3UhgJjAAiP7h9RzQFqV20KXLxHRzbyhX10LUq9cNjWYAMBF4RFSidBSNpiE63XXatfsu3j60Wi1du34P/AG0By68WnMT6AfMpX37UVhb26XUYYjXWFiAnR38+Sfkzg1t28LatbBnT9R/27aNWv7nn1HtUivRypxZw9atG1Nn56kgXSVZISEhnDp1ilOnTgFRJdpPnTrFzZtRw/jDhw+nU6dOxva9evXi6tWrDB06lAsXLjBnzhxWr17NwIEDUyN8kVZEj2q1PG0c1SLwtoxqCSGEiOWjjwbTpcuPWFv/CuRFo7EFSuDoeIDBg1fw4YfNUzvEJOnTZy5NmvRFpxsDZH91PJXJli2AMWN24OFRNsE+KlduyVdf+eDgsAco9qqPfFhbL+Xzz3+iWbMvU/goRDSNBmxsYMcOaNYMXpvAZXTvXtT6HTui2if37wL37t1l6NAvKFOmADlyWFOiRB7atm3K/v17Et74HdiyZT0ff1yfAgWykjmzhjNnTqX4PjVKpZ9blfn6+lKrVq1Yyzt37sxvv/1Gly5duH79Or6+vibbDBw4kHPnzpE7d25GjhyZpJsRBwcH4+zsTNDKlTjZya8yGY6fH/j7syWwHD6PGhKYtTSurlC4cFQuJoQQQgCEhj7j+PEtBAU9wMUlH56ejbC0tErtsN5YUNADjh//g7CwZ+TOXYwPPqiDVpu0395fvgzn77+38eDBTZydXahYsRk2NvYpFHHGZmHxAheXa+TJkx8rq9erNsbNyirqL3fuuBOsmHLmhFu3ICIi6i853Lx5nQYNquDsnInhw8dSvHgpXr58yd69O1myZAF+flGjnZkza/Dx2UDjxi2SZ8dJsHLlUm7evEbOnK58+WV3Dhw4SalSZeJsHxHxglu3rnH/fn4iI02fj9DQYNq2dSYoKCjeGW/pKslKDZJkvSdeJVsjA3vhT2ECcaNmTUm0hBBCCJHy3jTJsrWNuuaqbdvE72vVKmjeHOIotJ1krVs34ty5f/Hzu4i9vWmSHRT0FGfnTEDsJGvUqK/ZunUDgYEBuLjkpHXrDgwd+h2WlpYAnDlzmm++GcCpU3+j0WgoUKAQ06bNp2zZ8ty8eYOhQ/tx7NghXr6MIG9ed8aMmUz9+vFfC3jz5nU++CD/O0my5PI3ISAqm/LyYpzPPLYElsMPL3x9a+HvL6NaQgghhEgdmTIl3Gbt2qT1uXYttGkD1tbm1z99mvi+njx5zJ49OxgxYkKsBAswJljmODo6Mnv2b+TK5crZs2cYMKA7Dg6OfPnlUAB69OhA6dJlmTp1LjqdjjNnTmFhEZWADRnSl5cvI9i69QD29vZcuHAOe3uHxAf+DkiSJURMHTvS1M+Ppv7zGHnmEf5UwjfQDX9/6NgxtYMTQgghhDD15EnKto/P1auXUUpRuHDRJG87ePAI4//nzevO5cuDWb9+pTHJun37Jv37DzH27eFRyNg+IOAmzZq1pESJUgC4uxd4m8NIEZJkCfG66FEtPz+2+F7BDy/8Awvj4+Mmo1pCCCGEeGfiG1XSaKLug5U57tuamRXdPigI3vaiobe56mj9+lXMnz+T69ev8Px5CJGRkTg6/n/6XZ8+X9G/fzdWrVpKjRp1adGiNfnzewDQs2d/Bg3qzd69f1KzZl2aNm1JyZKl3+5gklm6qi4oxDvl5WUs994RHzjzr9xbSwghhBBpglIQHg6tWiVtu1atorZLjqoMHh6F0Gg0+PtfSLhxDH5+R+nRowP16jVi5co/2L//JIMGfUtEjGocw4aN5ujRs9Sv35iDB/fy4YfF+eOPDQB06tSNkyev8sknn3Lu3Blq1y7PggWz3v6AkpEkWULE51W596Y1Q1hVaoKx3LuvryRaQgghhEhdej20bAk5ciSufc6c8PHHUdslh8yZs1C7tjeLFs3m+fPnsdYHBT01u52f3xHy5MnH4MHfUrZseTw8CnHr1o1Y7QoWLEyfPgNZv/5PmjT5mGXLFhvX5c6dh88+68XSpevp23cQS5b8kjwHlUwkyRIiMaLvrfVqVKsm+2RUSwghhBCp6uXLqP/++ivodPG31elg0SLT7ZLDlCmz0ev11K3rxebN67hy5RIXL55n/vyZ1K9fyew2BQoUIiDgJuvWreTatSvMnz/TOEoFEBYWxpAh/Th0yJebN29w7NhhTp48TuHCxQAYPnwAe/bs5MaNa5w+/Q+HDu2jSJFiccb45Mljzpw5xYUL5wC4dOkiZ86c4t69u8n3QLxGkiwhkuLVqNY413nUfLTWOKrl45PagQkhhBDifaMUvHgBDRrA5s1RI1Xm5MwZtb5Bg6j2yXkDJ3f3Avj6/kPVqrUYMWIQlSuX5OOP67F//x6mTp1rdptGjZrRu/dAhg7tR/XqZfjrryMMGTLSuF6n0/H48SN69epEhQqF+eyzNtSt25Dhw8cAoNfrGTKkLxUrFqNVqwZ4eBRmypQ5cca4fftmqlcvyyefNAbg88/bUr16WRYvnpd8D8Rr5D5ZCZD7ZIk4+fmxxdchqjAGhcFVCmMIIYQQIune9D5Z/98ebF5ttn59VJn2J0+iily0ahU1RRCiEqzIyGQMPIOS+2QJkZq8vGhKVLn3LYHl8DnTEN/A0nJvLSGEEEK8U5GR8Pw5WFpG3Wi4TZv/rwsPh4iIqD/x7kiSJcTbeFXuPereWhMYGdgL/8DC+Aa6GVcLIYQQQqQ0pf6fSL14EVXiXanknRooEk+SLCGSQ/S9tXyiRrX88MLXt5aMagkhhBDinZPkKvVJ4QshkpMUxhBCCCGEeO9JkiVEcosu997ytLHcO4G3pdy7EEIIIcyKHnWSenRpQ/Tz8DZPhyRZQqQULy/jqFZHfODMv3JvLSGEEELEYjBYYjBARERoaociiHoeDIao5+VNyTVZQqQkKYwhhBBCiAQopSMkJBMPH94HwMrKDo1Gk8pRvX+UUkREhPLw4X1CQjKhVAJ3eI6HJFlCvAvmCmOsK42/f1YpjCGEACAg4AI7d/5CQMAFbG0dqFy5JR9++BEWFm/+S6qAp0/vs3jxEE6d2oXBoCd37qJ07TqFwoUrpHZoQpgICYm6k3Bk5H20Mtcs1RgMEBKSyfh8vCm5GXEC5GbEItn5+YG/PyPPtMY/ayUCccPVFTp2TO3AhBCpZdWq8SxbNhKtNhsGQxW02jsYDH7kyVOKsWN3kDWra2qHmC4dPbqBSZPaotRLoCrgBOwFXuDt3YO+feelboBCmKHR6NFqXyIDWe+eUlFTBOMbwUrszYglyUqAJFkixfj5scXXAT+88KcwuLrJqJYQ76H9+1cwdWp74DvgG8D61ZoTaLXNcXd3Zdq0v2TqUBI9fXqfzp3zoFQhYBPg8WpNMPAlsIS+fefh7d0j1WIUQqQ/iU2yZDBSiNQihTGEeO8ppVi79kc0mobAGP6fYAF4YjD8xtWrx/nvv/2pFGH6tXjxkFcjWDETLIgazVoIFGTFinGpEpsQIuOTJEuI1PSq3HvTmiGsKjXBWO7d11cSLSHeB0+f3uPGjVMo1SWOFnXQ6dz4++9t7zKsDOH06d1AFUwTrGg6oCuPHwe+26CEEO8NKXwhRFpgrjCGby38/ZEphEJkYJGREa/+zzGOFhrAIUY7kVh6vZ6oUau4OAByxYQQImXISJYQacmrUa1xrvOo+WitcVTLxye1AxNCpIQsWVxxcsoJbImjxUX0+osULFj+XYaVIeTOXRTYR9Q1WOZswto6viRMCCHenCRZQqQ1r6YQjmt5mo74GKcQyrVaQmQ8Op0FjRr1RKP5FfB9bW0oGk1fHB1dqFKlVSpEl759/vkU4AXwBaB/ba0PsIfatdu/87iEEO8HmS4oRFrl5UVT/GjqHzWF0OdMQ3wDS8sUQiEymNath3P27GH++68uSrUAagF30Gp/w8LiKcOG/YGVlU0qR5n+FCxYnoYNe7F9+zzgMNCVqGmZm4C95MxZiJ49f07VGIUQGZeUcE+AlHAXaUL0vbUCe+FPYQJxo2ZNSbSEyChevozgzz9/YevW+QQGnsfa2oFq1VrRosWgV9PexJvatWsRy5eP4dGjQMCAtbUTtWu3p2fPn9HKHV+FEEkk98lKJpJkiTTFx+f/hTEelca1VFYZ1RJCCCGEeEfkPllCZEQxC2PEKPcuhTGEEEIIIdIOSbKESG+kMIYQQgghRJomSZYQ6ZWXl3FUqyM+cOZf46iWJFtCCCGEEKlHkiwh0rNXo1pNa4awqtQEkymEkmgJIYQQQqQOKeEuREbg5QVeXozzmff/whjrSuPvL4UxhBBCCCHeNRnJEiIjkcIYQgghhBCpTpIsITIaKYwhhBBCCJGqJMkSIqOSwhhCCCGEEKlCkiwhMjIpjCGEEEII8c5J4Qsh3gdSGEMIIYQQ4p2RkSwh3idSGEMIIYQQIsVJkiXE+0YKYwghhBBCpChJsoR4X0lhDCGEEEKIFCFJlhDvMymMIYQQQgiR7KTwhRBCCmMIIYQQQiQjGckSQvyfFMYQIlWFhYUQEHCBhw8D3rgPvV5PYOBlAgMvoddHvnE/jx7dJiDgAmFhIW/cR0jIE27dOs/Tp/ffuI+05OnT+9y6dZ6QkKepGodeH0lg4CUCAy+j1+tTNZaM9hyLlBER8YKAgIvcu3cdpVRqh/NOyEiWEMJU9KiWnx9bfK/ghxf+gYXx8XGTUS0hUkhQ0AN8fEawd68PL1+GAlCwYEXatRtJhQqNE9WHXq9n06af2LRpFk+e3AIgc+bcNGv2BS1aDEKn0yWqn7//3sby5eO4fPkYAJaWdtSq1YGOHceTKZNLovoIDLzE0qUjOHp0PQZDVKL3wQfedOw4hiJFKiaqj7Tk4sW/8PH5jtOn/wRAq7WgcuWWdOw4HlfXgu8sDr0+ko0bp7Jp0yyePr0NQJYseWne/AuaNRuY6Oc4Ody+7c/vv3/LsWMbUCoq0StTpgGffjqOQoXKv7M4RNoWFhbCihWj2blzEWFhTwHInbskbdoMo2bNDqkbXArTqPclnXxDwcHBODs7E7RyJU52dqkdjhDvlp8f+PuzJbAcPo8aEpi1NK6uSLIlRDIKDn7IoEGVefDgMQZDf6AmcBeNZi5K+dK//6/Urds13j6UUkyd+ikHDqwAugCfvFqzGo3mN6pUac3gwcvQauOfwLJ37+9Mn94FjaY6SvUGXAFftNqZZMuWiSlTDieYaAUEXGDIkKqEhTliMAwAygGX0GpnotFcYMyY7ZQuXSvBxyWtOH16L6NHN0KpohgMXwIFgX/Qaqdja/uMyZMPkTt30RSPw2AwMGVKBw4fXoNSXYE2gAJWAb9Ro0Z7vvrqdzQaTYrHcvPmOYYOrcaLF86vnuOygD9a7Qy02kuMHbuTkiWrp3gcIm178eI533xTh6tXz2Iw9AEaAkFoNL+i1GY6dpxAmzbfpHaYSRYaGkzbts4EBQXh5OQUZztJshIgSZYQGJOtkYG98KcwgbhRs6YkWkIkh3nz+rFjxwoMBj/AI8YaBXTD0nIlS5bcxsEhU5x9HD++lXHjmgArgLavrV0DtOHbbzdRsWKzOPt4/jyIzp3diIhoBfyK6RUFV9FqvahfvzV9+syN93hGjKjPf//dxGA4CmSOsSYcjaYh2bLd4JdfLiWY8KUFer2e7t0L8ehRfpTaBljHWPsYrbYSpUq5M27czhSP5dixTUyc2IKo57PVa2tXAO357rutlC/fKMVjGT68NufP38VgOAJkirHmBRqNNy4ud5g//0K6eI5Fylmz5nt8fMag1GHA87W1I4EJzJ9/iVy5PMxsnXYlNsmSV78QImHR99Z6Ve69JvvwXfdIyr0L8ZYiIl6wZ8/vr37lff2LhgaYQGRkBPv3L4u3nx07FqDVlid2ggXQGq3Wix07fom3j/37l/PyZTgwkdhfDwpgMPRl714fwsND4+zj7t1r/PvvLgyGEZgmWADWKDWRBw+ucvr0nnhjSSv+/XcPDx9eQ6nvMU2wALJgMHzL6dN/cu/e9RSPZfv2BWi1FYmdYAG0Rastx/btC1I8jsDAS5w9uw+DYSSmCRaADUpN4N69S/z33/4Uj0Wkbdu2LUCp9sROsACGo9VmYteuRe86rHdGkiwhROJJYQwhktWTJ3cJD38GVIujRU50uiIEBvrH28/NmxcxGOLqAwyG6ty6FX8fgYH+aLUFiZoiaE51IiJCePLkbpx93Llz6dX/xRVLRTQaywSPJ624fdsfjcYKqBBHi6gpcYGBl+JYn3wCAvzjeY41GAzVCQhI+cf1/8caVyxVAE26eY5FyoiMfMmjR9eJ+3Vih1IVMvTrRJIsIUTSRI9qtTxtHNUi8LaMagnxBuzsoqea3I6jxUsMhrvY2sY9JQXAwcE5nj4AArC3j78POztnlLoPRMTZB4CtrWO8fUSJK5b7KPUyxnGnbXZ2TigVATyIo0WAsV1Ks7dP+Dl+F3Ek/BzfAVSCr1mRsel0Flha2hL360Sh1QZk6NeJJFlCiDfj5WUc1eqID5z51ziqJcmWEInj6JiFUqXqoNXOAcyVW1+FwfCIqlXbxNtP9ept0Gg2ArfMrA1Ao9lAjRrx91GlSisMhsdEXd/zOj1a7RxKlKiFs3P2OPsoWLA8WbPmA2bF0WI2lpa2VKjQJN5Y0ooKFZpgYWEDzI6jxc9ky5afggVTvppejRqt0WjWY/5L6000mk0JPsfJoUiRimTOnJu4n+OfsbS0eyfXhom0S6PRULVqa7TahYC5Kca+6PXnEjy3pWeSZAkh3tyrUa2mNUNYVWqCyRRCSbSESJx27Uai1EmgHXDt1dJw4De02p58+GFL3N1LxdtHvXqfkSlTDrTaesBBoopmKOAQWm19MmXKTr16n8fbR758JalUqTVabR+iCl+Ev1pzDWiPUn/Trt3IePvQ6XR06DAKWAkMAKLvnRQM/ABMoHnzATg4vH69Vtrk6JiF5s2/BMYDPwLPXq25D3wJrKJDh+/eSen0evW64eycDa22PnCY/z/HB9Bq65M5cy7q1v0sxePQ6Sxo3/47YBnwFf8f5Qsm6nq+SXz88aBXI2/ifday5VB0ugdoNE2Bs6+WRgLr0WrbUKhQJcqWrZ+KEaYsqS6YAKkuKEQS+PiwJbAcfnjh+6g0rqWySrl3IRLhyJF1zJjRjbCwIHS6/Cj1CIMhiMqV2zBw4GKsrRP+/AkMvMS4cR9x+/ZZdLpcgAa9PhBX1+KMHLkBN7fCCfYRHh7G9OldOXx4FVqtExpNNvT6a9jYOPHllwupUsVc0YXYNm2axpIl36DX69Hp8mIw3EGpFzRt+iVdu05+p/dzelt6vZ5ffx3MH3/MRKOxQavNhV5/E51OR+fO39O8+YB3FktAwEXGj/+IwMDz6HSugEKvv0Pu3CUZMWI9rq6F3lksGzZMZenSb9HrFTpdHvT6QCCCFi0G0rnzD1JZUADw33/7mTSpLcHBd9Hp3FHqGQbDI0qVqsvXX6/EySlraoeYZFLCPZlIkiVEEkWXez/TGv+slQjEDVdX6NgxtQMTIm178eI5hw+vISDgAjY2DlSu3JI8eYolqQ+DwcDp03s4ezaqsluJEtX54IO6Sf7CGxBwgSNH1hEW9ozcuYtSpUprbGzsk9THs2ePOXBgBQ8e3MTZOTvVqrUlW7bcSeojLXnw4BaHDq0iKOgB2bPnpXr1djg6ZnnncUQ9x7v577/9aDQaSpasSenStVMlqQkOfsSBAyt4+PAWzs4uVK/elqxZ3d55HCJte/kygr/+2siVKyexsrKhQoUmFCxoruJg+iBJVjKRJEuIN+TnxxZfB/zwwp/C4Oomo1pCCCGESNcy7H2yZs+ejbu7OzY2NlSsWBG/BC78mD59OkWKFMHW1pY8efIwcOBAXrx48Y6iFeI9JoUxhBBCCPGeSldJ1qpVq/jqq68YNWoU//zzDx988AHe3t7cv3/fbPvly5czbNgwRo0axfnz51m0aBGrVq3im2++eceRC/GeksIYQgghhHgPpavpghUrVqRChQr8/PPPQNS85Dx58vDFF18wbNiwWO379evH+fPn2bPn/3eWHzRoEH/99ReHDh1K1D5luqAQyUgKYwghhBAiHctw0wUjIiI4ceIEdevWNS7TarXUrVuXo0ePmt2mcuXKnDhxwjil8OrVq2zbto1GjeK+d0N4eDjBwcEmf0KIZPJqVGuc6zyTUS0fn9QOTAghhBAi+VikdgCJ9fDhQ/R6PTly5DBZniNHDi5cuGB2m/bt2/Pw4UOqVq2KUorIyEh69eoV73TB77//njFjxiRr7EKIGLy8wMuLcX5+bPG9ElUYI7AwPj5SGEMIIYQQGUO6Gcl6E76+vkycOJE5c+bwzz//sH79erZu3cq4cePi3Gb48OEEBQUZ/27duvUOIxbiPSKFMYQQQgiRQaWbkaxs2bKh0+m4d++eyfJ79+6RM2dOs9uMHDmSTz/9lG7dugFQqlQpnj9/To8ePfj222/N3lPC2toaa2vr5D8AIURsr0a1mvr50dR/AiMDe+EfWBjfQDfjaiGEEEKI9CbdjGRZWVnh6elpUsTCYDCwZ88eKlWqZHab0NDQWIlU9F3m01G9DyEyvldVCKNHtWqyD991j2RUSwghhBDpUrpJsgC++uorfvnlF5YsWcL58+fp3bs3z58/p2vXrgB06tSJ4cOHG9s3bdqUuXPnsnLlSq5du8auXbsYOXIkTZs2NSZbQog0RApjCCGEECIDSDfTBQE++eQTHjx4wHfffcfdu3cpU6YMO3bsMBbDuHnzpsnI1YgRI9BoNIwYMYLbt2+TPXt2mjZtyoQJE1LrEIQQCZHCGEIIIYRI59LVfbJSg9wnS4hU5OcH/v5sCSyHz6OGBGYtjasrkmwJIYQQIlVkuPtkCSHeQ6+u1WpaM4RVpSaYTCGUa7WEEEIIkValq+mCQoj3VPQUQp95bAkshx9e+K4rjb9/VhnVEkIIIUSaIyNZQoj0QwpjCCGEECIdkCRLCJG+RJd7b3naWO6dwNtS7l0IIYQQaYZMFxRCpE9eXjTFj6b+UVMIfc40xDewNP7+UhhDCPF/BoOBf/7Zwd9/byMyMoKCBT2pUaMDtrYO7zyWoKAH7N27hNu3L2Jr60jlyq0oWrQSGo3mncciMjalFOfOHeLIkXWEhz8nT57i1KrVCSenrKkd2ntDqgsmQKoLCpEOvKpCODKwF/4UJhA3ataUREuI992DBzcZPbopt279i05XCHBErz+Fra0TQ4euwNOzwTuLZceOBSxY0B+9XoNWWwq4g14fQOnS9Rg+fA329s7vLBaRsT179pjx4z/m/Pn96HR5ARcMhn/R6bT07TuPOnU6p3aI6ZpUFxRCvD+ipxC6zjNOIfRd90imEArxHnv5MpwRI7y5fTsYOIxefxG9/gRwjRcvqjBhwkdcv37mncTi57eFOXN6EhnZFaUC0Ov90OtvABv57z8/fvyx/TuJQ2R8SikmTmzFxYv/AVvR66+h1x9HqQAiI9szY0ZXTp7cldphvhckyRJCZBxSGEMI8cqRI+u5c+cCBsNGoDIQPSUvL0qtw2DIwcaNP72TWFaunIhGUxOYA0RP19ICzTEYFnDy5DauXDn5TmIRGduFC0c5e3YfBsNvQCP+/1U/O/ALWu2HrF79farF9z6RJEsIkbFIYQwhBPDXXxvRaD4EPjCz1hqDoQuHD69P8TiePLnL5cvHUKon/0/0YvoYrTYbx45tSPFYRMZ37NhGdDpXohKs12kxGLpz9uw+QkKevOvQ3juSZAkhMiYvL+OoVkd84My/xlEtSbaEyPhevHiOUtnjaeHCy5eh7ySOKHHFYoFGk4Xw8JSPRWR84eHPgWzE/RXf5VW7sHcV0ntLkiwhRMb1alSrac0QVpWaYDKFUBItITK2vHlLoNUeAsx/mdRodpE7d4kUjyNrVjdsbJyB3XG0uIZef4m8eVM+FpHx5c1bAr3+LBAYR4td2Ntnw9k5vh8gRHKQJEsIkfFJYQwh3jve3j0wGJ4Co4DXCyn/iVKbady4V4rHYWVlQ/36XdFq5wJnX1v7Eo1mMLa2zlSt2ibFYxEZX40aHbCysgEGA/rX1p5Cq11IgwbdsLCwTIXo3i+SZAkh3h8xCmMMzbpQCmMIkYHlyuXBZ59NASaj0dQCfgPWAV3QaJpQrlxD6tX7/J3E0rbtKNzc8qHVVgIGABuBOWi15dFoNjNw4GJsbOzfSSwiY7O3d2bAgF/RaFaj1XoB84h6vfVDq62Ku3sxWrf+JnWDfE/IfbISIPfJEiKD8vNji68DfnjhT2FwdZObGAuRAf3112bWrp3MxYuHAMia1Z0mTXrTvPnAd/pr/vPnQaxdO4kdOxby/PlDQIOnZ2PatBlOsWKV31kc4v3w338HWL36e06d2gkoHB1daNiwOx9//DV2do6pHV66ltj7ZEmSlQBJsoTIwF7dxHhLYDl8HjUkMGtpXF2RZEuIDCg0NJjIyAgcHLKg1abeRB69Xk9IyGNsbOyxtpbvFSJlvXjxnPDwUBwcsqDT6VI7nAwhsUmWxTuMSQgh0hYvr6gqhH5+NPWfwMjAXvgHFsY30M24WgiRMdjZxf1l6F3S6XRSdEC8MzY29jIVNZVIkiWEEK+SrXE+89gSWA4/vPBdVxp//6wyqiWEEEKIJJPCF0IIEU0KYwghhBAiGUiSJYQQMcW4t1Z0uXcCb0u5dyGEEEIkmiRZQghhjpeXcVSrIz5w5l/jqJYkW0IIIYSIjyRZQggRlxijWqtKTTCOavn6SqIlhBBCiLhJ4QshhEiIFMYQQgghRBLISJYQQiSWFMYQQgghRCJIkiWEEEkhhTGEEEIIkQBJsoQQ4k1IYQwhhBBCxEGSLCGEeFNSGEMIIYQQZkjhCyGEeFtSGEMIIYQQMchIlhBCJBcpjCGEEEIIJMkSQojkJYUxhBBCiPeeJFlCCJESpDCGEEII8d6SJEsIIVKKFMYQ7zmDwcDz50Ho9ZFv3IdSitDQZ0REvHirWCIiXhAa+gyl1Bv3oddH8vx5EAaD4a1iSQ7h4aGEh4emdhgiBclznL5J4QshhEhpUhhDvGeePLnHunWT2LVrCWFhT7C0tKV69ba0bj0cV9dCiepDr49k27Y5bN48m3v3/AEoVaoOLVsOoVw570TH8s8/O1m3bjJnzuwBIEeOwjRr1pdGjfqg0yXua9Dt2/6sXTuJAwdW8vJlGLa2malfvwsff/w1mTPnSHQsb0spha+vDxs3zuDatRMAFChQgY8+GkD16u3QaDTvLBaRMpRS7N37Oxs3zuDGjZMAeHh48dFHA6lW7RN5jtMRjXqbn3TeA8HBwTg7OxO0ciVOdnapHY4QIr3z8wN/f7YElsOHjgTihqsrdOyY2oEJkTwePgxgyJCqPHnyDIOhG1AOuIRWOx9r6xAmTtyLh0fZePvQ6yP5/vvWHD++BaXaAE2AZ2i1v2EwHKNXr9k0atQnwVi2bp3N/Pn90Go/xGDoAjgCW9Bo1uDl1Yxhw1YnmGhdufIPw4fXJiLCCYOhJ1AQ+AetdiGZMzsxefJBsmXLnZiH5q0opVi4cCBbtsxAo2n06nFRaDSrUGoHH300mK5dJ6d4HCLlKKWYP/8Ltm2bjUbTGKVaAwY0mpUo9SctWw6jc+fvUzvM915oaDBt2zoTFBSEk5NTnO0kyUqAJFlCiBTh58cWXwf88MKfwuDqJqNaIkOYMOFjjh8/jsFwBMgTY00QWm0dXF3DmT3733h/kd+xYwFz5vQGNgONY6xRwAA0mp9ZsOAKOXK4x9nH3bvX6NmzIEp9AUwDYu7vD6AZ/fotoH79bnH2oZSiT59S3Llji8GwB4j5heomWm0VvLy8+OabdXH2kVxOn97DyJF1gdnA6wnmDGAAEyfup2TJ6ikei0gZ//yzk9GjGwDzgJ6vrZ0KDGbSpEMUL17l3QcnjBKbZMk1WUIIkRqkMIbIgB49uo2f3yYMhhGYJlgAzhgMPxAQ8B/nzh2Kt58//piLRtMU0wQLohKliWg0jvz55y/x9vHnn7+g0TgCEzFNsACaoNE0YcuWOfH2ce7cIW7fPovB8COmCRZAXgyGb/jrr008ehQYbz/JYevWuWi1JYHeZtb2R6stwrZt8R+PSNuinuMyQA8zawei0xVk27a57zgq8aYkyRJCiNQihTFEBnPz5jmUMgD142hRG7Dgxo0zcfahlOLWrX9RKq4+7DEYqnH9etx9AFy//i8GQ3XA/CwUpby5dSvhPjQaS6BmHC28UUrPrVvn4u0nOVy9+i8GgzexE0YADQaDN1euxH88Im2Leo7rY/451qLXe3P1qjzH6YUkWUIIkdpeJVvRo1o12YfvukcyqiXSHWtr21f/9ziOFkFAJFZWtnGsB41Gg6WlbTx9gEbzMMa+zLOyskWrfRRPi0ev9hN/H0pFvorbfB/R7VJa1PHGfzwJPSYibYt6/uJ+3UPCr3uRdkiSJYQQacWrUa1xrvMYmnWhcVTLxye1AxMicQoV8sLRMQcQ11S+RWi1lnh6Noy3nw8/bI5O9xsQYWbtfyh1jIoVm8fbR8WKzV9dF3bWzNoItNolfPhh/H14ejZEq9UBv8bRYiFOTjkpXDjlL6asXLk5Wu1a4ImZtQ/RajdQuXL8xyPStqjneDXmk/r7aDSb5DlORyTJEkKItCTGFMLoUS0Cb8uolkgXLC2taNVqCDAfmAxE39sqEvBBo/mWunU/I3PmnPH289FHg1HqJtAOuBtjzQm02o/IkaMQlSu3jLePKlVa4eJSEK22BfBPjDV30GjaodEE8NFHg+LtI0uWXNSt+xkazTfAMkD/as0L4EdgAa1aDcHCwjLefpJDgwa9sLa2RKttClyNseYyWm0TbG1t8fY2dy2PSC8aNeqDlZXm1XN8LcYaf7TaJtjZOcRbqEWkLZJkCSFEWiSFMUQ61aLFV7RoMQgYilbrhlZbHZ3OHfiUSpWa07PnjAT78PAoy7Bha7Cy2olGkwettjI6XSmgPDlyWDBu3E4sLa3j7cPKyobx43eSI4cF4IlOVwqttjIaTV4sLf9k2LA1FChQJsFYevacSaVKzYCO6HT50Gqro9W6AV/z0UeDad58YIJ9JIesWV0ZO3Y79vaXgIJotRXQ6coDhXBwuMHYsTve6T27RPLLli03Y8dux87uAuCBVuv16jkugqPjbcaP34mzc/bUDlMkkpRwT4CUcBdCpLpX99YaGdgLfwoTiBs1a0q5d5G2BQZeYs+e37h//wbOztmpWbMjBQt6JqmPkJCn7Nv3O5cv/42lpTXlyzemQoUmib6JMETdc+v48T/4+++tvHwZTsGC5alVqxMODpmSFMvlyyfw9fUhKOgBLi75qFOnK66uBZPUR3IIDw/j0KFVnDnji0ajoWTJmlSt2kau1clAwsNDOXBgJWfPHkCj0VC6dG2qVGmNlZVNaocmkPtkJRtJsoQQaYaPD1sCy+GHF76PSuNaKqvcW0sIIYR4h+Q+WUIIkdFIYQwhhBAiXZAkSwgh0hMpjCGEEEKkeZJkCSFEeiSFMYQQQog0S5IsIYRIr2KMaq0qNcE4quXrK4mWEEIIkZoSX55HCCFE2uTlBV5ejPOZ9//CGOtK4+8vhTGEEEKI1CAjWUIIkVFIYQwhhBAiTZAkSwghMhIpjCGEEEKkOkmyhBAiI5LCGEIIIUSqkSRLCCEyKimMIYQQQqQKKXwhhBAZnRTGEEIIId4pGckSQoj3hRTGEEIIId6JdJdkzZ49G3d3d2xsbKhYsSJ+Ccx5efr0KX379iVXrlxYW1tTuHBhtm3b9o6iFUKINEYKYwghhBApLl1NF1y1ahVfffUV8+bNo2LFikyfPh1vb28uXryIi4tLrPYRERHUq1cPFxcX1q5di5ubGzdu3CBTpkzvPnghhEhLvLxoih9N/aOmEPqcaYhvYGn8/ZEphEIIIcRb0iilVGoHkVgVK1akQoUK/PzzzwAYDAby5MnDF198wbBhw2K1nzdvHpMnT+bChQtYWlq+0T6Dg4NxdnYmaOVKnOzs3ip+IYRIk/z8wN+fkYG98KcwgbhRs6YkWkIIIcTrQkODadvWmaCgIJycnOJsl26mC0ZERHDixAnq1q1rXKbVaqlbty5Hjx41u83mzZupVKkSffv2JUeOHJQsWZKJEyei1+vj3E94eDjBwcEmf0IIkaG9mkIYXe69JvvwXfdIphAKIYQQbyjdTBd8+PAher2eHDlymCzPkSMHFy5cMLvN1atX2bt3Lx06dGDbtm1cvnyZPn368PLlS0aNGmV2m++//54xY8Yke/xCCJHmdexIU79XUwgph09gR3wD3fD3h44dUzu4lHPt2r/8/fdWIiMj8PAoh6dnI3Q6XZL6ePLkHocPryE4+AHZsuWhSpXW2Ns7J6mPiIgXHDu2kYCAC9jaOvDhhx+RK5dHkvpQSnH27EHOnj2AUoqSJatTokR1NBpNkvoR4n30+PEdjhxZS3DwQ7Jnz0eVKq2xs3NM7bDeWGDgZY4d28CLF8/Jm7c4FSs2x9LSOrXDem+km+mCgYGBuLm5ceTIESpVqmRcPnToUPbv389ff/0Va5vChQvz4sULrl27ZvzA/Omnn5g8eTJ37twxu5/w8HDCw8ON/w4ODiZPnjwyXVAI8X7x82OLrwN+eOFPYXB1y3DXaoWEPOHHH9tz6tQOtFonNBpb9Pp7ZM2aj6+/XknRoh8m2IfBYGD58u9Yu/ZHlNKg1WZHr7+LlZUNXbv+QOPGfRMVi5/fFqZN+4znzx+i07mi1FMMhjBq1OjIF18swMrKJsE+7t69xsSJrbh+/R+02iyABoPhEfnyleXbb9eSM2eBRMUixPvGYDCwZMkwNm2ahlI6tNps6PV3sLKyo3v3n/D27p7aISZJeHgYM2d24+DB5Wi19mg0zuj1gTg6uvDVV7/h6dkwtUNM1zLcdMFs2bKh0+m4d++eyfJ79+6RM2dOs9vkypWLwoULm/wiWaxYMe7evUtERITZbaytrXFycjL5E0KI946Xl7Hce0d84My/xnLvGWEKoV6vZ/ToJvz773FgJQbDQ/T6u8Bxnjxx47vvvAkMvJRgP6tXj2f16gkYDN+g1B30+gDgBhERnZg/vx979ixJsI9z5w4xceLHhIZWAs6j19/GYHgAzOHAgTVMn941wT6ePw9i+PDa3LwZBPyJwfDgVR+7uHUrhOHDaxMS8jTBfoR4H/n4jGDDhikYDKNQ6u6r9/F1IiLaMnt2Dw4cWJnaISbJ1KmfcvjwRmABBsMD9PrbwFlCQsozblxzLlw4lsoRvh/STZJlZWWFp6cne/bsMS4zGAzs2bPHZGQrpipVqnD58mUMBoNxmb+/P7ly5cLKyirFYxZCiHQtRrn3VaUmGMu9+/qm/0Tr5Mmd+PsfwWBYA3wCRBdHKo/BsIOICAc2bpwabx+hocGsXfsjMAQYDWR5tcYNmA20xsdndLzXAQOsWDEOKIVS64Cir5baAb1Qag6HDq3k5s1z8faxe/diHj++jcGwC6hH1Me7BqiLwbCLx48D2b3713j7EOJ9FBz8iI0bpwHfAiOATK/W5AEWAM1YunQU6WTiF1evnuLYsXUYDPOB7oDtqzXFUWoDUJRVqyakXoDvkXSTZAF89dVX/PLLLyxZsoTz58/Tu3dvnj9/TteuUb/yderUieHDhxvb9+7dm8ePH/Pll1/i7+/P1q1bmThxIn37Jm76hhBCCDJkYYyDB1eh1ZYCappZ64jB0BVf3/h/vT5+fCsREc+BL82s1QD9efToOpcuHY+zj5CQJ5w+/ScGQx/+n+jF1AGtNguHDq2KN5b9+1ehVDMgv5m1+VCqBfv3x9+HEO+j48e3EBkZDnxhZm3U+/jePX+uXj31bgN7Q4cOrUarzU7Uj0evs8Jg6M2JE1sJDZXCbikt3RS+APjkk0948OAB3333HXfv3qVMmTLs2LHDWAzj5s2baLX/zxvz5MnDzp07GThwIKVLl8bNzY0vv/ySr7/+OrUOQQgh0q8MVBjj+fOnGAx5ifoSZU4+XrwIwmAwmHyuvN5H1G+VrnH28f92ccURZNI2Nis0mlzx9gHw7NkTwPysjuj+nz07HW8fQryPQkKeotHYolTs+61GSfh9nJY8f/4UjcYN8z/aQNTxKMLCnmFnJ5fEpKR0lWQB9OvXj379+pld5+vrG2tZpUqVOHZM5p4KIUSy8PKKul7Lzw98faIKYwQWxscnfRXGyJWrIFqtDwZDBGBu+vhhsmf3iDPBiu4DDMBfgLkiGYdftYu7QmCmTDmwsrInIuIQUdP8Xncfg8GfnDl7xNkHQO7chXjw4DAxZseb0GoP4+aWtEqFQrwPXF0LolQocBIoa6ZF1Ps4vRSOyZWrIAbDr8AjIKuZFoextnbCySnbO47s/ZOupgsKIYRII9J5YYz69bthMNwHpplZexKNZiWNGsVfUax06dpky5YfjWYk8HoxpWC02gkUL14DV9dCcfZhbW1L7dqfotXOAW68tlYBo9DpdNSsGf9QYYMG3TEY/ID1ZtZuwmA4SoMG6atCmhDvQrlyDciUyQ2N5lvg5Wtrn6LVfs8HH3jj4hLXaHPaUqvWp2i1ChhD1DkkpmtotfOoV6+zlHJ/ByTJEkII8WbScWGMPHmK0arVcGAY0A7YCRwDRqDV1iR//lI0bmx+1kQ0nU5H//4L0Gj2o9VWBpYBx4H5aLUVsLK6Rc+eMxOMpV270WTJ4ohWWxH4AfADNqHRNATm0aPHdBwds8TbR4UKTahUqRUazSdAX2A/cADoh0bTiooVP6ZixeYJxiLE+0ans3j1Pt6FRlMNWEHU+3guWm15bGzu06OHuR9j0iZn5+x06/YTMAuNpgmwhahzyvdotR+SLVsWPvlkZOoG+Z5IN/fJSi3BwcE4OzvLfbKEECIhPj5sCSyHH174PiqNa6msaXoKoVKKnTt/Ye3aH7l//woA1taO1KvXhY4dxyf6eoVz5w6zdOlIzp7dB4BGo6V8+SZ07jyRvHlLJKqPx4/vsGTJcA4cWIleH3Wvxrx5P6B9+++oXPnjRPWh10eyZs33bNkym2fPom534uiYg6ZN+9Cq1XAsLOK6RkMI8d9/+1m69DvOnz8ARL2Pvbya07nz9+TOXSSVo0u6Q4fWsGLFOG7dOgOAhYUNNWq0o1On78mcOUcqR5e+JfY+WZJkJUCSLCGESAI/P/D3Z0tgOXzoSCBuuLqm7cIYBoOBwEB/Xr4MJ1eugtjY2L9RPw8fBhAU9IAsWVzf+EtMSMhT7t+/jo2NA7lyeaDRxFWYI24vX0YQGOgPgKtrYSwt5ZYlQiTWgwe3CA5+SNasbmTKFFcxjPRBKcWdO1d48SKEHDnyY2/vnNohZQiSZCUTSbKEEOIN+PmxxdchqjAGhcE1fRXGEEIIIcxJbJIl12QJIYRIfum8MIYQQgjxNiTJEkIIkTLScWEMIYQQ4m2ku/tkCSGESGde3VtrnM+8/xfGWFcaf/+0XRhDCCGEeFMykiWEEOLdeDWqNc51HkOzLjSOavn4pHZgQgghRPKSJEsIIcS7E2MKYUd8jFMI5VotIYQQGYkkWUIIId49KYwhhBAiA5MkSwghROqQwhhCCCEyKCl8IYQQInVJYQwhhBAZjIxkCSGESBukMIYQQogMQpIsIYQQaYcUxhBCCJEBSJIlhBAi7ZHCGEIIIdIxSbKEEEKkTVIYQwghRDolhS+EEEKkbVIYQwghRDojI1lCCCHSBymMIYQQIp2QJEsIIUT6IYUxhBBCpAMyXVAIIUT64+VFU/xo6h81hdDnTEN8A0vj7887n0L49Ol9/vhjFnv2+PDs2QOyZs1D/fpdadiwN3Z2jonq48WLUObM6cWRIxuJiAhFo9GRN28RPv98GmXK1EnhIzB19+5VNm+ezoEDa3nx4tn/2rvv8CjKro/j350NaUASOiQiHQHpYJAmIChNHkB9BQRExIIFfURRLICICqIoKk1F5MEgCCgKFqSGJhqliVIivYTQSQiBlJ15/0gICaaS3WzK73NduZS5Z++c2TuQnJyZcxMUdBNduz5Kp06D8fAolqexSP4VG3uBn36azvLln3PmzBFKlixHp04DueuuYfj7l3N3eCJuZ7Msy3J3EPlZdHQ0/v7+RM2fj5+vr7vDERGRa4WFQXg4oyKGEk5tIgiiffu8SbQiI/fz4ovtiYo6h2n2B2oDW7HZFnDDDXWYMGENJUuWznSO2NgYHn20JtHRJ4GuwO1AJDALiGLo0I/o1u1xV18KALt3b2L06C7Ex3thmg8AgdhsoVjW9zRu3JlRo76jWDHPPIlF8q/o6DO89FIHjh4Nx7LuAxoD4RjGXAICSjNhQigVK1Zzc5QirhEbG03fvv5ERUXh5+eX4XlKsrKgJEtEpIAICbnaGONMQwIbuL4xxogRbfjnnxOYZigQlGrkbwyjHW3adOH55zN/aGzUqDvYvn0N8CNwZ6qRC0A3bLYw5s07ha9vxt/MnSEhIZ6HHqrGhQvVMc0fgdRVuJXYbN3p1+8V+vYd7dI4JP97993+bNiwPPnr/uZUI0cxjPbUqlWJd95Z76boRFwru0mWnskSEZHCIY8bY+zbt5U9ezZimu+QNsECuBnTfIUNGxZw/vzJDOeIj7/Mn3+uA4aQNsGCpCTnEywrnjlzXnFq7On57bdviYqKwDRnkDbBAuiEZT3E99/PwOFIdHkskn+dO3eCDRsWYJqvkjbBArgB05zInj0bOHBguzvCE8k3lGSJiEjhkYeNMf7553fABtyVwRm9MM0EDhzYluEcBw5sx7LigZ4ZnFEXqMbu3RtzE2q2hIeHYbfX4N8/OF/Ri+jo45w+fdTlsUj+deDANkwzkYy/ZnsANsLD1YlGijYlWSIiUvgEB6dUtQYQAjv+TKlqOSvZsts9AAu4nMEZsQAYRsY9pooV80pz7r8lzW8Y9usLMgeSrudy8udMT2yq86Sourr+GX3NJn0N6etEijolWSIiUjilqmp91eDNlKpWaKhzEq3GjTthsxnAFxmcMQdvb39uuqlFhnNUrdoQD4/iwOwMzlgLHKdNm/tyFWt2NGnSGYfjGLA63XGbbQ5BQTdTpsy1t0ZKUVK7dgu8vPyAORmc8QU2m0GjRp3yMiyRfEdJloiIFG7JydaVqlZ71hD69ZlcV7XKlbuRNm36YBgvAitTjVjAl9hs73HXXU/g7V08wzkMw6BjxwHAD8BbQEKq0b+AgRQrVoJevZ67/kCzqUGD9lSr1gzDeAj4M9VIAvA2lvUt9977PDabzeWxSP7l41OCu+56ApttEjCPq5VPC1iBYYykTZu+lCtX2X1BiuQDSrJERKRocEFjjCef/Ji6dZsBd2AYTYF+GEYdoD+tW99L//6vZznH449Po27dNsArJDXQ6Au0ARpgt5/hrbdWYhiu/3Zts9kYNepbKlYsDjTCZrsN6IthVAVG8n//9zK33z7I5XFI/te//+u0bn0PcD+GUZekr/tmwJ3Urducp5762M0RirifWrhnQS3cRUQKobAwloaWIIzgXO+t5XA42LLlJ1av/oLz509Rvnxl7rjjIW6++bYcVX02bFjA/PnjOH36OJ6exWjRoieDBk2gRImAnAeVCwkJcWzcuIgNGxYSG3uBypVvonPnR6levXGexiH5m2VZ/P33OlasmMXJk0coVao8HToMpGnTLtjtrn+GUMRdtE+WkyjJEhEppJI3MV4a0ZSQM12JKNOQwEBcvreWiIgUXNonS0REJDMubowhIiJFl/priohI0RYcDMHBjAuZwdKIpoQRTOjXDQkPL6OqloiIXBdVskRERMAljTFERKRoylGSdenSJTZs2MDOnTv/NXb58mXmzMlozwQREZECINUthFfavRNxjIkTdQuhiIhkX7aTrPDwcOrWrcttt91GgwYNaNeuHcePH08Zj4qKYvDgwS4JUkREJE8FB6dUtQYQQuCZP1OqWkq2REQkK9lOsl588UXq16/PyZMn2bNnDyVLlqR169YcPnzYlfGJiIi4hxpjiIjIdcp244tffvmFlStXUrZsWcqWLcvSpUt54oknaNu2LWvWrKF48Yx3tBcRESmw1BhDRERyKNuVrEuXLuHhcTUns9lsTJ8+nR49etCuXTvCw8NdEqCIiEi+oMYYIiKSTdmuZNWpU4c//viDunXrpjk+ZcoUAP7zn/84NzIREZH8Jrmq1SMsDEJDCCOY8IjaTJwYRPv2qmqJiEiSbFeyevfuzbx589IdmzJlCv369cOyLKcFJiIikm+pMYaIiGTCZikzylR0dDT+/v5EzZ+Pn6+vu8MREZH8JiwMwsMZFTGUcGoTgapaIiKFVWxsNH37+hMVFYWfn1+G52X7dkERERFJhxpjiIjINXK0GbGIiIhkQI0xREQkmZIsERERZ0m1t9YAQlL21po4Uc9qiYgUJUqyREREnE2NMUREijQ9kyUiIgXW+AULWBIWhmexYrx4zz10a948x3Ns27+fqT/8QFxCAnc2acKADh2cE1yqdu89wt9MaowRUZvQiKCU4dQsy+Lvv9dz9OhufHxK0KxZV0qUKOWcWAqw0NC5bNnyM8WKedG16+PUrNk0x3OcORPBtm0rSEyMp2bN5tSo0cQFkWYtaY3XcfToHnx8SiavcYBbYomJOcfmzT9x6VIMN9xQh5tvbovNZnNLLM5w5swxtm1bSWJiPLVq3UL16o3dHZIUcdfVXfCLL75gxowZHDhwgE2bNlGlShUmT55MtWrV6NmzpyvidBt1FxQRyX9C1qxh0OQpmFZCqqM2Snj78OdHH1CtQoUs5zgbHc2tL7zIPxERwNVvhb5exVk08nm6Nmvm5KBDrjbGONOQwAZXG2Ps3r2JyZOHEBGxC7ABFsWK+fCf/zzNgAFvYrfbnRtLAbB16wreeuv/iIuLSnXURsWKNXn33V/w8yub5RxxcbFMn/4Ua9bMwbIcKcdr1WrJc8/9j8DAWi6IPH07d27kgw8e5vjx3VxdY1969fov99//ep6tscPhICTkFZYs+ZCEhEspsQQG1uW//51FnTq35kkcznL58kWmTXuCtWvnplnj2rVb8dxzc6hUqYYbo5PCKLvdBXN8u+D06dMZPnw43bp14/z58zgcSV/QAQEBTJ48+boDFhERyY7V27cz8P2PMK3KwGIgHjgPTCbmsslNQ58kPj4+0zlM06TOE8P4J+I0MAk4CyQAS4iNC6L72Lf4Y+9e5waeQWOMKVP+5NVX7yAyMgBYAyQCx0lIeJ6vv36HmTP/69w4CoC9e7fw2mt3ERdXDviOpLU5B7xPZOQRnniiPqZpZjqHZVm89da9hIZ+hWVNSn59AvAt+/ad5cUX23H27HFXXwoA+/ZtZdSoOzlxogywlqQ1jiAh4VkWLpzArFnP5UkcAJ9++gzffPMuCQkjgOPJsawhMjKAV1/txIEDf+ZZLLllmiZvvnk369Z9jWW9T9K/A/HAYvbuPcWLL7bj3LlI9wYpRVaOk6yPPvqITz/9lFdeeSXNb12aN2/Ojh07nBqciIjItQa89x7gDWwAegHFAH/gaWARCY54nvz440zn+Oj77zkVfQ6YBzwLlCLpDvoewHosfBk6darzg0+nMcZff7xIfHwQprkSaE/St+aKwOvAu/zww1QiIw84P5Z8bNq0x7CsK2v8H5LWJgB4BviK6OgTLFkyOdM5/vxzNVu3/oRpzkt+XUDyPD0xzVAuXLiU5RzO8uWXr+FwVME0VwC3kbTGlYA3gAl8//1HnDx5yOVxHD++jx9/nIZlvQuMJenrzADaY5orSEwMYv78110eh7Ns376S7duXY5oLgGEk/TtQDOiFaYYSHX2BpUs/dG+QUmTlOMk6cOAATZr8+15mLy8vLl686JSgREREMnL8XAzwIEk/pF6rG3AT89evz3SO6T/9BFQjKUm7VnngYTbvc+EPvcmNMZ4v+yHHzy4HngLSuyX9MQyjJGvXznVdLPnQ3r3bgYeA9G777AHU4KefZmQ6R2hoCIZRJ/n8a1XENAexcuWcXMealZiYc/zxx/eY5jDAJ50zHsdm82Xdunkuj2Xt2i8xDD/g0XRGi2OaT/Hrr98SGxvt8licYc2aLzCM+kDXdEYDMc2BrFz5RV6HJQJcR5JVrVo1tm3b9q/jy5Yto27dus6ISUREJBOJQJ0MxmxAPeISHBmMJzl/8SJQN/n89NwEJJKYmHi9QWYtOJhz3btjYZLx9fhis1UmKuqk6+LIZ5JuA0wgaQ3Sk7TGsbFRGYwnOX/+JKZ5E5mt8YULrn9fo6PPYFkmGV9PCWy2oDxZ46iok9hslUk/oQe4CctyEBNzzuWxOEPSGtfG3Wsskp4cdxccPnw4Tz75JJcvX8ayLMLCwpg3bx7jx49n5syZrohRREQkFQ9gSwZjJrAZX69imc5Qzs+PE+e3Ag4gvYYDWzFsnnh4uLYJb1k/P4rZPUlwbAXuSOeM85jmfsqWHeTSOPITwzCw2bywrG0ZnOEAtmTZ+KJs2Ruw25cnPzue/hqXKlU5d8FmQ0BAeQyjGKa5Dbg9nTPOYpqHKFvW9bGULVsZy9oPRJF0a921tmK3e2WrqUh+kLTGa3E4TNKvG2yldGnXv68i6clxJevhhx/m7bff5tVXXyU2Npb777+f6dOn88EHH9C3b19XxJjG1KlTqVq1Kt7e3rRo0YKwbG44Mn/+fGw2G7169XJtgCIi4lLVypcC5gLh6YzOBQ7zWNf0bh+6asTdd5P00P/sdEb3A7NpXbdm7gLNhhI+PtzXphUexkfAmXTOmAQk0L79AJfHkp/Uq3cr8D8gveYjXwDH6N37+Uzn6NhxMA7HweTzr7UXw5hLly4P5TbULPn6+tG69b0YxockNVi51jvYbA7atevv8ljatx+AZcWR9HV1rTMYxhRuu60P3t7FXR6LM3Tq9BAOxz7gy3RG92Czzadz58F5HZYIkMMkKzExkTlz5tCpUyf++ecfYmJiiIyM5OjRowwZMsRVMab46quvGD58OGPGjGHLli00atSIzp07c/Jk5qXggwcP8vzzz9O2bVuXxygiIq717SuvkFSxagVMAQ4DfwMvAA/i6+XNWwMyT0oeuP12alUKJOnZlOeBv5LnmQa0xMMw+WzYMNddRCqv97+fkr4x2I2WXEkg4A9gCPAG9So/w8yZlYrUJsbPPPM5druNpDWeytU1HgEMoUKFGtx+e+bVvZtuakH79g8ADye/7u/keaZiGG0pX74yd92VN2vcv//r+PjEYBitSfpFwDHgd5KeLZzA/fe/RkBAeZfHUaZMIH37jgLGkfT19UdyLF9gGK3w9Y2jX7/XXB6Hs9St24rbbrsfm20w8CKwEzgEfIRh3EalSlXp1u1J9wYpRVaO98ny9fVl165dVKlSxVUxZahFixbccsstTJkyBUi6b7ty5coMGzaMkSNHpvsah8PBbbfdxkMPPcT69es5f/483377bbY/p/bJEhHJfzbu3Mkdo1/jUnwcV/e4snNDmQB2TZtGCZ/0GgykFR8fzx1jxrDu7z0kPecFYKNSqdIse200DatVc1H0/7bn6FEen/4Ja3ZsSzlWzteP0TfV4Ebf+5h7thsRZRoSGEjK3lqF3cGDf/Haa105e/YYV9fYg3r1WvL66yvx9PTMcg6Hw8H8+WNZsuQjLl06D4DNZufWW3vz+ONT8ySxueLo0d1Mn/4UO3asSjnm7x9Iv36v0rXr0DzbCNiyLH74YSrz579FdPTVFvYNG97B449PISiodp7E4SwORyJffjmGpUuncvly0nN6huFBy5Z3M3ToFPz9y7k5QilssrtPVo6TrPbt2/Pf//43z2+7i4+Px9fXl0WLFqX53IMGDeL8+fN899136b5uzJgx/PnnnyxevJgHH3wwyyQrLi6OuLi4lD9HR0dTuXJlJVkiIvnQiq1bmbNmDT6enrz0f/+XrU2Ir3U6Opr/rVrFxbg4ujVvTvOarr9NMCP7jh9nz7FjlPD2pmWdOhTz8ICwMAgPZ1TEUMKpTQRBtG9fNBItSNoz648/vsfT04dOnQZf1/NCcXGx7N69icTEeKpWbUSZMoEuiDR7IiL2EhERjo9PSW666VY8PDJ/ftBVEhMT2L17E5cvxxAUdFOB37T38uWL7NnzK4mJ8VSr1pjSpdPrPiqSe9lNsnL8RO8TTzzBc889x9GjR2nWrBnFi6e9b7dhw4Y5jzYbTp8+jcPhoMI130ArVKjA7t27033Nhg0b+Oyzz9LthpiR8ePHM3bs2NyEKiIieeSOJk24I51tRXKirJ8fz/Xu7aSIcqdGpUrUqHTND4fBwRAczLiQGSyNaEoYwYR+3ZDw8DJFoqpVs2ZTatZsmqs5vLx8adSoo5Miyp3AwJoEBrovkb/Cw6MY9evf5u4wnMbbu3i+WWMRuI4k60pzi6effjrlmM1mw7IsbDZbchcf97tw4QIDBw7k008/pWzZ7P/W66WXXmL48OEpf75SyRIREXGrAQPoERZGj/AZLKUpIREDCI0IIjwcsngETURE8liOk6wDB9yz63zZsmWx2+2cOHEizfETJ05QsWLFf52/b98+Dh48SI8eVzchTNp7Azw8PNizZw81avy7NO7l5YWXl5eToxcREXGC5KpWj7AwCA0hjGDCI2ozcWLRuoVQRCS/y3GS5Y6GFwCenp40a9aMVatWpTyTZZomq1at4qmnnvrX+XXq1GHHjh1pjr366qtcuHCBDz74QNUpEREpuIKD6UFyVSuiKSFnuhIa2pDw8KLTGENEJD/LcZI1Z86cTMcfeOCB6w4mK8OHD2fQoEE0b96c4OBgJk+ezMWLFxk8eHDK5w4KCmL8+PF4e3tTv379NK8PCAgA+NdxERGRAidVVatH+JtJjTEiahMaEZQyLCIi7pHjJOuZZ55J8+eEhARiY2Px9PTE19fXpUlWnz59OHXqFKNHjyYyMpLGjRuzbNmylGYYhw8fxjByvL+yiIhIwVXEG2OIiORHOW7hnp5//vmHxx9/nBEjRtC5c2dnxJVvaJ8sEREpMJLbvS+NaEoIA4ggiMBANcYQEXEWl+2TlZE//viDAQMGZNhOvaBSkiUiIgVOWBhLQ0skNcYogntriYi4SnaTLKfdW+fh4UFERISzphMREZHrFRxMj/YxjAucwQBCCDzzJ6GhEBKSVOwSERHXyvEzWUuWLEnzZ8uyOH78OFOmTKF169ZOC0xERERyQY0xRETcJsdJ1pX26VfYbDbKlSvH7bffzqRJk5wVl4iIiDiDGmOIiOS5HCdZVzb0FRERkQJkwIDkqtYMltKUkIgBhEYEER6uxhgiIs6W42eyXn/9dWJjY/91/NKlS7z++utOCUpERERcIDg4KdlqH8MAQmjPGog4xsSJelZLRMSZctxd0G63c/z4ccqXL5/m+JkzZyhfvjwOh8OpAbqbuguKiEihlLrd+5muRJRpSGAguoVQRCQTLusuaFkWNpvtX8e3b99O6dKlczqdiIiIuEOqqtZXDd5MqWqFhqqqJSKSW9l+JqtUqVLYbDZsNhu1a9dOk2g5HA5iYmIYOnSoS4IUERERF1FjDBERp8t2kjV58mQsy+Khhx5i7Nix+Pv7p4x5enpStWpVWrZs6ZIgRUQk93YdOcLUH35gxbadWJbF7Y3q8mS3bjSoWtXdoRVoFy9f5os1awhZtYqT589zY/nyDL7zTu5r04ZiHjnuL+U+aowhIuI0OX4ma+3atbRq1YpixYq5KqZ8Rc9kiUhhMG/tWga+PxkbZUg07wEMPOzf4DBP8NmwpxjcqZO7QyyQTp4/T8eXX2bn0aN0t9mobVlsNQxWmybtb76ZH157DV8vL3eHmXNhYSwNLUEYwYRTmwiCaN9eVS0Rkew+k5XjJCu1y5cvEx8fn+ZYZp+sIFKSJSIF3Z6jR7n5qWE4zP7Ap4Bn8kgC8CQ222dsnfw+japVc1+QBVS3MWPYun07K02Tm1MdXwd0Mwwe6NyZaY8/7q7wckeNMURE/sVljS9iY2N56qmnKF++PMWLF6dUqVJpPkREJH+Z9tNP2CgFfMLVBAugGDANu60iH33/g3uCK8D2HD3KT1u38s41CRbAbcBI02T2ypWcj4lxR3i5p8YYIiLXLcdJ1ogRI1i9ejXTp0/Hy8uLmTNnMnbsWAIDA5kzZ44rYhQRkVxYtX0niWYvIL3b1jxINO9l1fadeRxVwbd+Z9J7dm8G4/cBlxIS+GPv3jyLySWSk61xgTNS9tYK/foMISFKtkREMpLjJGvp0qVMmzaNe+65Bw8PD9q2bcurr77KW2+9xdy5c10Ro4iIuFg6O3OIpJVc1RoXOIMXysxMqWqFhLg7MBGR/CfHSdbZs2epXr06kPT81dmzZwFo06YN69atc250IiKSax0b1cNuLAbi0hlNxMO+iE6N6uV1WAVe23pJ79nCDMa/AnyKFaN5zZp5FpPLpbqF8EpVi4hjTJyoqpaISGo5TrKqV6/OgQMHAKhTpw4LFiwAkipcAQEBTg1ORERy74muXYHzwCOkTbQSgMdxmJE81b27O0Ir0G664Qa6NWnCCMPgr2vG1gITbDYe7NSJgBIl3BGeawUHp1S1Um4hDEW3EIqIJMtxkjV48GC2b98OwMiRI5k6dSre3t48++yzjBgxwukBiohI7tx0ww2EDH8Wu/ElHkZl4HHgSTyMGzFss5j19DAaqrPgdfn82WcpHxREI6CHzcZzQAfDoD3Qol493n3oIfcG6EqpqlrjAmeoMYaISCq5auEOcOjQITZv3kzNmjVp2LChs+LKN9TCXUQKi91HjzL1hx9YvvVvLMuiY6O6PNm9O/WrVHF3aAVabFwcIWvW8EWqzYgfuvNO7m3dumBtRpxbISEsjWhKGMGEnmlIYIMyavcuIoVOnu2T5e3tfb0vLxCUZImIiGRT6r21GEAEQQQGwoAB7g5MRMQ5XLZPlsPhYNy4cQQFBVGiRAn2798PwKhRo/jss8+uP2IREREp2NQYQ0QEuI4k680332T27NlMnDgRT8+rm1rWr1+fmTNnOjU4ERERKYCuaYwReOZPNcYQkSIlx0nWnDlz+OSTT+jfvz92uz3leKNGjdi9e7dTgxMREZECKlVV66sGb6oxhogUKTl+IvfYsWPUTGfPD9M0SUhIcEpQIiIiUkgEB0NwMONCZlxtjPF1Q8LD1RhDRAqvHFey6tWrx/r16/91fNGiRTRp0sQpQYmIiEghk6rd+wtlZqZUtUJC3B2YiIjz5biSNXr0aAYNGsSxY8cwTZNvvvmGPXv2MGfOHL7//ntXxCgiIiKFQXJVq0dYGISGEEYw4RG1mTgxiPbtVdUSkcIjx5Wsnj17snTpUlauXEnx4sUZPXo0u3btYunSpdxxxx2uiFFEREQKk2saY7RnjRpjiEihku19svbv30+1atWw2Wyujilf0T5ZIiIiLpS8t9aoiKGEU5sIVNUSkfzL6ftk1apVi1OnTqX8uU+fPpw4cSJ3UYqIiEjRltyFME1V6+szqmqJSIGW7STr2oLXjz/+yMWLF50ekIiIiBRBaowhIoVIjp/JEhEREXGJVHtrXalqEXGMiRNV1RKRgiXb3QVtNtu/nscqas9niYiISB4IDqYHYfQIT7W3VmgHwsPR3loiUiBkO8myLIsHH3wQLy8vAC5fvszQoUMpXrx4mvO++eYb50YoIiIiRU+qdu89wmcwKgLCI2oTGhGUMiwikl9lO8kaNGhQmj8PGDDA6cGIiIiIpJGcbI0LSVXV+roh4eFlVNUSkXwr2y3ciyq1cBcREcknktu9L41oSggDiCCIwEDQ731FJK9kt4V7titZIiJS8J2LiSEsPBzLsrilVi3KZPINwtV2HDzIoVOnKFuyJMG1a2MY6sW0NyKCPceOUcLHh1Z16lDMQ9+m00h1CyGhIYQRTHhEbSZOLDh7a0VE/MOxY+H4+JSkTp2WeHgUc3dIIuIC+tdbRKQIiI2L4/lZs5i9YgWXEhMB8LLbGdChA5MfeYQSPj55Fssvu3bxzIwZ/HHgQMqxGuXKMX7wYP6vTZs8iyM/2XP0KE9Mm8bqv/5KOVbRz4+X+/blqe7d1WjqWgWwMcaRI7uYNu1J/v57TcoxP79K9Ov3Ct26PaE1Filk9GtDEZFCLtHhoMfYscz5+WdeSUxkL7APeN3hYMHq1XQZPZq4hIQ8iWXT7t10fOUV7AcPsgSIANYB9U+d4r6JE/lizZosZih89h0/TpsRIzi2cychwDHgD6B7dDRPf/IJr8+f7+YI86lU7d7HBc5IafceGpr/2r1HRPzDiBFt2LUrEviSpFX+nejoLnz88VMsXPiWmyMUEWfTM1lZ0DNZIlLQfbV+PX3feYfVQIdrxn4FWgKfP/MMD3bs6PJYWj//PAl797LeNPFKddwCBgI/Fy/O0Tlz8CpWdG6hGjhpEmvXr2eraVLmmrFRwATD4PCsWVQqXdod4RUcISFXq1pnGhLYIP80xnjnnfvZuPEXTHMrUOqa0ZcwjEl8/vkRSpWq4I7wRCQHsvtMlipZIiKF3OfLl9PWMP6VYAHcCnS22Zj1888uj2PP0aP8Eh7Oi9ckWAA2khKK0xcv8v3vv7s8lvwi5tIlFmzYwFPpJFgAzwOeQEhoaN4GVhClqmq9UGZmSlUrJMS9YcXGRrNx4yJM82n+nWABvIBl2Vm7dm5ehyYiLqQkS0SkkDt66hSNTTPD8SaWxdFTp1wfx5kzADTOYPwmwMdm4+jp0y6PJb84HR1NvMNBkwzG/YFqNhtHitB7kiupbiEcQEjKLYQTJ7rvFsLz509imglk/JVfCsOoypkzR/MwKhFxNSVZIiKFXPlSpdiTyUP1u202ygcEuD4Of38A9mQwfgi4ZFkp5xUFpUuWxG6zsTuD8VjgSBF7T5wiODilqnUl2bpS1crrZMvPrww2m0HGX/kxWNYR/P3L52VYIuJiSrJERAq5gR07ssKy2JrO2E5gqWXxwB13uDyO+lWq0OjGG3nXZsORzvg7gJ+XF/9p0cLlseQXfr6+9GzRgimGwcV0xmcAF0yT/u3a5XVoBV8+aYxRokQpmje/C8P4iKS0+VrTsKxLtGt3f94FJSIupyRLRKSQ63fbbTSpWpU7DYNZJP2YdwmYA3Q0DOoEBfFAh/Se2HIum83G2w89xFqgp83GHyQ1vNgLDAWmAmMHDKC4t7fLY8lPxvTrxzEPDzrZbKwGTJK6Lo4CRgBPdu9OtYoV3RpjgZacbKWpan19Jk+rWv37j8VuP4Rh3AGEcnWVXwFGctddT1Ou3I15E4yI5Al1F8yCuguKSGFwJjqahz/8kO/Cwkj9j363Jk34/Nln8+R2wSuW/PYbw6ZP5/DZsynHSvn48NqAAQy7664iuV/Qr7t3M2TyZHZGRKQc8y1WjGd69mRc//7Y7XY3RleIhIVBeDhLI5oSwgAiCCIwEAYMcP2n3rXrFz744GEiInalHPP0LE6vXv/l/vtf12bcIgVEdrsLKsnKgpIsESlM9h0/zrq//8ayLNrUq0ftoCC3xOFwOFi5fTuHTp6krJ8fXZs1w8fr2p6DRYtlWWzctYtdR45Qwtubrs2aEVCihLvDKpzCwlgaWoIwggmnNhEE0b6969u9W5bF33+v59ixPfj4lKRZs64UL67n7UQKEiVZTqIkS0REpBBKVdUKI5hQOhAYSL7ZW0tE8qfsJlkeeRiTiIiISP4QHJzUhTAsjB7hMxgVAeERtQmNCEoZFhG5XkqyREREpOhKTrbGhcy4WtX6uiHh4WVU1RKR66anLEVERERStXt/oczMlHbvISHuDkxECiIlWSIiIiKQZm+tK+3eiTjGxIl5v4mxiBRsul1QREREJLXgYHqQ9KxWyi2EoR0ID1djDBHJngJXyZo6dSpVq1bF29ubFi1aEJbJr5Y+/fRT2rZtS6lSpShVqhSdOnXK9HwRERERIE1Va1zgjJSqVmioqloikrUClWR99dVXDB8+nDFjxrBlyxYaNWpE586dOXnyZLrnh4aG0q9fP9asWcOmTZuoXLkyd955J8eOHcvjyEVERKRASk62xgXOSLmFMPTrM4SEKNkSkYwVqH2yWrRowS233MKUKVMAME2TypUrM2zYMEaOHJnl6x0OB6VKlWLKlCk88MAD2fqc2idLREREgDR7a4UwgAiCCAyEAQPcHZiI5JXs7pNVYCpZ8fHxbN68mU6dOqUcMwyDTp06sWnTpmzNERsbS0JCAqVLl87wnLi4OKKjo9N8iIiIiKgxhohkV4FJsk6fPo3D4aBChQppjleoUIHIyMhszfHiiy8SGBiYJlG71vjx4/H390/5qFy5cq7iFhERkUImODjlWa2UWwhD0S2EIpKiwCRZuTVhwgTmz5/P4sWL8fb2zvC8l156iaioqJSPI0eO5GGUIiIiUiCoMYaIZKLAtHAvW7YsdrudEydOpDl+4sQJKlasmOlr3333XSZMmMDKlStp2LBhpud6eXnh5eWV63hFRESkCAgOhuBgxoWkavf+dUPCw8uo3btIEVZgKlmenp40a9aMVatWpRwzTZNVq1bRsmXLDF83ceJExo0bx7Jly2jevHlehCoiIiJFTaqq1gtlZqZUtUJC3B2YiLhDgUmyAIYPH86nn37K//73P3bt2sXjjz/OxYsXGTx4MAAPPPAAL730Usr5b7/9NqNGjWLWrFlUrVqVyMhIIiMjiYmJcdcliIiISGGlxhgikqzA3C4I0KdPH06dOsXo0aOJjIykcePGLFu2LKUZxuHDhzGMq3nj9OnTiY+P5957700zz5gxY3jttdfyMnQREREpKoKD6UEYPcJT3UIY2oHwcHQLoUgRUaD2yXIH7ZMlUnRFx8YSEhrK92FhxMXH07hGDR7r0oXaQUHuDu26zFqxgqc+/pi4+HgAPIsV470hQ3i8W7dszxGXkMDCDRtYuGEDF2JjqV25Mo927kzTGjWyPYdlWaz/+29mrVzJochIygYE0L99e+665RY87PYcX1duHD19mmdnzmTtjh2YDgfVAgOZ8MADdGzcONtzOBwOfvjjD75YE8qJ89FULV+WwZ060r5BA2w2W7bn2bZ/P5/8/DN/Hz6Gn68397ZqSZ+2bfH29LyOK5N8I3lvrVERQwmnNhEE0b69Ei2Rgiq7+2QpycqCkiyRomnHwYN0GTWKE1FRdLTZCLAsVhkGZ02Tjx57jCe7d3d3iDnS/Nln2bpvHx5AF5LuFV8GxAN1Klfm76lTs5zj2Jkz3PnKK+yMiKCtzUaQZbHBbueow8GI3r15+8EHs0wqEh0OBk+eTMjatdQyDJqbJnsNg99Nk9Y33cQPr72Gf/HiTrjirC3YsIEB77yDw7LoBPgDy4EooN9tt/Hl889nOceF2Fi6vf4mG3buwG40wWHWwcPYTKIZzn1t2hIy/FmKeWR+04hlWbwaEsJbCxfiYVQi0WyHYYvAtNZRo+INrH5zLDeWK+eMSxZ3Cgm5WtU605DABmqMIVIQFbrNiEVE8sqluDi6jRlDuQsX2Af8bFl8BRwxTYYBT338Mau2b3dzlNk3YeFCtu7bxx3AceA7YHHy/98F7D5yhOdnzcp0DsuyuPuNN7gQGcl2YJ1lMQ844HDwLvDO4sV8tmJFlrGM++or5q1dyxxgj2nyJRBmmqwF/v7nHx6aPDkXV5p9p6OjGfjOO9SzLA4CPwMLSHpPngLmrVvH5O++y3Keh6dMY9Pug8BKHOYW4EsSzd3APBZu3MTouXOznOOLNWt4a+FCYDyJ5iFgHqa1FviLQyft3PX6W+j3oYWAGmOIFClKskRErvHVhg0cPXeOhaZJlVTHfYDJQFPD4L3Fi90T3HUY/eWX+AALgdKpjgcA80mq4ExesiTTOTbs3EnYvn18Zpqk3gjDA3gOuBd4d9GiTJOBS3FxTFmyhKeBgUDqmtdtwCTTZPFvv7Hv+PFsX9v1en7WLBIsi2+A1FvO+wAfAPWBiYsWZTrHoZMnWbhxAw5zItAx1YgN6ItlDWfKDz9z8fLlDOewLIsJi77FZusBjASKpRq9mURzNjsO7WP1n3/m6Pokn1JjDJEiQ0mWiMg1ft6yhZaGQa10xmzAQNPk561bMU0zr0O7Pg4H9wIl0xnyAfoC9iyu5eetW6lot9Mpg/EHgD2RkRw6eTLDOTbv28fZ2FgGZjDej6RvSiu2bcs0FmdYuX07rYDq6YwZwINAZFRUpmu8avt2LMsEBmRwxgPEXI7htz17Mpwj8tw5dh09iGUNyuCMdnjYb2DZli0ZziEFUHBwSlXrSrJ1paqlZEukcChQ3QVFRPJCosOBTyYVGV/AYVkF5hYuG0nJVEay87RposOBN2mrT6n5pDovszlSn3stT8Bus2U6h7OYppnpdfsAVvJ5qbvWppYUpw3wzmCWpM+QmEmidvVaM3pXbNjwzpP3RPJY8ibGPcKSuhCOioDwiNqERgSlDItIwaVKlojINYJr12YjcDqD8cU2G82rVcOex53wrlcC8C2QmM6YCSzKYCy14Fq1OOhwkNFNa98CFUqWpEr58hnO0aBKFbzsdjJ60mkZEG9ZBNeunUU0udewalXWAmczGP8G8PfywiOTphVJcVrA0gzOWIyH4UHjatUynCOwdGkqBJQl6R1Mz04SHHtpkQfvibhJ8i2EaapaX59RVUukgFOSJSJyjcGdOmH38OAxkrrvpTYHWGZZPPWf/7ghsutzX+vWRJL0xE/q2psFvAYcAjo1aZLpHD2Cg6lcqhRDDYOoa8ZWAzNtNh7r3j3TTnpl/Pzo3749EwyDa9uGHAeeMwyCa9Tgllrp3ajpXJOGDCERGEpSEpra58Aq4P7bb890jsbVq9PyppvxMJ4Hjl4z+hd2403ua9Oa8gEBGc5ht9sZdlcXDNtsktpvpHYBw3iMcv5luLtlyyyvSQo4NcYQKVTUwj0LauEuUjQt+e03/m/CBCoCAxwO/IEfDIN1psmQTp34dNiwHO2B5G7+ffsSHRtLHeB+kn7DNh/4C/D19ORiFk0eAMLCw+k8ahQecXEMNE0CgXU2G99bFnc0asSS0aPxKlYs0znOx8TQ8eWX2XHoEPdYFs2BvcBcw6BkyZKsffttagYG5vZys+XF2bN555tvCAQGkdQA5DvgF6BuUBB/TZ2a4a2CVxyIjKT1i69wMioWh9kfqA1swbAtom7lG1g3fhylS6b3NNxV8QkJ9HpzAj9t+QPD1gXTuh04jt2Yg3exSyx/fTSt6tZ1xiVLQREWxtLQEoQRrL21RPIZ7ZPlJEqyRIquPw8c4IOlS1n666/EJSTQpHp1nujRg/9r3bpAJVhXtHvpJTb8/XfKLQwm0LxWLX6bNCnbcxyIjOTD779n4bp1RF+6RO3AQB7t2pXBnTpluR/UFRcvX+aTn3/ms2XLOHTqFGVLlmRAx4481b07FUqVyvmF5cKCDRt4Zc4cDkVGYgF+vr48eMcdvDN4cJYJ1hWnoqKY8sMPzFoZypnoKILKlOOxLh15rHNnSmbz+0ZCYiJzVq9m6o/L2XPsKMW9fOh7W0ue6dGDGpUq5eIKpcBK3sQ4ZW8tOhAYiPbWEnEzJVlOoiRLRERE3CY52RoVMVRVLZF8ILtJlroLioiIiORXyV0Ix4XMuFrV+roh4eFlVNUSycfU+EJEREQkv1NjDJECRUmWiIiISEGQ3O69R/uYlHbvRBxj4kS1exfJb3S7oIiIiEhBEhxMD5I2MU65hTC0A+Hhaowhkl8oyRIREREpaJKf1eoRlpRsjYqA8IjahEYEpQyLiPsoyRIREREpqNQYQyRf0jNZIiIiIgWdGmOI5CtKskREREQKAzXGEMk3dLugiIiISGGixhgibqckS0RERKSwUWMMEbdSkiUiIiJSWKkxhohb6JksERERkcJOjTFE8pSSLBEREZGiQI0xRPKMbhcUERERKUrUGEPE5ZRkiYiIiBQ1aowh4lJKskTEqSzLYn9kJFGxsVQtX57SJUu6O6RC49CJE/yyezelS5bkjsaNMQz33PFtWRb7jh/nwqVLVMnFGv99+DDb9u+nesWKtKxT57rmuHj5Mv9ERODp4cFNQUHY7fbrmkcKN4fDwZ5jx4hPTKRWYCDFvb3dHVL+ocYYIi6hJEtEnGZpWBivhYSw5eBBAIoZBve2bs2EBx/kxnLl3BtcAfbngQPc/dZbHDhxAjP5WHEPDx7p1o33H344T2P59tdfGTt3LtsOHQKS1vj/2rTh7Qcf5IayZbM1x/e//86jH35IZFQUVvKxAG9vxvTvz3979szWHDGXLvFqSAifL19OdFwcAFXLlOH5e+/liW7dsNlsOb42KXwsy2L6Tz8xYdG3HDkdCYCvly8P39mRN/r3p6Svr5sjzEcGDEipai2lKSERAwiNCCI8HAYMcHdwIgWPzbIsK+vTiq7o6Gj8/f2Jmj8fP/1jLJKh/61axYMffEBHm42nLIsbgPXAJMMAPz82TZpEZSVaOfb34cM0f/ppipsmLwAdgBPANOAn4P9at2bBiy/mSSyzVqxgyEcfcYfNxpOWRRCwjqQ1tvv7s+m99wgqUybTOb777TfuffNNKgMvALcAe4H3gN+BMf36MaZfv0znuBQXx+0vv8xf+/bxtGnSA7gIzAZCgOE9ezJpyJBcXq0UBi98/jnvLF4M9AceBEoCS7EbH9C4WiDrJryJr5eXW2PMl8LCWBpagjCCCac2EQTRvr2qWiIAsbHR9O3rT1RUFH5+fhmepyQrC0qyRLJ2ITaWoEGDuDsujs+B1DWE40Bzw6DjbbcxZ/hwN0VYcDUcNowjhw6xFaia6rgFPE1SsvXX1KnUrVzZpXFEXbxI0KBB9I2P51PSrvExkta4a4cOzHrmmUznKdevH6UuXiQMCEh1PBH4D7DKZiNq4UK8PT0znOO9b79l5Oefs9GyuOWasfeB4cC2Dz6gUbVq2b4+KXz+PHCARs88A7wDPH/N6GYMWyvefrA/z/fu7YboCoCwMAgPv3oLIR0IDFRjDJHsJllq4S4iufbVhg1cjIvjDdL+8A1QCXjGNFmwfj3RsbFuiK7gio6NZeehQzxJ2gQLkt7nMYAdeGnOHJfHMm/dOuISEnidf69xEDDMNJm3di0XMlnjdX/9xemLF3mVtAkWJN27/gYQb1lMWLQo01g+/ekn7kknwQJ4Cgg0DD79+efML0gKvZkrVuBhVADSS/ybYVr/x/QfV+R1WAVHqnbv4wJnpLR7Dw1Vu3eR7FCSJSK5tvf4carY7dyQwXhrIM7h4NiZM3kZVoG368gRHCS9f+kpC9QC9kdGujyWfZGRVDMMAjMYbw1cTkzk+LlzGc7xW3h4yrnpaQp4AjuSn/fKMJYTJ2iTwVgxoIVpsu/48UznkMJv7/FIEs1bSfqqSE9rDp7U10mWkpOtcYEzUvbWCv36DCEhSrZEMqMkS0RyLaB4cU5ZFhnVMK78yOyvW25zpFLp0gAczmA8gaTbMfPiVuaA4sU5YVlczmA8O2tcqVQpIOPrOQHEA2Wy6FYY4OtLZmnYIcMgoESJTOeQwq9UieLYjYOZnHGIkj76Osm2VFWtF8rMTKlqhYS4OzCR/ElJlojk2v+1bs1F0+TzdMYcwBTDoG2dOgRm0RRB0rqxXDnK+/nxEUnJx7XmAeeAZ7PZkS837mvThmjT5H/pjCUCUw2DDjffTIXkRCo9fdu2xccwmAyk9zDwRyR9U3rp3nszjaVPu3bMNgzOpzO2AdhimvRt2zbTOaTw69OmDQ5zO0ntWa4VhYfxOQPaZ1RXlXSluoXwSlWLiGNMnKiqlsi1lGSJSK7VqFSJwR07Mtxm4wMgJvl4ONAH+M2yGNO/v/sCLMDeHDiQnUAvYGfysVjgY+BRoHLp0tzTqpXL46gVGMigDh142mbjI5K6+QHsAe4DNlsWo++/P9M5PDw8eLhbN5YADwNHko+fA14H3gJa1q1LtYoVM51neM+eJHh5cadh8CtJCVsCsBDobRgE16hB91vSe2JLipLuzZtzS6062I3ewAKSvkos4Dfsxp14e8YyvFcvt8ZYYAUHp1S1Um4hDEW3EIqkou6CWVB3QZHsiU9I4KkZM/hs5Uo8gVKGwXGHgzLFi/PxsGF5kggUVq/Pn88bX35JAlAOuABcBqqXL8/v771H6Uy6GzlTXEICT06fzqyVK/G22QhIXuOyxYvz6TPP0OvWW7M1zwPvvceXoaGYJD1Xdo6kimdw7dpsmDABD4+st3Dcsm8f940fz76TJylvt3PJsrhgmtzZsCFfvvACZfLoPZH87eyFC/R95z1WbNuM3SiBzeZDouMUN5arxNcjn6d5rVruDrHgS+5COCpiqNq9S5GgFu5OoiRLJGcOnzrF17/8QnRsLLUCA7m7ZctM23FL9sTExjL6yy/Zun8/JXx8eLZnT25v2NAtsRw8cYLFv/5KdGwstQMD6X0daxxx5gyvzp3L/uPHKefvz5i+falftWqO5nA4HCzfto3f//kHTw8PujZrprbtkq4/Dxzgx82biU9MpHnNmnRu0gS73e7usAqXkJCr7d7PNCSwQRm1e5dCSUmWkyjJEhEREcmGVHtrhTCACIIIDIQBA9wdmIjzaJ8sEREREck7aowhkiLrG99FRERERLIrOJgehNEjfMbVWwhDOxAejm4hlCJDSZaIiIiIOFdwcFKyFZaUbI2KgPCI2oRGBKUMixRmSrJERERExDWSk61xIamqWl83JDxcjTGkcNMzWSIiIiLiWsnPao0LnMELZWZCxLGUvbVECiMlWSIiIiLiemqMIUWIbhcUERERkbyjxhhSBCjJEhEREZG8pcYYUsgpyRIRERER91BjDCmk9EyWiIiIiLiXGmNIIaMkS0RERETcT40xpBDR7YIiIiIikn+oMYYUAqpkiYiIiEj+kqqqNS5wRkpVS7cQSkGhJEtERERE8qfkZGtc4IyUWwgjdpwhJES3EEr+piRLRERERPI3NcaQAkbPZIm42bb9+/lizRoiz5/nhjJleLBjR+pWruzusNwqZM0aRs6Zw7mYGHw8PXmsSxdev/9+7HZ7tuc4fOoUz332GVv27cNut3NX8+a8MWAAvt7e2Z7jcnw8Y+fN45tNm0hwOGhQpQrvDRlCjUqVcnQ9c0NDmfTtt5yNiaFCQABj+valW/PmOZrj+NmzfL5yJTuPHKGEjw/3tGxJx0aNMIzs/67sUlwcCzZsYM2OHViWxW0330y/du3w9fLK9hyWZRG6YwcLN24kOjaWm4KCGNypEzeULZuj6xERybFUe2sRGkIYwYRH1GbixCDat9ezWpK/2CzLstwdRE5MnTqVd955h8jISBo1asRHH31EcCZ/qxYuXMioUaM4ePAgtWrV4u2336Zbt27Z/nzR0dH4+/sTNX8+fr6+zrgEEQASEhN56IMPCFm7lkp2O7Uti53AKdPkia5d+eixx3L0A3Rh4HA4qDJkCMfOnsUPaAjsByIAXw8Pwj/5hKBs/DA/dt48xs2bB0BzIAb4G/A2DL4dPZrOTZtmOcfGXbu48+WXiXU4qAMEAH8AJvDMf/7Dew8/nOUcMbGx1B82jEOnTlEeqAXsBM4BDatUYfP77+PhkfXvumb89BNPf/wxxYBmwAmbjXCHg1tr1mTpa69R1s8vyzk2791Lj7FjOR4VRXPDwAB+N03KlijBt6NG0apu3SznOBcTQ69x41i3axc17HaCLIstwCXL4p2HHuLZnj2znENExCnCwiA8/GpjDDoQGKjGGOJ6sbHR9O3rT1RUFH6ZfP8tUD/BffXVVwwfPpwxY8awZcsWGjVqROfOnTl58mS65//yyy/069ePIUOGsHXrVnr16kWvXr3466+/8jhykX974fPP+WrdOmYBhx0OQk2To6bJh8D0n37ijQUL3B1inms2fDjHzp7lTSASWA8cBr4CHImJ1HviiSznWLxpE6/Pm0dX4AjwK/AXsB2obJr0fP11TkdHZzpH7OXL3PHyy5R1OAgDdgGbgGPA/wGTlyzhsxUrsoyl9YsvcuzUKWYnv3YDcByYDOw4dIhur7+e5Rw//P47j0+fzqOmSYRpss402e1wsArYv38/d7/xBln9ruzk+fN0HjWKyhcu8A9JydVvpsk+oE5sLN3GjOHo6dNZxtL37bf5a88elgH/OBysTY7pGcti+GefsWjjxiznEBFxikwaY+hZLckPClSS9d577/HII48wePBg6tWrx4wZM/D19WXWrFnpnv/BBx/QpUsXRowYQd26dRk3bhxNmzZlypQpeRy5SFpnL1xgxk8/MdqyGMzV+3Y9gWHAf4HJixdzKS7OXSHmuZhLl/j7wAEGAS8DPsnH7cB9wLvAhcuXWfLbb5nO8+Ls2VQEFgGpb+prCPwAxJsmL8yenekcr4aEcMnh4FvgllTHywMhQE1g7JdfZjrHnmPH+OvQIV4HBnF1jb2AZ4CngNBt2zgfE5PpPBMWLOA2m42PAP/kYzbgdmC2abJ+925+2bUr0zk+Xb6c2NhYvjdNaqY6Xg1YYpqY8fHMWLYs0zk2793L8u3b+dQ06ZwcA0BJktams83GW/PnZ5nwiYg4VTqNMUK/VmMMcb8Ck2TFx8ezefNmOnXqlHLMMAw6derEpk2b0n3Npk2b0pwP0Llz5wzPB4iLiyM6OjrNh4izLd+6lcuJiWR0w9nDwLlLl1i/c2dehuVW73zzDYnAIxmMDyLpH6xxX32V6TwHjx/nIZKSmWvVAtoCP/3xR6ZzLP71VxoDTdIZ8yBpfY6eOYNpmhnO8cGSJZjJ56bnYSABMq2InYmOZsOePTxsWSlJTWqdgRvsdr7LIvH87pdf6GVZlEtnLAC4zzT5Losq1JKwMMra7aR3Q6ANeNiy2HroEMfOnMl0HhERl1BjDMlnCkySdfr0aRwOBxUqVEhzvEKFCkRGRqb7msjIyBydDzB+/Hj8/f1TPioX8QYE4hqX4uMBKJ3BeJkr5xWhStb5ixeBq9d+rRJAMZKaUWTGJOP3FaAckJiYmOkc8YmJGcYBSTFaWcxz8fJlAEplMgfAhUuXMpwjq68TI3n+S1m8J5fi4jJ9T8qQ9dfapbg4/EmqLGY0B9mIRUTEZVLdQnilqkXEMSZOVFVL8l6BSbLyyksvvURUVFTKx5EjR9wdkhRCjapVA+DnDMav3LjVoGrVvAgnX7indWtsXL32a20ALgMt69TJdJ4SXl78lMHYJWAlUKVixUznuCkoiF+AjOrYP5LUiMPT0zPDOdo3aADA8gzGr1znHU3Sq5clqViqFOVLlMjw6+Qw8LfDQcMsvk4a1qjBcsMgvbqbBfxkGDSsUSPzOapWZZ/DwT8ZjC8DAnx8qKwugyLibsHBKVWtlFsIQ9EthJKnCkySVbZsWex2OydOnEhz/MSJE1TM4AemihUr5uh8AC8vL/z8/NJ8iDhb0xo1CK5Rg5cNg7PXjB0HxhoGnRs1onoWyUBhctvNN+Pr6clbJHUUTO0CMJykStaURx/NdJ772rVjBfDNNcctYDQQBYwfODDTOSYOHsxlYAT8KzH5GfgW6JZF+6pBt99OyWLFeIGkboKpHQNeAyr4+dE6k65+HnY7j3TrxmeGwe/XjCUAzwIlvL3pd9ttmcbyeLdu/GOavJ/O2Axgh2kyNIuuq/e2bk3Z4sX5r83GtTWv7cB0w2DwnXfinUniKSKSZzJpjKFbCCUvFJgky9PTk2bNmrFq1aqUY6ZpsmrVKlq2bJnua1q2bJnmfIAVK1ZkeL5IXpr17LMc9/GhvmEwBpgPvAQ0NAzi/fyY/uSTbo4w7y0ZNYrzQCPgOZLekzeBOsBW4MX77su0egRJSdiNZcpwL3AvSY0qPgZaktSgoVeLFplWjwCa16zJwA4d+ISkFvDTgLlAP6A7UM7Pj//997+ZzmEYBp8/9xx7kuMfm3w9I4H6wCmbja9feSXTOQBeuvdeGtWowW02G48A84D3gcaGwRLDYM7w4ZTw8cl0jjb16vHiPffwPHCnzcYsYDbQzWbjCeDpu+7ijsaNM53D29OTkBEjWGUYNDIMJiXH8jjQyjCodeONvNavX5bXIyKSp9JpjBGxQ40xxPUK1D5ZX331FYMGDeLjjz8mODiYyZMns2DBAnbv3k2FChV44IEHCAoKYvz48UBSC/d27doxYcIEunfvzvz583nrrbfYsmUL9evXz9bn1D5Z4koHIiN5+5tvCFm9movx8fh7ezPojjt48e67CSyT2VNBhdeve/bQ+623OH3uHIkk/SaouLc3k4YM4ZHOnbM1R3x8PA9MnszSTZuIdTgAKOPry7CePRmTg0TgnW++4d2vv+bkhQsA+BgGnW+5hbnPPZftTY1Dd+zg8enT+efoURwkNc5oUL06s55+msbVq2drjti4ON7/7js+/uEHjpw7h91mo2eLFrxwzz20uOmmbM1hWRYLNmzg/cWL+W3vXgCaVavGM716MaB9e2y29Fpr/NuWfft4e9Eivtm0iUTTJNDfn0e6duW5Xr0oqX8jRSQ/S7W3VggDiCCIwEAYMMDdgUlBkt19sgpUkgUwZcqUlM2IGzduzIcffkiLFi0AaN++PVWrVmV2qvbMCxcu5NVXX03ZjHjixInajFjyHYfDwcW4OEp4exe5DYgzEh8fz8GTJ6lcpgw+WVRqMmKaJqejo/H29MzV39+Y2Fhi4+Mp6+d33esTHx/P6QsXKO/vn60NiNNjWRYxly7h7elJseucA642ufDxSq8HY/YkOhxcioujhI9PthM0EZF8ISyMpaElCCOYcGoTQRDt22sTY8meQptk5TUlWSIiIiKFTKqqVhjBhNKBwECoXVvJlmQuu0mWfmUuIiIiIkWLGmOIiynJEhEREZGiSY0xxEWUZImIiIhI0ZaqqvVCmZmqakmuKckSEREREUl1C+GVqhYRx5g4UVUtybnrb08lIiIiIlLYBAfTgzB6hM+42hgjtAPh4WqMIdmnSpaIiIiISGpqjCG5pCRLRERERCQ9aowh10lJloiIiIhIZtQYQ3JISZaIiIiISFbUGENyQI0vRERERESyS40xJBtUyRIRERERyQk1xpAsKMkSEREREbkeaowhGVCSJSIiIiKSG2qMIddQkiUiIiIikltqjCGpKMkSEae7ePkyJ86dI9HhuO454hMSOHHuHJfi4pwY2fWJjo3lVFQUpmm6NY5Eh4OT588Tc+mSW+Nwlvy0xiIiThMcnFLVupJsXalqKdkqOtRdUESc5tfdu3lrwQJ+2LwZ07Io7evL4Dvv5JX77qNUiRLZmiPy3Dne+Oor5qxaxYW4ODwMg9633sqrffrQsFo1F19BWj/8/jtvL1zI+t27AbihVCmGdu/O871741WsWJ7FcSE2lvGLFjFz2TJOxcQA0LlRI17q04d29evnWRzOEnHmDG8sWMAXq1YREx+Ph2FwT6tWvNqnD/WrVHF3eCIiuRccnJRshSV1IRwVAeERtQmNCCI8HAYMcHeA4mo2y7IsdweRn0VHR+Pv70/U/Pn4+fq6OxyRfOv733/n7jffpA7wmGlyA7AemGkYBFWsyLqJEynj55fpHEdPn6bNiBFcPHeOoabJLcA+YLphcMxu5+dx42hTr57rLwaY8v33DPvkE9oaBoNNkwDgR2COzcZt9evz/Wuv5UmiFR0bS4eRIwk/fJiHTJPbgUjgU8Ngm2Ux9/nn6dO2rcvjcJbDp07R5vnnuRwVxVDTpDmwl6Q1Pu7hwYo33qBlnTruDlNExLlCQq62ez/TkMAGZdTuvYCKjY2mb19/oqKi8Mvk5xolWVlQkiWStcvx8dwwaBCtY2NZZFmkTj32AK0Mgz6dOzPt8ccznefe8eP57bff2JScpF0RC3Sx2ThWtiz/fPophuHaO50PnzpF9Ycf5inL4n3AlmosFLjDZuOdhx7ivz17ujQOgBdnz2bat9+ywTRplOq4AxgILPX05NicOQXm36feb7zBlj/+YJNpEpjq+EWgs2Fwslw5dn/8scvXWEQkz4WFQXg4SyOaEsIAIggiMFBVrYImu0mWvouJSK4t2riRMxcvMumaBAvgJmCYafLFqlVcvHw5wzkiz53j219/ZeQ1CRaALzDRsth/6hQrtm1zbvDpmLl8OcVtNt4gbYIF0B6417KY8cMPLo8jITGRz37+mUevSbAA7MC7wKX4eOaGhro8Fmc4duYMS37/nZevSbAAigMTTJN/TpxgzY4d7ghPRMS11BijSFGSJSK59vfhw1S126mZwXgnICY+niOnT2c4R/ixYzgsi44ZjLcAihsGO48cyWW0Wfv78GFutSwyeoqsE7AnMhJHLhp7ZMeJ8+c5c/Fihu9JIHCz3Z4n74kz7Dl6FDOTNW4NeNtsBeZ6RESuixpjFAlKskQk14p7e3POsojPYPxk8n99vbwynSP1udeKBi6bZqZzOEtxb29O2q6tYV11EvDy8HD5LW1XrjWj98QETpP5+5qfZLXG54E4y8LX0zOvQhIRcY9UVa1xgTNSqlraW6vwUJIlIrnWu2VLokyTBemMWcDHNhvNqlWjctmyGc7RuFo1qpQpw8cZjM8CsNnoccstuQ84C71vvZVtpkl6v1CMB2YZBne3bIktk0TMGUqXLEn7evX41DBIr3n890CEw8HdLVu6NA5naVazJpVLlcpwjWcCHoZB9zxYYxGRfCE52Upd1YrYcUZVrUJASZaI5NrNN95I7+BgnjAMFpHUlAHgLPA0sNyyeKVv30yTErvdzst9+vAl8CpJlSuABOBz4CWbjYc6dSKwTBnXXUiyHsHBNKxcmXsMg7UkJYoAR4D7bDYO22w8f/fdLo8D4KU+fdhkmjzM1QqQSVKCNdgw6Fi/PsG1a+dJLLnlYbfzUp8+zAHGABeSj8cDnwGv2mw8fOedVCxVym0xioi4Raqq1gtlZqqqVQiou2AW1F1QJHtiLl2i79tv88OWLQTa7QQCf5kmpmHw/iOP8ES3blnOYVkWby5YwGtffomPzUYdm43DwEmHg/tvu41ZzzyTZ/tTRZw5Q4+xY9ly8CDV7Xb8ge0OByW8vZk7YgR35WG15X+rVjF06lRMh4MGhsFJ4IjDQYebb+brV17J9h5k+YFlWbw+fz6vz5+Pb/IaHwJOORwMaNeOz55+Gs883INMRCTfCQtjaWgJwggmnNpEEET79mr3nl+ohbuTKMkSyZnf//mHr9avJzo2llqBgQy6/XbKBwTkaI6jp0/zv9WrOXjyJGVKlqR/u3Y0qFrVJfFmxjRNVm3fztLffycuIYEm1avTv107Srrh34Iz0dF8sWYNO48coYSPD/e0bEmrunVdfsuiqxw5dYr/rV7NoVOnKFuyJP3bt9dGxCIiV6Rq9x5GMKF0IDAQ7a2VDyjJchIlWSIiIiLiFsnJ1qiIoSlVLe2t5V7aJ0tEREREpCBTY4wCS0mWiIiIiEh+psYYBY6SLBERERGR/C7V3lpXqlpEHGPiRFW18iMPdwcgIiIiIiLZFBxMD8LoET7jamOM0A6Eh6sxRn6iSpaIiIiISEGSqqo1LnBGSlVLtxDmH0qyREREREQKIjXGyLeUZImIiIiIFGRqjJHvKMkSERERESno1BgjX1HjCxERERGRwkKNMfIFVbJERERERAoTNcZwOyVZIiIiIiKFkRpjuI2SLBERERGRwkyNMfKckiwRERERkcJOjTHylBpfiIiIiIgUFWqMkSdUyRIRERERKUrUGMPlVMkqAi7FxbHol1/469AhfL286HXrrTSqVs3dYUk+Y5omq//8kzU7dmBZFq3r1qVL06bY7fYczbPn6FEW/fILURcvUjsoiD5t2lDS19dFUYuIiMh1Cw6G4GDGhaSqau1oSEhIGVW1cslmWZbl7iDys+joaPz9/YmaPx+/AviD4ve//86gSZM4GxtLdbudc5bFOdOkR7NmhIwYUSCvSZxvf2QkvcaNY8eRI1Sy27EDRx0OalWowOJRo7j5xhuznONyfDwPf/ghc9etw88wKGezccDhoLiXF9OffJL+7du7/DpERETkOoWFQXg4SyOaEsIAIggiMBAGDHB3YPlLbGw0ffv6ExUVhZ+fX4bn6XbBQuy3PXu4+803aXPpEv8A+xwOTpgmXwJrt27lvvHjUY4t0bGxdHr5ZS4fO0YocMzh4LDDwSbA59QpOr38MifPn89ynkc++oiv16/nE+CEabLX4eAg0DMujoHvvceyzZtdeRkiIiKSG2qM4VRKsgqxtxYs4CZgkWVRM/lYMaAfMNs0+Xn7dn7bs8d9AUq+MGf1ag6fPs3Ppkk7wJb8cSuw3DSJjonh42XLMp0j/NgxQtau5UPL4hHAO/l4ZeB/QFubjXHz5rnwKkRERMQpgoNTntW6kmxdeVZLyVb2KckqpGLj4vj+jz94zDQpls54T+AGu50FGzfmdWiSzyxYt47uQHpP6VUA/s80WbB2baZzLNq4kZKGwcB0xgzgCcvil/Bwjp05k/uARURExLXUGCPXlGQVUhcvX8a0LIIyGDeAQJJuFZOiLfrixQy/TgBuIOuvk+hLlyhrs6VUsNKbg2zMIyIiIvlIcrKVuqoVseOMqlrZoCSrkCpdogRlihdnfQbjZ4E/TZPagYF5GZbkQ7UrV2a9YZDR03lrDYPaN9yQwWiSm4KCOORwcCijOQBvDw9uKFMmN6GKiIiIO6Sqar1QZqaqWtmgJKuQstvtDOncmZmGwc5rxixgNGAaBg927OiG6CQ/ebRLF/4yTf6Xzth3wAbT5LFu3TKd4742bSjp7c1IwHHN2GHgQ8Pg/vbt1cpdRESkoFJjjBxRklWIvXTvvVQNCqK1YfAqSdWEhcCdNhtTgfcfeYTyAQFujVHcr2OjRgzp1ImHgEHAT8By4FHgXpuNe269ld633prpHMW9vfl42DAW2GzcZhjMBdYBbwC3GAa+pUvz5sD0ntgSERGRAkWNMbJF+2RloaDvk3UuJobRc+fyv5UruRAXB0Dz6tV5uU8ferds6eboJL8wTZMPly7lg2+/5WByc4qggACe7NGDEXffjUc2NyResXUr4+bNY/3u3QD4FCtGv3bteGPAACqVLu2y+EVERMQNkvfWGhUxlHBqF4m9tbK7T5aSrCwU9CTriti4OI6ePo2vlxc3lC3r7nAkn3I4HBw8eRLLsqhaoUK2k6trHT97lujYWILKlKGEj4+ToxQREZF8JSSEpRFNCSOYcGpDYBC1ayfdYVjYKMlyksKSZImIiIiIuExyVWtpRFNCGFBoq1rZTbIKzDNZZ8+epX///vj5+REQEMCQIUOIiYnJ9Pxhw4Zx00034ePjw4033sjTTz9NVFRUHkYtIiIiIlIEqDFGGh7uDiC7+vfvz/Hjx1mxYgUJCQkMHjyYRx99lC+//DLd8yMiIoiIiODdd9+lXr16HDp0iKFDhxIREcGiRYvyOHoRERERkSIgOJgehNEjfEbKLYShoR0ID3d3YM6RkJC98wrE7YK7du2iXr16/P777zRv3hyAZcuW0a1bN44ePUpgNvd6WrhwIQMGDODixYt4eGQvv9TtgiIiIiIi1+HKLYT0ICwiyN3ROEVc4kXe+bVHlrcLFohK1qZNmwgICEhJsAA6deqEYRj89ttv9O7dO1vzXHkzMkuw4uLiiEvuwgdJSZaIiIiIiORQcHBSZSssjB6197g7GqeIjovjnV+zPq9AJFmRkZGUL18+zTEPDw9Kly5NZGRktuY4ffo048aN49FHH830vPHjxzN27NjrjlVERERERFIpTG0GY2OzdZpbG1+MHDkSm82W6cfu5P12ciM6Opru3btTr149XnvttUzPfemll4iKikr5OHLkSK4/v4iIiIiIFB1urWQ999xzPPjgg5meU716dSpWrMjJkyfTHE9MTOTs2bNUrFgx09dfuHCBLl26ULJkSRYvXkyxYsUyPd/LywsvL69sxS8iIiIiInIttyZZ5cqVo1y5clme17JlS86fP8/mzZtp1qwZAKtXr8Y0TVq0aJHh66Kjo+ncuTNeXl4sWbIEb29vp8UuIiIiIiKSngKxT1bdunXp0qULjzzyCGFhYWzcuJGnnnqKvn37pnQWPHbsGHXq1CEsuRF/dHQ0d955JxcvXuSzzz4jOjqayMhIIiMjcTgc7rwcEREREREpxApE4wuAuXPn8tRTT9GxY0cMw+Cee+7hww8/TBlPSEhgz549xCY/jLZlyxZ+++03AGrWrJlmrgMHDlC1atU8i11ERERERIqOApNklS5dOsONhwGqVq1K6i2/2rdvTwHYAkxERERERAqZAnG7oIiIiIiISEGhJEtERERERMSJlGSJiIiIiIg4kZIsERERERERJyowjS9EACLOnOGhDz9k7fbtXDZNigH1qlVj6tChtK5bN09jCVmzhldDQjh66hQmUMLTk3vatuXjxx/H09Mzz+JISExk5vLlzPjhB/4+epTiXl7c3aoVz/XuTf0qVfIsDmeJjo1lyvff89myZRw8c4YyxYtzf4cOPNerF5Wzsa8egGVZzF+3jilLl/L73r142O10adqU53r3pnW9ei6+AhERESnqbJZa8GUqOjoaf39/oubPx8/X193hFGkHIiNp+OSTxCck0A9oARwAZgIXgHkvvMC9bdrkSSwjZs1i0rffUgUYApQCfgCWAZXLlOGfjz/Ok0QrPiGBnuPGsWL7dnoCHS2Lk8Bsw+CEYbBk1CjuaNLE5XE4y9kLF+gwciThR4/Sz7IIBvYBnxsGhq8vq8ePzzJxtCyLoVOn8sny5XSy2fiPZXERCDEMdpomM4cN46E77siLyxEREZFCJjo2Fv++fYmKisLPzy/D85RkZUFJVv5RZ+hQjkdEsAFokOr4WaADsNdu58LXX2MYrr0Lds+xY9R7/HHuBUKAYqnGvgHuBfq1a8fc555zaRwAExYtYvQXX/CjZdEp1fHLwN02G7/6+HBk9myKe3u7PBZnGDx5MktCQ1lnmtyc6vgZ4HbDwAoMZPvUqdhstgznWLBhA30mTuRz4MFUx03gceAzm429n3xC1QoVXHEJIiIiUohlN8nSM1lSIBw6cYJ/IiJ4kbQJFkBp4AMg1uFg8pIlLo9l+GefYQemkjbBArgb6AF8t3Gjy+MwTZNpS5cy8JoEC8AbmGpZnI+NZf66dS6PxRnOXrjAvLVreeGaBAugDDDJNNlx9Cgbdu7MdJ6pS5fS3jDSJFiQ9I/de0AJm41Pfv7ZaXGLiIiIXEtJlhQIP2/bhklSApOedoAvsOrPP10ey46DB2kJlM1gvCdwMTGRmNhYl8ZxKiqKI+fOZfieVAMa2u38sXevS+Nwlr8PHybO4cjwejoCPjZbltezed8+ephmumPFgdtNkz/++SdXsYqIiIhkRkmWFAi+yc83XchgPA5IALyLXVtbcr5idjvRmYxfidHTw7V9ZTyTrzWj98RKHvPMg/fEGa68XxldzyWS1jir99XTbs9wDoALNhteBeQ9ERERkYJJSZYUCHe3bImnzcbsDMa/IukH8KFdurg8lu633MI2YEc6YybwOVDez8/ljS9KlSjBrTVrMttmI70HKzcA+x0Oujdv7tI4nKVJ9epUKFkywzWeBzgsiy5Nm2Y6T7fgYL6w20lMZ+wwsNqy6H7LLbkLVkRERCQTSrKkQPD19uaOZs34FJgCKT9AW8BKYBgQFBCQJ5303howAG/D4G5gd6rjMcCTwHbghXvucXkcAC/83/+x2rJ4iaRKzxVbgQGGQeMqVejUqFGexJJbnsWK8ezdd/MxMI20a/wzMNwwuKdlS2pUqpTpPM/27MlB0+RB4Hyq4weA3oZBeT8/+rdr5/T4RURERK5QkiUFxrcvv0yDKlUYBtxA0rNP9YE7AA8fH36ZNClP4ijh68uSMWM4YhjUBVoBdwEVgI+Bge3b81zv3nkSS++WLXln8GAmAkGGwX+AFoZBU6BExYosGT3a5d0WnWlE794M7dqVJ4Fqdju9gAaGQRegWd26fPbMM1nO0axmTeY+/zwL7XaCbDa6A+1tNmoAx0uWZNm4cZRUp1ARERFxIbVwz4JauOc/89auZfyiRUSeO0dJHx8Gd+rEyHvuwcPFz0Bd62x0NCPnzOHHzZtJTEykVmAgEwcPpmWdOnkaB8DeiAg+Xb6cvw8fpri3N3e3bEnvW28tMM9jXWvLvn18tmIFB0+coExy5emOxo1zlDAeP3uWmcuX8/s//1DMw4MuTZtyf7t2BaadvYiIiOQ/2ifLSZRkiYiIiIgIaJ8sERERERERt1CSJSIiIiIi4kRKskRERERERJxISZaIiIiIiIgTKckSERERERFxIiVZIiIiIiIiTqQkS0RERERExImUZImIiIiIiDiRkiwREREREREnUpIlIiIiIiLiREqyREREREREnEhJloiIiIiIiBMpyRIREREREXEiJVkiIiIiIiJOpCRLRERERETEiZRkiYiIiIiIOJGSLBERERERESdSkiUiIiIiIuJESrJEREREREScSEmWiIiIiIiIEynJEhERERERcSIlWSIiIiIiIk6kJEtERERERMSJlGSJiIiIiIg4kZIsERERERERJ/JwdwD5nWVZAETHxro5EhERERERcacrOcGVHCEjNiurM4q4o0ePUrlyZXeHISIiIiIi+cSRI0e44YYbMhxXkpUF0zSJiIigZMmS2Gy2TM+Njo6mcuXKHDlyBD8/vzyKULKidcmftC75k9Ylf9K65E9al/xJ65I/FZZ1sSyLCxcuEBgYiGFk/OSVbhfMgmEYmWap6fHz8yvQXzyFldYlf9K65E9al/xJ65I/aV3yJ61L/lQY1sXf3z/Lc9T4QkRERERExImUZImIiIiIiDiRkiwn8vLyYsyYMXh5ebk7FElF65I/aV3yJ61L/qR1yZ+0LvmT1iV/KmrrosYXIiIiIiIiTqRKloiIiIiIiBMpyRIREREREXEiJVkiIiIiIiJOpCRLRERERETEiZRk5dLZs2fp378/fn5+BAQEMGTIEGJiYrL1Wsuy6Nq1KzabjW+//da1gRYxOV2Xs2fPMmzYMG666SZ8fHy48cYbefrpp4mKisrDqAufqVOnUrVqVby9vWnRogVhYWGZnr9w4ULq1KmDt7c3DRo04Mcff8yjSIuWnKzLp59+Stu2bSlVqhSlSpWiU6dOWa6jXJ+c/n25Yv78+dhsNnr16uXaAIuonK7L+fPnefLJJ6lUqRJeXl7Url1b/5a5QE7XZfLkySnf4ytXrsyzzz7L5cuX8yjawm/dunX06NGDwMDAbP9cGxoaStOmTfHy8qJmzZrMnj3b5XHmKUtypUuXLlajRo2sX3/91Vq/fr1Vs2ZNq1+/ftl67XvvvWd17drVAqzFixe7NtAiJqfrsmPHDuvuu++2lixZYu3du9datWqVVatWLeuee+7Jw6gLl/nz51uenp7WrFmzrL///tt65JFHrICAAOvEiRPpnr9x40bLbrdbEydOtHbu3Gm9+uqrVrFixawdO3bkceSFW07X5f7777emTp1qbd261dq1a5f14IMPWv7+/tbRo0fzOPLCLafrcsWBAwesoKAgq23btlbPnj3zJtgiJKfrEhcXZzVv3tzq1q2btWHDBuvAgQNWaGiotW3btjyOvHDL6brMnTvX8vLysubOnWsdOHDA+vnnn61KlSpZzz77bB5HXnj9+OOP1iuvvGJ988032fq5dv/+/Zavr681fPhwa+fOndZHH31k2e12a9myZXkTcB5QkpULO3futADr999/Tzn2008/WTabzTp27Fimr926dasVFBRkHT9+XEmWk+VmXVJbsGCB5enpaSUkJLgizEIvODjYevLJJ1P+7HA4rMDAQGv8+PHpnn/fffdZ3bt3T3OsRYsW1mOPPebSOIuanK7LtRITE62SJUta//vf/1wVYpF0PeuSmJhotWrVypo5c6Y1aNAgJVkukNN1mT59ulW9enUrPj4+r0IsknK6Lk8++aR1++23pzk2fPhwq3Xr1i6Ns6jKzs+1L7zwgnXzzTenOdanTx+rc+fOLowsb+l2wVzYtGkTAQEBNG/ePOVYp06dMAyD3377LcPXxcbGcv/99zN16lQqVqyYF6EWKde7LteKiorCz88PDw8PV4RZqMXHx7N582Y6deqUcswwDDp16sSmTZvSfc2mTZvSnA/QuXPnDM+XnLuedblWbGwsCQkJlC5d2lVhFjnXuy6vv/465cuXZ8iQIXkRZpFzPeuyZMkSWrZsyZNPPkmFChWoX78+b731Fg6HI6/CLvSuZ11atWrF5s2bU24p3L9/Pz/++CPdunXLk5jl34rC93z99JgLkZGRlC9fPs0xDw8PSpcuTWRkZIave/bZZ2nVqhU9e/Z0dYhF0vWuS2qnT59m3LhxPProo64IsdA7ffo0DoeDChUqpDleoUIFdu/ene5rIiMj0z0/u2smWbuedbnWiy++SGBg4L++Ocr1u5512bBhA5999hnbtm3LgwiLputZl/3797N69Wr69+/Pjz/+yN69e3niiSdISEhgzJgxeRF2oXc963L//fdz+vRp2rRpg2VZJCYmMnToUF5++eW8CFnSkdH3/OjoaC5duoSPj4+bInMeVbLSMXLkSGw2W6Yf2f2B5FpLlixh9erVTJ482blBFwGuXJfUoqOj6d69O/Xq1eO1117LfeAihcSECROYP38+ixcvxtvb293hFFkXLlxg4MCBfPrpp5QtW9bd4UgqpmlSvnx5PvnkE5o1a0afPn145ZVXmDFjhrtDK9JCQ0N56623mDZtGlu2bOGbb77hhx9+YNy4ce4OTQoxVbLS8dxzz/Hggw9mek716tWpWLEiJ0+eTHM8MTGRs2fPZngb4OrVq9m3bx8BAQFpjt9zzz20bduW0NDQXEReuLlyXa64cOECXbp0oWTJkixevJhixYrlNuwiqWzZstjtdk6cOJHm+IkTJzJcg4oVK+bofMm561mXK959910mTJjAypUradiwoSvDLHJyui779u3j4MGD9OjRI+WYaZpAUtV+z5491KhRw7VBFwHX8/elUqVKFCtWDLvdnnKsbt26REZGEh8fj6enp0tjLgquZ11GjRrFwIEDefjhhwFo0KABFy9e5NFHH+WVV17BMFRzyGsZfc/38/MrFFUsUCUrXeXKlaNOnTqZfnh6etKyZUvOnz/P5s2bU167evVqTNOkRYsW6c49cuRI/vzzT7Zt25byAfD+++/z+eef58XlFViuXBdIqmDdeeedeHp6smTJEv2mPhc8PT1p1qwZq1atSjlmmiarVq2iZcuW6b6mZcuWac4HWLFiRYbnS85dz7oATJw4kXHjxrFs2bI0zzqKc+R0XerUqcOOHTvSfB/5z3/+Q4cOHdi2bRuVK1fOy/ALrev5+9K6dWv27t2bkvQChIeHU6lSJSVYTnI96xIbG/uvROpKImxZluuClQwVie/57u68UdB16dLFatKkifXbb79ZGzZssGrVqpWmVfjRo0etm266yfrtt98ynAN1F3S6nK5LVFSU1aJFC6tBgwbW3r17rePHj6d8JCYmuusyCrT58+dbXl5e1uzZs62dO3dajz76qBUQEGBFRkZalmVZAwcOtEaOHJly/saNGy0PDw/r3XfftXbt2mWNGTNGLdxdIKfrMmHCBMvT09NatGhRmr8XFy5ccNclFEo5XZdrqbuga+R0XQ4fPmyVLFnSeuqpp6w9e/ZY33//vVW+fHnrjTfecNclFEo5XZcxY8ZYJUuWtObNm2ft37/fWr58uVWjRg3rvvvuc9clFDoXLlywtm7dam3dutUCrPfee8/aunWrdejQIcuyLGvkyJHWwIEDU86/0sJ9xIgR1q5du6ypU6eqhbukdebMGatfv35WiRIlLD8/P2vw4MFpfvg4cOCABVhr1qzJcA4lWc6X03VZs2aNBaT7ceDAAfdcRCHw0UcfWTfeeKPl6elpBQcHW7/++mvKWLt27axBgwalOX/BggVW7dq1LU9PT+vmm2+2fvjhhzyOuGjIybpUqVIl3b8XY8aMyfvAC7mc/n1JTUmW6+R0XX755RerRYsWlpeXl1W9enXrzTff1C/rXCAn65KQkGC99tprVo0aNSxvb2+rcuXK1hNPPGGdO3cu7wMvpDL6OerKOgwaNMhq167dv17TuHFjy9PT06pevbr1+eef53ncrmSzLNVJRUREREREnEXPZImIiIiIiDiRkiwREREREREnUpIlIiIiIiLiREqyREREREREnEhJloiIiIiIiBMpyRIREREREXEiJVkiIiIiIiJOpCRLRERERETEiZRkiYhIgfDggw9is9n+9bF3716nzD979mwCAgKcMtf1WrduHT169CAwMBCbzca3337r1nhEROT6KMkSEZECo0uXLhw/fjzNR7Vq1dwd1r8kJCRc1+suXrxIo0aNmDp1qpMjEhGRvKQkS0RECgwvLy8qVqyY5sNutwPw3Xff0bRpU7y9valevTpjx44lMTEx5bXvvfceDRo0oHjx4lSuXJknnniCmJgYAEJDQxk8eDBRUVEpFbLXXnsNIN2KUkBAALNnzwbg4MGD2Gw2vvrqK9q1a4e3tzdz584FYObMmdStWxdvb2/q1KnDtGnTMr2+rl278sYbb9C7d28nvFsiIuIuHu4OQEREJLfWr1/PAw88wIcffkjbtm3Zt28fjz76KABjxowBwDAMPvzwQ6pVq8b+/ft54okneOGFF5g2bRqtWrVi8uTJjB49mj179gBQokSJHMUwcuRIJk2aRJMmTVISrdGjRzNlyhSaNGnC1q1beeSRRyhevDiDBg1y7hsgIiL5ipIsEREpML7//vs0yU/Xrl1ZuHAhY8eOZeTIkSnJS/Xq1Rk3bhwvvPBCSpL13//+N+V1VatW5Y033mDo0KFMmzYNT09P/P39sdlsVKxY8bpi++9//8vdd9+d8ucxY8YwadKklGPVqlVj586dfPzxx0qyREQKOSVZIiJSYHTo0IHp06en/Ll48eIAbN++nY0bN/Lmm2+mjDkcDi5fvkxsbCy+vr6sXLmS8ePHs3v3bqKjo0lMTEwznlvNmzdP+f+LFy+yb98+hgwZwiOPPJJyPDExEX9//1x/LhERyd+UZImISIFRvHhxatas+a/jMTExjB07Nk0l6Qpvb28OHjzIXXfdxeOPP86bb75J6dKl2bBhA0OGDCE+Pj7TJMtms2FZVppj6TW2uJLwXYkH4NNPP6VFixZpzrvyDJmIiBReSrJERKTAa9q0KXv27Ek3AQPYvHkzpmkyadIkDCOp59OCBQvSnOPp6YnD4fjXa8uVK8fx48dT/vzPP/8QGxubaTwVKlQgMDCQ/fv3079//5xejoiIFHBKskREpMAbPXo0d911FzfeeCP33nsvhmGwfft2/vrrL9544w1q1qxJQkICH330ET169GDjxo3MmDEjzRxVq1YlJiaGVatW0ahRI3x9ffH19eX2229nypQptGzZEofDwYsvvkixYsWyjGns2LE8/fTT+Pv706VLF+Li4vjjjz84d+4cw4cPT/c1MTExafb9OnDgANu2baN06dLceOONuXuTREQkz6iFu4iIFHidO3fm+++/Z/ny5dxyyy3ceuutvP/++1SpUgWARo0a8d577/H2229Tv3595s6dy/jx49PM0apVK4YOHUqfPn0oV64cEydOBGDSpElUrlyZtm3bcv/99/P8889n6xmuhx9+mJkzZ/L555/ToEED2rVrx+zZszPd1+uPP/6gSZMmNGnSBIDhw4fTpEkTRo8efb1vjYiIuIHNuvZGcxEREREREbluqmSJiIiIiIg4kZIsERERERERJ1KSJSIiIiIi4kRKskRERERERJxISZaIiIiIiIgTKckSERERERFxIiVZIiIiIiIiTqQkS0RERERExImUZImIiIiIiDiRkiwREREREREnUpIlIiIiIiLiREqyREREREREnOj/Acx6wDy08CfEAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -211,7 +253,7 @@ "source": [ "parameters_range = (-1.0, 1.0)\n", "\n", - "sgd_clf_binary_fhe = SGDClassifier(\n", + "model_binary_fhe = SGDClassifier(\n", " random_state=RANDOM_STATE,\n", " max_iter=N_ITERATIONS,\n", " fit_encrypted=True,\n", @@ -220,28 +262,29 @@ ")\n", "\n", "# Fit on encrypted data\n", - "sgd_clf_binary_fhe.fit(X_binary, y_binary, fhe=\"execute\")\n", + "model_binary_fhe.fit(X_binary, y_binary, fhe=\"execute\")\n", "\n", "# The weights are decrypted at the end of the `fit` call. Use the clear weights here\n", "# to evaluate accuracy on clear data\n", - "y_pred = sgd_clf_binary_fhe.predict(X_binary)\n", + "y_pred_binary = model_binary_fhe.predict(X_binary)\n", + "\n", + "model_binary_fhe.compile(X_binary)\n", "\n", "# Evaluate the decrypted weights on encrypted data\n", - "sgd_clf_binary_fhe.compile(X_binary)\n", - "y_pred_fhe = sgd_clf_binary_fhe.predict(X_binary, fhe=\"execute\")\n", + "y_pred_binary_fhe = model_binary_fhe.predict(X_binary, fhe=\"execute\")\n", "\n", "# Check that the same result is obtained when applying\n", "# the decrypted model on clear data and on encrypted data\n", "# Linear classifiers are 100% correct on encrypted data compared to execution on clear data\n", - "assert np.all(y_pred == y_pred_fhe)\n", + "assert np.all(y_pred_binary == y_pred_binary_fhe)\n", "\n", - "accuracy = (y_pred == y_binary).mean()\n", + "accuracy_binary_fhe = accuracy_score(y_binary, y_pred_binary_fhe)\n", "\n", "plot_decision_boundary(\n", " X_binary,\n", " y_binary,\n", - " clf=sgd_clf_binary_fhe,\n", - " accuracy=accuracy,\n", + " clf=model_binary_fhe,\n", + " accuracy=accuracy_binary_fhe,\n", " title=\"Concrete ML (training on encrypted data with FHE) decision boundary\",\n", ")" ] @@ -268,17 +311,18 @@ "source": [ "from sklearn.model_selection import train_test_split\n", "\n", - "X2, y2 = datasets.load_breast_cancer(return_X_y=True)\n", - "x2_train, x2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.3, stratify=y2)\n", + "X, y = datasets.load_breast_cancer(return_X_y=True)\n", + "x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)\n", "\n", "scaler = MinMaxScaler(feature_range=[-1, 1])\n", - "x2_train = scaler.fit_transform(x2_train)\n", - "x2_test = scaler.transform(x2_test)\n", + "x_train = scaler.fit_transform(x_train)\n", + "x_test = scaler.transform(x_test)\n", "\n", "rng = np.random.default_rng(RANDOM_STATE)\n", - "perm = rng.permutation(x2_train.shape[0])\n", - "x2_train = x2_train[perm, ::]\n", - "y2_train = y2_train[perm]" + "perm = rng.permutation(x_train.shape[0])\n", + "\n", + "x_train = x_train[perm, ::]\n", + "y_train = y_train[perm]" ] }, { @@ -297,20 +341,34 @@ "name": "stdout", "output_type": "stream", "text": [ - "Sklearn clear accuracy: 95.32%\n", - "Full encrypted fit (simulated) accuracy 83.63%\n" + "Sklearn clear accuracy: 95.91%\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Full encrypted fit (simulated) accuracy: 92.40%\n" ] } ], "source": [ "parameters_range = (-1.0, 1.0)\n", "\n", - "sklearn_sgd = SklearnSGDClassifier()\n", - "sklearn_sgd.fit(x2_train, y2_train)\n", - "accuracy_sk = np.mean(sklearn_sgd.predict(x2_test) == y2_test)\n", - "print(f\"Sklearn clear accuracy: {accuracy_sk*100:.2f}%\")\n", + "model_sklearn = SklearnSGDClassifier(\n", + " random_state=RANDOM_STATE,\n", + " max_iter=N_ITERATIONS,\n", + ")\n", + "\n", + "model_sklearn.fit(x_train, y_train)\n", "\n", - "sgd_clf_binary_simulate = SGDClassifier(\n", + "y_pred_sklearn = model_sklearn.predict(x_test)\n", + "\n", + "accuracy_sklearn = accuracy_score(y_test, y_pred_sklearn)\n", + "\n", + "print(f\"Sklearn clear accuracy: {accuracy_sklearn*100:.2f}%\")\n", + "\n", + "model_concrete = SGDClassifier(\n", " random_state=RANDOM_STATE,\n", " max_iter=N_ITERATIONS,\n", " fit_encrypted=True,\n", @@ -318,13 +376,15 @@ ")\n", "\n", "# Train with simulation on the full dataset\n", - "sgd_clf_binary_simulate.fit(x2_train, y2_train, fhe=\"simulate\")\n", + "model_concrete.fit(x_train, y_train, fhe=\"simulate\")\n", + "\n", + "model_concrete.compile(x_train)\n", "\n", "# Measure accuracy on the test set using simulation\n", - "sgd_clf_binary_simulate.compile(x2_train)\n", - "y_pred_fhe = sgd_clf_binary_simulate.predict(x2_test, fhe=\"simulate\")\n", - "accuracy = (y_pred_fhe == y2_test).mean()\n", - "print(f\"Full encrypted fit (simulated) accuracy {accuracy*100:.2f}%\")" + "y_pred_fhe = model_concrete.predict(x_test, fhe=\"simulate\")\n", + "\n", + "accuracy_fhe = accuracy_score(y_test, y_pred_fhe)\n", + "print(f\"Full encrypted fit (simulated) accuracy: {accuracy_fhe*100:.2f}%\")" ] }, { @@ -341,7 +401,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHHCAYAAACx7iyPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkAUlEQVR4nOzdd3xTVf8H8E92mu5dWkoXUIYMLVI2qMwqCgIylKWiojyifVwgsvSR36PCgxsHS0RBEBEVgVIEUUbZQ1ZLW0oL3TtpM+/vj+TeNk3SJmnSpOX7fr360t7e3JycXppvzvd7zuExDMOAEEIIIeQOx3d1AwghhBBC3AEFRYQQQgghoKCIEEIIIQQABUWEEEIIIQAoKCKEEEIIAUBBESGEEEIIAAqKCCGEEEIAUFBECCGEEAKAgiJCCCGEEAAUFJE2iMfjYenSpQ695oYNG8Dj8ZCdne3Q67qL7Oxs8Hg8fPDBB65uCnEDBw8eBI/Hw8GDB536PM74t0pIc1BQ1ITPPvsMPB4PiYmJrm4KaQHvvvsudu7c6epmEBvQ78x2S5cuBY/HM/u1Zs0aVzePOFh1dTVeeukltG/fHhKJBF27dsXnn39uch774c/cV35+fpPP89VXX2Ho0KEIDQ2FRCJBTEwMZs+ebfJh8ubNm1i2bBn69u0Lf39/BAUFYdiwYdi/f7/JNS9duoTBgwfD29sbffr0wdGjR03OWbVqFbp37w6NRmN9p1ggbPYV2rjNmzcjOjoaaWlpyMjIQMeOHV3dJOJE7777LiZOnIhx48YZHZ8+fTqmTJkCiUTimoYRiyz9zkjTPv/8c3h5eRkdS0xMRFxcHGpqaiAWi13UMuIoWq0Wo0aNwsmTJ/HCCy+gU6dO2Lt3L55//nmUlZVh4cKFJo9Zvnw5YmJijI75+fk1+VxnzpxBTEwMHn74Yfj7+yMrKwtfffUVfv31V5w7dw7h4eEAgJ9//hn//e9/MW7cOMycORMajQbffPMNRowYgXXr1mH27Nlc2x999FEEBATg/fffx65du/DII48gIyMDPj4+AIDCwkIsX74cP/zwA4RCB4Q0DLEoMzOTAcDs2LGDCQ4OZpYuXerqJllUXV3t6ia4DQDMkiVL7Hqsp6cnM3PmTIe2pzXIyspiADDvv/++XY935f13p/7OGrLld7BkyRIGAFNUVOTEFjWtOf9W3ZW7/S3+4YcfGADM2rVrjY5PmDCBkUqlTEFBAXds/fr1DADmxIkTDnv+kydPMgCYFStWcMcuXrxocu/V1tYyXbp0Ydq3b88du3z5MgOAuXHjBsMwDCOXyxkPDw9mz5493DlPPfUUM3bsWIe1l9Jnjdi8eTP8/f3x4IMPYuLEidi8ebPZ88rLy/Hyyy8jOjoaEokE7du3x4wZM1BcXMydU1tbi6VLl6Jz586QSqVo164dHn30UVy/fh2A5Rw+W+uxYcMG7tisWbPg5eWF69evIykpCd7e3nj88ccBAIcPH8akSZPQoUMHSCQSREZG4uWXX0ZNTY1Ju69cuYLHHnsMwcHB8PDwQHx8PN58800AwB9//AEej4effvrJ5HHfffcdeDye2WHMhv3y0ksvITIyEhKJBB07dsR///tf6HQ6AIBarUZAQAD3qaC+yspKSKVSvPLKK9yxwsJCPPXUUwgNDYVUKkWvXr2wcePGRtvA9ld0dLTJcTaFwOLxeJDL5di4cSM3ZDxr1iwAlmuKPvvsM3Tv3h0SiQTh4eF44YUXUF5ebnTOsGHDcNddd+HSpUu47777IJPJEBERgffee6/JtgOARqPB22+/jbi4OEgkEkRHR2PhwoVQKpVG50VHR+Ohhx7CX3/9hb59+0IqlSI2NhbffPONVc/D+t///oeoqCh4eHhg6NChuHjxotHPG7v/dDodVq9eje7du0MqlSI0NBTPPvssysrKjK7x888/48EHH0R4eDgkEgni4uLw9ttvQ6vVGp2Xnp6OCRMmICwsDFKpFO3bt8eUKVNQUVEBoPHfWWMau/cB4MaNG3j++ecRHx8PDw8PBAYGYtKkSSa/f/a++Pvvv5GcnIzg4GB4enpi/PjxKCoqMnne33//HUOHDoW3tzd8fHxw77334rvvvjM65/jx4xg9ejR8fX0hk8kwdOhQ/P3330bnsPfupUuXMG3aNPj7+2PQoEFNvm5rmft7ZO19rFKpsHjxYiQkJMDX1xeenp4YPHgw/vjjD7vaYsv1dDodPvzwQ/To0QNSqRTBwcEYPXo0Tp48aXTet99+i759+0Imk8Hf3x9DhgzBvn37uJ9bqnWKjo42ur/Y3/+hQ4fw/PPPIyQkBO3btwdg/T0ENP4eUl1dDU9PT8yfP9/kcbm5uRAIBFixYoXF/jt8+DAAYMqUKUbHp0yZgtraWvz8889mH1dVVWXy79Ee7N/e+n8Xu3fvjqCgIKPzJBIJkpKSkJubi6qqKgDg3rf8/f0BADKZDB4eHlAoFACA06dPY/PmzVi1alWz28mi9FkjNm/ejEcffRRisRhTp07F559/jhMnTuDee+/lzqmursbgwYNx+fJlPPnkk7jnnntQXFyMXbt2ITc3F0FBQdBqtXjooYeQmpqKKVOmYP78+aiqqkJKSgouXryIuLg4m9um0WgwatQoDBo0CB988AFkMhkAYNu2bVAoFJg7dy4CAwORlpaGjz/+GLm5udi2bRv3+PPnz2Pw4MEQiUR45plnEB0djevXr+OXX37Bf/7zHwwbNgyRkZHYvHkzxo8fb9IvcXFx6N+/v8X2KRQKDB06FHl5eXj22WfRoUMHHDlyBAsWLMDt27exevVqiEQijB8/Hjt27MAXX3xhNFS/c+dOKJVK7h9yTU0Nhg0bhoyMDMybNw8xMTHYtm0bZs2ahfLycrN/MGy1adMmPP300+jbty+eeeYZAGj0d7N06VIsW7YMw4cPx9y5c3H16lXuHvn7778hEom4c8vKyjB69Gg8+uijeOyxx7B9+3a8/vrr6NGjB8aMGdNou55++mls3LgREydOxL///W8cP34cK1aswOXLl02C1oyMDEycOBFPPfUUZs6ciXXr1mHWrFlISEhA9+7dm+yDb775BlVVVXjhhRdQW1uLDz/8EPfffz8uXLiA0NBQ7jxL99+zzz6LDRs2YPbs2XjxxReRlZWFTz75BGfOnDHqkw0bNsDLywvJycnw8vLCgQMHsHjxYlRWVuL9998HoH8zHDVqFJRKJf71r38hLCwMeXl5+PXXX1FeXg5fX1+bf2dA0/c+AJw4cQJHjhzBlClT0L59e2RnZ+Pzzz/HsGHDcOnSJe71sv71r3/B398fS5YsQXZ2NlavXo158+Zh69at3DkbNmzAk08+ie7du2PBggXw8/PDmTNnsGfPHkybNg0AcODAAYwZMwYJCQlYsmQJ+Hw+1q9fj/vvvx+HDx9G3759jZ530qRJ6NSpE959910wDNPk77eh0tJSo+8FAgH3BmSONfdxZWUlvv76a0ydOhVz5sxBVVUV1q5di1GjRiEtLQ29e/e2qY22XO+pp57Chg0bMGbMGDz99NPQaDQ4fPgwjh07hj59+gAAli1bhqVLl2LAgAFYvnw5xGIxjh8/jgMHDmDkyJE2tY31/PPPIzg4GIsXL4ZcLgdg/T3U1HtI7969MX78eGzduhWrVq2CQCDgnvf7778HwzDchxJzlEolBAKBSSqUff5Tp05hzpw5Rj+77777UF1dDbFYjFGjRmHlypXo1KmT1f1RUlICrVaLnJwcLF++HADwwAMPNPm4/Px8yGQyrm2dO3eGr68vli5dihdffBE//PADKisrcc899wAAXnzxRcybN8+xZS0OG3NqY9ghv5SUFIZhGEan0zHt27dn5s+fb3Te4sWLuRRbQzqdjmEYhlm3bh0DgFm1apXFc/744w8GAPPHH38Y/ZxNa6xfv547NnPmTAYA88Ybb5hcT6FQmBxbsWIFw+PxuCFIhmGYIUOGMN7e3kbH6reHYRhmwYIFjEQiYcrLy7ljhYWFjFAobHLI++2332Y8PT2Za9euGR1/4403GIFAwOTk5DAMwzB79+5lADC//PKL0XlJSUlMbGws9/3q1asZAMy3337LHVOpVEz//v0ZLy8vprKykjuOBkPyM2fOZKKiokzayKYQ6rOUimGHlbOyshiG0feDWCxmRo4cyWi1Wu68Tz75hAHArFu3jjs2dOhQBgDzzTffcMeUSiUTFhbGTJgwweS56jt79iwDgHn66aeNjr/yyisMAObAgQPcsaioKAYA8+eff3LHCgsLGYlEwvz73/9u9HnY+8zDw4PJzc3ljh8/fpwBwLz88svcMUv33+HDhxkAzObNm42O79mzx+S4ufv02WefZWQyGVNbW8swDMOcOXOGAcBs27at0bbbmj6z5t43176jR4+a/B7Z+2L48OFGj3/55ZcZgUDA/dspLy9nvL29mcTERKampsbs8+p0OqZTp07MqFGjTNoSExPDjBgxgjvG3rtTp061+nXXxz6+4Rf778Tc3yNr72ONRsMolUqj5ysrK2NCQ0OZJ5980uh4w3+r5lh7vQMHDjAAmBdffNHkGmx/pqenM3w+nxk/frzRv9v65zTWrqioKKN7jf39Dxo0iNFoNEbnWnsPWfMewv6d/P33341+3rNnT2bo0KEmj6tv5cqVDADm8OHDRsffeOMNBgDz0EMPcce2bt3KzJo1i9m4cSPz008/MYsWLWJkMhkTFBTE/c22hkQi4e6pwMBA5qOPPmryMenp6YxUKmWmT59udPy7775jPDw8GACMQCBgPvjgA4ZhGGbz5s1MaGgoU1FRYXW7rEHpMws2b96M0NBQ3HfffQD0w6mTJ0/Gli1bjIYUf/zxR/Tq1ctkNIV9DHtOUFAQ/vWvf1k8xx5z5841Oebh4cH9v1wuR3FxMQYMGACGYXDmzBkAQFFREf788088+eST6NChg8X2zJgxA0qlEtu3b+eObd26FRqNBk888USjbdu2bRsGDx4Mf39/FBcXc1/Dhw+HVqvFn3/+CQC4//77ERQUZPSJuqysDCkpKZg8eTJ3bPfu3QgLC8PUqVO5YyKRCC+++CKqq6tx6NChRtvjaPv374dKpcJLL70EPr/un9GcOXPg4+OD3377zeh8Ly8voz4Ti8Xo27cvMjMzG32e3bt3AwCSk5ONjv/73/8GAJPn6datGwYPHsx9HxwcjPj4+CafhzVu3DhERERw3/ft2xeJiYlcO+preP9t27YNvr6+GDFihNHvPCEhAV5eXkbpjvr3aVVVFYqLizF48GAoFApcuXIFAODr6wsA2Lt3Lzdc3lzW3vv126dWq1FSUoKOHTvCz88Pp0+fNrnuM888Y/T4wYMHQ6vV4saNGwCAlJQUVFVV4Y033oBUKjX7vGfPnkV6ejqmTZuGkpISrv/kcjkeeOAB/Pnnn1zqmfXcc8/Z2RN6P/74I1JSUrgvSyUCLGvu4/qjEjqdDqWlpdBoNOjTp4/ZvmuKtdf78ccfwePxsGTJEpNrsH28c+dO6HQ6LF682Ojfbf1z7DFnzhyjERzA+nvImveQ4cOHIzw83Oj3c/HiRZw/f77Jv8XTpk2Dr68vnnzySaSkpCA7OxtffvklPvvsMwAwKq147LHHsH79esyYMQPjxo3D22+/jb1796KkpIQbRbXG77//jt27d2PlypXo0KEDN3pmiUKhwKRJk+Dh4YH/+7//M/rZ1KlTkZeXh6NHjyIvLw///ve/oVAo8Prrr+M///kPvLy8sGzZMsTGxqJnz55mSz5sQekzM7RaLbZs2YL77rsPWVlZ3PHExESsXLkSqamp3DDr9evXMWHChEavd/36dcTHxzumMt5AKBRyuev6cnJysHjxYuzatcukjoOtw2D/gN11112NPkeXLl1w7733YvPmzXjqqacA6IPFfv36NTlcmZ6ejvPnzyM4ONjszwsLC7nXMWHCBHz33XdQKpWQSCTYsWMH1Gq1UVB048YNdOrUyeQPWdeuXbmftyT2+eLj442Oi8VixMbGmrSnffv2Jn90/f39cf78+Safh8/nm/R3WFgY/Pz8TJ6n4Rs9+zwN7wVLzA2Rd+7cGT/88IPRMXP3X3p6OioqKhASEmL22uzvHAD++ecfLFq0CAcOHEBlZaXReex9GhMTg+TkZKxatQqbN2/G4MGD8fDDD+OJJ57gAiZLVCqVSWooODjY6nu/pqYGK1aswPr165GXl2eUmmLbV1/DfmdTUGy/s7WDjT1veno6AGDmzJkWz6moqDBKbzWcIWSrIUOGmNR2NMba+3jjxo1YuXIlrly5ArVa3ez2WnO969evIzw8HAEBARavc/36dfD5fHTr1s2udlhi7nVZew9Z8x7C5/Px+OOP4/PPP4dCoYBMJsPmzZshlUoxadKkRh8bFhaGXbt2Yfr06dz7lo+PDz7++GPMnDnTZPZhQ4MGDUJiYqLZ6fKWsIMJY8aMwSOPPIK77roLXl5emDdvnsm5Wq0WU6ZMwaVLl/D7779zM9Tq8/f3R79+/bjvV6xYgZCQEMyePRvr1q3DmjVrsHnzZmRnZ2Py5Mm4dOmS3Sk1CorMOHDgAG7fvo0tW7Zgy5YtJj/fvHmz3blnSyx9SrFU6CaRSEwCBK1WixEjRqC0tBSvv/46unTpAk9PT+Tl5WHWrFkmnzKtMWPGDMyfPx+5ublQKpU4duwYPvnkkyYfp9PpMGLECLz22mtmf965c2fu/6dMmYIvvvgCv//+O8aNG4cffvgBXbp0Qa9evWxurzm29q0zNPwUyWKsrAOx9lNsc5/HWubuP51Oh5CQEIujDWyAXF5ejqFDh8LHxwfLly9HXFwcpFIpTp8+jddff93oPl25ciVmzZqFn3/+Gfv27cOLL76IFStW4NixY2Y/FLCOHDnC/WFm1f+A05R//etfWL9+PV566SX0798fvr6+4PF4mDJlitl/R47od/a677//vsW6m4ZvYPVHI1qCNa/z22+/xaxZszBu3Di8+uqrCAkJ4YqB2eDQFo6+XnNY+pth7vdg6z3UlBkzZuD999/Hzp07MXXqVHz33Xd46KGHmvyAAOiD38zMTFy4cAFyuRy9evXCrVu3ABj/LbYkMjISV69etbnNgL7G7+6778bmzZvNBkVz5szBr7/+is2bN+P+++9v8nrZ2dlYuXIl9u3bBz6fj++//x7PPvss99iNGzdiy5YtWLRokV3tpaDIjM2bNyMkJASffvqpyc927NiBn376CWvWrIGHhwfi4uJMZuc0FBcXh+PHj0OtVhsV39bHfvprOHPJlhGQCxcu4Nq1a9i4cSNmzJjBHU9JSTE6LzY2FgCabDegD1iSk5Px/fffo6amBiKRyGgEx5K4uDhUV1dj+PDhTZ47ZMgQtGvXDlu3bsWgQYNw4MABo5lAABAVFYXz589Dp9MZvRmzqZaoqCiL1/f39zfpV8B831obfLDPd/XqVa4/Af0IRVZWllWv29rn0el0SE9P50bFAKCgoADl5eWNvm57sKMV9V27ds3s7L2G4uLisH//fgwcOLDRN+uDBw+ipKQEO3bswJAhQ7jjloKWHj16oEePHli0aBGOHDmCgQMHYs2aNXjnnXcAmP+d9erVy+S+DwsLg6enJ4Cm7/3t27dj5syZWLlyJXestrbW7H1kDbb4++LFixY/wbLn+Pj4OOz+cYXt27cjNjYWO3bsMPrdmEtrOfJ6cXFx2Lt3L0pLSy2OFsXFxUGn0+HSpUuNFnyb+5uhUqlw+/Ztm9ptzT1kzXsIoB9lZIOL9u3bIycnBx9//LHV7REIBEavmR35seZey8zMtDjqb42amhqT2bIA8Oqrr2L9+vVYvXq1UWlEY1555RU8/PDD3GzLW7duGY0uhYeHIy8vz+62Uk1RAzU1NdixYwceeughTJw40eRr3rx5qKqqwq5duwAAEyZMwLlz58zmMdlPTxMmTEBxcbHZERb2nKioKAgEAq7WhsXmfa3Bfoqr/6mNYRh8+OGHRucFBwdjyJAhWLduHXJycsy2hxUUFIQxY8bg22+/xebNmzF69Girhtsfe+wxHD16FHv37jX5WXl5udHKo3w+HxMnTsQvv/yCTZs2QaPRmAReSUlJyM/PN6o90mg0+Pjjj+Hl5YWhQ4dabEtcXBwqKiqMhvhv375t9nfm6elp1Rvf8OHDIRaL8dFHHxn12dq1a1FRUYEHH3ywyWtYIykpCQCwevVqo+PsFFRHPQ9r586dRn9Q0tLScPz48SZnyAH637lWq8Xbb79t8jONRsP1q7n7VKVSmdzrlZWVJivU9ujRA3w+3+gPrLnfmb+/P4YPH270xU7RtubeFwgEJv8WPv74Y7tHF0eOHAlvb2+sWLECtbW1Zp83ISEBcXFx+OCDD1BdXW1yDXNT/Bu6fv16i4+eNGTu93v8+PEml/Bo7vUmTJgAhmGwbNkyk2uwjx03bhz4fD6WL19uMlpT//pxcXEmf4u//PJLm37/1t5D1ryHsKZPn459+/Zh9erVCAwMtOrfpTlFRUX473//i549exoFRebusd27d+PUqVMYPXq00fGG95pGozGbpk9LS8OFCxe42X+s999/Hx988AEWLlxo9ezhP/74A7t37zZaBiI0NJT7cAwAly9fRlhYmFXXM4dGihrYtWsXqqqq8PDDD5v9eb9+/RAcHIzNmzdj8uTJePXVV7F9+3ZMmjQJTz75JBISElBaWopdu3ZhzZo16NWrF2bMmIFvvvkGycnJSEtLw+DBgyGXy7F//348//zzeOSRR+Dr64tJkybh448/Bo/HQ1xcHH799VejOoymdOnSBXFxcXjllVeQl5cHHx8f/Pjjj2Zv1I8++giDBg3CPffcg2eeeQYxMTHIzs7Gb7/9hrNnzxqdO2PGDEycOBEAzL7hmfPqq69i165deOihh7gp4XK5HBcuXMD27duRnZ1tFFxNnjwZH3/8MZYsWYIePXoYjYoA+kLWL774ArNmzcKpU6cQHR2N7du34++//8bq1avh7e1tsS1TpkzB66+/jvHjx+PFF1+EQqHA559/js6dO5sUfiYkJGD//v1YtWoVwsPDERMTY3aLl+DgYCxYsADLli3D6NGj8fDDD+Pq1av47LPPcO+99zZZ/GitXr16YebMmfjyyy+5tFNaWho2btyIcePGmaSImqtjx44YNGgQ5s6dC6VSyf3xtZQGrW/o0KF49tlnsWLFCpw9exYjR46ESCRCeno6tm3bhg8//BATJ07EgAED4O/vj5kzZ+LFF18Ej8fDpk2bTN4ADhw4gHnz5mHSpEno3LkzNBoNNm3aBIFAYFSDYe3vjGXNvf/QQw9h06ZN8PX1Rbdu3XD06FHs378fgYGBdvWrj48P/ve//+Hpp5/Gvffey60tdO7cOSgUCmzcuBF8Ph9ff/01xowZg+7du2P27NmIiIhAXl4e/vjjD/j4+OCXX35p9HnYac+u3KPvoYcewo4dOzB+/Hg8+OCDyMrKwpo1a9CtWzezwZ6jrnffffdh+vTp+Oijj5Ceno7Ro0dDp9Ph8OHDuO+++7ip22+++SbefvttDB48GI8++igkEglOnDiB8PBwbr2fp59+Gs899xwmTJiAESNG4Ny5c9i7d69N9VfW3kPWvIewpk2bhtdeew0//fQT5s6dazHz0NDQoUPRv39/dOzYEfn5+fjyyy9RXV2NX3/91WjkfcCAAbj77rvRp08f+Pr64vTp01i3bh0iIyNNVr5ueK9VV1cjMjISkydPRvfu3eHp6YkLFy5g/fr18PX1xVtvvcU99qeffsJrr72GTp06oWvXrvj222+Nrj1ixAijJUAAferypZdewquvvmpUwzdx4kS89tprCA4Oxo0bN3DhwoUmJww0yqFz2dqAsWPHMlKplJHL5RbPmTVrFiMSiZji4mKGYRimpKSEmTdvHhMREcGIxWKmffv2zMyZM7mfM4x+euabb77JxMTEMCKRiAkLC2MmTpzIXL9+nTunqKiImTBhAiOTyRh/f3/m2WefZS5evGh2Sr6np6fZtl26dIkZPnw44+XlxQQFBTFz5sxhzp07Z3INhtGvKjp+/HjGz8+PkUqlTHx8PPPWW2+ZXFOpVDL+/v6Mr6+vyXTixlRVVTELFixgOnbsyIjFYiYoKIgZMGAA88EHHzAqlcroXJ1Ox0RGRjIAmHfeecfs9QoKCpjZs2czQUFBjFgsZnr06GHymhjG/HTaffv2MXfddRcjFouZ+Ph45ttvvzU7Jf/KlSvMkCFDuCmg7PTbhlPyWZ988gnTpUsXRiQSMaGhoczcuXOZsrIyo3OGDh3KdO/e3aSdlpYKaEitVjPLli3j7p3IyEhmwYIF3NR1VlRUFPPggw+aPH7o0KFNTtutv6L1ypUrmcjISEYikTCDBw9mzp07Z9JuS/cfwzDMl19+ySQkJDAeHh6Mt7c306NHD+a1115jbt26xZ3z999/M/369WM8PDyY8PBw5rXXXuOmHbPTwDMzM5knn3ySiYuLY6RSKRMQEMDcd999zP79+42ez9LvrDFN3ftlZWXcvebl5cWMGjWKuXLlisUp2Q1XALa0xMauXbuYAQMGMB4eHoyPjw/Tt29f5vvvvzc658yZM8yjjz7KBAYGMhKJhImKimIee+wxJjU1lTvH0orUUVFRVt1TTa1obWlKvjX3sU6nY959910mKiqKkUgkzN133838+uuvZu93c/9WG7LlehqNhnn//feZLl26MGKxmAkODmbGjBnDnDp1yui8devWMXfffTcjkUgYf39/ZujQodzyKwzDMFqtlnn99deZoKAgRiaTMaNGjWIyMjKs/v0zjPX3EMNY9x7CSkpKYgAwR44cabTf6nv55ZeZ2NhYRiKRMMHBwcy0adOM3ntYb775JtO7d2/G19eXEYlETIcOHZi5c+cy+fn5Juc2vNeUSiUzf/58pmfPnoyPjw8jEomYqKgo5qmnnjL5u2lpSQj2q+G/G4ZhmE8//ZRp3769yXuzWq1mkpOTmaCgICYqKorZuHGj1f1iDo9hHFyBSdocjUaD8PBwjB07FmvXrnV1cwgh5I41fvx4XLhwARkZGa5uSptENUWkSTt37kRRUZFR8TYhhJCWdfv2bfz222+YPn26q5vSZtFIEbHo+PHjOH/+PN5++20EBQXZtfAaIYSQ5snKysLff/+Nr7/+GidOnMD169ebVUxMLKORImLR559/jrlz5yIkJMTmTUUJIYQ4xqFDhzB9+nRkZWVh48aNFBA5EY0UEUIIIYSARooIIYQQQgBQUEQIIYQQAoAWbzRLp9Ph1q1b8Pb2btbOyYQQQghpOQzDoKqqCuHh4Sb7M1qDgiIzbt26hcjISFc3gxBCCCF2uHnzZqObRltCQZEZ7JYRN2/ehI+Pj0OvrVarsW/fPm4LBNIyqN9bHvW5a1C/uwb1u2s07PfKykpERkY2uvVTYygoMoNNmfn4+DglKJLJZPDx8aF/OC2I+r3lUZ+7BvW7a1C/u4alfre39IUKrQkhhBBCQEERIYQQQggACooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUEUIIIYQAoKCIEEIIIQQABUWEEEIIIQAoKCKEEEIIAUBBESGEEEIIAAqKCCGEEEIAUFBECCGEEAKAgiJCCCGtTI1KC4ZhXN0Mu2i0uhZte61aC52u5Z5Pq2Og1Ghb7PkcjYIiQgghrcb1omr0Xr4Ps9afgEqjc3VzbJJRWIW7lu7Fsl8utcjzXSuowsD/O4AJa460SCDGMAwmfH4EQ977A4WVtU5/PmegoIgQQkir8cu5W1BqdDh0rQiLdl5oVSNGv53PR61ahx2nc50+elNUpcTs9SdQIlfhTE45rhfJnfp8AHD2ZjnO3ixHQaUSH+y76vTncwYKigghhLQah64Vcf//w8lcfH7ougtbY5u07BIAQGWtBlcLqpz2PLVqLeZ8cxJ55TXcsfr95iy/nr/N/f+2U7m4mFfh9Od0NAqKCCGEtAplchXO3iwHALxwXxwA4L09V7H7wu1GHuUeVBodTt0o474/nlnilOfR6Rj8+4dzOHuzHL4eIjye2AEAcPBqoVOer/7z/mYIijoEyMAwwNu/XmpVI3kABUWEEEJaiT/Ti8AwQJcwb7w6qgtmD4wGALy89SwXLLmrC3kVqFXX1UClZZc65XlWpVzDbxduQyTg4YvpCVwfHc8qRY3KeQXQJ2+UIb+yFt4SITY+2RcSIR/Hs0qx9598pz2nM1BQRAghpFU4dFWfAhraORgAsOjBbri/SwiUGh2e3ngSuWUKVzavUcez9CNDYT5SAEBaVqnDR1G2nbyJT/7IAAC8O74H+sUGIi7YCxF+HlBpdDiaWezQ56vv1/O3AAAjuociJsgTzw6J1bdj95VWNRuNgiJCCCFuT6djuLqYofH6oEjA5+GjqXejazsfFFcr8eSGE6isVbuymRalZelHhmYOiIZEyEdxtcqhxc9Hr5dg4U8XAOhTi5P6RAIAeDwe119sUOloGq2OS2GO7RUOAHh2aBxCvCXIKVVgw9/ZTnleZ6CgiBBCiNv751YlSuQqeIoF6BMVwB33kgixblYfhHhLcK2gGvO+OwON1r2m6mt1DE5m6+uJBncKwt0d/ADUBUrNlVlUjee+PQW1lsGDPdvh3yPijX4+zDCydtBJxdbHs0pRXK2Cn0yEQR2DAACeEiFeG90FAPDJgQwUVyud8tyORkERIYQQt8cWCg/sGASx0Pitq52vB9bOvBceIgH+vFaEpb/841YFvpduVaJaqYG3RIiu7XzQNyYQQF1KrTlK5So8ueEEKmrU6B3ph5WTeoHP5xmdM6BjEEQCHm6UKJBV7Pip+WzqbHT3MIgEdb+bR++OQI8IX1QpNViVcs3hz+sMFBQRQghxewcbpM4a6tHeF6un9AaPB3x7LAfr3ChlwwY/faL9IeDz0C9GP9J1PLN5dUVKjRbPbTqF7BIFIvw88NWMPpCKBCbneUmE3Oiao2ehqbU6/H5RX0zNps5YfD4Pbz3UDQCwJS0HV/IrHfrczkBBESGE2KlWrUVBZW2TXwqVxtVNbdXKFSqcydGnn4bFh1g8b1T3MCwc0xUA8M5vl7D/UkGLtK8pbJqMHSG6u4M/hHwe8itrkVtW09hDLWIYBgt+vIC07FJ4S4RYP/teBHtLLJ4/jK0rcnAK7a+MYpQr1AjyEiMxJsDk531jApDUIww6Bnjn18tuNYJnjtDVDSCEkNbodkUNRv7vT1TVNh3wyMQC7HxhIDqHerdAy9qevzKKoWOATiH6mVSNeXpwDDKL5fg+LQcvbjmDQ6/e12iw4Gw6HcNNv0+M1QcNHmIBerb3xemcchzLLEFkgMzm6249cRM7zuRBwOfh08fvafLeGhYfghW/X8HR6yWoVWvNjijZ49dz+gLrMXe1g1BgfpzljdFdsf9SIf7KKMaBK4V4oGuoQ57bGWikiBBC7PD7hXxU1WrA4wFCPs/iF58HKFTaVrmQnbs4aJg1NcxC6qw+Ho+H5Y90R+dQLyhUWvyd4bxp6NZIL6xGuUIND5EAd4X7cscTY/WjRvYWW285cRMAkDyiM4Z0brpfOod6IcxHCqVGh2MOWjhSqdFi3z/mU2f1dQiU4clBMQCA//x22a33rKORIkIIsQObhlgwpgueGRJn8bycEgWGrzqEw+nF+ONqIe7v4r6fkt1R/an4jaXO6hMJ+BjaORjXCqpxPKsU4+6OcGYTG5VmqCe6J8rPqEC8b0wAPj943a5FHG+WKnD2Zjn4PGBSn/ZWPYbH42FYfDC2nLiJg1eLrO7Lxhy6WoQqpQZhPlL0ifJv9NwX7ovD9lM3kVksx6ZjN/CUIUhyNzRSRAghNqpVa7lP2029uXQIlGH2oGgAwDu/XYbazaaLu7tLtytRVKWETCxAn+jG33jrS3TgDK/mOGYYCWLbw+oT5Q8+D7hRokB+hW07yrN7jPWLDUSIt9Tqx7EjbX86qK6IbUdSj3YmM94a8paK8O+R+qUCPtx/DWVylUPa4GgUFBFCiI2OZpZAqdGhna8UnUK8mjx/3n0dEeQlRmaRHN8eu9ECLWw72FGiAXGBkAitr4O5NzoAPB6QWSRHUZVr1shhGKZekbVxEbK3VITuhnSarYEbOwX+oZ6WU1bmDOgYBCGfh8xiOXJKmrf6d41Ki/2X9YXsY3u1s+oxj/WJRJcwb1TWarB6v3tO0Xd5UPTpp58iOjoaUqkUiYmJSEtLs3iuWq3G8uXLERcXB6lUil69emHPnj1G5yxduhQ8Hs/oq0uXLs5+GYSQBm6V1+D3m3wUuugNyZkO1atx4fEa/4QM6N8Akw0L6q3en45yhX2fkneeycPPZ/PsemxrxW3tYWO6x1cmQryh+NhRiyTaKqtYH5CJBXz0jvQz+TkbKNnSvsyiavxzqxICPg+j7wqzqT0+UhHuMaS5Dl5r3tT8P64WQqHSor2/h9nXZo6Az8NiwxT9b4/nIKOwqlltcAaXBkVbt25FcnIylixZgtOnT6NXr14YNWoUCgvN/7IWLVqEL774Ah9//DEuXbqE5557DuPHj8eZM2eMzuvevTtu377Nff31118t8XIIIfV8ejATe3L5eHLjKVS56dYL9uK2m+hs/Rv15Hv1n5IratRYvT/d5ufc8HcWXtp6FvO3nMWmo9k2P741qqhR4xQ7Fd+KYuKG+nHFzK5JobHBTu9IP7Ozvdig6LgNQRGbshrUMQgBnmKb28Sm0A42c8uPX87pR6se7NnOqg8GrAEdgzC8ayi0Ogbv773arDY4g0uDolWrVmHOnDmYPXs2unXrhjVr1kAmk2HdunVmz9+0aRMWLlyIpKQkxMbGYu7cuUhKSsLKlSuNzhMKhQgLC+O+goKCWuLlEELquZCnX6jtakE1/vW9+229YK8bJXJkFcsh5PMwsGNg0w8wqP8pedOxG8gorLb6sX9cKcTyXy9x3y/95ZLDF+FzR39nFEOrYxAb7GnXtHV7gg5HspQ6Y/WN1h/PKKy2ehuMutSZdSmrhoYZAnl2ar49qpUaHLiiv//G2pjCA4A3H+yKCfe0x9KHu9v1/M7kstlnKpUKp06dwoIFC7hjfD4fw4cPx9GjR80+RqlUQio1Lirz8PAwGQlKT09HeHg4pFIp+vfvjxUrVqBDhw4W26JUKqFU1t2QlZX6P+ZqtRpqtWM/4bLXc/R1SeOo31uWSqNDuuFNX8jn4eDVIizbdRGLH+rq4pY1X+ol/RTkhCg/SAW23VP3RvnigS7BSL1ShHd+/QdfTb+nycdcvl2Fed+dho4BJt4TAR3DYMeZW3jhu9PY+nRfxIcZr0/Tlu71A4aalSEdA+16Pfe01/fN1YIqFFUo4CcTObR99Znrd7YYP6GDr9n2e4l56BzihWuF1TiWUYRR3RufmXitoArXCqohEvBwf2f7+qRjkBQh3hIUVilxNKMIg2wI7Fl7L9yGUqNDdKAMnYM9bG5He18x/m+8/gNCc+/Thv3e3Ou5LCgqLi6GVqtFaKjxTRAaGoorV66YfcyoUaOwatUqDBkyBHFxcUhNTcWOHTug1dZFu4mJidiwYQPi4+Nx+/ZtLFu2DIMHD8bFixfh7W1+casVK1Zg2bJlJsf37dsHmcz2TyfWSElJccp1SeOo31tGrhzQ6ISQCRhMjtNi/TUBNh2/CUVBNoa0a91r9Wy/zAfAR4i2GLt377b58f2kwEGeAAevFWPVd7+ji5/l/qhQAasuCCBX8dDJR4f+In2R9nkfATIqtZj+1REk99DCx0wWpbXf6wwDpFwQAODBozwLu3dn2nWdUA8BCmp4+GLHfvQIcP69x/Z7qRK4VSEEHwyKLh/Hbgt1xaE8Pq6Bjx8OnoH2RuOjqb/l6O+9eB8t/vrD/t9vjJSPwio+Nu47gcprto/grr+ib0dnaTV+//13u9vhSGy/KxTNKyBvVesUffjhh5gzZw66dOkCHo+HuLg4zJ492yjdNmbMGO7/e/bsicTERERFReGHH37AU089Zfa6CxYsQHJyMvd9ZWUlIiMjMXLkSPj4+Dj0NajVaqSkpGDEiBEQiZz3qYUYo37XK1OooNM1/sYg4POb/Yl6++k84Pw/iPBk8OqU4Qg8mosPUtLx0w0BRg26G/dZsQifO1KqtXj95B8AdHhm7CB0CbNvhepbsqtYf+QG9pf44MXJ/c2uBKxQafD42pMoV1UiNkiG759JhK+H/vcy5H41Jn15HNklCmwrCMC3s++Fh1hfs2Ltvc4wDBgGTU6ldpUr+VWoOHYUUhEfL0x6ABI7V2A+or6ErSdzwQTFIml0fNMPsFPDft959hZw+iLuau+L8WP7WX7ghXwc/uE8iuCLpKT+Fk9jGAb/+/BvAArMfqAXkqyc8WUO72I+jm89jxy1N5KSBtr02MoaNV5JOwiAwUvjB6FTaNOzL52pYb+zmR57uSwoCgoKgkAgQEGB8d40BQUFCAszX1EfHByMnTt3ora2FiUlJQgPD8cbb7yB2NhYi8/j5+eHzp07IyMjw+I5EokEEonpMvAikchpb6DOvDax7E7u93d+vYSv/8qy6twXH+iE5BGd7X6uqwX6nbgjPPV9/sL9nXCzrBZbT97Eyz+cx7bnBqBbuGM/cLSEo1nlqFXrEOYjxV3t/W0qMK3vpeHx2Hn2FtIL5dh+Nh/T+0UZ/VynY/DajnO4eKsS/jIR1s/uiyCfulHrYF/9sfGf/Y3zuZV4Y+c/+GTqPUYBjqV7vUalxeeHruPrw5kYc1c7rHysl12vwdn+uq4vsO4fGwgvmfVr8TQ0oGMQtp7MxYkb5S3yb5/t95M3KgAA/WODGn3e/p30HxCuFFRBodbPmjPnYl4FsksUkAj5GNUjHCKR/W/fQ7uEQcC/gMxiOfKr1DbVax04lw+1lkHnUC90a2/9ulHOxvZ7c3/HLiu0FovFSEhIQGpqKndMp9MhNTUV/ftbjpYBQCqVIiIiAhqNBj/++CMeeeQRi+dWV1fj+vXraNfO/qiakLbgcLr12x2wxZz2unRL/2mtvad+VIrH4+HtcXdhQFwg5Cotntp4AgWVti1Y5w7YGTtDO1s3Fd8SX5kILxuCzv+lXENFjXEdxH/3XMHefwogFvDx5Yw+iAr0NLlGTJAnvngiASIBD7sv5OODfY3P5GEYBr+dv40HVh7ER6npUKi0+PF0Lq4XWV/w3ZLYQvLmrrx8r6GY+WJeBaqVLbcxL7tStaUia1aItxSxQZ5gGODkDcsF4b8Y/k0+0DUEXpLmjWf4eohwTwc/ALZvEPuLYfabrWsktRYunX2WnJyMr776Chs3bsTly5cxd+5cyOVyzJ49GwAwY8YMo0Ls48ePY8eOHcjMzMThw4cxevRo6HQ6vPbaa9w5r7zyCg4dOoTs7GwcOXIE48ePh0AgwNSpU1v89RHiTkoMK8j+9uIgZP/fg2a/Tr81AoB+wbsKhX0Fizodg0u39UFRhKwuVScW8vH54wmIC/bE7YpaPL3xZKvbPf6QYW2XoQ5I/03r2wGdQrxQKlfhkwN1U/S/T8vBF3/q62fen9STe1M3JzE2EP+d0BMA8NnB6/jh5E2z513Nr8K0r47jhe9O41ZFLSL8PNDdMFL3zZHsZr8WR6uqVePUDcNU/Gb2dbifByIDPKBjgJN2bKlhj8LKWmQVy8HjAX0a+f2xmlqviA1oAccFI0M72z41v1Su4vaSs3f2m7tzaVA0efJkfPDBB1i8eDF69+6Ns2fPYs+ePVzxdU5ODm7fvs2dX1tbi0WLFqFbt24YP348IiIi8Ndff8HPz487Jzc3F1OnTkV8fDwee+wxBAYG4tixYwgObp01DIQ4gk7HoMywYGBja5sEeIrRwTCUfj6v3K7nulmmQLVSA7GQj9AGG5r7ykRYN+teBHiKcSGvAi9tOdtkjZO7uFmqwPUiOQR8HgZ2bP4yH0IBH28+qJ+Nt+FINrKL5fgrvRhv7bwIAHhpeCc80rvpPbsevac9Xry/IwBg4Y4LOJZZ98ZaoVBj6a5/kPTRYRzNLIFEyMf8Bzphf/JQLBijf+7tp3Ldbh2pvzNKoNExiAnyNDtKZit2i42WWsSRXQKga5gPVwfWGDYoOmahfWdvliO3rAYysQD3OWDPMqBuBO7I9WIoNdZNzd9zMR9aHYPu4T6IDXZtLZGzuLzQet68eZg3b57Znx08eNDo+6FDh+LSpUtmz2Vt2bLFUU0jpM2oqtVAawg+mlrwrXekH3JKFTibU47BnWz/MMGmzjqHeEHAN/0jHxXoiS+nJ2DaV8ex71IB/rvnChYkuf9U/YOGNENCB3+r3uisMSw+BMPig3HwahFe3X4OV/KroNExeKR3OOY/0Mnq67w8ojOyShT45dwtvPD9WbwQD2w5kYtV+9NRZhjxG3NXGBYmdeXqRwZ2DETHEC9kFFbjx1O5mDXQfTbo5Ebk7Fiw0Zy+MQHYfiq3xYKiptYnaijRsMjkxbwKyJUaeDZIj/1yTj84MKJbKFdQ31zd2vkgyEuC4molTmWXYYAVgT67YGNbTZ0BbhAUEUKcr0SuX4fLSyJscv+oXpF+2HXuFs7eLLfruf4xBEXd2nkDMP8m1Cc6AO9P6on5W87iiz8zkV9Z22SgEeItwbND4yAyM1OrJRy66rjUWX2LHuyKw+nFOJGtTxf1ifLHfyf0tKlmicfj4f2JPZFXpsDpnHL897wAunP6D5CdQrywZGx3DOoUZPKYmQOi8dbOi9h49AZm9I+2ayZaRY0a3x67gUEdg9DLyu0eGsMwTF3tloP6up9hpOhcbjlqVFqHBRaWsHuZ9Yu1LiiK8PNAhJ8H8sprcDqnzOjDiE7HYPcFx9fx8Pk8DO0cjB9P5+LgtaImg6KcEgX3utpq6gygoIiQO0KpvOnUGYvdx+hcbjkYhrG5oPifW/pZN13beQON7K7wSO8IZBcr8L/91/DzWesKu0UCPp4dGmdTexxBqdHiyHX9i3HU6AWrY4g3nkjsgI1Hb6BDgAxfzuhjdkuIpkhFAnw1ow8e+fRv5JbVwFsqxMvDO2N6/yiLgeSjd0fgvT1XkFUsx5/pRXYVNb+18yJ2nbuF9/dexaSE9nhtdBcEe5vO5rXWtYJq3K6ohUTIR/9Y2xcWNCcywANhPlLkV9bizM0yDIhz3i4HpXIVrhXoi9cbqwdrKDEmADvO5OF4ZqlRUHTyRhnyK2vhLRViSGfHtntovCEoulqIhRZGa5UaLdb/nY2PU9OhY4B7OvjZtbp4a0FBESF3gBIbgqLu4T4Q8nkorlYht6zG5j+AbJF1t3Y+yG9iy6kXH+iI2GBPbvVrS26X12DbqVx8ciADExLaI8jL/jdde5zMLoNCpUWwt4QrUHakBUldERPkiZHdw+zaz4oV6CXBd0/diw+3/4FXJw9FmH/jdR+eEiEmJURi3d9Z2Hgk2+ag6NSNMuw6VxfQbjuViz0X8zF/eCfMHBBt16gemzrrFxtoV3BoDo/HQ9+YAOw6dwtpWaVODYpO3SgHAHQM8UKgDfdpYqw+KGqY4mNTViO7hTU5ymurIZ2CwOfpA9Fb5TUI9zMuAmS3l8kq1i+x0TvSD+9Pcs8lHByFgiJC7gBlNgRFUpEAXdv54EJeBc7lltsUFBVXK1FQqQSPB8SHeiH/YuPn83g8jO3VdEpAp2NwJb8KF/IqsCrlGt4d38PqNjkCOz28uVPxLZGKBA6r6WnnK8WQdozVb8gz+kdh/ZEsHLxWhOxiOaKDrCts1ukYvG3Yj+2xPu0xpW8HLN31D87nVuCd3y5jy4mbWDK2m811aWzqrLmzzhpKjNUHRccznVtXxE7FT7SynojV15DiO3uzHLVqLaQiATRaHX6/qE+djW3GYo2W+MnE6B3ph9M55Th0rQhT++q3w8oqluPtXy9x+5sFeUnwxpguePTuCLdd7NNRXDr7jBDSMmwZKQLqUmhnc8pteh62yDom0NOkWLQ5+Hwe3jJsprolLQdX8pu3aq2tnPVG7Q6igzwxrHMwGAb45ugNqx/H1p15igV4ZWQ87ungj53PD8R/J/RAoKcYGYXVmL42Dc98cxI5JdZtvVCt1OCEIahwdJqSDVJO55RBpXHe5sQnDEsJWFtkzYoOlCHYWwKVVsfV8x3PKkVxtQr+MpFDZjyaw44OHrxaiGqlBv/3+xWM/N8hHLhSCCGfh2eGxOKPV4ZiYkL7Nh8QARQUEXJHYGuKAq0MinrVqyuyBVtk3dUJKaa+MQFI6hEGHQO8/eslMIx9U/kZhrFpGYC88hqkF1aDzwMGd2x7QREAzBwQDQDYdvIm5FYscFij0uK/e/R7VD5/X0eE+OhXnObzeZh8bwcceGUYnhwYAwGfh32XCjD8f4ewct9VFFUpUa5QWfxKvVwAtZZBhwAZYqwcsbJWXLAXAj3FUGp0uGDnchNNqdHoN/AF6pYBsBaPx+MCNzaFxqbORt8V5rQJBmzw+ee1Ytz/wUGsOXQdai2DIZ2DseelIViY1BXe0jtnFwBKnxFyB7Cl0BqoGym6kFcBtVZn9R9ktp7IGXU3ALBgTFfsv1SIvzNKkHq5EMO7Nb6reEMl1UrMWJcGlUaHTU8lIsy36e0jDhlGie7u4G9xC4bWbkinYMQGeSKzWI4dp3MxvX90o+d/+WcmbhsWgXxqkGnaz9dDhMVju2Fq30gs/eUf/J1Rgo8PZODjA5a3W6pvWLzj05RsXdHvF/NxLLMUCVG2jeRYI7OKBx0DRAXKrLq3GkqMCcCv528jLasUaq0Oe/7JBwCMdeIU+B4Rvgj0FKNErkKNWosOATIsfqgbHuga4pRUsbujkSJC7gBs+szfyqAoNsgT3lIhatU6XCuosvp52Jln3do5JyiKDJDhScOb8Lu7L9uUBqlVa/HsplP451Yl0gur8dTGE1aNinDbTTg4neNO+HweZvTX77+28eiNRkfh8itqsebQdQDAG2O6NFoM3SnUG98+lYg1T9yD6EDratO8DcXfztDUytHNdb1SH0T0tWHWWX1sXdGpG2U4eLUI5Qo1grwk3DpGzsDn8zBnSCza+Urx6qh47Ht5CIZ3C70jAyKARooIuSOU2Zg+4/N56NXeD39lFOPszXJ0D/dt8jEKlYabpWLN+fZ64b44bD91E5nFcmw6dsPsSEVDDMPg9R/P4+SNMnhLhRAL+PjnVqV+naTpCRBYqJVQaXTctgbN3YPL3U1IaI/3915FRmE1/s4oMVnXiPXe3iuoUWuREOVv1Xo1PB4Po+9qh1Hd9anPJs8HnFa7wqa0TmaXQqPVQejglBQbFNkbxHQK8YK/TIQyhRrvGdKTST3CLN6fjvLc0Dg854KlLtwRjRQRcgewNX0G2F5sffl2FRgGCPaWNGudmqZ4S0X498h4AMCH+69xAV9jVu9Px89nb0HI52HNEwn4ckYfiIV87L9cgBW7L1t83KkbZZCrtAjyEjstJeguvKUiTExoD0C/7Yg553PLseN0HgBg8UPdbF5gUsBv+suZxbzxYd7wkQohV2m5VK+jKFQa5Og/E9g884zF5/O4tY3YZSqsmZ1JHIeCIkLuAOyK1oGe1gcrthZbO7ueqL7H+kSiS5g3Kms1WL3/WqPn7jyThw9T9RuuvjPuLgzsGISEKH+sNKy38vVfWfj2mPlZVwcNa+YM6RR8R8y8mWEouE69UoCbpcYzxhiGwfJf9FPwH707wiGrV7c0Qb2gw9EptLM3K6BjeAjzkaC9v0fTD7Cg/qy1MB8pEjr4O6J5xEqUPiNtXnG1EusOZ+KfLD5O774CPt/yZ4H7u4TYtd+XO1OoNKhV62tvArysHynqFalPgaUXVqOqVt3kDJRLTq4nqk/A52HxQ90w7evj+PZ4Dp7oF4VOod4m56VlleK17ecBAM8OjcUUwzosgP4TeHaxHCtTrmHJrn8QGSAzmQZ+yMHbTbi7uGAvDO4UhMPpxdh07IbRKse7L+Tj5I0ySEV8vDo63oWtbJ7E2ACkXinEscxSPD041mHX/StDv1Jp3+iAZtXj9KuXenuwZ7s7Ihh3JxQUkTbvmyPZ+OxQJgA+DuXnNHrurrO3cOqtES3TsBZSUq1PL4kFfHjasOdTiLeU24/pQl5Fk6sAs2sUObOeqL4BHYMwolsoUi4V4D+7L2PD7L5GP88uluPZTSeh0uowunsYXh/VxeQa8+7viKwSOXaczsO8zaexfe4AxIfpg6v8ilpcya8Cn6cfKbpTzB4YjcPpxdiSloOXhneCTCxErVqLdw1pxueGxqGdr/0jIa7GFjOfyC6FTsc0O+i4VV6D/+y+jN/O6xdZtHa/M0u6tvPh6ooeptRZi6OgiLR5uWU1AIDOvjo80CsOfDPFlTUqHdb9nYVShcohfyjdSZmirp7I1k+wvSP9kFdeg7M3yxsNijRaHa7k62epdWvB2puFSV1x8GohDl4twsGrhVwxdLlChSc3nECZQo2e7X3xv8m9zf5OeTweVjzaA7llNUjLKsWTG05g5wsDEewt4bab6BXpZ/WsvbZgWOcQRAXKcKNEgZ1nbmFaYges/SsLeeU1CPOR4pkhjhtdcYXu4T6QiQWoqFHjWmEVuoTZd7/WqrX46s9MfHowA7VqHfg8YECIDuN7N2/laQGfh3Wz7kVBpbJVpihbOwqKSJtXVK2vp7k3mEHyiE4QiUzTQAqVBuv+zgLDADVqrUNXY3Y1W1ezrq93pB9+u3Ab5wwr7FqSWSyHUqODp1iAqBbcLDImyBMz+0fj67+y8M5vlzGoYxB0DPDct6eQWSxHuK8UX8/o0+iu6BKhAF88kYBHPz+CrGI55nxzElue6Ve3inXntj3rrCE+n4fp/aLwzm+XsfFINoZ3DcFnf+jXF3p9TDxk4tb9b0Mk4CMhyh+H04txPLPU5qCIYRjsu1SAd367hJul+g9cfaMD8GZSZ2Sf+cshM9rupjoil6FCa9LmFVXpgyKfRkpiPEQCsIMoclXTa9e0JqWG9FmgDfVELPaT6tkmgiJ2faKu7XxafJTtXw90gr9MhIzCanyXloM3f7qAY5ml8JIIsW72vdxqy43x9xRj3ax74ScT4ezNcry89Sz+StdPxb9T6onqm9QnEh4iAa4WVOGpjSchV2nRq70vHukV4eqmOUTDlaOtlVFYhRnr0vDsplO4WaofOftwSm9sfbZfi9TSEeejoIi0eYVcUGR5kRQejwdPwydguVLbIu1qKfZMx2fdFeEDAZ+HgkolblfUWDyvrp6o5d8YfD1ESB7RGQCw/JdL2HYqF3we8PG0u20aBYgJ8sSaJxIgEvDw+8V8VCk1CPAUo2dEy9RIuRNfDxEevUcfAF3I0we8i8d2azNpZXYdoeNZpVZtF1NZq8bbv17C6NWHcTi9GGIBH/Pu64jUfw/FI70j7tiFDtsiCopIm6bW6rigwKeJmMBTok+xWLPKcWtSaqgp8pfZHhTJxEJ0NszqaiyFxu551pL1RPVN7dsBnUK8oDGsDrj04e64z47FFvvFBuL/Hu3JfT+kU1CbCQRsxe6HBgAP9WznlG0xXKVne1+IhXwUVyuRaVhw1BydjsEPJ2/i/g8OYu1fWdDoGAzvGoqU5CF4ZVR8m0qzEz0Kikibxs68EvB5kDXx94sdKVKo2thIUbVtq1k3xC7ieMZCUMQwDBcUtdTMs4aEAj7eHncXvCRCzB0WhxlN7N3VmAkJ7fHqqHh4S4RGU/jvNJ1DvTHhnvZo7++BN8aYztxrzSRCAe423NeWUmhncsow/rO/8dr28yiuViE22BMbZt+Lr2f2QVSgYzerJe6DwlzSprH1REGeYvB56kbPZT/1tbWRIq7Q2o6aIgDoHemL79MsjxTdqqhFRY0aQj4PnUK97G1ms/WLDcSFpSMdksp44b6OeH5Y3B2fFln5WC9XN8FpEmMDcTyrFMczSzC1XvBbWFWL9/ZcxfZTuQAAL4kQ8x/ohJkDoiEW0jhCW0dBEWnTCqtqAcCw7YTlYXIAkBlmKLW5QmtuNWt7gyL9TJgLuRXQ6hiTfZj+MdScdAzxgkRo/TpIzuDIIOZOD4jaOrbYmq0rUmsZbDySjQ9T01Ft+GA0MaE9XhsdjxBv23e8J60TBUWkTeNGiqwYJfFqoyNFdYXW9u1H1jHEC55iAeQqLTIKq7nFDVns9h6uqicixB53d/CDkM/D7YpabD1xE18ezkRmkf6DU6/2vlj6cHeaGn8HorFA0qaxQZE1G5TKJG199lnj23RYIuDz0KO9vlbo7M0yk5+7up6IEHvIxEL0NNzXb+y4gMwiOYK8xHhvYk/89PxACojuUBQUkTaNXbjRupGitjf7TK3VobJW/3rsHSkC6lJoZ29WmPyMnY5P67SQ1mZgR/0q7UI+D08NisGBV4bhsT6Rd+yMQ0LpM9LGFVbqg6IQbwlQ0vi57Eq98jY0+6zMMErE5wF+HvaNFAH6YmvAdBHHcoUKeeX69YsofUZam+eHdUSQlwQD4gLNbihM7jwUFJE2rW6kSAJdE0FRW5x9xs4885eJm/Xplx0puppfCYVKwwWQbD1Re38P+DYj6CLEFTzEAqP1mAih9Blp07iaIivSZ55tcPZZc1azri/MV4pQHwl0DHAxr5I77sqVrAkhxNEoKCJtFsMwdbPPrCi0bosjRWxQ5Ihd3ntz+6DVFVtfoiJrQkgbQkERabOqlRrUqPX1QVaNFBkKrdvSitZsUGTvGkX1sSm0c/WKrf+hImtCSBtCQRFps9hRIi+JkKuBaQy7zUd1GxopKnFQ+gwAejUotq5Va5FRVA0A6B5BQREhpPWjQmvSZtmyRhFQlz5TtKF1ipq7mnV9Pdv7gccD8sprUFhVi/yKWmh1DPxlIoT50Iq/hJDWj0aKSJvFzjwL9rItKGpLI0WOrCnykgjRKUS/t9m5mxVG9US0JQYhpC2goIi0WewaRcE+VgZFYramqO0FRY5InwF1xdbnbpbX1RPRzDNCSBtBQRFps+wdKWpL23zUFVrbv5p1fb24GWjl3BpFNB2fENJWUE0RabNsrikyFFqrtDqoNDqIha3/M4MzR4q0DAOAZp4RQtoOCopIm1VYVW+LDyvIDFPyAX0KTSx0TCDhKjodgzKFGgAQaMWSBNaID/WGVMRHlaHuSiriIzbYyyHXJoQQV3P5R+FPP/0U0dHRkEqlSExMRFpamsVz1Wo1li9fjri4OEilUvTq1Qt79uxp1jVJ22XrSJFIwOdGh9rC/meVtWpodfrRHD+ZY7bgEAr46BFRt1BjfJgPBLR5JiGkjXBpULR161YkJydjyZIlOH36NHr16oVRo0ahsLDQ7PmLFi3CF198gY8//hiXLl3Cc889h/Hjx+PMmTN2X5O0XbYGRUC9rT7awAw0do0ib4kQEqGgibOtx6bQAKonIoS0LS4NilatWoU5c+Zg9uzZ6NatG9asWQOZTIZ169aZPX/Tpk1YuHAhkpKSEBsbi7lz5yIpKQkrV660+5qkbdLqGG6NHpuCoja01QdXT+Sg1BmrV72giOqJCCFticuCIpVKhVOnTmH48OF1jeHzMXz4cBw9etTsY5RKJaRS40XiPDw88Ndff9l9TdI2lVQroWMAPs+2mVdssXVbmIFWUu3YImsWjRQRQtoqlxVaFxcXQ6vVIjQ01Oh4aGgorly5YvYxo0aNwqpVqzBkyBDExcUhNTUVO3bsgFartfuagD7YUiqV3PeVlfqpxmq1Gmq12q7XZwl7PUdflxi7VSYHoF/JWafVWN3vMrH+c0KlQtnqf0dFlTUAAH8PkUNfS4inEIM6BqJUrkKnYJnFa9O97hrU765B/e4aDfu9uf3fqmafffjhh5gzZw66dOkCHo+HuLg4zJ49u9mpsRUrVmDZsmUmx/ft2weZTNasa1uSkpLilOsSvUtlPAACiHVK7N69mzveVL8rKvkA+Dhy4hTU2YxzG+lkx3L1fSAvLTDqA0eYFAwgGEjdZzrRoSG6112D+t01qN9dg+13hULRrOu4LCgKCgqCQCBAQUGB0fGCggKEhYWZfUxwcDB27tyJ2tpalJSUIDw8HG+88QZiY2PtviYALFiwAMnJydz3lZWViIyMxMiRI+Hj49j0gFqtRkpKCkaMGAGRyDEzgogpxek84Mo/iIsIQlJSgtX9/lvFWVytKETHrnchqW9kC7bY8c7svgLczEHP+Fgkjerc4s9P97prUL+7BvW7azTsdzbTYy+XBUVisRgJCQlITU3FuHHjAAA6nQ6pqamYN29eo4+VSqWIiIiAWq3Gjz/+iMcee6xZ15RIJJBITOtORCKR025uZ16bAKUKfaF0qI+HUT831e9eUv3PlBqm1f9+ymv0fRDsI3Xpa6F73TWo312D+t012H5vbt+7NH2WnJyMmTNnok+fPujbty9Wr14NuVyO2bNnAwBmzJiBiIgIrFixAgBw/Phx5OXloXfv3sjLy8PSpUuh0+nw2muvWX1NcmewZzo+oN/0FGgbs89KuNWsHbPFByGEtHUuDYomT56MoqIiLF68GPn5+ejduzf27NnDFUrn5OSAz6+bIFdbW4tFixYhMzMTXl5eSEpKwqZNm+Dn52f1Ncmdwd6gSMbOPmsDizfW7XvWulfmJoSQluLyQut58+ZZTG0dPHjQ6PuhQ4fi0qVLzbomuTPYP1LUdhZvLDMERf4UFBFCiFVcvs0HIc5QWFULAAjxljZxprG2MlLEMAyXPqORIkIIsQ4FRaRNutNrihQqLZQaHQDHL95ICCFtFQVFxG0xjH3rBMmVGm6kx+aaojaSPmPriSRCPmRix+17RgghbRkFRcQt5ZXXYMD/HcBHqek2P7a4Wj9K5CEScBu8Wovb+0zVNoKiAE8xeDzaxZ4QQqxBQRFxS2dyynC7ohY7z+TZ/NhCQ+osxEdic0DA7n2maOV7n9UPigghhFiHgiLilmoM6a8bpQqoDLUx1uLqibxsX5/H05A+q27l6bMSCooIIcRmFBQRt1RrCIS0OgY5pXKbHmtvkTVQb6Solc8+K5Xr+4BmnhFCiPUoKCJuSamuC0quF9kWFLHT8e0KiurVFNlb6O0OaDVrQgixHQVFxC3VqOoHRdU2PZYdKQqxKyjSp88YBqhRt97RojIuKKI9mAghxFoUFBG3VKupFxQVtlz6zEMkAFub3ZrrikpppIgQQmxGQRFxS7XquuLqzGIbR4qq7Q+KeDxem5iBRoXWhBBiOwqKiFuqn7q6XlhtU31PYSU7+8y2LT5Y7GKHbWGkKNCLgiJCCLEWBUXELdXWC4oqazUorlZZ9Titrm7PrxAf+1JH7FYfrXkGWmk1jRQRQoitKCgibkmpNl6bKNPKYusyhQpaHQMez/6AoLVv9aHS6FBlaHuAjIIiQgixFgVFxC3VNpj5Ze20fLbIOkAmhkhg3+3N1hS11q0+yhT6USIBnwdfD5p9Rggh1qKgiLgltqaILZa2dlp+YTNmnrG4tYpa6UhRiSF15i8Tgc+nfc8IIcRaFBQRt8SOFHVr5wPA+qCoOdPxWXVBUeusKaJ9zwghxD4UFBG3xE7J7x6uD4oybUyfNSsoMsw+U7TS9FmpgoIiQgixBwVFxC2xI0Xdw30BADfLFCZ1RuY4cqSourWOFBnWaaKgiBBCbENBEbFKtVKDrSdyuO0jnI0NgNr7e8BHKgTDANklTY8Wcfueed3BI0WUPiOEELtQUESs8t3xG3j9xwtY8+f1Fnm+Wo0+fSYVCRAX4gXAuhQat++Zj30LNwL1R4paZ1BEm8ESQoh9KCgiVskpVQAA8itqW+T52JEiD5EAsUH6oOh6YdPF1twWH80YKZJJWvc2H9xq1jRSRAghNqGgiFiFneZdWaN2+nMxDMNNyZeK+IgL8QRg3Qw0R9QUebGLN1L6jBBC7igUFBGrcEFRrfMDBZVWB3arM4lIgLhgQ/qsuPH0Wa1aiypD+5oTFMnErXudIgqKCCHEPhQUEasUy/UjMC0xUlRbb4sPqYjPBUVNbQzLjhJJhHz4SIV2P78XrVNECCF3JAqKiFXYN9qKFgmK9MEInweIBXx0CJBBwOdBrtKioFJp8XH1V7Pm8exfyVkmbr3pM52O4bb5oJoiQgixDQVFpElqrQ7lCn0wVFnbckGRVCQAj8eDWMhHVIAMQOMbwxax0/GbkToD6o8Utb6gqLxGDZ1hMM2fgiJCCLEJBUWkSfXXJqpV66DUODetxKbPpCIBdyyWTaE1GhQ1f+YZUDf7TK5qfekzdkTPWyq0e0NcQgi5U9FfTdKk4mrjBRurnFxsXX86PisumJ2BZrnYum6NomaOFBkKrVUaHdRaXRNnuxeajk8IIfajoIg0qURuXMfj7GJrdjq+RFR3e8ZZM1LErVFk/8KNACCT1AVjrW2tolI5bfFBCCH2oqCINKm0wdYezp6Wz9UUCeuNFBnWKmpsVevCyuavUQQAIgEfYqH+n0Z1Kyu2ptWsCSHEfhQUkSY1TJ85ewZaXU1R3e3JrmqdV15jcU8ybqSomUERUG//s1ZWbF1G6TNCCLEbBUWkSSXVLZs+42qKxHUjRf6eYi4llGVhEUeupsgBQRG7gGNr2/+MHSmimWeEEGI7CopIk0qqG6bPWiYoqp8+AxovttbpGBQ7cKSInZavaGUz0KjQmhBC7EdBEWkSW2jNrodYWdNCNUUi46CosY1hy2vUUGv1C/QEejU/IGCLrVvbSBGtZk0IIfajoIg0ia0pCvf1ANACI0Ua03WKgHrF1mbSZ2zqzE8mgqTBCJM96kaKWldQxI7qBTggMCSEkDuNy4OiTz/9FNHR0ZBKpUhMTERaWlqj569evRrx8fHw8PBAZGQkXn75ZdTW1nI/X7p0KXg8ntFXly5dnP0y2jR29CHWkL5y+pR8FTtSZHx71t8DrSFH1hMBdVt9VLeyKfm0xQchhNjP/l0zHWDr1q1ITk7GmjVrkJiYiNWrV2PUqFG4evUqQkJCTM7/7rvv8MYbb2DdunUYMGAArl27hlmzZoHH42HVqlXced27d8f+/fu574VCl77MVo8ttI4N8sTh9GLnzz7TWEifGYKizOJq6HQM+Py6/c2Kqh2zxQfLkx0pakXpM4Zh6gqtZRQUEUKIrVw6UrRq1SrMmTMHs2fPRrdu3bBmzRrIZDKsW7fO7PlHjhzBwIEDMW3aNERHR2PkyJGYOnWqyeiSUChEWFgY9xUUFNQSL6dNqlFpue0uYoIMI0VOXqdIaZiS79EgKIr094BIwEOtWodbFTVGP+PWKGrmFh8sT3Hr2/9MrtJCZUg9OqKuihBC7jQuC4pUKhVOnTqF4cOH1zWGz8fw4cNx9OhRs48ZMGAATp06xQVBmZmZ2L17N5KSkozOS09PR3h4OGJjY/H4448jJyfHeS+kjWOLrMVCPtr5GWqKXJQ+Ewr4iA40v4hj3RYfzVvNmuXZCvc/KzXUE0lFfG5JAUIIIdZz2V/O4uJiaLVahIaGGh0PDQ3FlStXzD5m2rRpKC4uxqBBg8AwDDQaDZ577jksXLiQOycxMREbNmxAfHw8bt++jWXLlmHw4MG4ePEivL29zV5XqVRCqaxbi6eyshIAoFaroVY7NgBgr+fo6zpLQbkCABAgE8FTpE9XVdaonNp+hUp/bRHftJ9igmRIL6zGtfwK9I/xq2tnZY2hnUKzbbO136VC/WutrnXua3Wkggp9oBggE7tFm1vbvd5WUL+7BvW7azTs9+b2f6v6OHnw4EG8++67+Oyzz5CYmIiMjAzMnz8fb7/9Nt566y0AwJgxY7jze/bsicTERERFReGHH37AU089Zfa6K1aswLJly0yO79u3DzKZzCmvJSUlxSnXdbR/yngABBBqa3H+5DEAQhRVyLF7926nPeeNXD4APjKuXsbuiktGP9NV6H/2x6nLCC77hzt+JVt/PC/D9DH1WdvvN27rX3d61k3s3n3D9hfhIEotcK6Uh94BDMRNTKpjf1cCTY1Tfz+2ai33eltD/e4a1O+uwfa7QqFo1nVcFhQFBQVBIBCgoKDA6HhBQQHCwsLMPuatt97C9OnT8fTTTwMAevToAblcjmeeeQZvvvkm+HzTbKCfnx86d+6MjIwMi21ZsGABkpOTue8rKysRGRmJkSNHwsfHx56XZ5FarUZKSgpGjBgBkUjk0Gs7Q83pPODKP4gND8KDI7rhvfOHoWQESEoa5bTn/LH4FFBagj5390TS3RFGP1OeuYX9Oy5C5xmEpKQ+3PGPMv4GIMfwQX0xIC7Q5Jq29rv8VC5+yr4E36AQJCXd0+zXZK8Xt5zD7xkFEPTrgLeSGp9Fyf6uotsFISkpoYVaaFlru9fbCup316B+d42G/c5meuzlsqBILBYjISEBqampGDduHABAp9MhNTUV8+bNM/sYhUJhEvgIBPqPzwzDmH1MdXU1rl+/junTp1tsi0QigURiWqArEomcdnM789qOVF6rr6kJ8pYiwFtfU6TS6KAF32R2mKPUavS/S0+p2KSPOrfzBaBfq6j+z7i1lPw9G+1Xa/vdR6a/HxQqnct+T2lZpfj9H/2Hhh9P5+HV0V3gLbXclop6vyt3urday73e1lC/uwb1u2uw/d7cvnfp7LPk5GR89dVX2LhxIy5fvoy5c+dCLpdj9uzZAIAZM2ZgwYIF3Pljx47F559/ji1btiArKwspKSl46623MHbsWC44euWVV3Do0CFkZ2fjyJEjGD9+PAQCAaZOneqS19jasdPxg7wk8BQLwedWtXZe3lxpYZsPoG6tpIJKJaoMi0gqNVpumQCHTckXu3abD52Owdu/1qUB5SotfjyV2+hjaDVrQghpHpfWFE2ePBlFRUVYvHgx8vPz0bt3b+zZs4crvs7JyTEaGVq0aBF4PB4WLVqEvLw8BAcHY+zYsfjPf/7DnZObm4upU6eipKQEwcHBGDRoEI4dO4bg4OAWf31tAbdCsqcYfD4P3lIRKmrUqKxVO2ymV0O17JR8M0U0PlIRgr0lKKpSIqtYjp7t/biZZyIBD74ejvmExs0+c9GU/B1n8nAhrwLeEiGeHBSDD1PT8c3RG5jRP9pofab6SigoIoSQZnF5ofW8efMspssOHjxo9L1QKMSSJUuwZMkSi9fbsmWLI5t3xytusMGoj4cQFTVqVDhx/7Matfkp+ay4YE8UVSlxvajaKCgK9pKAxzMfMNiKXdFa7oJtPuRKDd7fq5+BOe/+jni8XxTW/ZWFzGI5/kwvwrB404VNAaCMgiJCCGkWl2/zQdxb/fQZoB+pAZy7/xm7IaylPcxiue0+9FPQuaDIgSNXXtxIUcunz744dB0FlUp0CJBh1sBoeEmEmNinPQBg45Fsi4+jkSJCCGkeCopIo9g6FXaFZDY95cyaolq1+W0+WHH1tvsAgKJqx65mDQAySd1IkaUifmfIK6/BF39mAgAWJnXhAsMZ/aMBAAevFSHbzIa4QL3fFQVFhBBiFwqKiEUMw3A1RYENR4qcGRRpLNcUAfr0GVA3UsRt8eGgImugbqSIYerSeS3hvT1XoNTokBgTgFHd65amiAnyxLD4YDAM8M1R8+smUaE1IYQ0DwVFxKIqpQYqrWEvrXo1RYDz9j/T6hhu/y6p0FJNkX6kKKtEDq2OqRspcmBQ5CESgC1PaqkU2umcMvx89hZ4POCth7qZ1EfNHBANANh28qZJAbhSo0W14Vigp+P6gRBC7iQUFBGL2FEiT7GAS2U5e6RIqakLQCylz8L9PCAR8qHS6JBXVlO375kDgyIej9eim8IyTN0U/In3tMddEb4m5wztFIyYIE9UKTXYcSbP6Gdlcv3vQ8DnwVvq8vkThBDSKlFQRCxii6wD69Xq+Hg4t9CanY4PWA6KBHweYoIMKbSi6rpCawcGRUDLzkDbde4WzuSUQyYW4NVR8WbP4fN5mNE/CoC+4Lp+rRO7ca+/TGxxyj4hhJDGUVBELCquNi6yBgAfwyhEpZOm5LP1O2IBH4JG3tzZFJozgyLPFpqBVqPS4r+/66fgPz8srtH1nyYmtIenWICMwmr8nVHCHacia0IIaT4KiohFdW+0dcGGr0w/UlThpPQZNx3fwhpFLK7Yun5Q5MDZZwDgKWmZkaKvD2fiVkUtIvw88PTg2EbP9ZaKMCFBPz1/Q73p+VRkTQghzUdBEbGobo2i+iNFzk6fNT4dnxUXoh8pOpNTzhWDOz595vyaooLKWnx28DoA4PUxXazaT46dnp96pQA3S/U7QnNBkRcFRYQQYi8KiohFJXIz6TMnr1PEBkUeTQVFhvTZlfwqfbukQodvUMtOy1c4MX32/t6rqFFrcU8HP4zt2c6qx3QM8cLgTkFgGGDTMf30fC4oklFQRAgh9qKgiFhUbBgpCqiXPqsbKXLO6AlbaG1piw8WW2jNcvQoEVBXaF3tpJGiC7kV2G7Y5NXcFPzGzDSMFm1Jy4FCpaHVrAkhxAEoKCIWsVPyjdJn7DpFNWqnrPRsbfrMUyJEO9+6gmRnBEXcSJGTaore3X0ZADCudzju7uBv02Pv6xKCDgEyVNZqsPPMLZSaKYonhBBiGwqKiEXsNG+jQmtD+kyjY5yy0nPdSFHTqTA2hQYAId6O2/eMxdYUVTshfVaj0uJYln72WPII81PwGyNoMD2fCq0JIaT5KCgiFjXc9wzQ1/oIDVPlnTEDrcbKkSIAiA2uS6E5Z6RI3wZnjBRlFcvBMPogMzLAw65rTOoTCQ+RAFcLqnD2ZjkACooIIaQ5KCgiZml1jNmgiMfj1Su2dnywwKXPLGzxUV/9kSKn1BRJ2JEix79OdjPbuGBPm2qJ6vP1EGH8PREAwM3Ao6CIEELsR0ERMatcoYLOUDLUcEYTt4CjE6blc7PPLGwGW59RUOTgNYqAusUbnTH7jN3Mtv5rsAdbcM2ioIgQQuxHQRExi53N5CcTQSgwvk2cOS2/bqTItvRZiI8TgiInbvNxvUg/UhTbzKAoPswb/WMDue/9aUo+IYTYjYIiYhY7Hd/cthHOXMDR2in5ANDOV8rNEAtrZGsMe9Vt8+G8oCgu2LOJM5s2a2A0AP0sQZGA/kkTQoi9aDttYlYJN8XbdATGtyVqiqwotObxeFjxaA9kFsnRMaR5Iy7meIrZKfmOTZ/pdAwyiwzpMwe0e0TXULw+uovRyBkhhBDb2RwURUdH48knn8SsWbPQoUMHZ7SJuAG2yDrIzLo37FpFzph9VquxPigCgLG9wh3eBha795mjC63zK2tRo9ZCyOehQ4Cs2dfj83mYOyzOAS0jhJA7m81j7S+99BJ27NiB2NhYjBgxAlu2bIFSqXRG24gLlVSbrlHE4tJnzpiSr7J+nSJn4wqtHTxSxKbOOgTKKN1FCCFuxK6g6OzZs0hLS0PXrl3xr3/9C+3atcO8efNw+vRpZ7SRuEBxI4sBcoXWzqgp4kaKXB8seDppSj6XOmtmkTUhhBDHsvud55577sFHH32EW7duYcmSJfj6669x7733onfv3li3bp1TtoAgLYcdKTKbPmOn5Duhpkhp5YawLYGdfabS6KA2rAPkCHUzz6gGiBBC3IndhdZqtRo//fQT1q9fj5SUFPTr1w9PPfUUcnNzsXDhQuzfvx/fffedI9tKWlBjhdbOHCmyZUVrZ2O3+QD0axX5yhwzelU384xGigghxJ3YHBSdPn0a69evx/fffw8+n48ZM2bgf//7H7p06cKdM378eNx7770ObShpWew6RWan5DszfWbDlHxnEwv5EAv4UGl1kKs08JWJHHJdSp8RQoh7sjkouvfeezFixAh8/vnnGDduHEQi0zeKmJgYTJkyxSENJK7BFVqbGykyFFo7ZfaZYaRI4gYjRYB+BppKoXPYWkXVSg1uV9QCcMwaRYQQQhzH5qAoMzMTUVFRjZ7j6emJ9evX290o4loqjQ6VtfogwFxNka+H82qKat2opgjQp9DKFGrIHTQDLcswShToKYYfrT5NCCFuxeYcRWFhIY4fP25y/Pjx4zh58qRDGkVci12jSMDncaNC9bHHqmrV0OkcW1Bflz5zj6DIy8GrWtdtBEupM0IIcTc2B0UvvPACbt68aXI8Ly8PL7zwgkMaRVyL3eIjwFMMPt90B3e2pkjHOH5fsLoVrV1fUwQAMsMCjo4Kiq4XGoKiEEqdEUKIu7H5nefSpUu45557TI7ffffduHTpkkMaRVyrsSJrAJAYCpABcGk2R3G39Bm71Yejgr/rhvRZbBCNFBFCiLuxOSiSSCQoKCgwOX779m0IhbSVWltQt0aR+Z3neTweN1pUoXBcsTXDMG41JR+o2+pDrnRMTRE3HZ9GigghxO3YHBSNHDkSCxYsQEVFBXesvLwcCxcuxIgRIxzaOOIabE1RoJkiaxa7/5kjp+WrtQzYEiWp0E2CIrHjaoq0OgZZxTQdnxBC3JXNQzsffPABhgwZgqioKNx9990AgLNnzyI0NBSbNm1yeANJyytmF240s+8Zyxn7n7FbfACAxE1qititPhwx++xWeQ2UGh3EAj7a+zd/I1hCCCGOZXNQFBERgfPnz2Pz5s04d+4cPDw8MHv2bEydOtXsmkWk9albo6ixkSJ2AUfH1RSx9UQ8nr5uyR04stA6w5A6iw6SQWCmgJ0QQohr2VUE5OnpiWeeecbRbSFuoqlCa6D+/mcOHClSGabjCwXg8dwjaPAypM8UDii0ppWsCSHEvdldGX3p0iXk5ORApVIZHX/44Yeb3SjiWo2tZs3ydcJWH2z6zF2m4wOAzJA+q3ZAoTVtBEsIIe7N5nefzMxM9OrVC3fddRcefPBBjBs3DuPGjcP48eMxfvx4mxvw6aefIjo6GlKpFImJiUhLS2v0/NWrVyM+Ph4eHh6IjIzEyy+/jNra2mZdkxjjaoqsSJ85cqsPd5uODwBehvSZwgHpM26NIhopIoQQt2RzUDR//nzExMSgsLAQMpkM//zzD/7880/06dMHBw8etOlaW7duRXJyMpYsWYLTp0+jV69eGDVqFAoLC82e/9133+GNN97AkiVLcPnyZaxduxZbt27FwoUL7b4mMcXOPguyqtDacTVFNSr3mo4P6Lf5APR7ljVXJs08I4QQt2ZzUHT06FEsX74cQUFB4PP54PP5GDRoEFasWIEXX3zRpmutWrUKc+bMwezZs9GtWzesWbMGMpkM69atM3v+kSNHMHDgQEybNg3R0dEYOXIkpk6dajQSZOs1iTGFSsOtFRTQwlPyazX6miJ32QwWqNvmQ9HM2WcVNWoUVenTkpQ+I4QQ92RzUKTVauHt7Q0ACAoKwq1btwAAUVFRuHr1qtXXUalUOHXqFIYPH17XGD4fw4cPx9GjR80+ZsCAATh16hQXBGVmZmL37t1ISkqy+5rEWIkhdSYR8uEpthycOGVKPpc+c6OaIkMfNHdF60xDPVGItwTeZvaTI4QQ4no2F1rfddddOHfuHGJiYpCYmIj33nsPYrEYX375JWJjY62+TnFxMbRaLUJDQ42Oh4aG4sqVK2YfM23aNBQXF2PQoEFgGAYajQbPPfcclz6z55oAoFQqoVQque8rKysBAGq1Gmq149702WvW/6+7yS+v28Vdo7EcCHiK9LPDKmoc10fy2rqAzF363VBSBHmtplltSs/X31OxQTK3/d07mrvf620V9btrUL+7RsN+b27/2xwULVq0CHK5/o1z+fLleOihhzB48GAEBgZi69atzWpMUw4ePIh3330Xn332GRITE5GRkYH58+fj7bffxltvvWX3dVesWIFly5aZHN+3bx9kMucsspeSkuKU6zbXxVIeAAEEmhrs3r3b4nk3qgBAiMKyykbPs0Vagf65K0qLHXbNhmzt98IaABCiQlHbrDbty+ED4EOgKHHaa3NX7nqvt3XU765B/e4abL8rFIpmXcfmoGjUqFHc/3fs2BFXrlxBaWkp/P39bVpbJigoCAKBwGQftYKCAoSFhZl9zFtvvYXp06fj6aefBgD06NEDcrkczzzzDN588027rgkACxYsQHJyMvd9ZWUlIiMjMXLkSPj4+Fj9mqyhVquRkpKCESNGuOVil/JTecDVfxAbEYykJNONf1lZxXKsuvg3VBAhKWmUxfNsUXIsB8i8gg4R7ZCU1Msh12TZ2+9FVUr85+whqHQ8jBkzxu71k3797iyQV4hhCV2R1D/Krmu0Nu5+r7dV1O+uQf3uGg37nc302MumoEitVsPDwwNnz57FXXfdxR0PCAiw+YnFYjESEhKQmpqKcePGAQB0Oh1SU1Mxb948s49RKBTg843rTQQCfX6DYRi7rgnoN7mVSExnWolEIqfd3M68dnOUG1aoDvaWNtq+AG8PAPpZWXyB0CErNKv1ddaQSYRu0+++nvrXpWMALQR2LxeQXaL/9NI5zNctf+/O5K73eltH/e4a1O+uwfZ7c/vepqBIJBKhQ4cO0Gods2N4cnIyZs6ciT59+qBv375YvXo15HI5Zs+eDQCYMWMGIiIisGLFCgDA2LFjsWrVKtx9991c+uytt97C2LFjueCoqWuSxpVUN72aNQB4S+tunepaDXxlzf8jwM56c6cp+R4iAXg8gGH0AaBHI8Xnlmi0OmSXsNPxaeYZIYS4K5vTZ2+++SYWLlyITZs22TVCVN/kyZNRVFSExYsXIz8/H71798aePXu4QumcnByjkaFFixaBx+Nh0aJFyMvLQ3BwMMaOHYv//Oc/Vl+TNM6afc8AQCIUQCrio1atQ2Wt2iFBUa26bpsPd8Hn8yATCSBXaQ1bfVheu8mSm2U1UGsZSEV8hPt6OL6RhBBCHMLmoOiTTz5BRkYGwsPDERUVBU9P40++p0+ftul68+bNs5jaargYpFAoxJIlS7BkyRK7r0kaV7fvWdNv/j5SEWrVSlTUqBHpgOfmpuSL3WdKPgB4SoSQq7R2L+DIrmQdE+QFPm0ESwghbsvmoIit1SFtkzVbfLB8PUQorFI6bAFHJbv3mRuNFAH6oAhVSrsXcMwsZrf3oNQZIYS4M5uDoqZGaUjrVirXp8+CGtkMlsXuf+aoBRzdcZsPAPA0LFZk/0iRvp4olrb3IIQQt+ZeeQriUgzD1BVaWzFS5GMotnbU/mdcTZEbrWgN1O1/plDaN1J0vYhGigghpDWweaSIz+c3ulaLo2amkZZXWaOBRscAAAKamH0G1BspclD6rFbjpiNF7FYfdo4U0UawhBDSOtgcFP30009G36vVapw5cwYbN240uyo0aT2KDakzb4kQEivqehy9/5n7ps/0/0zs2f+sVK5CqaF4nTaCJYQQ92ZzUPTII4+YHJs4cSK6d++OrVu34qmnnnJIw0jLsyV1BgA+Hob0Wa2D0mcaNn3mZkGRIX1mz0gRuxFsuK+US8MRQghxTw4r3ujXrx9SU1MddTniAnVrFFm3Fo+vIX1W4aCRIiU7Jd/dgiJupMj21HBmkSF1FkKpM0IIcXcOCYpqamrw0UcfISIiwhGXIy5St0aRlSNFjk6fcStau1ehNTv7zJ6RoroiawqKCCHE3dk8nt9w41eGYVBVVQWZTIZvv/3WoY0jLcv29JmDC63dcJsPoN5IkR2zz9igiOqJCCHE/dkcFP3vf/8zCor4fD6Cg4ORmJgIf39/hzaOtKwSQ6G1NatZA/VHitr2lPzmzD7j0mc0UkQIIW7P5qBo1qxZTmgGcQf2F1rfISNFNs4+U2l0uFGqAEBBESGEtAY2fyRfv349tm3bZnJ827Zt2Lhxo0MaRVyj2MZCa0fWFOl0DJRuOvtMZufss5xSObQ6Bp5iAUJ9bN9IlhBCSMuyOShasWIFgoKCTI6HhITg3XffdUijiGuwhdZBVhZas7PP5Cot1Fpds56bDYgA9wuKvAwjRbbufZZRb3uPxhY8JYQQ4h5sDopycnIQExNjcjwqKgo5OTkOaRRxDXaRQWtHirylddnXqmauVcSmzgBAKnSvmiKZnXuf0UawhBDSutj87hMSEoLz58+bHD937hwCAwMd0ijS8jRaHcoU+qDImi0+AEAo4HNFyM1NobHT8UUCHoQC9wqK7B0poo1gCSGkdbH53Wfq1Kl48cUX8ccff0Cr1UKr1eLAgQOYP38+pkyZ4ow2khZQplCDYQAeD/CXiax+nKOm5XNF1lZsL9LSZHbOPqM1igghpHWxefbZ22+/jezsbDzwwAMQCvUP1+l0mDFjBtUUtWLsdHx/mdimkRofqQi3K2qbPS2fm44vdr+giB0pUmp00Gh1VvUPwzDcFh9xIZQ+I4SQ1sDmoEgsFmPr1q145513cPbsWXh4eKBHjx6IiopyRvtIC+Gm41uZOmP5OmqkSOOeq1kDMNqzTK7Swtej6TYWV6tQWasBjwdEB1JQRAghrYHdO1R26tQJnTp1cmRbiAvVTce3LShi1ypq7v5ntSr3TZ+JhXyIBXyotDrIlRouEGwMmzpr7+/hdrPpCCGEmGfzx/IJEybgv//9r8nx9957D5MmTXJIo0jLs3XmGctRaxXVjRS5ZwDBzkBTWLmAI61kTQghrY/NQdGff/6JpKQkk+NjxozBn3/+6ZBGkZZnb/rMcYXW+poiDzcNijwNKbRqK/c/4/Y8C6KgiBBCWgubg6Lq6mqIxaZvnCKRCJWVlQ5pFGl5tu57xvIxrFXU3ELrGkP6TOKGNUUA4MmOFFk5A+06FVkTQkirY/M7UI8ePbB161aT41u2bEG3bt0c0ijS8opt3PeM5bCRIjdPn7H7n1m7gCOlzwghpPWxudD6rbfewqOPPorr16/j/vvvBwCkpqbiu+++w/bt2x3eQNIySgyF1kH2BkXNrSlqJekzaxZwrFVrcbOMNoIlhJDWxuagaOzYsdi5cyfeffddbN++HR4eHujVqxcOHDiAgIAAZ7SRtICSZhZaN3v2mdp9p+QDdQs4WjNSlF0iB8Pot0GxNcgkhBDiOnZNyX/wwQfx4IMPAgAqKyvx/fff45VXXsGpU6eg1dq2FQJxD6V2F1obaooctPeZu6bP6rb6aPp1phcYiqxpI1hCCGlV7P5Y/ueff2LmzJkIDw/HypUrcf/99+PYsWOObBtpIbVqLaoMIyC2F1o7Kn3m3kFR3aawTQf9J7NLAQC92/s6tU2EEEIcy6aRovz8fGzYsAFr165FZWUlHnvsMSiVSuzcuZOKrFsxdo0iIZ/HjfxYy2ErWrPbfLhpUMQWWlsz++x4lj4o6htDGyQTQkhrYvVI0dixYxEfH4/z589j9erVuHXrFj7++GNnto20kJJ6M89sTfewI0W1ah2UGvtTpzVuXlPEFlrLm0iflStUuFpQBQDoG0M1doQQ0ppYPSzw+++/48UXX8TcuXNpe482ptjONYoAfTExjwcwDFBVq4HEy76RHi595obbfAB1I0XyJtJnJ7LLwDBAbLAngr1t709CCCGuY/XH8r/++gtVVVVISEhAYmIiPvnkExQXFzuzbaSFlNi5RhEA8Pk8rgi5OTPQuCn5YjcNigztkjeRPkvLKgEAJNIoESGEtDpWB0X9+vXDV199hdu3b+PZZ5/Fli1bEB4eDp1Oh5SUFFRVVTmzncSJSrmRIvumjzui2FqpcfP0mcS69BlbT5RI9USEENLq2PwO5OnpiSeffBJ//fUXLly4gH//+9/4v//7P4SEhODhhx92RhuJk9WNFNmX7qlb1dr+afnsNh/umz5jR4osp8+qlRpczKsAQPVEhBDSGjXrY3l8fDzee+895Obm4vvvv3dUm0gLs3eLD1bd/mfNSJ+5+zYfVhRan7pRBh0DRAZ4INzPo6WaRgghxEEckqsQCAQYN24cdu3a5YjLkRbGbgYbZEehNeCY/c9ay5T8xmqKjmfq64n6RlPqjBBCWiP3LOAgLao5hdZA3VpFzSm05tJnbl5TpGgkfZbG1RNR6owQQloj93wHIi2qqEo/UhTQ7EJr+2uKlG6fPjPUFKk0YBjG5Oe1ai3O5ZYDABJjKSgihJDWyC2Cok8//RTR0dGQSqVITExEWlqaxXOHDRsGHo9n8sXuxQYAs2bNMvn56NGjW+KltDrVSg3yK2sBANGBnnZdo27/MwdMyXfXoMgwUqRj6tpa3+mcMqi1DEJ9JOgQIGvp5hFCCHEAuzaEdaStW7ciOTkZa9asQWJiIlavXo1Ro0bh6tWrCAkJMTl/x44dUKlU3PclJSXo1asXJk2aZHTe6NGjsX79eu57iYQW0jMn3bD6crC3BP4unJLv7nuf1Q/W5CqNyXpKafWm4tMmsIQQ0jq5fKRo1apVmDNnDmbPno1u3bphzZo1kMlkWLdundnzAwICEBYWxn2lpKRAJpOZBEUSicToPH9//5Z4Oa3ONUNQFB/qbfc1mjslX63VQaPTp6TctaaIz+c1uoBjGrffGaXOCCGktXLpSJFKpcKpU6ewYMEC7hifz8fw4cNx9OhRq66xdu1aTJkyBZ6exqmfgwcPIiQkBP7+/rj//vvxzjvvIDDQ/KwgpVIJpVLJfV9ZWQkAUKvVUKubt9FpQ+z1HH1de125rX+tccEyu9vkJdKPjFQoVHZdo6peMCWEzil944h+l4kFkKu0qJArofapG1VTaXQ4nVMGALgn0sdtfreu5m73+p2C+t01qN9do2G/N7f/XRoUFRcXQ6vVIjQ01Oh4aGgorly50uTj09LScPHiRaxdu9bo+OjRo/Hoo48iJiYG169fx8KFCzFmzBgcPXoUAoFpembFihVYtmyZyfF9+/ZBJnNOfUhKSopTrmurI5f4APhQFmRh9+5Mu66RUQkAQtwuLsfu3bttfnylSv94Hhjs37cXzsw+NavfNQIAPOw/dBhZPnWHs6qAWrUQnkIG1078iXTKnhlxl3v9TkP97hrU767B9rtCoWjWdVxeU9Qca9euRY8ePdC3b1+j41OmTOH+v0ePHujZsyfi4uJw8OBBPPDAAybXWbBgAZKTk7nvKysrERkZiZEjR8LHx8fk/OZQq9VISUnBiBEjIBKJHHpte/zn4iEASjw6vD/ujvSz6xpX8qvw8T9HoRVIkJQ0zObH3yxTAKf+gkQkwIMPjrKrDU1xRL9/kX0URber0CuhL4Z0CuKOrzmUCVzMwMDOoXjwwd4OanHr5273+p2C+t01qN9do2G/s5kee7k0KAoKCoJAIEBBQYHR8YKCAoSFhTX6WLlcji1btmD58uVNPk9sbCyCgoKQkZFhNiiSSCRmC7FFIpHTbm5nXtta5QoVCg3T8buG+9ndngBv/erNVbUaCIVCmwuNtYy+jkgqEji9T5rT716GgvJaDYyucTJHv7VHv9ggl/9O3ZE73Ot3Iup316B+dw2235vb9y6tahWLxUhISEBqaip3TKfTITU1Ff3792/0sdu2bYNSqcQTTzzR5PPk5uaipKQE7dq1a3ab25JrBdUAgAg/D3hL7b+R2G0+VFodlBrT6epNcffp+Kz6axWxNFodTt3Q1xPR+kSEENK6uXyqT3JyMr766its3LgRly9fxty5cyGXyzF79mwAwIwZM4wKsVlr167FuHHjTIqnq6ur8eqrr+LYsWPIzs5GamoqHnnkEXTs2BGjRjknNdNasTPPOod6Nes6nmIh+IbBIXum5bv7vmcsmZmtPi7drkS1UgNvqRBdwhybaiWEENKyXF5TNHnyZBQVFWHx4sXIz89H7969sWfPHq74OicnB3y+cex29epV/PXXX9i3b5/J9QQCAc6fP4+NGzeivLwc4eHhGDlyJN5++21aq6iBuqDI/un4gH66uo+HCOUKNSpr1Qjxkdr0eHaLD4nQ5TF6o7wMm8IqVHVbfXBT8aMDIOBThTUhhLRmLg+KAGDevHmYN2+e2Z8dPHjQ5Fh8fLzZrRYAwMPDA3v37nVk89qsq/mOCYoA/QKO5Qq1XfufsQs3NlwQ0d3IJPr2VdcbKTpO6xMRQkib4d4fzYnTMAxTt3BjmAOCInarDzv2P6s11CFJhe4dFHlxm8LqX6NOx+BENgVFhBDSVlBQdIcqrlahTKEGjwfEBTevpgiot9WHHfuf1arYmiL3vh1lhvRZtVLf3muFVShXqCETC3BXhK8rm0YIIcQB3PtdiDgNO0oUFSBzSNqqOfuftZZCay9D+kxhmH3G1hMlRPlDJKB/SoQQ0trRX/I7lKOKrFlc+syO/c+4miI3D4rqRor0r/F4JrsJLKXOCCGkLaCg6A7l6KDI16MZI0WGdYokbh4UeUrqZp8xDFOvyNr8nnqEEEJaFwqK7lDczDMHFFkDdekze2af1ahbR02RpyF9JldqkFUsR3G1EmIhHz3bUz0RIYS0Be79LkScgmEYpBtWs453WPqsGYXWrSR9xo4UyVUabpTo7kg/t6+FIoQQYh0Kiu5AtytqUaXUQMjnISbI0yHXbNaUfEP6zN2DC08xu6K1liuypnoiQghpOygougNdNdQTxQR5QuygVaSbNSW/laXPqpUaHM8sAUD1RIQQ0pa497sQcYr0AsfWEwH10mfNWNG6tYwUqTQ63KqohZDPwz1Rfq5tFCGEEIehoOgOdDVfX0/UOcRxQRE7+6w523y4fVAkMd4Vp0d7X26aPiGEkNaPgqI7UN32Hs1fyZpVlz7TWNyXzpKaVhIUiYV8iAR1m74mUuqMEELaFAqK7jA6HYP0QseuUQTUFVprdYzRLvLW4AqtHVTf5Ez1R4uoyJoQQtoW938XIg51s0yBWrUOYiEfUYGOmXkG6KfTC/n6URRbi625KfkO2G7E2di6Ij4PSIj2d3FrCCGEOBIFRXcYdtHGjsFeEPB5TZxtPR6PV6/Y2rZp+UpN65iSD9TNQOsW7sOlDAkhhLQNFBTdYdILDYs2OnDmGctHyu5/ZttIUY0h3SYVun9QxBZW942meiJCCGlrKCi6w7AjRZ1CHVdkzeJmoClsTJ9p2PSZ+9+OUYEyAMD9XUJc3BJCCCGORvOJ7zDczDMHFlmz7N3qg60pkrSCkaIVj/bAkwNj0CvSz9VNIYQQ4mDu/9GcOIxaq0NmkRyAY2eesbhp+TasVcQwTKvZ5gPQp88oICKEkLaJgqI7yI0SOVRaHWRiASL8PBx+fW7/s1rrC63ZImvA/bf5IIQQ0rbRu5AbKqpSoqRa6fDrsitZdwr1Bt+BM89Y9owUsakzoHWMFBFCCGm7KChyM7VqLZI+OoxHPv0baq2u6QfYoK6eyPFF1oB9NUVs6kzI50EkoNuREEKI69C7kJu5UaJAUZUSuWU1uJhX4dBrs0GRM+qJgLqgyJb9z1rLFh+EEELaPgqK3ExumYL7/+NZpQ699lVnB0XsOkU2LN7YWjaDJYQQ0vZRUORm8spruP9Pc2BQVKvW4kaJPuByxsKNgL3pMzYooluREEKIa9E7kZvJK6sLik5kl0Krs23HeUsyi+TQ6hj4SIUI8ZY45JoNcYXWNgRFlD4jhBDiLigocjO59UaKqmo1uHy70iHX5Yqsw7zB4zl+5hkA+HrYnj5TcmsU0a1ICCHEteidyM2wI0Viof5X46gUmrOLrAHA10MMQD9SpLFy5hybPvOgkSJCCCEuRkGRm8k1BEUjuoYCAI5nlTjkui0RFAV6iiHg88AwQHG1yqrHsPueUfqMEEKIq1FQ5EZq1VoUGxZtfPSeCAD6kSKGaX5dkbNnngEAn89DsJe+Xqmgstaqx9So9CNKrWHfM0IIIW0bBUVu5JahnkgmFmBwp2BIRXyUKdTIKKxu1nUVKg1uluqv3dlJCzeyQn30QVFhlXUrcnPpMzEFRYQQQlyLgiI3wk7Hj/DzgFjIxz0d/AEAx5pZV5ReoA+qgrzECPRyzswzVrC3FID1I0Vc+kxItyIhhBDXonciN8IWWbf312/W2jcmAEDzi61bop6IxY0UWRsUqaimiBBCiHugoMiNcCNFhqAoMSYQAJCWVdKsuqKWDYr0I0VWp880NCWfEEKIe6B3IjfCzjyL8JMBAO7u4AeRgIeCSiW3GrU9rhrSZy0RFLELQ1qdPqMp+YQQQtwEBUVuhE2fsSNFUpEAvdr7AWheCi2dW7jRuUXWQN1IUUGlbYXWEgqKCCGEuJhbBEWffvopoqOjIZVKkZiYiLS0NIvnDhs2DDwez+TrwQcf5M5hGAaLFy9Gu3bt4OHhgeHDhyM9Pb0lXkqz1C+0ZiXG6uuKjtm5XlFFjRq3K/SjNp1aYqTIxtlnNdyK1hQUEUIIcS2XB0Vbt25FcnIylixZgtOnT6NXr14YNWoUCgsLzZ6/Y8cO3L59m/u6ePEiBAIBJk2axJ3z3nvv4aOPPsKaNWtw/PhxeHp6YtSoUaittS6l4woarQ75hpQTW2gNAH25uiL7RorYUaJ2vlJubzJnYkeKSuRKqK1Y1ZrSZ4QQQtyFy4OiVatWYc6cOZg9eza6deuGNWvWQCaTYd26dWbPDwgIQFhYGPeVkpICmUzGBUUMw2D16tVYtGgRHnnkEfTs2RPffPMNbt26hZ07d7bgK7NNfmUttDoGYgGfWwARABKi/CHg85BbVsONJNniWgvWEwFAgEwMIbeqddOjRbXchrAuvxUJIYTc4YSufHKVSoVTp05hwYIF3DE+n4/hw4fj6NGjVl1j7dq1mDJlCjw9PQEAWVlZyM/Px/Dhw7lzfH19kZiYiKNHj2LKlCkm11AqlVAq697AKyv1m7Cq1Wqo1dbv+G4N9noNr5tdVDeio9VqoNXHCpDwge7tvHE+rxJH0wvxSO9wm57v8u0KAEDHYJnDX4slQV5i5FcqkVcqR5Cs8VusRqXfPFbIY5zaPkv9TpyH+tw1qN9dg/rdNRr2e3P736VBUXFxMbRaLUJDQ42Oh4aG4sqVK00+Pi0tDRcvXsTatWu5Y/n5+dw1Gl6T/VlDK1aswLJly0yO79u3DzKZrMl22CMlJcXo+7QiHgABJNpq7N692+hngTo+AD5+PHweoltnbXqeY5f0j63Jz8Tu3deb1WZrSXQCADzsOXgEeQGNLyVQUKw/9+K5M2Bymr+dSVMa9jtxPupz16B+dw3qd9dg+12hsH+mNuDioKi51q5dix49eqBv377Nus6CBQuQnJzMfV9ZWYnIyEiMHDkSPj4+zW2mEbVajZSUFIwYMQIiUV2NT+Yf14GM6+gZF4mkpO5Gj5FcKcQfm8+iQOeFpKRBNj3f8vMHAagwccQA9IjwdcAraNovZWdw40oR2ne+C0l9Ixs99+OMvwG5HIP7J6KfoajcGSz1O3Ee6nPXoH53Dep312jY72ymx14uDYqCgoIgEAhQUFBgdLygoABhYWGNPlYul2PLli1Yvny50XH2cQUFBWjXrp3RNXv37m32WhKJBBKJ6fYXIpHIaTd3w2vnV+p3lY8M8DR5zv5xIeDxgMxiBcpqtQgxbKXRlOJqJUrkKvB4QJdwP4hELfPrDjPMniuRq5vsP6WhGNvTQ9wif0ic+Tsl5lGfuwb1u2tQv7sG2+/N7XuXVreKxWIkJCQgNTWVO6bT6ZCamor+/fs3+tht27ZBqVTiiSeeMDoeExODsLAwo2tWVlbi+PHjTV7Tldgi6vozz1i+MhHiDYXSJ7LKrL7mqRv6cyP9ZZCJWy7+DTUEbYVWrFVUozJMyRfS7DNCCCGu5fIpP8nJyfjqq6+wceNGXL58GXPnzoVcLsfs2bMBADNmzDAqxGatXbsW48aNQ2BgoNFxHo+Hl156Ce+88w527dqFCxcuYMaMGQgPD8e4ceNa4iXZJbdMnweNMBMUAUC/WP3rPG7lekUarQ4r910FAIzsFtrE2Y7FrlVUUNX0EghKdkq+mIIiQgghruXymqLJkyejqKgIixcvRn5+Pnr37o09e/ZwhdI5OTng841jt6tXr+Kvv/7Cvn37zF7ztddeg1wuxzPPPIPy8nIMGjQIe/bsgVRqXdqppel0DG6V6wOI+gs31tc3JgAbjmRbvV7R9ydu4lpBNfxkIvzr/k4Oa6s1QmxY1bpWQ1PyCSGEuAeXB0UAMG/ePMybN8/szw4ePGhyLD4+vtENUnk8HpYvX25Sb+SuiquVUGl14POAMF/zgdu90foi5Cv5VShXqOAnE1u8XkWNGv9LuQYAeHl4Z/jKWja/zabPipoYKdJodVBr9b9HSp8RQghxNfp47gZyDfVEYT5SiATmfyXB3hLEBevXYmpqtOiTA+kolavQMcQL0xI7OLaxVmDTZ8XVqkZXta7V1P2M0meEEEJcjYIiN8BuBNvev/E1kazZ8iO7WI4NR7IBAG8+2NVikOVM7KrWAFDUyB5o7GrWACAR0q1ICCHEteidyA1wG8FaKLJmJcboU2hp2ZaDond3X4Zay2Bo52DcFx/iuEbagM/nIcS76Y1h2aBIIuSDx+O1SNsIIYQQSygocgPczDMLRdasvoag6GJeBapqTZcyP3K9GPsuFUDA52HRg10d31AbBHPF1pbriur2PaPUGSGEENejoMgNsOmzpkaKwv08EBngAR1TtwYRS6tj8PavlwEAjyd2QKcW2gDWklB2pKjRoEhfU+RBQREhhBA3QEGRG+DSZ02MFAFAYgy7XpFxCm37qZu4fLsS3lIhXhre2fGNtFGoYaTImvQZTccnhBDiDujdyMUYhrF6pAioS6HVL7auVmrw/l79FPz5D3RCgKfl6fotha0paix9VkPpM0IIIW6EgiIXq6hRQ67SBwfWjRTpg6LzueWoMTzusz8yUFytREyQJ2b0j3ZaW20RasUCjmz6jIIiQggh7oCCIhfLNYwSBXlJrAoOOgTIEOYjhVrL4ExOGW6WKvD1X1kAgIVJXSF2k6nt7FpFlD4jhBDSWtC7kYvl2pA6A/SrdbMptONZpfi/PVeg0ugwIC4Qw7u6Zgq+OSHcprCUPiOEENI6UFDkYmyRdXsrUmcsNijaeuImfjt/G3we8NZD3dxqrZ9Qw0hRiVwFlcb8qtbsZrC0xQchhBB3QEGRi9lSZM3qF6sPivINozCT7+2Aru18HN+4ZvCXiSES6IO04mrzKTRuSj5t8UEIIcQNUFDkYnnl+oUb29sQFMUFe3EzzLwkQiSPcP0U/Ib4fB6CvRqfgUY1RYQQQtwJvRu5mC1rFLF4PB6GxQcDAP51f0cEG6a/u5uQJmag1XDbfNBIESGEENcTuroBdzpbC61ZS8Z2x4R72mNAXKAzmuUQbF1RUZWlkSJKnxFCCHEfFBS5kFypQblCv4eZLSNFAODrIcLAjkHOaJbDsDPQLI0U1Wqo0JoQQoj7oPSZC7GpMx+pEN5SkYtb43jsSJHFmiIV1RQRQghxH/Ru5EJ1M89kLm6Jc3A1RRYWcGRHiih9RgghxB1QUORCuewaRTbWE7UW3KawFmefGbb5oPQZIYQQN0BBkQvllumn49taT9RasJvCWtrqg52SL6H0GSGEEDdA70YuxKbP2vpIUamFVa1pmw9CCCHuhIIiF7JnjaLWxF8m4la1LjKzqjU3JZ+CIkIIIW6AgiIXsmeLj9aEx+PVm5ZvWlekpJEiQgghboSCIhdRanRcrU37Njr7DABCDNPyzRVb19A2H4QQQtwIvRu5SH6FPkjwEAngL2t7axSxQg0jReaKrdlCa0qfEUIIcQcUFLkIOx0/wt8DPB7Pxa1xnpBGFnDkpuRTUEQIIcQNUFDkIrfaeJE1K9TCprAMw3CLN9KUfEIIIe6A3o1cJK9cP3LSVousWZbWKlJqdGAY/f/TSBEhhBB3QEGRi9wpI0UhFla1Vqrr1i2imiJCCCHugIIiF2FHitrqwo0sS5vCsqkzAZ8HkYBuQ0IIIa5H70YuktfG9z1jsbPPyhRqKA2BEADUqAzT8YV0CxJCCHEP9I7kAloGyDcUHkf4td01igDATyaC2DASVFSvrogdKfIQU+qMEEKIe6CgyAUqVIBWx0Ak4HGFyG0Vj8dDsDebQqsXFBlqiiRCCooIIYS4BwqKXKDMEBu08/UAn9921yhisXVFRVV1dUW1tJo1IYQQN0PvSC5QqtQHQm29nohVt/9Z3UhRDe17RgghxM1QUOQCpYbYoK1Px2eZm4GmpC0+CCGEuBmXB0WffvopoqOjIZVKkZiYiLS0tEbPLy8vxwsvvIB27dpBIpGgc+fO2L17N/fzpUuXgsfjGX116dLF2S/DJmWGkaK2vnAji1urqMq0pohGigghhLgLoSuffOvWrUhOTsaaNWuQmJiI1atXY9SoUbh69SpCQkJMzlepVBgxYgRCQkKwfft2RERE4MaNG/Dz8zM6r3v37ti/fz/3vVDo0pdp4k4bKQrxNh0pqqGaIkIIIW7GpdHCqlWrMGfOHMyePRsAsGbNGvz2229Yt24d3njjDZPz161bh9LSUhw5cgQikX5n+ejoaJPzhEIhwsLCnNr25rjTRopCuVWt648UUU0RIYQQ9+KyoEilUuHUqVNYsGABd4zP52P48OE4evSo2cfs2rUL/fv3xwsvvICff/4ZwcHBmDZtGl5//XUIBHVvrunp6QgPD4dUKkX//v2xYsUKdOjQwWJblEollMq6N+zKykoAgFqthlqtbu5LNaJSqbjZZ2HeIodf3x0FyvS/m8KqWu71ymv1/xULeC3SB+xz3An97S6oz12D+t01qN9do2G/N7f/XRYUFRcXQ6vVIjQ01Oh4aGgorly5YvYxmZmZOHDgAB5//HHs3r0bGRkZeP7556FWq7FkyRIAQGJiIjZs2ID4+Hjcvn0by5Ytw+DBg3Hx4kV4e3ubve6KFSuwbNkyk+P79u2DTObYxRUrVYCaEYIHBmf/PogLd0D2SK4GACHKFGrs+nU3hHzg4k0+AD4KbuVi9+6cFmtLSkpKiz0X0aM+dw3qd9egfncNtt8VCkWzruNexTZN0Ol0CAkJwZdffgmBQICEhATk5eXh/fff54KiMWPGcOf37NkTiYmJiIqKwg8//ICnnnrK7HUXLFiA5ORk7vvKykpERkZi5MiR8PHxcehrOJlVDJw6jVAfKcY+NNSh13ZXDMNgyZn9UGsZ3DPwPrT398CFvdeA3Gx06RiDpNHxTm+DWq1GSkoKRowYwaVeiXNRn7sG9btrUL+7RsN+ZzM99nJZUBQUFASBQICCggKj4wUFBRbrgdq1aweRSGSUKuvatSvy8/OhUqkgFotNHuPn54fOnTsjIyPDYlskEgkkEtOVpUUikcNv7sJqDQB9kfWd9A8n1EeK3LIalNZoERMiglrLAABkEsf3cWOc8TsljaM+dw3qd9egfncNtt+b2/cuS96IxWIkJCQgNTWVO6bT6ZCamor+/fubfczAgQORkZEBnU7HHbt27RratWtnNiACgOrqaly/fh3t2rVz7AuwU16FfiPYcD+pi1vSstgZaIWGGWg0JZ8QQoi7cWlFS3JyMr766its3LgRly9fxty5cyGXy7nZaDNmzDAqxJ47dy5KS0sxf/58XLt2Db/99hveffddvPDCC9w5r7zyCg4dOoTs7GwcOXIE48ePh0AgwNSpU1v89Zlzq1wfFNwp0/FZ7Aw0dlo+OyVfIrwDiqoIIYS0Ci6tKZo8eTKKioqwePFi5Ofno3fv3tizZw9XfJ2TkwM+v+5NMzIyEnv37sXLL7+Mnj17IiIiAvPnz8frr7/OnZObm4upU6eipKQEwcHBGDRoEI4dO4bg4OAWf33m5JXrR4ru2KDIsIAjOyXfQ0wjRYQQQtyDywut582bh3nz5pn92cGDB02O9e/fH8eOHbN4vS1btjiqaU6RV8aOFN1Z6bNgLn1mCIo0hvSZkIIiQggh7oFyFy2IYZh6NUV35khRYRVbU0SLNxJCCHEvFBS1oMoaDeRKfTAQ7ntnjRQ13BS2Ln1GtyAhhBD3QO9ILSi3XL+olJeQueNqaUIbbArLjRRR+owQQoiboKCoBeWV6VNnAaZLIrV57JT8coUatWotNyVfQukzQgghboKCohbEzjwLkDAubknL8/UQQWyYfl9UpeSm5EtFdAsSQghxD/SO1ILUWh18PYTwvwNHing8HldXVFhVW1dTRCNFhBBC3AQFRS3omSFxOLnwfjwcpWv65DYoxJtdwFEJJa1oTQghxM1QUOQCfJ6rW+Aa7EjRrfIaqLQUFBFCCHEvFBSRFsOOFN0sVXDHKH1GCCHEXVBQRFpMiGGk6Ea9oIj2PiOEEOIu6B2JtJhQw0hRTok+KBIL+eDfqblEQgghboeCItJi2AUcb5bpgyIpjRIRQghxI/SuRFoMmz5Ta/XrNN1pq3oTQghxbxQUkRbDps9YNPOMEEKIO6GgiLQYHw+hUWE17XtGCCHEnVBQRFoMj8fjUmgAIKX0GSGEEDdCQRFpUfVTaFRoTQghxJ3QuxJpUewMNIBqigghhLgXCopIiwr2rkuf0WrWhBBC3AkFRaRFGY8U0e1HCCHEfdC7EmlRofULrWmkiBBCiBuhoIi0qBBvqikihBDinigoIi2KRooIIYS4KwqKSIsKoZoiQgghborelUiL8pHWrWpNI0WEEELcCQVFpEXxeDxuBhpNySeEEOJOKCgiLY6tK6L0GSGEEHcidHUDyJ3nkd4RKKpSIjEm0NVNIYQQQjgUFJEW90S/KDzRL8rVzSCEEEKMUP6CEEIIIQQUFBFCCCGEAKCgiBBCCCEEAAVFhBBCCCEAKCgihBBCCAFAQREhhBBCCAAKigghhBBCALhBUPTpp58iOjoaUqkUiYmJSEtLa/T88vJyvPDCC2jXrh0kEgk6d+6M3bt3N+uahBBCCCEuDYq2bt2K5ORkLFmyBKdPn0avXr0watQoFBYWmj1fpVJhxIgRyM7Oxvbt23H16lV89dVXiIiIsPuahBBCCCGAi4OiVatWYc6cOZg9eza6deuGNWvWQCaTYd26dWbPX7duHUpLS7Fz504MHDgQ0dHRGDp0KHr16mX3NQkhhBBCABdu86FSqXDq1CksWLCAO8bn8zF8+HAcPXrU7GN27dqF/v3744UXXsDPP/+M4OBgTJs2Da+//joEAoFd1wQApVIJpVLJfV9ZWQkAUKvVUKvVzX2pRtjrOfq6pHHU7y2P+tw1qN9dg/rdNRr2e3P732VBUXFxMbRaLUJDQ42Oh4aG4sqVK2Yfk5mZiQMHDuDxxx/H7t27kZGRgeeffx5qtRpLliyx65oAsGLFCixbtszk+L59+yCTyex4dU1LSUlxynVJ46jfWx71uWtQv7sG9btrsP2uUCiadZ1WtSGsTqdDSEgIvvzySwgEAiQkJCAvLw/vv/8+lixZYvd1FyxYgOTkZO77yspKREZGYuTIkfDx8XFE0zlqtRopKSkYMWIERCKRQ69NLKN+b3nU565B/e4a1O+u0bDf2UyPvVwWFAUFBUEgEKCgoMDoeEFBAcLCwsw+pl27dhCJRBAIBNyxrl27Ij8/HyqVyq5rAoBEIoFEIjE5LhKJnHZzO/PaxDLq95ZHfe4a1O+uQf3uGmy/N7fvXRYUicViJCQkIDU1FePGjQOgHwlKTU3FvHnzzD5m4MCB+O6776DT6cDn62vEr127hnbt2kEsFgOAzdc0h2EYAGh2xGmOWq2GQqFAZWUl/cNpQdTvLY/63DWo312D+t01GvY7+77Nvo/bjHGhLVu2MBKJhNmwYQNz6dIl5plnnmH8/PyY/Px8hmEYZvr06cwbb7zBnZ+Tk8N4e3sz8+bNY65evcr8+uuvTEhICPPOO+9YfU1r3Lx5kwFAX/RFX/RFX/RFX63w6+bNm3bFJS6tKZo8eTKKioqwePFi5Ofno3fv3tizZw9XKJ2Tk8ONCAFAZGQk9u7di5dffhk9e/ZEREQE5s+fj9dff93qa1ojPDwcN2/ehLe3N3g8nuNeMOrqlW7evOnweiViGfV7y6M+dw3qd9egfneNhv3OMAyqqqoQHh5u1/V4DGPvGBOxR2VlJXx9fVFRUUH/cFoQ9XvLoz53Dep316B+dw1H97vLt/kghBBCCHEHFBQRQgghhICCohYnkUiwZMkSs0sAEOehfm951OeuQf3uGtTvruHofqeaIkIIIYQQ0EgRIYQQQggACooIIYQQQgBQUEQIIYQQAoCCIkIIIYQQABQUtahPP/0U0dHRkEqlSExMRFpamqub1Kb8+eefGDt2LMLDw8Hj8bBz506jnzMMg8WLF6Ndu3bw8PDA8OHDkZ6e7prGtiH/3979x1RV/nEAf1/Ai4AiCHQvZiCG4q+ARKRrESpOsTIt1lhjCtmGGRiYpW6O0PoDllqTZtZwk8omZI05bWqEcItfyq8LEgTI7sTWJbKpCYIg9/P9w3XW/aIZei838f3aznbP8zznOZ/7OfePz55z7k5mZibCw8Mxfvx4PPTQQ1i1ahVaWlosxvT19SE5ORleXl4YN24cYmNjh7y4mYZn3759CA4Ohru7O9zd3aHT6XD8+HGlnzm3vaysLKhUKqSlpSltzLttbN++HSqVymKbMWOG0m+tvLMoGiH5+fl48803kZGRgdraWoSEhGDZsmXo6uqyd2ijRk9PD0JCQrB3795b9r///vvIzs7GJ598gtOnT8PNzQ3Lli1DX1/fCEc6uuj1eiQnJ6OyshKFhYUYGBjA0qVL0dPTo4zZuHEjjh49isOHD0Ov1+PXX3/Fiy++aMeo73+TJ09GVlYWampqUF1djcWLF2PlypX46aefADDntlZVVYVPP/0UwcHBFu3Mu+3Mnj0bJpNJ2UpLS5U+q+X9rt6YRsM2f/58SU5OVvYHBwdl0qRJkpmZaceoRi8AUlBQoOybzWbRarWyc+dOpe3y5cvi7Owshw4dskOEo1dXV5cAEL1eLyI38zxmzBg5fPiwMqa5uVkASEVFhb3CHJU8PT1l//79zLmNXb16VaZNmyaFhYUSFRUlqampIsLfui1lZGRISEjILfusmXeuFI2A/v5+1NTUYMmSJUqbg4MDlixZgoqKCjtG9uAwGo3o7Oy0uAYTJkxAREQEr4GVXblyBQAwceJEAEBNTQ0GBgYscj9jxgz4+fkx91YyODiIvLw89PT0QKfTMec2lpycjGeffdYivwB/67bW1taGSZMmYerUqYiPj0dHRwcA6+bdyaoR0y1dvHgRg4OD0Gg0Fu0ajQY///yznaJ6sHR2dgLALa/BX31078xmM9LS0vDkk09izpw5AG7mXq1Ww8PDw2Isc3/vzp49C51Oh76+PowbNw4FBQWYNWsWDAYDc24jeXl5qK2tRVVV1ZA+/tZtJyIiArm5uQgKCoLJZMKOHTsQGRmJxsZGq+adRRERWU1ycjIaGxst7vWT7QQFBcFgMODKlSv4+uuvkZCQAL1eb++wRq0LFy4gNTUVhYWFGDt2rL3DeaAsX75c+RwcHIyIiAj4+/vjq6++gouLi9XOw9tnI8Db2xuOjo5DnoT/7bffoNVq7RTVg+WvPPMa2E5KSgqOHTuG4uJiTJ48WWnXarXo7+/H5cuXLcYz9/dOrVYjMDAQYWFhyMzMREhICPbs2cOc20hNTQ26urowd+5cODk5wcnJCXq9HtnZ2XBycoJGo2HeR4iHhwemT5+Oc+fOWfX3zqJoBKjVaoSFhaGoqEhpM5vNKCoqgk6ns2NkD46AgABotVqLa/Dnn3/i9OnTvAb3SESQkpKCgoICnDp1CgEBARb9YWFhGDNmjEXuW1pa0NHRwdxbmdlsxvXr15lzG4mOjsbZs2dhMBiUbd68eYiPj1c+M+8jo7u7G+3t7fD19bXu7/0eHganYcjLyxNnZ2fJzc2VpqYmSUpKEg8PD+ns7LR3aKPG1atXpa6uTurq6gSAfPDBB1JXVyfnz58XEZGsrCzx8PCQI0eOSENDg6xcuVICAgKkt7fXzpHf39avXy8TJkyQkpISMZlMynbt2jVlzGuvvSZ+fn5y6tQpqa6uFp1OJzqdzo5R3/+2bt0qer1ejEajNDQ0yNatW0WlUsl3330nIsz5SPn7v89EmHdb2bRpk5SUlIjRaJSysjJZsmSJeHt7S1dXl4hYL+8sikbQRx99JH5+fqJWq2X+/PlSWVlp75BGleLiYgEwZEtISBCRm3/LT09PF41GI87OzhIdHS0tLS32DXoUuFXOAciBAweUMb29vfL666+Lp6enuLq6ygsvvCAmk8l+QY8Ca9euFX9/f1Gr1eLj4yPR0dFKQSTCnI+U/y+KmHfbiIuLE19fX1Gr1fLwww9LXFycnDt3Tum3Vt5VIiJWWMkiIiIiuq/xmSIiIiIisCgiIiIiAsCiiIiIiAgAiyIiIiIiACyKiIiIiACwKCIiIiICwKKIiIiICACLIiK6z+Tm5g55G/Z/WUlJCVQq1ZD3MhHRfw+LIiIatsTERKhUKmXz8vJCTEwMGhoahjXP9u3bERoaapsgiYiGiUUREd2VmJgYmEwmmEwmFBUVwcnJCc8995y9w3pg9Pf32zsEolGHRRER3RVnZ2dotVpotVqEhoZi69atuHDhAn7//XdlzJYtWzB9+nS4urpi6tSpSE9Px8DAAICbt8F27NiB+vp6ZcUpNzcXAHD58mWsW7cOGo0GY8eOxZw5c3Ds2DGL8588eRIzZ87EuHHjlALtdv66hVVUVIR58+bB1dUVCxYsQEtLizImMTERq1atsjguLS0NCxcuVPYXLlyIDRs2IC0tDZ6entBoNMjJyUFPTw9eeeUVjB8/HoGBgTh+/PiQGMrKyhAcHIyxY8fiiSeeQGNjo0V/aWkpIiMj4eLigkceeQRvvPEGenp6lP4pU6bgvffew5o1a+Du7o6kpKTbfl8iujssiojonnV3d+PgwYMIDAyEl5eX0j5+/Hjk5uaiqakJe/bsQU5ODj788EMAQFxcHDZt2oTZs2crK05xcXEwm81Yvnw5ysrKcPDgQTQ1NSErKwuOjo7KvNeuXcOuXbvwxRdf4IcffkBHRwfeeuutO8a5bds27N69G9XV1XBycsLatWuH/V0/++wzeHt748yZM9iwYQPWr1+Pl156CQsWLEBtbS2WLl2K1atX49q1axbHvf3229i9ezeqqqrg4+ODFStWKAVie3s7YmJiEBsbi4aGBuTn56O0tBQpKSkWc+zatQshISGoq6tDenr6sGMnojuw3jtsiehBkZCQII6OjuLm5iZubm4CQHx9faWmpuYfj9u5c6eEhYUp+xkZGRISEmIx5uTJk+Lg4CAtLS23nOPAgQMCwOIN2Xv37hWNRnPb8xYXFwsA+f7775W2b7/9VgBIb2+v8p1WrlxpcVxqaqpERUUp+1FRUfLUU08p+zdu3BA3NzdZvXq10mYymQSAVFRUWJw7Ly9PGfPHH3+Ii4uL5Ofni4jIq6++KklJSRbn/vHHH8XBwUGJz9/fX1atWnXb70hE987JngUZEd2/Fi1ahH379gEALl26hI8//hjLly/HmTNn4O/vDwDIz89HdnY22tvb0d3djRs3bsDd3f0f5zUYDJg8eTKmT59+2zGurq549NFHlX1fX190dXXdMebg4GCLYwCgq6sLfn5+dzz2VnM4OjrCy8sLjz32mNKm0WiUef9Op9MpnydOnIigoCA0NzcDAOrr69HQ0IAvv/xSGSMiMJvNMBqNmDlzJgBg3rx5/zpOIho+3j4jorvi5uaGwMBABAYGIjw8HPv370dPTw9ycnIAABUVFYiPj8czzzyDY8eOoa6uDtu2bbvjA8IuLi53PPeYMWMs9lUqFURkWMepVCoAgNlsBgA4ODgMmeOv21t3Ovc/zftvdHd3Y926dTAYDMpWX1+PtrY2i+LPzc3tX89JRMPHlSIisgqVSgUHBwf09vYCAMrLy+Hv749t27YpY86fP29xjFqtxuDgoEVbcHAwfvnlF7S2tv7japG1+fj4DHn42WAwDCmC7lZlZaWyInXp0iW0trYqK0Bz585FU1MTAgMDrXIuIro7XCkiorty/fp1dHZ2orOzE83NzdiwYQO6u7uxYsUKAMC0adPQ0dGBvLw8tLe3Izs7GwUFBRZzTJkyBUajEQaDARcvXsT169cRFRWFp59+GrGxsSgsLITRaMTx48dx4sQJm36fxYsXo7q6Gp9//jna2tqQkZExpEi6F++++y6KiorQ2NiIxMREeHt7K/9227JlC8rLy5GSkgKDwYC2tjYcOXJkyIPWRGRbLIqI6K6cOHECvr6+8PX1RUREBKqqqnD48GHlL+zPP/88Nm7ciJSUFISGhqK8vHzIP6ZiY2MRExODRYsWwcfHB4cOHQIAfPPNNwgPD8fLL7+MWbNmYfPmzUNWlKxt2bJlSE9Px+bNmxEeHo6rV69izZo1Vps/KysLqampCAsLQ2dnJ44ePQq1Wg3g5uqYXq9Ha2srIiMj8fjjj+Odd97BpEmTrHZ+IrozlfybG/FEREREoxxXioiIiIjAooiIiIgIAIsiIiIiIgAsioiIiIgAsCgiIiIiAsCiiIiIiAgAiyIiIiIiACyKiIiIiACwKCIiIiICwKKIiIiICACLIiIiIiIALIqIiIiIAAD/A30uJkUy4ZrcAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHHCAYAAAC7soLdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLl0lEQVR4nO3dd3iTVfsH8G+SJunei0Jpoey9lzJUligKgoL6ylBREQTF14EDHO9PfF8VceMCUVEQRFwIVLZs2ciGQlndlO404/z+SJ+nTZu2SZrR8f1cF5f26ZMnJydpcuc+9zlHIYQQICIiIqrHlJ5uABEREZGrMeAhIiKieo8BDxEREdV7DHiIiIio3mPAQ0RERPUeAx4iIiKq9xjwEBERUb3HgIeIiIjqPQY8REREVO8x4KE6R6FQ4JVXXnHqNb/66isoFAqcP3/eqdetLc6fPw+FQoG3337b002hWmDz5s1QKBTYvHmzS+/HFX+rRI5q8AHPxx9/DIVCgd69e3u6KeQGb7zxBlavXu3pZpAd+JzZ75VXXoFCobD6b+HChZ5uHjlZXl4ennzySTRp0gRarRZt27bFJ598YvXc7OxsPPLII4iIiICfnx9uuukm7N+/3+b7On78OIYPHw5/f3+EhobigQceQHp6utVzz549i/vuuw+RkZHw8fFBy5Yt8eKLL1qcs3r1arRp0wZBQUEYOXIkrly5UuE6d9xxBx555BGb21gZrxpfoY5bunQp4uPjsWfPHpw5cwYtWrTwdJPIhd544w2MHTsWo0aNsjj+wAMPYPz48dBqtZ5pGFWqsueMqvfJJ5/A39/f4ljv3r2RkJCAwsJCaDQaD7WMnMVoNGLYsGH4+++/MW3aNLRs2RLr1q3D448/jmvXruGFF16QzzWZTLjttttw6NAhPPPMMwgPD8fHH3+MQYMGYd++fWjZsmWV93Xp0iUMGDAAQUFBeOONN5CXl4e3334bR44cwZ49eyxeTwcPHsSgQYPQuHFjPP300wgLC0NycjIuXrwon3Pu3DmMGzcO48aNQ9++fbFgwQJMnjwZ69atk89Zt24dtm7ditOnT9e8s0QDdu7cOQFArFq1SkRERIhXXnnF002qVF5enqebUGsAEHPnznXotn5+fmLixIlObU9dkJSUJACIt956y6Hbe/L111Cfs/LseQ7mzp0rAIj09HQXtqh6Nflbra1q23vxDz/8IACIL7/80uL4mDFjhLe3t0hNTZWPLV++XAAQK1askI+lpaWJ4OBgce+991Z7X1OnThU+Pj7iwoUL8rHExEQBQHz66afyMaPRKDp06CB69+4tCgoKKr3eJ598Ipo3by5MJpMQQohNmzYJhUIhCgsLhRBC6PV60bZtW/HOO+9U2zZbNOghraVLlyIkJAS33XYbxo4di6VLl1o9Lzs7G0899RTi4+Oh1WrRpEkTTJgwARkZGfI5RUVFeOWVV9CqVSt4e3ujUaNGuOuuu3D27FkAlY+ZS7UVX331lXxs0qRJ8Pf3x9mzZzFixAgEBATg/vvvBwBs27YNd999N5o2bQqtVovY2Fg89dRTKCwsrNDuEydO4J577kFERAR8fHzQunVrOZ24adMmKBQK/PTTTxVu991330GhUGDnzp1V9l92djaefPJJxMbGQqvVokWLFvjvf/8Lk8kEANDr9QgNDcXkyZMr3DYnJwfe3t7497//LR9LS0vDQw89hKioKHh7e6Nz585YsmRJlW2Q+is+Pr7CcSmtL1EoFMjPz8eSJUvk9P6kSZMAVF7D8/HHH6N9+/bQarWIiYnBtGnTkJ2dbXHOoEGD0KFDBxw7dgw33XQTfH190bhxY/zvf/+rtu0AYDAY8PrrryMhIQFarRbx8fF44YUXoNPpLM6Lj4/H7bffjr/++gu9evWCt7c3mjdvjq+//tqm+5G8++67iIuLg4+PDwYOHIijR49a/L6q15/JZMKCBQvQvn17eHt7IyoqCo8++iiuXbtmcY2ff/4Zt912G2JiYqDVapGQkIDXX38dRqPR4rzTp09jzJgxiI6Ohre3N5o0aYLx48fj+vXrAKp+zqpS1WsfAC5cuIDHH38crVu3ho+PD8LCwnD33XdXeP6l18X27dsxa9YseRhg9OjRVtP4f/zxBwYOHIiAgAAEBgaiZ8+e+O677yzO2b17N4YPH46goCD4+vpi4MCB2L59u8U50mv32LFjuO+++xASEoIbb7yx2sdtK2vvR7a+jouLizFnzhx0794dQUFB8PPzQ//+/bFp0yaH2mLP9UwmE9577z107NgR3t7eiIiIwPDhw/H3339bnPftt9+iV69e8PX1RUhICAYMGID169fLv6+stig+Pt7i9SU9/1u2bMHjjz+OyMhINGnSBIDtryGg6s+QvLw8+Pn5YebMmRVud+nSJahUKsybN6/S/tu2bRsAYPz48RbHx48fj6KiIvz888/ysZUrVyIqKgp33XWXfCwiIgL33HMPfv755wrvOeX9+OOPuP3229G0aVP52ODBg9GqVSv88MMP8rH169fj6NGjmDt3Lnx8fFBQUFDhbx8ACgsLERwcLL9Ph4aGQgghf559+OGHMBqNeOKJJ6psl60a9JDW0qVLcdddd0Gj0eDee+/FJ598gr1796Jnz57yOXl5eejfvz+OHz+OBx98EN26dUNGRgZ++eUXXLp0CeHh4TAajbj99tuxYcMGjB8/HjNnzkRubi4SExNx9OhRJCQk2N02g8GAYcOG4cYbb8Tbb78NX19fAMCKFStQUFCAqVOnIiwsDHv27MEHH3yAS5cuYcWKFfLtDx8+jP79+0OtVuORRx5BfHw8zp49i19//RX/93//h0GDBiE2NhZLly7F6NGjK/RLQkIC+vbtW2n7CgoKMHDgQFy+fBmPPvoomjZtih07dmD27Nm4evUqFixYALVajdGjR2PVqlX49NNPLdKdq1evhk6nk/9ICwsLMWjQIJw5cwbTp09Hs2bNsGLFCkyaNAnZ2dlW3wzs9c033+Dhhx9Gr1695PHgqp6bV155Ba+++ioGDx6MqVOn4uTJk/JrZPv27VCr1fK5165dw/Dhw3HXXXfhnnvuwcqVK/Hcc8+hY8eOuPXWW6ts18MPP4wlS5Zg7NixePrpp7F7927MmzcPx48frxCQnjlzBmPHjsVDDz2EiRMnYtGiRZg0aRK6d++O9u3bV9sHX3/9NXJzczFt2jQUFRXhvffew80334wjR44gKipKPq+y19+jjz6Kr776CpMnT8aMGTOQlJSEDz/8EAcOHLDok6+++gr+/v6YNWsW/P39sXHjRsyZMwc5OTl46623AJg/6IYNGwadTocnnngC0dHRuHz5Mn777TdkZ2cjKCjI7ucMqP61DwB79+7Fjh07MH78eDRp0gTnz5/HJ598gkGDBuHYsWPy45U88cQTCAkJwdy5c3H+/HksWLAA06dPx/Lly+VzvvrqKzz44INo3749Zs+ejeDgYBw4cABr167FfffdBwDYuHEjbr31VnTv3h1z586FUqnE4sWLcfPNN2Pbtm3o1auXxf3efffdaNmyJd544w0IIap9fsvLysqy+FmlUiEkJKTS8215Hefk5OCLL77AvffeiylTpiA3Nxdffvklhg0bhj179qBLly52tdGe6z300EP46quvcOutt+Lhhx+GwWDAtm3bsGvXLvTo0QMA8Oqrr+KVV15Bv3798Nprr0Gj0WD37t3YuHEjhg4dalfbJI8//jgiIiIwZ84c5OfnA7D9NVTdZ0iXLl0wevRoLF++HPPnz4dKpZLv9/vvv4cQQv7CYY1Op4NKpaowPCnd/759+zBlyhQAwIEDB9CtWzcolZa5jl69euGzzz7DqVOn0LFjR6v3c/nyZaSlpcn9XP72a9askX/+888/AQBarRY9evTAvn37oNFoMHr0aHz88ccIDQ0FAPTs2RNPP/00vv/+e/Tp0wf/93//hxYtWiAkJATp6el49dVX8e2331q819aIU/JEddDff/8tAIjExEQhhBAmk0k0adJEzJw50+K8OXPmyMNe5UlpuEWLFgkAYv78+ZWes2nTJgFAbNq0yeL30lDD4sWL5WMTJ04UAMTzzz9f4XrW0oPz5s0TCoXCIs04YMAAERAQYHGsbHuEEGL27NlCq9WK7Oxs+VhaWprw8vKqNg39+uuvCz8/P3Hq1CmL488//7xQqVQiOTlZCCHEunXrBADx66+/Wpw3YsQI0bx5c/nnBQsWCADi22+/lY8VFxeLvn37Cn9/f5GTkyMfR7k0+cSJE0VcXFyFNkpp/bIqGx5ZvHixACCSkpKEEOZ+0Gg0YujQocJoNMrnffjhhwKAWLRokXxs4MCBAoD4+uuv5WM6nU5ER0eLMWPGVLivsg4ePCgAiIcfftji+L///W8BQGzcuFE+FhcXJwCIrVu3ysfS0tKEVqsVTz/9dJX3I73OfHx8xKVLl+Tju3fvFgDEU089JR+r7PW3bds2AUAsXbrU4vjatWsrHLf2On300UeFr6+vKCoqEkIIceDAgQrpdWvsHdKy5bVvrX07d+6s8DxKr4vBgwdb3P6pp54SKpVK/tvJzs4WAQEBonfv3nI6vvz9mkwm0bJlSzFs2LAKbWnWrJkYMmSIfEx67doyzGCNdPvy/6S/E2vvR7a+jg0Gg9DpdBb3d+3aNREVFSUefPBBi+Pl/1atsfV6GzduFADEjBkzKlxD6s/Tp08LpVIpRo8ebfF3W/acqtoVFxdn8VqTnv8bb7xRGAwGi3NtfQ3Z8hkivU/+8ccfFr/v1KmTGDhwYIXblfXOO+8IAGLbtm0Wx59//nkBQNx+++3yMT8/vwrPkRBC/P777wKAWLt2baX3s3fv3gqPTfLMM88IAPLf9h133CEAiLCwMHH//feLlStXipdffll4eXmJfv36WTwXM2bMkF+foaGh8nvelClTxPDhw6t87PZqsENaS5cuRVRUFG666SYA5hTnuHHjsGzZMovU248//ojOnTtXyIJIt5HOCQ8Pt5p2KzukYq+pU6dWOObj4yP/f35+PjIyMtCvXz8IIXDgwAEAQHp6OrZu3YoHH3zQIvVYvj0TJkyATqfDypUr5WPLly+HwWDAv/71ryrbtmLFCvTv3x8hISHIyMiQ/w0ePBhGoxFbt24FANx8880IDw+3+CZ87do1JCYmYty4cfKxNWvWIDo6Gvfee698TK1WY8aMGcjLy8OWLVuqbI+z/fnnnyguLsaTTz5p8W1oypQpCAwMxO+//25xvr+/v0WfaTQa9OrVC+fOnavyfqRvRbNmzbI4/vTTTwNAhftp164d+vfvL/8cERGB1q1bV3s/klGjRqFx48byz7169ULv3r0tvp1Jyr/+VqxYgaCgIAwZMsTiOe/evTv8/f0thiDKvk5zc3ORkZGB/v37o6CgACdOnAAABAUFATAXJRYUFNjU/urY+tov2z69Xo/MzEy0aNECwcHBVmesPPLIIxa379+/P4xGIy5cuAAASExMRG5uLp5//nl4e3tbvd+DBw/i9OnTuO+++5CZmSn3X35+Pm655RZs3bpVHg6WPPbYYw72hNmPP/6IxMRE+V9lw/YSW17HZbMJJpMJWVlZMBgM6NGjh12zfey93o8//giFQoG5c+dWuIbUx6tXr4bJZMKcOXMqZDFq8l48ZcoUi8wLYPtryJbPkMGDByMmJsbi+Tl69CgOHz5c7Xvxfffdh6CgIDz44INITEzE+fPn8dlnn+Hjjz8GAItyh8LCQqsTM6TXrLXSiLK3BWDT7fPy8gCYMzjffvstxowZg9deew2vv/46duzYgQ0bNsi3fe+993DhwgXs3r0bFy5cwE033YSDBw/i66+/xrvvvovr16/jX//6Fxo3boxBgwbh+PHjVfZHVRpkwGM0GrFs2TLcdNNNSEpKwpkzZ3DmzBn07t0bqampFk/G2bNn0aFDhyqvd/bsWbRu3RpeXs4bIfTy8pLHistKTk7GpEmTEBoaCn9/f0RERGDgwIEAINc9SG9O1bW7TZs26Nmzp8Uf2dKlS9GnT59qZ6udPn0aa9euRUREhMW/wYMHAzDX40iPY8yYMRbjw6tWrYJer7cIeC5cuICWLVtWeJNq27at/Ht3ku6vdevWFsc1Gg2aN29eoT1NmjSp8IYaEhJSobbF2v0olcoK/R0dHY3g4OAK91P+Q9zW+5FYm4XRqlWrCnUH1l5/p0+fxvXr1xEZGVnhec/Ly5OfcwD4559/MHr0aAQFBSEwMBARERHyG7f0Om3WrBlmzZqFL774AuHh4Rg2bBg++ugj+fdVKS4uRkpKisU/o9Fo82u/sLAQc+bMkevPwsPDERERgezsbKv3X77fpWEhqd+lWr2q7leaZTJx4sQK/ffFF19Ap9NVuO9mzZpV+TiqM2DAAAwePFj+d8MNN1R5vq2v4yVLlqBTp07w9vZGWFgYIiIi8Pvvv9v03Fljy/XOnj2LmJgYeTjEmrNnz0KpVKJdu3YOtaMy1p4HW19DtnyGKJVK3H///Vi9erUc/C9duhTe3t64++67q7xtdHQ0fvnlF+h0OgwdOhTNmjXDM888gw8++AAALGbp+fj4WK3TKSoqkn9fGel3ttxe+m/ZL7AA5KHdHTt2WBxv2rQpevXqJbd1xowZeOyxx9CmTRtMmzYNFy9exM8//4yOHTti5MiRMBgMlbazKg2yhmfjxo24evUqli1bhmXLllX4/dKlSx0e661MZd8urBVyAeYouvyHv9FoxJAhQ5CVlYXnnnsObdq0gZ+fHy5fvoxJkyZV+HZoiwkTJmDmzJm4dOkSdDoddu3ahQ8//LDa25lMJgwZMgTPPvus1d+3atVK/v/x48fj008/xR9//IFRo0bhhx9+QJs2bdC5c2e722uNvX3rCuW//UmEjXUXtn77rOn92Mra689kMiEyMrLSLEFERAQAc4HmwIEDERgYiNdeew0JCQnw9vbG/v378dxzz1m8Tt955x1MmjQJP//8M9avX48ZM2Zg3rx52LVrl9WAX7Jjxw45OytJSkqy+fE98cQTWLx4MZ588kn07dsXQUFBUCgUGD9+vNW/I2f0u3Tdt956q9I6l/JTyKv6AHIFWx7nt99+i0mTJmHUqFF45plnEBkZKRfWSoGfPZx9vZqo7D3D2vNg72uoOhMmTMBbb72F1atX495778V3332H22+/Xc6EVmXAgAE4d+4cjhw5gvz8fHTu3Flez6bse3GjRo1w9erVCreXjsXExFR6H40aNbI4t/ztQ0ND5eyPdJ2ydYEAEBkZCQBVfkFbvnw5jh8/jl9++QVGoxE//PAD1q9fjx49eqB9+/b4/PPPsWvXLoeK+BtkwLN06VJERkbio48+qvC7VatW4aeffsLChQvh4+ODhISECrNYyktISMDu3buh1+srLa6SvhGWn+FjT+biyJEjOHXqFJYsWYIJEybIxxMTEy3Oa968OQBU227AHIzMmjUL33//PQoLC6FWqy0yL5VJSEhAXl6enNGpyoABA9CoUSMsX74cN954IzZu3Fhh8am4uDgcPnwYJpPJ4oNWGv6Ii4ur9PohISEV+hWw3re2BhbS/Z08eVLuT8CcWUhKSrLpcdt6PyaTCadPn5azWQCQmpqK7OzsKh+3I6ytZXHq1Cmrs9zKS0hIwJ9//okbbrihyg/izZs3IzMzE6tWrcKAAQPk45UFJB07dkTHjh3x0ksvYceOHbjhhhuwcOFC/Oc//wFg/Tnr3Llzhdd9dHQ0/Pz8AFT/2l+5ciUmTpyId955Rz5WVFRk9XVkC6mQ+ujRo5VmR6VzAgMDnfb68YSVK1eiefPmWLVqlcVzY22oyZnXS0hIwLp165CVlVVplichIQEmkwnHjh2rsnja2ntGcXGx1Q/zqtpty2vIls8QwJwd7Nq1K5YuXYomTZogOTlZztLYQqVSWTxmqXC47GutS5cu2LZtW4X32d27d8PX19ciOCqvcePGiIiIqDAjDkCF4vLu3bvj888/x+XLly3Ok4Iw6ctReQUFBXjmmWfw+uuvIzg4GKmpqdDr9XIA5ePjg5CQkArXtVWDG9IqLCzEqlWrcPvtt2Ps2LEV/k2fPh25ubn45ZdfAABjxozBoUOHrE7flr71jBkzBhkZGVYzI9I5cXFxUKlUcm2LRBpntYX07avsty0hBN577z2L8yIiIjBgwAAsWrQIycnJVtsjCQ8Px6233opvv/0WS5cuxfDhwxEeHl5tW+655x7s3LnTYoEoSXZ2tkXKUalUYuzYsfj111/xzTffwGAwVAiqRowYgZSUFItaH4PBgA8++AD+/v7ysJ01CQkJuH79Og4fPiwfu3r1qtXnzM/Pz6YPtcGDB0Oj0eD999+36LMvv/wS169fx2233VbtNWwxYsQIAMCCBQssjs+fPx8AnHY/ktWrV1u8WezZswe7d++udiYZYH7OjUYjXn/99Qq/MxgMcr9ae50WFxdXeK3n5ORUSE137NgRSqXSIm1u7TkLCQmxGKoZPHiwPE3Zlte+SqWq8LfwwQcfOJwVHDp0KAICAjBv3jw5vV/+frt3746EhAS8/fbbco1DWZWtVlvW2bNn3Z71KM/a87t79+5ql7Go6fXGjBkDIQReffXVCteQbjtq1CgolUq89tprFbIsZa+fkJBQ4b34s88+s+v5t/U1ZMtniOSBBx7A+vXrsWDBAoSFhdn0d2lNeno6/vvf/6JTp04WAc/YsWORmpqKVatWyccyMjKwYsUKjBw50qI+x9prbcyYMfjtt98sFg/csGEDTp06ZTH0duedd0Kr1WLx4sUWz8MXX3wBABgyZIjVdv/3v/9FSEiIPKssLCwMXl5e8hffjIwMpKenIzo62u4+ARpghueXX35Bbm4u7rjjDqu/79OnDyIiIrB06VKMGzcOzzzzDFauXIm7774bDz74ILp3746srCz88ssvWLhwITp37owJEybg66+/xqxZs7Bnzx70798f+fn5+PPPP/H444/jzjvvRFBQEO6++2588MEHUCgUSEhIwG+//WZR91CdNm3aICEhAf/+979x+fJlBAYG4scff7SaHnz//fdx4403olu3bnjkkUfQrFkznD9/Hr///jsOHjxoce6ECRMwduxYALD6YWbNM888g19++QW33367PC06Pz8fR44cwcqVK3H+/HmLwGncuHH44IMPMHfuXHTs2NEimwGYi0I//fRTTJo0Cfv27UN8fDxWrlyJ7du3Y8GCBQgICKi0LePHj8dzzz2H0aNHY8aMGSgoKMAnn3yCVq1aVSii7N69O/7880/Mnz8fMTExaNasmdVtRSIiIjB79my8+uqrGD58OO644w6cPHkSH3/8MXr27FltIaGtOnfujIkTJ+Kzzz6Th4L27NmDJUuWYNSoURWGbWqqRYsWuPHGGzF16lTodDr5jbWyocmyBg4ciEcffRTz5s3DwYMHMXToUKjVapw+fRorVqzAe++9h7Fjx6Jfv34ICQnBxIkTMWPGDCgUCnzzzTcV3tw3btyI6dOn4+6770arVq1gMBjwzTffQKVSYcyYMfJ5tj5nElte+7fffju++eYbBAUFoV27dti5cyf+/PNPhIWFOdSvgYGBePfdd/Hwww+jZ8+e8to5hw4dQkFBAZYsWQKlUokvvvgCt956K9q3b4/JkyejcePGuHz5MjZt2oTAwED8+uuvVd7PLbfcAgAe3fPt9ttvx6pVqzB69GjcdtttSEpKwsKFC9GuXTurgZyzrnfTTTfhgQcewPvvv4/Tp09j+PDhMJlM2LZtG2666SZMnz4dLVq0wIsvvojXX38d/fv3x1133QWtVou9e/ciJiZGXs/m4YcfxmOPPYYxY8ZgyJAhOHToENatW2fTl72y7bblNWTLZ4jkvvvuw7PPPouffvoJU6dOtXk69sCBA9G3b1+0aNECKSkp+Oyzz5CXl4fffvvNIpMzduxY9OnTB5MnT8axY8fklZaNRmOFQNLaa+2FF17AihUrcNNNN2HmzJnIy8vDW2+9hY4dO1qstxYdHY0XX3wRc+bMwfDhwzFq1CgcOnQIn3/+Oe69916LpV8kycnJeOutt/D777/LQbCXlxfuvPNOPPnkk0hOTsZPP/2EmJiYKpdMqZJT53zVASNHjhTe3t4iPz+/0nMmTZok1Gq1yMjIEEIIkZmZKaZPny4aN24sNBqNaNKkiZg4caL8eyHMUxRffPFF0axZM6FWq0V0dLQYO3asOHv2rHxOenq6GDNmjPD19RUhISHi0UcfFUePHrU6Ld3Pz89q244dOyYGDx4s/P39RXh4uJgyZYo4dOhQhWsIIcTRo0fF6NGjRXBwsPD29hatW7cWL7/8coVr6nQ6ERISIoKCgipMqa1Kbm6umD17tmjRooXQaDQiPDxc9OvXT7z99tuiuLjY4lyTySRiY2MFAPGf//zH6vVSU1PF5MmTRXh4uNBoNKJjx44VHpMQ1qeUrl+/XnTo0EFoNBrRunVr8e2331qdln7ixAkxYMAA4ePjIwDIU1DLT0uXfPjhh6JNmzZCrVaLqKgoMXXqVHHt2jWLcwYOHCjat29foZ2VTZcvT6/Xi1dffVV+7cTGxorZs2fLUzwlcXFx4rbbbqtw+4EDB1Y7dbXsSsvvvPOOiI2NFVqtVvTv318cOnSoQrsre/0JIcRnn30munfvLnx8fERAQIDo2LGjePbZZ8WVK1fkc7Zv3y769OkjfHx8RExMjHj22WflqbfSVOhz586JBx98UCQkJAhvb28RGhoqbrrpJvHnn39a3F9lz1lVqnvtX7t2TX6t+fv7i2HDhokTJ05UOi157969FtevbJmJX375RfTr10/4+PiIwMBA0atXL/H9999bnHPgwAFx1113ibCwMKHVakVcXJy45557xIYNG+RzKlspOS4uzqbXVHUrLVc2Ld2W17HJZBJvvPGGiIuLE1qtVnTt2lX89ttvVl/v1v5Wy7PnegaDQbz11luiTZs2QqPRiIiICHHrrbeKffv2WZy3aNEi0bVrV6HVakVISIgYOHCgvASJEOaVgJ977jkRHh4ufH19xbBhw8SZM2dsfv6FsP01JIRtnyGSESNGCABix44dVfZbWU899ZRo3ry50Gq1IiIiQtx3330Wnz1lZWVliYceekiEhYUJX19fMXDgQKuPr7LX2tGjR8XQoUOFr6+vCA4OFvfff79ISUmpcJ7JZBIffPCBaNWqlfy+9tJLL1X4bJDcfffd4q677qpwPDU1VYwcOVIEBASIbt26ib///rua3qicQggnVztSnWMwGBATE4ORI0fiyy+/9HRziIgarNGjR+PIkSM4c+aMp5tS7zS4Gh6qaPXq1UhPT7cohCYiIve6evUqfv/9dzzwwAOebkq9xAxPA7Z7924cPnwYr7/+OsLDwx1aNIyIiGomKSkJ27dvxxdffIG9e/fi7NmzDhfmUuWY4WnAPvnkE0ydOhWRkZF2b0BJRETOsWXLFjzwwANISkrCkiVLGOy4CDM8REREVO8xw0NERET1HgMeIiIiqvca3MKDJpMJV65cQUBAQI12zyUiIiL3EUIgNzcXMTExFfb6s0WDC3iuXLmC2NhYTzeDiIiIHHDx4sUqNxeuTIMLeKQtCi5evIjAwECnXluv12P9+vXykvvkHux3z2C/ewb73TPY755Rtt8LCwsRGxtb5VZDVWlwAY80jBUYGOiSgMfX1xeBgYH8g3Aj9rtnsN89g/3uGex3z7DW746Wo7BomYiIiOo9BjxERERU7zHgISIionqPAQ8RERHVewx4iIiIqN5jwENERET1HgMeIiIiqvcY8BAREVG9x4CHiIiI6j0GPERERFTvMeAhIiKieo8BDxEREdV7DW7zUCKiuiynUI8sHXA5uxBeXvpKzwv318JbrXJjy5yj2GCCl1IBpdKxDSKJKsOAh4iojth3IQvjPt0Fg8kLr+7fVuW50YHeWPfkAAT51p2dvfN0Boz+aDvydQZ8NqEHOjQO8nSTqB7hkBYRUR3x9/lrMJgEFBDQeikr/adUACk5Rfhg42lPN9kun245i9NpebhyvQjjPt2JbafTPd0kqkeY4SEiqiOy8osBAAMaCXzx+GCo1dazN1tOpWPioj1YsvM8Hugbh7gwP3c20yFXsgvx2dZzAIDmEX44l56PyYv34u27O2NU18Yebh3VB8zwEBHVEZklAU+AWlR53sBWERjQKgJ6o8Cbf5xwR9Nq7O11J6EzmNArPhR/zOyPkZ1jYDAJPLn8ID7dchZCVP2YiarDDA8RNSjnM/Lx4JK9yC6ovODX2RQAxvWMxbPD29ToOpl5OgCAvw3v3C+OaIu/Tqfjj6Mp2Hs+Cz3jQ+2+v9ScIjzx3QG0iPLH3JHtoPVyTRH0kUvXserAZQDAS7e3hdZLhffGdUFUgBZf/JWEeX+cQEpOEV6+rZ1Nxcy5RXos33sRy/ZelLNiNeWjVmJwhAIjnHK1qqXn6jBh0R6k5hRVe25cmC/evrszEiL8XdqmI5eu44u/zuFseh4+vq87mob5uvT+XIEBDxE1KN/tSca59Hy33++3uy7UOOCRPrz9bahDbh0dgHE9Y/H9nov4z+/H8dPUfnbNfDIYTZjx/QHsOZ+FPeezcC49D58+0ANBPs4tghZC4D+/HwMAjOoSg05NggEASqUCL93eDlGB3vi/NcexePt5pOXqMP+ezpUGXpezC7H4ryQs23sReTqDU9sJAN9eV2L0lRx0iQtz+rXL+unAJRy/mmPTuVn5xRj7yQ58OaknujUNcWo7TCaBDSfS8Pm2c9iTlCUf/3rnebx0ezun3pc7MOAhogZDCIG1R1MAAK/f2R59mrv2gwsAcooMGPPJDuQUGVBsMEHj5XglQaYc8Ng2vPPUkFb45eAVHLqYjV8PX8GdXWyvhXl/w2nsTsqCn0YFhUKBXeeyMO7Tnfhqci9EB3k71H5rEo+lYndSFrReSjxjJSCcMqA5IgO1+PeKQ/j98FVk5unw2YQeCPQuDbwOXczG59vO4Y+jKTCazH2TEOGHh/s3R/e4EDhjgvu8Ncex8WQ6Zi4/jN9m3IgAb9fNfpNeo08NboURHaMrPU9nMOHFn47g0KXruO/zXfjw3m4Y3C6qxvdfUGzAj/suYdH280jKMH858FIq0LVpMPaev4a1/6TgxdvaQqGoW0sHMOAhogbj+NVcJGcVQOulxJjuTeCrcf1boMkkoFIqYDQJXCsoRlSg48GCnOGxsdmRAd54bGAC3kk8hf+tPYlh7aNtWptn+5kMfLDpDADgjbs6omVkACYt3oMTKbm46+PtWPJgL7SMCnD4cUj0RpNcY/Rw/2ZoHOxj9bw7uzRGuL8Wj36zD7vOZeGehTuxaFJPHLl8HV9sO4e956/J597QIgwP92+OgS0jnLqWz3/v6oCh72zEhawCvPDTUbw/votLPvBTc4qwPzkbADC+V2y1r5fvH+mDaUv3Y9PJdDzyzd94Y3RHjO/V1KH7TsspwpKd57F0d7I85Bvo7YX7+8RhYt94BPmo0fX19bh0rRD/XMmpc8sGsGiZiBqMtf+YvzkPbBXhlmAHMA/NhPppAAAZJTU4jigsNqKg2AjAtiEtycP9myM60Ns83LP9fLXnp+UWYeaygxACuLdXLO7s0hjtYgLx49R+aB7hhyvXizB24U7sPZ9V7bWqs3TXBZzLyEe4vwZTB7Wo8twbWoRj+aN9EBGgxYmUXPT/3yY8+s0+7D1/DWqVAnd1a4w1M/pj6cN9cFPrSKcvXBjsq8bEVkZ4KRX49dAVfL/nolOvL1lf8hrt1jTYpuDYV+OFzyb0wD09msAkgOdXHcGCP0/ZVeR9/GoOnv7hEG7470Z8tOkssgv0aBrqi1dGtsPO2bfgueFtEB3kDR+NCgNbRQAA1pW0sy5hwENEDca6kqGCYe0rHyZwhbCSgCczz/EC2sx8c7CkVingbUftsI9GhWeHtwYAfLzpTJVBl9Ek8NTyg8jI06F1VADmjmwv/y421Bc/PtYP3ZoG43qhHv/6Yrc89OKI6wV6LNhgXifoqSGt4K+tPgBtHxOEVSWBl9EkEOSjxuODEvDXczdj/j1d0C4m0OH22KJZADBriDkwe/XXf2yus7GHFJTb8xpVq5T475hOeOJmc9sW/HkaL/x0BAajqdLbCCGw+WQa/vXFbtz63jb8uP8S9EaBHnEhWPivbtj070GYdEMz+JV7XoZ3MLerJs+9pzDgIaIGISkjHydTc+GlVOCWtpFuve9wfy2A0qDFEdJwVqivBvaOpIzq0hgdGwchV2fAgj9PVXreR5vOYPuZTPioVfjo/q4Vhr9C/DRY+nAfDG4bBZ3BhMeX7sM3uy7Y/VgA4MNNp5FdoEfLSH+M6xFr8+1iQ32xetoN+HJiD+ycfTOeHd6mRsOE9nqoXzxuah0BncGEad/tR74Ti6Ov5Rdj1zlz5szeoFyhUODpoa3xn1EdoFQA3++5iMe+3YfCkqygpEhvxPK9yRj67lZMWrwXf53JgFIB3NaxEX56vB9WTu2H4R0aQVVJhuzmNlHwUipwOi0PZ9PzHHugHsKAh4gaBCkF3zchDMG+Grfed5i/MzI85tuG+NnfdqVSgRdvawvA/EF4Ji23wjm7zmXKwdB/RnVAi0jrNTo+GhUW/qsb7u3VFCYBvLz6KN5ad8KuIZTkzAIs2WEOlF64rS28VPZ9FAV6q3FL2yi3DUuWpVQq8M49XRAd6I1z6fl4efVRp60RtOFEGowmgTbRAYgPd2yxyH/1icMn/+oOrZcSfx5Pw31f7EJWfjEy83RY8Ocp3PDmRjz34xGcTsuDv9YLD93YDFueuQkf3d8NXW2Y5RXko0a/FuEA6t6wFgMeIvKo3CI9vtl53iXTiMta66HhLAAI8zNneDJqEPBkldw2zIGABwD6NA/DkHZRMJoE3lhjuRhhRp4OM74/AJMAxnZvgjHdm1R5LS+VEm+M7oBZQ1oBAD7adBZPrzgkrxNUnf+uPYFiown9W4ZjUElNSF0S6qfB+/d2hUqpwKoDl7Fi3yWnXFd6jUrDRo4a1j4aSx/ujSAfNQ4kZ2PEe9vQ782NWPDnaWTmFyMmyBsvjmiLHbNvxsu3t0NsqH1r6gxrb54Jtq6ODWsx4CEij3rvz9N4+ed/8HHJrCBXuHq9EAcvZkOhAIY6YdquvUozPE4Y0vJzfDr07FvbwEupwMYTadh+JgOAeRbZU8sPIi1Xh5aR/njtzvbVXMVMoVBgxi0t8eZdHc0f/Psvo++bGzF71WGrGSTJvgtZ+P3IVSgVqJNTmyW9moXKAd+cn4/iVGrlj9kW+ToDtpbsHVbTgAcAesSH4sepfdE42AcpOUXQGUzo1CQI79/bFVuevQlTBjS3mNpvjyHtoqBQAIcuXcfl7MIat9VdGPAQkUftSsoEAOy7cK2aMx23/p9UAEC3piGIdGO9hyRcCnhqsOpvRkn9T6iDGR4AaB7hj3/1iQMA/Of34zCaBBZuPYttpzPgrVbio/u72T1MNL5XU3z9YC90bhKEYoMJ3++5iMHzt2Ly4j3YcSbDYrhHCIHXfzsOALinRyzaRLu2yNjVpg5MQP+W4SjSmzBt6X4UFDuepdx8Mh3FBhPiwnzR2glT/gGgRWQAfnq8H54a3Ao/PNoXP0+7AXd0joHaziHE8iIDvNEjzjz8tb4ODWsx4CEijykoNuD4VfM346OXr8Nkcs1+SfJQgQeGs4DSIa0aZXjySouWa2LGLS0R4O2F41dzMPeXo3hnvblu57U7OqCVgx+0N7QIx+ppN2DFY30xtOTb/6aT6bjvi9247f2/sGr/JRQbTPj18FUcvJgNX40Ks4a2qtHjqA2USgXeHdcFkQFanE7Lw9yf/3H4WtLsrOHto52a9YoM9MbMwS3Rq1moU68rDQ3XpToeBjxE5DGHL12XV8bNLzbiXIbzt3zIyi/GnvOOzXxxFmlIq0Y1PPKQVs0CnlA/jTx9+dtdyTCaBEZ1icHdPaqu26mOQqFAz/hQfDahBzY9PQgT+sbBR63Csas5mPXDIdz43414/TfzFhKPDUxAZID7M22uEO6vxXvju0KpAFbsu4RV++2v59EZjNh0Ig0AMMwJw1nuIP0t7UnKqlEg704MeIjIY8oPYx25nO30+/jzeCqMJoF2jQI9tuFh2Wnpjs7okYbDHC1aLmtiv3jEhppXNW4e7of/jO7o1G//8eF+eO3ODiXTxlsjKlCLtFwd0nN1iA70xpT+zZ12X7VB34QwzLilJQDzrLW03Oo3/Sxrx5lM5OkMiArUokvJXmK1XWyoLzo0DoRJmP/G6gIGPETkMQeSzQGPr8a83svhS9edfh/rnDTzpSakDE+R3iSvlmwvZxQtS7ReKrx7TxcMbReFzyZ0t2nRP0cE+2rw+KAW2PbszZh/T2cMax+FBeO7wEfjml3XPemJm1uic2ww8ouNeDex8rWOrCk7g9DZK0S70rB2dWsRQgY8ROQRQgh5z6CxJdOgjzg54MnTGbDttHk2kqeGswDz8v8+JYv4OboWjzRsUNMhLUmPkuGnytbbcSaNlxJ3dWuCTx/o4ZYNWz1BpVTg5ZK1jpbvvYiTKbbN2jIYTUgsyZB48jXqCOlLxPYzmcgt0nu4NdVjwENOV35lTyJrLmQWICu/GBqVEuN7mjc7/OdKTpXL4dtr04k0FBtNaBbuh1ZR/k67riPkOh4HVlsu0huRX/J35ayAh5yvR3woRnSMhkkA/7fmuE232Xv+GrLyixHsq0avZqEubqFztYj0R/MIPxQbTdh0Mt3TzakWAx5yqs0n09DhlXVYvD3J002hWk6q3+nQOBBtogPgp1GhUG/E2XTnFS6vK7MvkafXewmT6ngcyPBIw1leSgUCvd2/ujDZ7rnhbaBWKbD1VDo2n0yr9nzpNTq4bVSNp4u7m0KhkGc+1oVFCOtW71Kt9/f5azCaBLafyfR0U6iW219Sv9OtaQiUSgU6NA4CABy6lO2U6xfpS2e+eLJ+RxLu5/jig2VnaHk6cKOqxYX5YWLfeADAG2uOV7uB57p/PLtkQk1Jf1ubTqahSF+7s/sMeMippM0RU3Psm6VADY9Uv9O9ZAGzTk3MAY+z6ni2n8lAfrERjYK80akkmPKksBosPpjh5Podcq0nbm6JYF81TqXm4Ye/K5+mfvjSdVy9XgRfjQo3tgx3Ywudp2PjIMQEeaOg2CjXy9VWDHjIqaR1RlIY8FAV8nQGnEzJAQB0Kwl4OpZMxz182TkBT22b+SINaWXUIMMjBU1UuwX5qjHjZvM09fmJJyvdJ05abPCm1pEVdqavKxQKBYa2rxuztRjwkFNJ6fqMPB30Tiw+dYcDydcw9N0t2GTDuDvVzKGL2TAJoHGwD6JKtnqQsjDHr+ag2FCz147BaJLXBhna3v17Z1kT5uf4jumlQ1pap7aJXOdffeIQH+aLjLxiLNx8tsLvhRBy3UtdWWywMtKw1oYTqbX6fZ8BDzmVlK4XAkjLrRurb0p+PngFp1Lz8NP+y55uSr23v6RguWvTYPlYXJgvAry9UGww1Xgjxj3ns3CtQI8QXzV6xdeOmS9lFx+0lzMXHST30HgpMXuEeZr659vO4Uq5TTbPpOXhXEY+NColbmpd93aML6tnfCjC/DTILtBjT1KWp5tTKQY85FRlv72mXK9bw1pn0/MAAMlZBR5uSf0nFSxL9TuAOTUu1/HUcFhL+uY8pF0UvGrJzJfSHdMdyPDkMeCpi4a2i0KvZqHQGUx4e91Ji99Jwz83tgxHgIO7ltcWKqUCQ9qZM6m1eVirdrwTUL1QpDdajFXXtcLlM2nmgOfSNQY8rmQyCRy4mA3APEOrrI6NgwHUbMVlk0lgXcnu6LVhdpZE2kDUkf20pKxQKGt46hSFQoGXShYjXHXgMg6XmYG4to7PzipPGpZb90+KyzYBrikGPOQ05Wef1KUMT57OgKsl7c3IK0Z+JUWGVHPnMvKRXaCH1kuJto0CLX5XmuHJdvj6hy5lIyWnCP5aL/RLqD0zX8JLgpWsfJ3dHwgc0qq7OjUJxuiujQEA//n9OIQQuJhVgH+u5ECpAAa3qx01ZjXVLyEM/lovpOXqcNBJS0s4GwMecpry64vUpZlaZ0uyO5KLzPK4jDSc1alJEDRelm9BUsBzMiXX4TU9pG/Og1pH1KqZLyElwYpJANmF9i3Dz6Lluu2ZYa2h9VJiT1IW1h9Lldfe6dUstN4sNaD1UuHmNpEAau8ihB4PeD766CPEx8fD29sbvXv3xp49eyo9V6/X47XXXkNCQgK8vb3RuXNnrF271o2tpaqUr02oSxmeM+UDnqzCSs6kmpI2DO0WF1Lhd42DfRDqp4HeKGzei6issjNfatNwFgCoVUoE+5prNexdfFCu4eGQVp0UE+wj7xD/5h8n8NvhqwDqz3CWRPqbW/tPCoSofcNaHg14li9fjlmzZmHu3LnYv38/OnfujGHDhiEtzfq04JdeegmffvopPvjgAxw7dgyPPfYYRo8ejQMHDri55WRN+fVF6lKG50y6ZcDDwmXX2X8hG0DF+h3AXPPQsWR6uiPr8ZxKzcP5zAJovJQY1DqyRu10hXB/++t4dAYjckuGWDmkVXc9NigB4f5aJGXk42BJDdvQehbwDGwVAa2XEhcyC3DCgS8srubRgGf+/PmYMmUKJk+ejHbt2mHhwoXw9fXFokWLrJ7/zTff4IUXXsCIESPQvHlzTJ06FSNGjMA777zj5paTNVKdQWyoD4C6meEJ0Jr3KbrIgMclcor0OJVmfiO0FvAAZVdczrb7+tIMkQEtw+GvrX17Tslr8dgxNV0azlIpFQis47N5GjJ/rRdmDWkl/9w5NhgxwT4ebJHz+Wm9MKCVeYp9bZyt5bF3hOLiYuzbtw+zZ8+WjymVSgwePBg7d+60ehudTgdvb2+LYz4+Pvjrr78qvR+dTgedrvTNJSfHvLqrXq+HXu/c7eyl6zn7unVFeo55GKhddAAuZhUiJacIxcXFLt/7xxn9frbkQ/iGFmFY+08qLmTmNdjn0VaO9PvfSRkQAogN8UGwt9LqbdtFm3c1P3wx265rCyHw6yHzGkq3tImolc9faMmQVtr1Qpvbl5ptDr5DfNUwGg0N/n3GU5zR76M7R2Hx9nM4nZaPoW1r52u0pga3CUfisVSsO3oV0wc1q/H1yvZ7TfvLYwFPRkYGjEYjoqIsK9SjoqJw4sQJq7cZNmwY5s+fjwEDBiAhIQEbNmzAqlWrYDRWXtw4b948vPrqqxWOr1+/Hr6+vjV7EJVITEx0yXVru8OnlQCUUOVeBaBCscGElb/8AT83fSl1tN8NJuB8hgqAAqFFVwCocDw5HWvWrHFq++ore/r9j4sKACpEqvIr7d9sHQB44VRqLlb/ugYaG+uOk/OAM+leUCsEFJcOYU3KIZvb5S55Gea/kd0HjyEs66hNtzmRbe4ztVFn0WcN9X3G02ra7+MbAwe9FYi6fhxr1hx3UqtqD6Me6BiiRCf/6/j99zVw1vfdxMREFBTULPNe+3K+VXjvvfcwZcoUtGnTBgqFAgkJCZg8eXKlQ2AAMHv2bMyaNUv+OScnB7GxsRg6dCgCAwMrvZ0j9Ho9EhMTMWTIEKjVDS/1vGLJPiAjEwN7dsLOzFO4VqBHx9790SY6wKX3W9N+P52WB9PuHfDTqvDgyBvx3YK/kG1Q4dZbh3Jn6io40u8rl+wDkInb+7TDiN5NrZ4jhMCHp7YgPa8YcZ37WazGXJXXfjsO4CKGdmiEMXd0su1BuNnZTWexLfUsQmKaYsSIdjbdRn/oKnD8COIbhWHEiB4N/n3GU5zZ7xOc1Kba6m4nXqtsvxcW1mwyiccCnvDwcKhUKqSmplocT01NRXS09UKuiIgIrF69GkVFRcjMzERMTAyef/55NG/evNL70Wq10GorTuVUq9Uue7Nw5bVrs6x8c7oxMsgX0UE+uFagR0a+wW194Wi/X8gy1xq1iAxAXEQAlAqgSG9Cts6EyADvam5dM0cuXUezCL9aWW9iK1v73WQSOFiyoGDPZuFV3qZTk2BsOJGGYyl56JVQ/bL7OoMRvx4x1wzc07Nprf37iww012xcK9Db3MbrReYMdpi/1uI2DfV9xtPY756hVqthMNRsfTSPFS1rNBp0794dGzZskI+ZTCZs2LABffv2rfK23t7eaNy4MQwGA3788Ufceeedrm4u2UAqxAz306JRkDlQqAsztaSC5RYR/lCrlGgUZP5QcnXh8v7kaxj54V8Y8/EOFBY7tuZMXXImPQ+5RQb4qFXVZv06NrFvptamE2nILtAjKlCLG1vUnsUGy5MWH7RnlpY0hZ0ztIhqxqOztGbNmoXPP/8cS5YswfHjxzF16lTk5+dj8uTJAIAJEyZYFDXv3r0bq1atwrlz57Bt2zYMHz4cJpMJzz77rKceApUQQsjr8IT5a+QdsOvCTC1pSnqLSHOxbNNQc22Xq6emH0jOBgCcTM3F3F9sq+eoy6QNQzvHBlW7v1XpTC3bAp6V+8zFyqO7NoFKWXuHIcOkDUTtWIeHiw4SOYdH8+jjxo1Deno65syZg5SUFHTp0gVr166VC5mTk5OhVJa+MRYVFeGll17CuXPn4O/vjxEjRuCbb75BcHCwhx4BSXIKDTCULJcf6qdBdEnAUxf205IzPCUBT2yoD3aeA5IzXbv4YFJG6do/P/x9CX0TwjC6axOX3qcnSSssVzYdvawOJWvxnEnPQ77OAL8qhvwy8nTYfNK8dtfY7o2d0FLXkael25PhkQIeLjpIVCMeLxyYPn06pk+fbvV3mzdvtvh54MCBOHbsmBtaVTcIIWAwCahrwW7QGSXDWQFaL3irVYgOMn8bvVrLMzwmk5B3SU+I8ANQmuFx9fYSSRn5AIA20QE4kZKLF386ik5NgpEQ4e/S+/WU/SUZLVsCnsgAbzQK8sbV60X450oOejULrfTcnw9egcEk0Dk2GC0iXVsgX1NShidXZ0CR3mjT1hdShiecQ1pENeL5T0pyiNEkcOt72zDivW0O7znkTJnllr6PLqmDqe0ZnsvZhSjSm6BRKeVAJ9ZNQ1rn0s0Bz+ujOqBv8zAUFBsxben+WvF8Olt2QbGcSbO2pYQ18orL1SxAuHLfJQDA2G61O7sDAIHeXlCrzENuWfm2ZXlKh7QY8BDVBAOeOio5y7x09+m0PGw4bn0rDneSCytLvsFKQ1q1vWhZqt+JD/eV60qkgMeVRcsFxaW7s7eI8Md747sg3F+DEym5eO23+pfFPFCylH6zcD+bP7ilOp7DVdTxHLuSg+NXc6BRKTGyc0yN2+lqCoUCYX5SHY9tAU+G/LfFgIeoJhjw1FFlN7v8cf8lD7bELKPkW6hUoyAFPNkF+lqdsThbrn4HKB3SSskpgs7gmrafzyhdPTfET4PIQG+8O64LFArgu93J+PXQFZfcr6ccKClYtnVNHQDo2MR87pEqZmpJr/3B7SIR7Fs3AgIpcMmwYXuJYoMJuUXmqbgsWiaqGQY8dVTZgGfLqXSk5Xo2k1I+wxPo4wWfkvqE2jxTS6rfaVGmbibMTwNfjQpCAJevuaZwWarfaRbuJx/r3zIC0wa1AADMXnUE50vOqQ/sqd+RSENaSRn5uF5YcUl5vdGE1QfMs7PGdKs7xd6lM7Wqz/BcKzCfo1QAwT5c+4WoJjxetEyOKRvwGE0CPx+4gikDKl+A0dWkN29pnRGFQoHoIG8kZeQjJacI8WU+2G3188HLeGPNceiNosrzFAD6hikwwu57KO3HhDIZHoVCgdgQX5xMzUVyVgGau6CIWJqh1Szc8tpPDm6JPUlZ2HM+C9O+248fp/azqbC1NjOaBA6UzNDqbmP9DmCuWWkS4oNL1wrxz+Xr6FdufZ0tJ9ORmV+McH+tvGFhXRAuz9SqPsMj/V2F+mmgrMXT7YnqAmZ46iip9kRaZG3lvksQourAwJWkRQfLLo4WFWj+Juto4fKyPReRmqNDVn5xlf8y84ux8YoSJpP9j7/8lHSJXMfjogzPuZLsTfMIy0DQS6XE+/d2RaifBv9cycG8erDXzqnUXOQXG+Gv9UKrKPtmUXWqYgFCqVh5VJeYWjFT0VbSkFamDUXLLFgmch5meOogIYRce/Lk4JbYcz4LJ1Nz8c+VHHn9EnfLkGdpldYZSHU8jk5Nl4Z9PryvK1pX8kFpEsDoj7ejoNiI02l56BBb+fTl8jLzdLhWoIdCgQpTwZu6uHBZmqHVzErmKzrIG/Pv6YxJi/diyc4L6NM8DLd2bOSSdriDtP5O59gguxcF7NQkGGuOpFRYgPBafjE2nDBvSzOme90ZzgJK/0YybMnwlHyRYMBDVHN152sRyVJzdMjTGaBSKtCpSTCGtjMv1Ch94/WETCszSaSp6Y7U8OTrDPIMr/4tItAyKsDqv9bRAehWUgi7+/w1u+5Dyu40CfGpMGwUG2pue3Km8wMeIQTOlWToymd4JINaR+KxgQkAgGd/POySdrjL/gvZAOyr35F0kqamX862OP7r4SvQGwXaxwSibSPnbgLsavYsPigv98CCZaIaY8BTB0kf1HGhvtB4KeVvuD8fvIxig8kjbZLS8+EWGR7Hh7TOZ5ozIGF+GgT5Vl2s2Tve/EG6OynLrvs4Y6VgWeLKxQevFeiRUzLzJj6s8tqmp4e2Qve4EOQWGfDE9/thdGDIrjaQV1i2o35H0r4k4LmYVYhrZYaApOC+LhUrS6S/kUwbZmlJQ1qckk5Ucwx46qAzabkAIBfT9m8RjsgALa4V6LHppPvX5NEbTcguMM+iKVvDE12DDUSrGvIpT1qFd+/5a3bV8cgFy1UEPMmZBU6vjZIKlhsHV8wslaUuqefx13rh0KXr1S7AVxtl5RfLQ5PdYu0PeIJ81PJrQJqefio1F4cvXYeXUoE7u9T+tXfKk2t4bMnwsIaHyGkY8NRBZ0uCAanQ1kulxOiu5lVmPTGsJX3zVipgsRZKTTYQtTZtuzIdYgKhUQpcK9DjdJnZa9WprGAZAJqEmAOeXJ3B6pTomrAnmGsc7CPPbDp2Ncep7XAHaXZWQoRftZm6ykjT06WA58eS1/hNbSItasbqirLT0qsLprOsTAYgIscw4KmDrH1QS8Nam06k2bUTszNklJk6W7YotVFJDU9ars7u4Rg54KmkxqUsjZcSzQLM19+dlGnzfVhbdFDio1EhIsD8weTsLSbsCeYAoF2MuUbl2JW6F/DYs2FoZUpXXM6GwWjCTyVr74ytY8XKEil4KTaakKszVHlu6bT0uhfYEdU2DHjqILn2pMwHdauoAHRqEgSDSeAXN6/SWzol3fJNOdxfA6XCvA6LvUGYPG3bxqCgRaA54Nl1zraAJ19nwBVpawcrAQ9QdqaWc6em25PhAYB2JUW5x+tYhkdvNGHnWfPzYc/6O+XJGZ5L17HtTAbScnUI8VXjptaRTmmnu3mrVfAv2f29umEtTksnch4GPHXM9UI90nPNwUNCueyHVMDp7mGt8huHSrxUSjlLYs/UdCEEktKtL8xXGSng2X0uy6aaG2mF5XB/TaVbEsSGlMzUclGGp7IZWuVJs5BOpOTWicLl6wV6LNxyFv3/u0leYblHvO3LBZTXvnEQFArgyvUifLblHADgzi6NofGqu29fpXU8VX8RKJ0MwICHqKbq7jtGAyUNZ0UHeiPA27Im4o7OMVCrFPinZENFd8kot61EWY5sIpqVX4ycIgMUCiAuzNem2zT1B7zVSmTmF1usQl0ZKeCxVrAsX9MFu6abTAJJmVL2yrZgrlm4H7zVShQUG3Ehs/ZuN5GcWYBXfvkHfd/cgDf/OIGUnCJEBGjxxuiOlWbRbOGv9ZKfp50lGby6OpwlkYa1MqrI8OiNJrl+jBkeoppjwFPHVFV3EuKnwS1tzGvy/OjGLE9muY1Dy5JmatkzNV0azqpuFlNZXkqgW2wwANuGtaoqWJZIqy1fcuLU9CvXC1FsMEGtUqBxSQapOiqlAm2ipWGtXKe1xRmEMO+T9dg3+zDo7U34asd5FBQb0SY6AG+N7YS/nrsJ9/VuWuP76VRmQc3WUQFoH1O31t4pL8yGqenSPlqKcpMBiMgxDHjqGGv1O2VJ33xXH7wCvdE9a/JIaXlp+KqsaAdmaiXZWeMikaan77JhPR5bAh5XZHik4ay4MD+7Vh2WhrWOXa1853B3+/N4Gt49qsK4z/dg7T8pMAlgYKsIfPNQL/wxsz/u7hELrZdz9gHr2KQ04BnbvQkUirq9r1S4DVPTpd+F+GrsXqGaiCri1hJ1jLXNLssa2DoCYX4aZOTpsPVUOm5pG+XyNpWuBlvxW2hUkP0Bj70Fy5Je0gKE5zIhhKjyQ9GeDM/la4UwmoRTPnTsLViW1LaZWn+dzsDU7w4CUECtUuCurk3wUP9mdu+VZStpppZKqcCdXeve2jvlSQX+VdXwsGCZyLmY4alj5A/qSmpP1ColRpWsyfPjfvcMa2XIq8E6p4andCdx+4KCTk2CoPVSIiOvWK7RsUZvNOFCyVYNVQU8UYHe0KiUMJgErl53zkwtewuWJe3kDE/tCHh+P3IVANA+xISt/x6A/47t5LJgBwC6xobg4Rub4ZWR7RAZ4O2y+3EXqWg5o4oNRKsaKiYi+zHgqUOK9EZ5q4OqPqil2Vp/HktDdkH1q7nWlLV9tCSOrLZcugaPfYWuWi+lPP1517nKh7UuZObDYBLw06jkgMwalVKBJk6eqeVo9qpNdAAUCvM+au5eZ6k8IQS2nkoHANwYJSy2E3EVpVKBl25vhwf6xrv8vtyhdPHBKjI8VfxdEZH9GPDUIUkZ+RACCPT2qnKaaruYQLRrFIhiowm/umFNHmlIK9zK4mhla3hsmS5uNAmcL8m+2BsUAEDvZmEAqi5cLjssWF0tSBMn75pemr2yL5jz03rJ+255unD5bHoeLmcXQuOllJcDIPuE27CBKLeVIHIuBjx1SNm6k+o+qKWVl1fuv+zSNhUUG1CoNwKoOsNTUGysdlVZALiSbZ7FpPFSIibYtllMZfVpbi5c3p1U+Xo81Q0LltW0ZNd0Zyw+qDMYcema+Tr2DtcBZYe1PFu4vOVUBgCgZ1wINM6pSW5wSmdp2RLwcJVlImdgwFOH2FJoK7mzSwy8lAocupgtbzbqCtI3VG+1Er5WPv18NV4I8DbXxqfaULgsDfnEh/k6VCTcOTYYGi8l0nN18rXKq67wuyxnztQyb0QKBGirztBVprYULm8pGc4a0DLMo+2oy6QvB9cKimGoZDZlVhWTAYjIfgx46pDqpqSXFe6vxaCSpfdX7nNdlkdedNBPW2nWqZEddTylKyzbnwEBzMv2d2saDKDyYS17+jE2xHkBj7Tpa7MIP4emVbdtZC4K9uSQVpHeiN0l/dq/RbjH2lHXhfhqoFCY1zG6VmB9c9qsfOsrmBORYxjw1CFVLTpozdju5tlaPx245LItCeT6nSrelO3ZNb10Y03HV+bt09ycedhtpXDZZBI4m2a523xVYp1Yw5PkYMGypF0j89TsM+l5KCoZRnS33UlZ0BlMaBTkjRaRjj0OMhfEh5YsJljZ4oPScdbwEDkHA546wmgS8hBNiwjbpv/e3CYKIb5qpObo8NeZDJe0S944tIqZOvYsPnjOwWnbZZUtXC5fx3M1pwiFeiPUKgXiQqvftqJpydYWmfnFyLehBqkqjhYsS6ICtQj108BoEjidWv32Ga6wVR7Oiqjzi/95Wlg1iw+WTktnDQ+RMzDgqSMuZhWg2GCC1ktp85YEGi8lhraLBgDsSbJtF3F7ZdhQZ2DP1HRpYT5HsyAA0LWpuY4nLVcnZ1UkUv1OfJgfvFTVv/wDvdUI8jHvWXaxhltMlE63d+yxKRSKMsNanqnjkep3BraO8Mj91ydSIJNhZWq6wWhCdgH30SJyJgY8dYT0Qd08wt+uYl6p0PVkimsyAqU7pVeR4bFxP60ivRFXrjs+i0nirVahS8m+WrvLbTNhT+G3RC5cznROwFOTYM6TCxBezi7EmbQ8KBXADQms36mpqjI8Ul2PQgGE+Kor/J6I7MeAp46wp9C2LGn121Opril0lYa0qqrhkYa0rlYzpHWhZBZToLdXjb/VSnU85QuXaxLwXLzm+NT064V6ORsWX5OAx4MztaThrK5NQxDED+EaC69iA1GpYDnYR21TJpKIqse/pDrCnrVjymoVZT4/OasABcU1q0GxpjTDU33RcnUZHrnGJaL6dYaqI6/Hc85yPR6p8DvBjn5sIq/F43iGR8ruRAVq4a91fAs7aRPR41dzbFrIsSwhBOavP4lvd11w6L63nCyt36GaC6ti8UEWLBM5HwOeOkLaGyrBzpkxYf5a+ZukKwpdy05Lr4w0LT0jrxjFhsp3cHd02wVrujUNgUalREpOkbxvFuBYpswZa/E4uj9YeQkR/tColMjVGeRFDG219/w1vL/xDF7++WiF2qbq6I0mbC8pfGf9jnNIw8AZ1gKePBYsEzkbA546QAjh0FCMpHW0+TYnXTCslWnDWiGhfhpoStLyabmVZ3mSnFCwLClbxyMNa2XlF8tDBfbMAmvqhKnpSek1n24PmDeHbVXyfP5j57DW2qMpAMxrvyzenmTXbQ9ezEauzoAQXzU6Ng6y67ZknVzDU8WQFjM8RM7DgKcOSM/VIbfIAKXCsQyBXMeT4tyAx2QS8htzVRtIKhQKRAaaf1/V1PRzNZzFVF7vMttMAKXDgo2DfeCrsX1Yqezig/YOI0mcmb1ypHBZCIF1/6TIP6/4+5JdG8vKm4W2jHBoBWyqSK7hsTqkxUUHiZyNAU8dIH1QNw31hdbL/s2LWpcEPM7O8Fwv1MsLGob4Vv3GLK/FU0UdT+mig84JeMoWLtckSxYT7AOlAtAZTEjPdWyncmc+trJ1PLY6ejkHl7ML4aNWoU10AAr1RizdnWzz7eXp6K04nOUs4fIsLWsZHmmomAEPkbMw4KkDHJ2hJWkV7ZqZWlIqPshHDY1X1S8leS2eSjI82QWlw03SruA11a1pCNQqBa5eL8LFrEKHAx6NlxKNgkoKlx1Yi0cIUTol3QnZKznDY8eQlpTdGdQ6Ao8ObA4AWLLjfJU1VZLMPB2OXDZvWDqgJaejO4tUw5NfbERhseXK2RzSInI+Bjx1gD2bXVrTsuR2qTk6u4YxqpNhwwwtSXQ1M7WkgCA60Bt+NZjFVJaPRoXOTYIBmLM8NQkcY0tmajlSuJyao0NBsREqpULeqqIm2pZMTb+cXYjrlezDVN7akoBneIdo3NYxBtGB3kjL1eHXQ1eqve1fZzIghDmzFFnyPFLN+WlU0JZ8UShfxyP9bYVWMVRMRPZhwFMHODolXRLgrUbjYPMH9iknztSS99GyYSaJlOGpbC0eZw9nScoOa9m7F1lZpYsP2r8Wz7mM0iFJtRPWVAn0VqNJyWrbttTxnEnLxZm0PKhVCtzUJhIaLyUm9osHAHy+7Vy1dUnydPRWzO44k0KhqLSOR944lBkeIqdhwFMH1GSGlqR1tPPreEr30ar+Tbm6tXicOeRTlhTwbD2dgcvZ5mDFkcCxJlPTXRHMtbOjjmfdP6kAgH4J4Qj0Ni8YeF+vpvDVqHAiJRfbz1S+7YjJJLD1dMl0dNbvOF1lM7W4UzqR8zHgqeVyivRIKymUdXRICygNeJw5U8ueIa1G1eyndS7dNRmebnHB8FIq5PWCQv00CHHgW7O8a7oDNTxJLnhs8orLNgQ80nT04R2i5WNBvmrc0yMWAPDFX+cqve2xqznIyNPBV6NCj7jQmjSZrJAyOGXX4jGaBK4VsIaHyNkY8NRyUnYnKlArfzt3hDxTy4kBT6YNiw5K5AzPdZ3VIRRn7JJuja/GC51L1uMBHB8WjK3BWjyuzPBUV7h8ObsQRy5fh0IBDGkXZfG7yTfEQ6EANp9Mx+lKMn9bT5uHs/olhFVbmE72C7MypJVdUAzpT6S62Y9EZDu+g9VyNak7KatVmanpjq4lU55cw2PHkFax0SSn6yUmk8D5DOcszGdN72almQlHs2TSkFZKThF0BmM1Z1tyRTAnTU0/nZZb5UyrdSXZnZ7xoRXWSooL88Owduasz5d/WV+IUKrf4XCWa4RZmZourcET5KN2Ss0XEZnxr6mWk2YW2bP3kzXNI/ygUipwvbB0iKym5G0lbJhJovFSyun78sNaqblFKNQb4aVUyMW4ziTV8QCOB45hfhr4alQQArhsx5YOeqNJrvtp7sRgrkmIDwK8vaA3CnnbEWvk2Vnto63+/uH+zQAAqw5crrDGUG6RHvsuXAMADGDA4xJSwX9mmS8BpdtKMLtD5EwMeGo5Z2V4vNUqxIeZsxTOGtbKtHMmiTRTq3zhslTj4qxZTOV1jwuBV8nqwI72o0KhsFhx2VYXswpgNAn4qFWICnTeFGOFQlHtsFZ6rg57z5tXmR7aPsrqOd3jQtAlNhjFBlOFTUV3ns2EwSQQH+aLOCetjUSWpAxPRpkMDwuWiVyDAU8tV9Mp6WW1dvIChPZkeIDStXjKT013Vf2OxE/rhQdvbIae8SHoGR/i8HUcqeMpW79T0x3gy2tbzRYTfx5PhRBAx8ZBaBJiff0fhUIhZ3m+2XUBRfrS4TppdWVmd1zHWg1PFndKJ3IJBjy1WJHeKGcTaprhAcrU8Tghw6MzGJFbZABgWw0PAERJGZ7yAY+LZmiV9cKItljxWD+79tAqT95E1I4hrSQn7w9WljRTq7Kp6dZmZ1kzvH00Ggf7ICu/GD8duAzAvDo0t5NwPSk7WnZaeqa8yjIXHSRyJgY8tdj5zHyYBBDg7YWIgJq/+UkztZyR4ZHS7l5Khc2zxyrbTyupZGE+VxQsO5O82nKm7RkeKXuV4IJgruwmouUL0XOK9Nhx1rx+zrBK6nckXiolJt8QDwD4Yts5mEzmrTAuXSuERqW0qIEi5yq78KCpZF861vAQuQYDnlqs7IKDzhgOKd1TK09+c3WU9KYc6qeB0sbds+X9tHIsi2Ndtcqyszmy+OC5koJiV2R4Wkb5w0upQHaBvsIw4aYTadAbBVpE+tuUHRzXMxYBWi+cTc/H5lNp8u7oPeJDnLbVB1UkDVsZTAI5ReZtQljDQ+QaDHhqMWfW7wBAXKgvNF5KFOqNuGTHsIw19tbvAGUyPNdL77vYYJKHiFxVw+MsTcvU8Ng6tT/JhdPttV4qOZgpX7gsD2dVk92RBHirMb5XyUKE25I4nOUmGi8lAr3NAaW0+GAma3iIXIIBTy3mjC0lyvJSKeXgqaZbTNizBo/E2o7pF6+ZZzH5aVSIdMKwnStJhb+5OgOuF1a/aWe+zoDUkmxWMxfNcrK2xURhsRGbS9bPqW44q6xJNzSDSqnAjrOZ+OuMeTiMBcuuVzqsZX6tlO6jVbv/HojqGgY8tZizAx7AeTO15H207PgWKi0+mFNkQGGxeTaQvO1ChPNnMTmbj0Yl11LZMqwlZXfC/DQI8nV8leyqWNtiYuvpdBTqjWgc7IMOjQNtvlbjYB+M6NgIAKA3CkQGaNGm5PVCrlO6n5Y50MnK57YSRK7AgKeWMpYUjgLODXicNVNLLqy0Y0gr0NsLvhoVgNLC5XN1pGBZUjqsVf2QoDtqk6xNTV9XstjgsPbRdgeRU0qmqAPm7E5tD0LrAymTk5mng8kkWMND5CIMeGqpy9cKoTOYoPFSVrqGiiNaR5sDi5pmeOzZOFSiUCjKrMVjDhjqSsGyJLZkJWh7MjyurE2SAp4LmQXI0xmgN5rw5zHz7ujVTUe3plOTYPRLMM/KsrX+h2qmdPHBYmQX6mHiPlpELsHpF7XUmXRzQNI83LwlhLNIGZ6z6XnQG00Or2wsDWmF21lnEBXojXMZ+fJqy9IaPM3rSMBjz0wteYaWC7NXoX4aNAryxtXrRThxNQeFeiNyigwI99ege5xjiyx+8q/uOHE1B705Hd0t5MUH83XyooOB3l7crJXIyfgXVUtJ9TuObnZZmcbBPvDTqKA3lm7Y6YhMBzI8QNnCZfMbe53L8Nix2rK7HlvZYS1pdtaQdlEOB8pBPmoGO24ULm8gWuzQUDER2YYBTy3l7CnpEoVCIa/HU5OZWpkOTEsHygY8hcjTGeSNTF2xTo0rSAFPUkZ+lbumCyFcvmWGRJqpdfTydawvGc6yZ3YWeVZpDU9xmVWWOZxF5GwMeGopV8zQksgrLjtYuCyEQIadG4dKyq62LM3QCvfX2rxas6dJ2ZrL2YW48b+b8OHG07hWZqdrSWZ+MXKLDFAoSofBXEWaqbXmSArSc3UI0HqhX0K4S++TnEeu4cnXMeAhciEGPLWQEMKlAY88U8vBDE+ezoBigwmA/UNaUYGlqy1LM7TqSv0OYG7/66M6IDrQG+m5Ory9/hT6vrkBL60+Ig9hAaXDWU1CfOCtVrm0TdKQVp7OvLfZLW0jWf9Rh5Qd0spyYH0rIrINi5ZrofQ8HXKKDFAqXFP/0brMFhOOkOoMfDUquzfjbFRmA9G6Vr8jeaBPHMb1iMXvR67g861JOHY1B9/uSsbS3cm4pU0UpvRvhvOZrlthuby4UF/4alQoKFnbyJHZWeQ50pDW9UI9UnPNxfzM8BA5HwOeWkjK7sSG+rokOyBleM5n5qNIb7T7PuRFBx34FirV8KTlFuF0muv2mXI1jZcSo7s2wagujbHrXBa+2HYOG06k4c/jqfjzeCr8StYbckf2SqlUoG2jQOy7cA1aLyVXR65jgnzUUCkVMJoEzpR8CeFO6UTOx7x3LSRlPhKcXLAsCffXINRPAyFKgyt7yGvwOPCmHO6vhUqpgEkAe5OyANS9DE9ZCoUCfRPC8OWkntjw9EDc17sptF5K5JdkW9y1P5hUuDywVYTdWTfyLKVSIWd0pGFm7pRO5HweD3g++ugjxMfHw9vbG71798aePXuqPH/BggVo3bo1fHx8EBsbi6eeegpFRUVV3qauySk012K4Kq2tUCjQKqpkTy0HCpcd2UdLolIqEFEys0uaoZVQBzM81iRE+OON0R2xc/YteHpIK9zVtTFGdW3slvt+uH8z3NapEZ4Z1tot90fOJQU40h5tHNIicj6PfhVcvnw5Zs2ahYULF6J3795YsGABhg0bhpMnTyIyMrLC+d999x2ef/55LFq0CP369cOpU6cwadIkKBQKzJ8/3wOPwDUK9ebsgLQNgyu0jgrArnNZDq24LE9JdzDtHh3kLW8toVSUTvWuL0L9NHjilpZuvc+4MD98dF83t94nOY95A9HSv0VuK0HkfB7N8MyfPx9TpkzB5MmT0a5dOyxcuBC+vr5YtGiR1fN37NiBG264Affddx/i4+MxdOhQ3HvvvdVmheqaopKAx8eFs3uktXhOOJLhqeFeP9LUdMC8A7nWy7WzmIhqu/J/S9wpncj5PBbwFBcXY9++fRg8eHBpY5RKDB48GDt37rR6m379+mHfvn1ygHPu3DmsWbMGI0aMcEub3aWg2Dyk5crpzPJaPA5keDIcXHRQIhUuA3W7fofIWcoHOCF+dWNdKqK6xGNDWhkZGTAajYiKirI4HhUVhRMnTli9zX333YeMjAzceOONEELAYDDgsccewwsvvFDp/eh0Ouh0OvnnnBzzrtJ6vR56vd4Jj6SUdL2aXje/ZD0Vjarm16pMs1BpE88iZOYUINDH9jfYjJKps8HeKofaF17mzTwu1KfGj9FZ/U72Yb87T4hP6Zcbf60XlMIEvd5k9Vz2u2ew3z2jbL/XtO/r1HSOzZs344033sDHH3+M3r1748yZM5g5cyZef/11vPzyy1ZvM2/ePLz66qsVjq9fvx6+vq6pHUlMTKzR7ZOSlQCUOHfqBNbkHndOo6wI1qiQXazA1z8nonmg7bc7n6ICoMDZfw5izeUDdt9varoCgPkNviA1CWvWnLP7GtbUtN/JMez3mrucWvo34a3QY82aNdXehv3uGex3z0hMTERBQfV7GFbFYwFPeHg4VCoVUlNTLY6npqYiOtr6wmkvv/wyHnjgATz88MMAgI4dOyI/Px+PPPIIXnzxRSiVFUfoZs+ejVmzZsk/5+TkIDY2FkOHDkVgoB2f8jbQ6/VITEzEkCFDoFY7npL+KXM/kJmBHl07YUQ3183y+TFjH7aezkRYQkeM6Blr8+1ePbwJgB633nwj2pTUAtkjLCkL35z5GwBw+8BeuCGhZhtVOqvfyT7sd+fRnkjDsnMHAQCxEcEYMaJ3peey3z2D/e4ZZfu9sLCwRtfyWMCj0WjQvXt3bNiwAaNGjQIAmEwmbNiwAdOnT7d6m4KCggpBjUpl/lYkhLB6G61WC622Yq2JWq122Yu2ptcuKtm2wd9b49I/rLaNgrD1dCbOphfYfD9Gk8C1AnNaMSrY16H2NQ4tXV+oZXSQ0x6jK59Tqhz7veaigkqzzWH+3jb1J/vdM9jvnqFWq2EwGGp0DY8Oac2aNQsTJ05Ejx490KtXLyxYsAD5+fmYPHkyAGDChAlo3Lgx5s2bBwAYOXIk5s+fj65du8pDWi+//DJGjhwpBz71QWHJ2L0rZ2kBju2pda2gGFJsGerr2CytxsE+aBTkDW+1Co3KzNgiaqjCy0wA4KKDRK7h0YBn3LhxSE9Px5w5c5CSkoIuXbpg7dq1ciFzcnKyRUbnpZdegkKhwEsvvYTLly8jIiICI0eOxP/93/956iG4RFHJKr0+LlyHByjdU+tkSi6EEFAoFNXeRlp0MMRXDS+VY5P8NF5KbHh6IJQKBZTK6u+TqL4rOy09lGvwELmEx4uWp0+fXukQ1ubNmy1+9vLywty5czF37lw3tMxzpIUHXR3wtIj0h0IBXCvQIyOvGBEB1U8zlxYdDHdwSrqE2x8QlfLVeMFHrUKh3sgMD5GLeHxrCaqo0A0LDwLmdX7iw8zr4Ni6Hk9GDRcdJCLrpL8p/m0RuQYDnlqosNg9AQ8Au/fUyqzhooNEZJ20WXDzcNdsGkzU0HFcoZYRQrhtSAswr7i87p9UmzM88sahTLsTOdU793TG2bQ8dI4N9nRTiOolBjy1jN4oYDSZp0G5cmsJibSnlq0ztTLzmeEhcoVwf22Na+OIqHIc0qplpOwO4Nrd0iXynlolM7Wqk5HHGh4iIqp7GPDUMlL9jpdSAbWD077tER/uB7VKgfxiIy5nV7+KpVzDw92ciYioDmHAU8u4a4aWRK1SysWSttTxZJbM0gpnhoeIiOoQBjy1jJTh8XbDcJZEXnE5Ja/aczPlIS1meIiIqO5gwFPLSBked9TvSKQVl6vL8BTpjcjTmfcyYQ0PERHVJQx4apkiNw9pAaUZnk0n03Dk0vVKz5OGszQqJQK0nOBHRER1BwOeWqZAGtJyY8DTv2U42scEIrtAj3Gf7cSWU+lWzytddFBj075bREREtQUDnlrG3UXLgDm4WvZIH9zQIgwFxUY89NVe/LjvUoXzMjklnYiI6igGPLWMu3ZKLy/AW43Fk3rhzi4xMJgEnl5xCB9vPmOxNk8Gp6QTEVEdxYCnlnHnthLlabyUePeeLnhkQHMAwP/WnsQrv/wjr/ycyY1DiYiojmLAU8sUuHHjUGuUSgVeGNEWL9/eDgCwZOcFPPH9fhTpjXIND5e/JyKiuoZTbWoZT9TwWPPQjc0QGaDF0z8cwpojKcjI3YMAb/PLJYwbhxIRUR3DgKeWKfLgkFZ5IzvHIMxfg0e/3oc957Pk41x0kIiI6hoOadUyhR4e0iqvX0I4fnisLyIDSoMc1vAQEVFdw4CnlvFk0XJl2jYKxKrH+6FVlD+81Uq0jQ70dJOIiIjswiGtWqa2ZXgkTUJ88cfMAcgvNiDQW+3p5hAREdmFGZ5aprYULVujUioY7BARUZ3EgKeW8cRu6URERPUdA55aRt4tvRZmeIiIiOoqBjy1TKGHtpYgIiKqzxjw1DJShsedu6UTERHVdwx4apnaXLRMRERUVzHgqWWk3dJ9OaRFRETkNHYHPPHx8XjttdeQnJzsivY0eLVx4UEiIqK6zu6A58knn8SqVavQvHlzDBkyBMuWLYNOp3NF2xqcYoMJBpMAwBoeIiIiZ3Io4Dl48CD27NmDtm3b4oknnkCjRo0wffp07N+/3xVtbDCk7A7AGh4iIiJncriGp1u3bnj//fdx5coVzJ07F1988QV69uyJLl26YNGiRRBCOLOdDYK0U7pKqYBapfBwa4iIiOoPh/fS0uv1+Omnn7B48WIkJiaiT58+eOihh3Dp0iW88MIL+PPPP/Hdd985s631nrQGj69aBYWCAQ8REZGz2B3w7N+/H4sXL8b3338PpVKJCRMm4N1330WbNm3kc0aPHo2ePXs6taENQQG3lSAiInIJuwOenj17YsiQIfjkk08watQoqNUVN5Ns1qwZxo8f75QGNiRcg4eIiMg17A54zp07h7i4uCrP8fPzw+LFix1uVENVxICHiIjIJewuWk5LS8Pu3bsrHN+9ezf+/vtvpzSqoeI+WkRERK5hd8Azbdo0XLx4scLxy5cvY9q0aU5pVEPFIS0iIiLXsDvgOXbsGLp161bheNeuXXHs2DGnNKqhYoaHiIjINewOeLRaLVJTUyscv3r1Kry8HJ7lTmCGh4iIyFXsDniGDh2K2bNn4/r16/Kx7OxsvPDCCxgyZIhTG9fQSAEPt5UgIiJyLrtTMm+//TYGDBiAuLg4dO3aFQBw8OBBREVF4ZtvvnF6AxuSQu6UTkRE5BJ2BzyNGzfG4cOHsXTpUhw6dAg+Pj6YPHky7r33Xqtr8pDtuFM6ERGRazhUdOPn54dHHnnE2W1p8KQMD4e0iIiInMvhKuNjx44hOTkZxcXFFsfvuOOOGjeqoWLRMhERkWs4tNLy6NGjceTIESgUCnlXdGmzS6PR6NwWNiBSwMMaHiIiIueye5bWzJkz0axZM6SlpcHX1xf//PMPtm7dih49emDz5s0uaGLDUVTMDA8REZEr2J3h2blzJzZu3Ijw8HAolUoolUrceOONmDdvHmbMmIEDBw64op0NAndLJyIicg27MzxGoxEBAQEAgPDwcFy5cgUAEBcXh5MnTzq3dQ0Ma3iIiIhcw+4MT4cOHXDo0CE0a9YMvXv3xv/+9z9oNBp89tlnaN68uSva2GBwt3QiIiLXsDvgeemll5Cfnw8AeO2113D77bejf//+CAsLw/Lly53ewIaE6/AQERG5ht0Bz7Bhw+T/b9GiBU6cOIGsrCyEhITIM7XIMQUsWiYiInIJu2p49Ho9vLy8cPToUYvjoaGhDHacoIi7pRMREbmEXQGPWq1G06ZNudaOi7BomYiIyDXsnqX14osv4oUXXkBWVpYr2tNg6Y0mGEzmRRyZ4SEiInIuu2t4PvzwQ5w5cwYxMTGIi4uDn5+fxe/379/vtMY1JFJ2B2CGh4iIyNnsDnhGjRrlgmaQtHGoSqmAWsV6KCIiImeyO+CZO3euK9rR4BWWmaHFAnAiIiLnsruGh1yDa/AQERG5jt0ZHqVSWWUGgjO4HMMZWkRERK5jd8Dz008/Wfys1+tx4MABLFmyBK+++qrTGtbQFHLRQSIiIpexO+C58847KxwbO3Ys2rdvj+XLl+Ohhx5ySsMamkLulE5EROQyTqvh6dOnDzZs2ODQbT/66CPEx8fD29sbvXv3xp49eyo9d9CgQVAoFBX+3XbbbY42vVYoHdJiWRUREZGzOeXTtbCwEO+//z4aN25s922XL1+OWbNmYe7cudi/fz86d+6MYcOGIS0tzer5q1atwtWrV+V/R48ehUqlwt13313Th+FRUsDjq7E76UZERETVsPvTtfwmoUII5ObmwtfXF99++63dDZg/fz6mTJmCyZMnAwAWLlyI33//HYsWLcLzzz9f4fzQ0FCLn5ctWwZfX986H/AUsWiZiIjIZewOeN59912LgEepVCIiIgK9e/dGSEiIXdcqLi7Gvn37MHv2bIvrDR48GDt37rTpGl9++SXGjx9fYcXnukbaKd2bAQ8REZHT2R3wTJo0yWl3npGRAaPRiKioKIvjUVFROHHiRLW337NnD44ePYovv/yy0nN0Oh10Op38c05ODgDz7DK9Xu9gy62TrufIdfOLigEAWi/Hbt+Q1aTfyXHsd89gv3sG+90zyvZ7Tfve7oBn8eLF8Pf3rzCEtGLFChQUFGDixIk1apA9vvzyS3Ts2BG9evWq9Jx58+ZZnS6/fv16+Pr6uqRdiYmJdt/mnwtKAEqkXEzGmjXnnd6mhsCRfqeaY797BvvdM9jvnpGYmIiCgoIaXcPugGfevHn49NNPKxyPjIzEI488YlfAEx4eDpVKhdTUVIvjqampiI6OrvK2+fn5WLZsGV577bUqz5s9ezZmzZol/5yTk4PY2FgMHToUgYGBNrfVFnq9HomJiRgyZAjUarVdt93723HgykW0a90CI25p4dR21Xc16XdyHPvdM9jvnsF+94yy/V5YWFija9kd8CQnJ6NZs2YVjsfFxSE5Odmua2k0GnTv3h0bNmyQNyU1mUzYsGEDpk+fXuVtV6xYAZ1Oh3/9619VnqfVaqHVaiscV6vVLnvROnLtIoMAAPh5a/jH5CBXPqdUOfa7Z7DfPYP97hlqtRoGg6FG17B7WnpkZCQOHz5c4fihQ4cQFhZmdwNmzZqFzz//HEuWLMHx48cxdepU5Ofny7O2JkyYYFHULPnyyy8xatQoh+6zNuI6PERERK5jd4bn3nvvxYwZMxAQEIABAwYAALZs2YKZM2di/Pjxdjdg3LhxSE9Px5w5c5CSkoIuXbpg7dq1ciFzcnIylErLIODkyZP466+/sH79ervvr7YqKubmoURERK5id8Dz+uuv4/z587jlllvg5WW+uclkwoQJE/DGG2841Ijp06dXOoS1efPmCsdat24NIYRD91Vble6WzoUHiYiInM3uT1eNRoPly5fjP//5Dw4ePAgfHx907NgRcXFxrmhfg8Hd0omIiFzH4XRCy5Yt0bJlS2e2pUHjbulERESuY3eF7JgxY/Df//63wvH//e9/dX57B08qHdJi0TIREZGz2f3punXrVowYMaLC8VtvvRVbt251SqMaotIMD2t4iIiInM3ugCcvLw8ajabCcbVaLW/bQPYrzfBwSIuIiMjZ7A54OnbsiOXLl1c4vmzZMrRr184pjWqIWMNDRETkOnaPn7z88su46667cPbsWdx8880AgA0bNuC7777DypUrnd7AhkBvNMFgMk+zZ8BDRETkfHYHPCNHjsTq1avxxhtvYOXKlfDx8UHnzp2xceNGhIaGuqKN9Z40nAUA3ixaJiIicjqHKmRvu+023HbbbQDMm3F+//33+Pe//419+/bBaDRWc2sqT1plWaVUQKNiwENERORsDn+6bt26FRMnTkRMTAzeeecd3Hzzzdi1a5cz29ZglF10UKFQeLg1RERE9Y9dGZ6UlBR89dVX+PLLL5GTk4N77rkHOp0Oq1evZsFyDRSUZHi8Wb9DRETkEjZneEaOHInWrVvj8OHDWLBgAa5cuYIPPvjAlW1rMLjoIBERkWvZnOH5448/MGPGDEydOpVbSjiZVMPjy0UHiYiIXMLmlMJff/2F3NxcdO/eHb1798aHH36IjIwMV7atwZAyPN5cdJCIiMglbA54+vTpg88//xxXr17Fo48+imXLliEmJgYmkwmJiYnIzc11ZTvrtQJ50UEOaREREbmC3Z+wfn5+ePDBB/HXX3/hyJEjePrpp/Hmm28iMjISd9xxhyvaWO+VnaVFREREzlejlELr1q3xv//9D5cuXcL333/vrDY1OEXcR4uIiMilnDKGolKpMGrUKPzyyy/OuFyDw53SiYiIXItFI7UAp6UTERG5Fj9hawHulE5ERORaDHhqARYtExERuRYDnlpAzvBoWMNDRETkCgx4aoHSDA+fDiIiIlfgJ2wtUJrh4ZAWERGRKzDgqQXkrSVYw0NEROQSDHhqARYtExERuRYDnlpAGtLyZdEyERGRSzDgqQW48CAREZFr8RO2FpAyPKzhISIicg0GPLUAa3iIiIhciwFPLSDtls4aHiIiItdgwONheqMJeqMAwAwPERGRqzDg8TBpOAsAvFm0TERE5BL8hPWwopKCZaUC0Kj4dBAREbkCP2E9rGzBskKh8HBriIiI6icGPB5WugYPC5aJiIhchQGPhxUUc9FBIiIiV2NawUkuZhXgh70XcOGyAiPsuJ1Uw8MZWkRERK7DgMdJ0nKL8MGmcwjT2pep4aKDRERErsdxFCcJ9dMCAPIM9t2utIaHAQ8REZGrMOBxklA/DQBAZ1RAV2ZtneoUckiLiIjI5RjwOEmgtxfUKvO08qwCvc23Y4aHiIjI9RjwOIlCoUCorznLk5VfbPPtuFM6ERGR6zHgcaIQPwcCHhYtExERuRwDHicK9VMDADIdCHh8OaRFRETkMgx4nKgmQ1rM8BAREbkOAx4nCpWHtOwoWpZqeJjhISIichkGPE4UJgU8BazhISIiqk0Y8DhRqANFy0Ws4SEiInI5BjxOVJOiZU5LJyIich0GPE7kSIangEXLRERELseAx4nCalC0zJWWiYiIXIcBjxNJGZ48nQE6g237aRWxaJmIiMjlGPA4UaC3F5QKAcD2YS3upUVEROR6DHicSKFQwN/L/P+ZebYFPKzhISIicj0GPE5WMlHL5gxPETM8RERELseAx8kC1LYPaemNJuiN5vOZ4SEiInIdBjxOJg9p2RDwSNkdgBkeIiIiV2LA42T+JUNamXm6as+VCpaVCkCj4lNBRETkKvyUdTJ/O4a0yu6UrlAoXNouIiKihowBj5P52TGkxSnpRERE7uHxgOejjz5CfHw8vL290bt3b+zZs6fK87OzszFt2jQ0atQIWq0WrVq1wpo1a9zU2uoF2DFLi6ssExERuYeXJ+98+fLlmDVrFhYuXIjevXtjwYIFGDZsGE6ePInIyMgK5xcXF2PIkCGIjIzEypUr0bhxY1y4cAHBwcHub3wl7BrS4irLREREbuHRgGf+/PmYMmUKJk+eDABYuHAhfv/9dyxatAjPP/98hfMXLVqErKws7NixA2q1OZUSHx/vziZXSypazrClaJmLDhIREbmFxwKe4uJi7Nu3D7Nnz5aPKZVKDB48GDt37rR6m19++QV9+/bFtGnT8PPPPyMiIgL33XcfnnvuOahU1oMGnU4Hna40+MjJyQEA6PV66PW2b/JpC71eL09Lzy0yIL9QB41X5aOGeYXmLJDWS+n0tjQkUt+xD92L/e4Z7HfPYL97Rtl+r2nfeyzgycjIgNFoRFRUlMXxqKgonDhxwuptzp07h40bN+L+++/HmjVrcObMGTz++OPQ6/WYO3eu1dvMmzcPr776aoXj69evh6+vb80fSDk+XoASAiYo8ONvaxGkqfzc3WkKACrkZmfWqjqkuioxMdHTTWiQ2O+ewX73DPa7ZyQmJqKgoKBG1/DokJa9TCYTIiMj8dlnn0GlUqF79+64fPky3nrrrUoDntmzZ2PWrFnyzzk5OYiNjcXQoUMRGBjo1Pbp9XokJiYixE+LzPxidOndH20bBVR6/rXdycDZE4hr3AgjRnR2alsaEqnfhwwZIg91kuux3z2D/e4Z7HfPKNvvhYWFNbqWxwKe8PBwqFQqpKamWhxPTU1FdHS01ds0atQIarXaYviqbdu2SElJQXFxMTSaiukUrVYLrVZb4bharXbZizbMT4PM/GJc1xmrvI9ik/m/vlov/gE5gSufU6oc+90z2O+ewX73DLVaDYPBUKNreGxaukajQffu3bFhwwb5mMlkwoYNG9C3b1+rt7nhhhtw5swZmEwm+dipU6fQqFEjq8GOp4SW7CBa3Uwt7pRORETkHh5dh2fWrFn4/PPPsWTJEhw/fhxTp05Ffn6+PGtrwoQJFkXNU6dORVZWFmbOnIlTp07h999/xxtvvIFp06Z56iFYFepnDr4y86oOeDgtnYiIyD08WsMzbtw4pKenY86cOUhJSUGXLl2wdu1auZA5OTkZSmVpTBYbG4t169bhqaeeQqdOndC4cWPMnDkTzz33nKceglVSwFNdhqeoJMPjy4UHiYiIXMrjRcvTp0/H9OnTrf5u8+bNFY717dsXu3btcnGrakbO8FQT8EgZHm8GPERERC7l8a0l6qPSIa2qFx9kDQ8REZF7MOBxgVBf24qWi1jDQ0RE5BYMeFzA1hoe7pZORETkHgx4XCDM1hoeDmkRERG5BQMeF5AyPNcL9dAbTZWeV6g3/44ZHiIiItdiwOMCwT5qKBXm/79WRZansNi8aiQzPERERK7FgMcFlEoFQnyrH9aSp6Uz4CEiInIpBjwuYkvhciEXHiQiInILBjwuEuZffYaniDU8REREbsGAx0XC/Mw7tFe2+KDBaEJxSUEza3iIiIhciwGPi1Q3pCXV7wCs4SEiInI1BjwuUt1+WlLAo1AAWi8+DURERK7ET1oXkWp4svKsBzxFxebhLF+1CgqFwm3tIiIiaogY8LiIVMNT3ZAWC5aJiIhcjwGPi0hDWhn51ouWC0oWHWT9DhERkesx4HEReUirugwPAx4iIiKXY8DjIlKGJ7tAD4OV/bSK9Fx0kIiIyF0Y8LhIiK8GUi3ytQJ9hd8XlhQtc0iLiIjI9RjwuIjKYj+tinU8Ug0Pi5aJiIhcjwGPC8mLD1qZml7EGh4iIiK3YcDjQlUtPsiiZSIiIvdhwONCYVVsLyHV8HBIi4iIyPUY8LgQMzxERES1AwMeFwrzr3zH9EIWLRMREbkNAx4XqnJIqyTDw2npRERErseAx4WqHtIq2TyUGR4iIiKXY8DjQlUXLbOGh4iIyF0Y8LiQVMNjfUiLNTxERETuwoDHhaQhrWsFxTCahMXvpAwPa3iIiIhcjwGPC4X4qgEAQpiDnrKkGh4OaREREbkeAx4X8lIpEVwS9JQf1uJu6URERO7DgMfF5Jla5fbT4pAWERGR+zDgcbFwv5LFB8vtmM7d0omIiNyHAY+LhVYyNb2INTxERERuw4DHxUL9Kw5pGYwmFBu58CAREZG7MOBxMWuLDxYZTPL/s4aHiIjI9RjwuJi1IS2pfkehALRefAqIiIhcjZ+2LiattpxRZsf0ouLS+h2FQuGRdhERETUkDHhczNqQlrRTOguWiYiI3IMBj4tZG9KSAx4WLBMREbkFAx4XCyuzn5apZD8t7pRORETkXgx4XCykJOAxCSC7UA+AO6UTERG5GwMeF1OrlAjyMe+nlVlSuFxYUrTMKelERETuwYDHDaRhrcySOp5CbhxKRETkVgx43KB84TJnaREREbkXAx43CC2f4ZE2DmXAQ0RE5BYMeNwgTN5Pq1wND4e0iIiI3IIBjxuE+ZlXW+aQFhERkWcw4HGD8kNaRSxaJiIicisGPG4gDWll5Uk1POaAh9PSiYiI3IMBjxuUn6VVwCEtIiIit2LA4wZSDU9mvlS0zL20iIiI3IkBjxtIQ1rXCvQwmQRreIiIiNyMAY8bhPiaAx6jSeB6oV6epcUaHiIiIvdgwOMGGi8lAry9AJhnahVwt3QiIiK3YsDjJvJ+Wnk6eUiLNTxERETuwYDHTcL8SxcfLGSGh4iIyK0Y8LhJ2cUHC5nhISIicisGPG4SVmYtHm4tQURE5F4MeNxEyvCk5+pQbDBvHsqAh4iIyD0Y8LiJFPBculYgH+OQFhERkXvUioDno48+Qnx8PLy9vdG7d2/s2bOn0nO/+uorKBQKi3/e3t5ubK1jwkuKli9nFwIAFApA61Urup+IiKje8/gn7vLlyzFr1izMnTsX+/fvR+fOnTFs2DCkpaVVepvAwEBcvXpV/nfhwgU3ttgxUobn8jVzwOOjVkGhUHiySURERA2GxwOe+fPnY8qUKZg8eTLatWuHhQsXwtfXF4sWLar0NgqFAtHR0fK/qKgoN7bYMVLAk88p6URERG7n5ck7Ly4uxr59+zB79mz5mFKpxODBg7Fz585Kb5eXl4e4uDiYTCZ069YNb7zxBtq3b2/1XJ1OB51OJ/+ck5MDANDr9dDr9U56JJCvWfa/ZQVqLWNLb7XS6fffUFXV7+Q67HfPYL97BvvdM8r2e0373qMBT0ZGBoxGY4UMTVRUFE6cOGH1Nq1bt8aiRYvQqVMnXL9+HW+//Tb69euHf/75B02aNKlw/rx58/Dqq69WOL5+/Xr4+vo654GUk5iYWOGYeWJWaXcbdYVYs2aNS+6/obLW7+R67HfPYL97BvvdMxITE1FQUFD9iVXwaMDjiL59+6Jv377yz/369UPbtm3x6aef4vXXX69w/uzZszFr1iz555ycHMTGxmLo0KEIDAx0atv0ej0SExMxZMgQqNXqCr+fe3Aj8nQGAEBEaBBGjOjj1PtvqKrrd3IN9rtnsN89g/3uGWX7vbCwsEbX8mjAEx4eDpVKhdTUVIvjqampiI6OtukaarUaXbt2xZkzZ6z+XqvVQqvVWr2dq160lV07zF8jBzw+Gi/+0TiZK59Tqhz73TPY757BfvcMtVoNg8FQo2t4tGhZo9Gge/fu2LBhg3zMZDJhw4YNFlmcqhiNRhw5cgSNGjVyVTOdRipcBli0TERE5E4eH9KaNWsWJk6ciB49eqBXr15YsGAB8vPzMXnyZADAhAkT0LhxY8ybNw8A8Nprr6FPnz5o0aIFsrOz8dZbb+HChQt4+OGHPfkwbBLGgIeIiMgjPB7wjBs3Dunp6ZgzZw5SUlLQpUsXrF27Vi5kTk5OhlJZmoi6du0apkyZgpSUFISEhKB79+7YsWMH2rVr56mHYLOyGR5frrJMRETkNh4PeABg+vTpmD59utXfbd682eLnd999F++++64bWuV8Yf6ltUTeDHiIiIjcxuMLDzYkHNIiIiLyDAY8bsSiZSIiIs9gwONGFgEPh7SIiIjchgGPG4WXqeFhhoeIiMh9GPC4ETM8REREnsGAx41Yw0NEROQZDHjcyFutgl9JZsebAQ8REZHbMOBxs1B/c5aHQ1pERETuw4DHze7q2gStovzRpUmwp5tCRETUYNSKlZYbkqeGtMJTQ1p5uhlEREQNCjM8REREVO8x4CEiIqJ6jwEPERER1XsMeIiIiKjeY8BDRERE9R4DHiIiIqr3GPAQERFRvceAh4iIiOo9BjxERERU7zHgISIionqPAQ8RERHVewx4iIiIqN5jwENERET1HgMeIiIiqve8PN0AdxNCAABycnKcfm29Xo+CggLk5ORArVY7/fpkHfvdM9jvnsF+9wz2u2eU7ffCwkIApZ/j9mpwAU9ubi4AIDY21sMtISIiInvl5uYiKCjI7tsphKOhUh1lMplw5coVBAQEQKFQOPXaOTk5iI2NxcWLFxEYGOjUa1Pl2O+ewX73DPa7Z7DfPaNsvwcEBCA3NxcxMTFQKu2vyGlwGR6lUokmTZq49D4CAwP5B+EB7HfPYL97BvvdM9jvniH1uyOZHQmLlomIiKjeY8BDRERE9R4DHifSarWYO3cutFqtp5vSoLDfPYP97hnsd89gv3uGM/u9wRUtExERUcPDDA8RERHVewx4iIiIqN5jwENERET1HgMeIiIiqvcY8DjJRx99hPj4eHh7e6N3797Ys2ePp5tU72zduhUjR45ETEwMFAoFVq9ebfF7IQTmzJmDRo0awcfHB4MHD8bp06c909h6Yt68eejZsycCAgIQGRmJUaNG4eTJkxbnFBUVYdq0aQgLC4O/vz/GjBmD1NRUD7W4fvjkk0/QqVMnebG1vn374o8//pB/zz53jzfffBMKhQJPPvmkfIx973yvvPIKFAqFxb82bdrIv3dWnzPgcYLly5dj1qxZmDt3Lvbv34/OnTtj2LBhSEtL83TT6pX8/Hx07twZH330kdXf/+9//8P777+PhQsXYvfu3fDz88OwYcNQVFTk5pbWH1u2bMG0adOwa9cuJCYmQq/XY+jQocjPz5fPeeqpp/Drr79ixYoV2LJlC65cuYK77rrLg62u+5o0aYI333wT+/btw99//42bb74Zd955J/755x8A7HN32Lt3Lz799FN06tTJ4jj73jXat2+Pq1evyv/++usv+XdO63NBNdarVy8xbdo0+Wej0ShiYmLEvHnzPNiq+g2A+Omnn+SfTSaTiI6OFm+99ZZ8LDs7W2i1WvH99997oIX1U1pamgAgtmzZIoQw97FarRYrVqyQzzl+/LgAIHbu3OmpZtZLISEh4osvvmCfu0Fubq5o2bKlSExMFAMHDhQzZ84UQvD17ipz584VnTt3tvo7Z/Y5Mzw1VFxcjH379mHw4MHyMaVSicGDB2Pnzp0ebFnDkpSUhJSUFIvnISgoCL179+bz4ETXr18HAISGhgIA9u3bB71eb9Hvbdq0QdOmTdnvTmI0GrFs2TLk5+ejb9++7HM3mDZtGm677TaLPgb4enel06dPIyYmBs2bN8f999+P5ORkAM7t8wa3eaizZWRkwGg0IioqyuJ4VFQUTpw44aFWNTwpKSkAYPV5kH5HNWMymfDkk0/ihhtuQIcOHQCY+12j0SA4ONjiXPZ7zR05cgR9+/ZFUVER/P398dNPP6Fdu3Y4ePAg+9yFli1bhv3792Pv3r0VfsfXu2v07t0bX331FVq3bo2rV6/i1VdfRf/+/XH06FGn9jkDHiKyybRp03D06FGLsXVyndatW+PgwYO4fv06Vq5ciYkTJ2LLli2ebla9dvHiRcycOROJiYnw9vb2dHMajFtvvVX+/06dOqF3796Ii4vDDz/8AB8fH6fdD4e0aig8PBwqlapCxXhqaiqio6M91KqGR+prPg+uMX36dPz222/YtGkTmjRpIh+Pjo5GcXExsrOzLc5nv9ecRqNBixYt0L17d8ybNw+dO3fGe++9xz53oX379iEtLQ3dunWDl5cXvLy8sGXLFrz//vvw8vJCVFQU+94NgoOD0apVK5w5c8apr3cGPDWk0WjQvXt3bNiwQT5mMpmwYcMG9O3b14Mta1iaNWuG6Ohoi+chJycHu3fv5vNQA0IITJ8+HT/99BM2btyIZs2aWfy+e/fuUKvVFv1+8uRJJCcns9+dzGQyQafTsc9d6JZbbsGRI0dw8OBB+V+PHj1w//33y//Pvne9vLw8nD17Fo0aNXLu670GhdVUYtmyZUKr1YqvvvpKHDt2TDzyyCMiODhYpKSkeLpp9Upubq44cOCAOHDggAAg5s+fLw4cOCAuXLgghBDizTffFMHBweLnn38Whw8fFnfeeado1qyZKCws9HDL666pU6eKoKAgsXnzZnH16lX5X0FBgXzOY489Jpo2bSo2btwo/v77b9G3b1/Rt29fD7a67nv++efFli1bRFJSkjh8+LB4/vnnhUKhEOvXrxdCsM/dqewsLSHY967w9NNPi82bN4ukpCSxfft2MXjwYBEeHi7S0tKEEM7rcwY8TvLBBx+Ipk2bCo1GI3r16iV27drl6SbVO5s2bRIAKvybOHGiEMI8Nf3ll18WUVFRQqvViltuuUWcPHnSs42u46z1NwCxePFi+ZzCwkLx+OOPi5CQEOHr6ytGjx4trl696rlG1wMPPvigiIuLExqNRkRERIhbbrlFDnaEYJ+7U/mAh33vfOPGjRONGjUSGo1GNG7cWIwbN06cOXNG/r2z+lwhhBBOyEARERER1Vqs4SEiIqJ6jwEPERER1XsMeIiIiKjeY8BDRERE9R4DHiIiIqr3GPAQERFRvceAh4iIiOo9BjxEVGt89dVXFXZFrs02b94MhUJRYZ8fIqp9GPAQkYVJkyZBoVDI/8LCwjB8+HAcPnzYruu88sor6NKli2saSURkJwY8RFTB8OHDcfXqVVy9ehUbNmyAl5cXbr/9dk83q8EoLi72dBOI6h0GPERUgVarRXR0NKKjo9GlSxc8//zzuHjxItLT0+VznnvuObRq1Qq+vr5o3rw5Xn75Zej1egDmoalXX30Vhw4dkjNFX331FQAgOzsbjz76KKKiouDt7Y0OHTrgt99+s7j/devWoW3btvD395eDr8pIw0obNmxAjx494Ovri379+uHkyZPyOZMmTcKoUaMsbvfkk09i0KBB8s+DBg3CE088gSeffBIhISGIiorC559/jvz8fEyePBkBAQFo0aIF/vjjjwpt2L59Ozp16gRvb2/06dMHR48etfj9X3/9hf79+8PHxwexsbGYMWMG8vPz5d/Hx8fj9ddfx4QJExAYGIhHHnmk0sdLRI5hwENEVcrLy8O3336LFi1aICwsTD4eEBCAr776CseOHcN7772Hzz//HO+++y4AYNy4cXj66afRvn17OVM0btw4mEwm3Hrrrdi+fTu+/fZbHDt2DG+++SZUKpV83YKCArz99tv45ptvsHXrViQnJ+Pf//53te188cUX8c477+Dvv/+Gl5cXHnzwQbsf65IlSxAeHo49e/bgiSeewNSpU3H33XejX79+2L9/P4YOHYoHHngABQUFFrd75pln8M4772Dv3r2IiIjAyJEj5eDv7NmzGD58OMaMGYPDhw9j+fLl+OuvvzB9+nSLa7z99tvo3LkzDhw4gJdfftnuthNRNZy33ykR1QcTJ04UKpVK+Pn5CT8/PwFANGrUSOzbt6/K27311luie/fu8s9z584VnTt3tjhn3bp1QqlUVrqL/eLFiwUAi52SP/roIxEVFVXp/W7atEkAEH/++ad87PfffxcARGFhofyY7rzzTovbzZw5UwwcOFD+eeDAgeLGG2+UfzYYDMLPz0888MAD8rGrV68KAGLnzp0W971s2TL5nMzMTOHj4yOWL18uhBDioYceEo888ojFfW/btk0olUq5fXFxcWLUqFGVPkYiqjkvTwZbRFQ73XTTTfjkk08AANeuXcPHH3+MW2+9FXv27EFcXBwAYPny5Xj//fdx9uxZ5OXlwWAwIDAwsMrrHjx4EE2aNEGrVq0qPcfX1xcJCQnyz40aNUJaWlq1be7UqZPFbQAgLS0NTZs2rfa21q6hUqkQFhaGjh07yseioqLk65bVt29f+f9DQ0PRunVrHD9+HABw6NAhHD58GEuXLpXPEULAZDIhKSkJbdu2BQD06NHD5nYSkf04pEVEFfj5+aFFixZo0aIFevbsiS+++AL5+fn4/PPPAQA7d+7E/fffjxEjRuC3337DgQMH8OKLL1ZbbOvj41PtfavVaoufFQoFhBB23U6hUAAATCYTAECpVFa4hjTkVN19V3VdW+Tl5eHRRx/FwYMH5X+HDh3C6dOnLQI7Pz8/m69JRPZjhoeIqqVQKKBUKlFYWAgA2LFjB+Li4vDiiy/K51y4cMHiNhqNBkaj0eJYp06dcOnSJZw6darKLI+zRUREVCgkPnjwYIUAx1G7du2SM0nXrl3DqVOn5MxNt27dcOzYMbRo0cIp90VEjmGGh4gq0Ol0SElJQUpKCo4fP44nnngCeXl5GDlyJACgZcuWSE5OxrJly3D27Fm8//77+OmnnyyuER8fj6SkJBw8eBAZGRnQ6XQYOHAgBgwYgDFjxiAxMRFJSUn4448/sHbtWpc+nptvvhl///03vv76a5w+fRpz586tEADVxGuvvYYNGzbg6NGjmDRpEsLDw+VZYc899xx27NiB6dOn4+DBgzh9+jR+/vnnCkXLRORaDHiIqIK1a9eiUaNGaNSoEXr37o29e/dixYoV8jTuO+64A0899RSmT5+OLl26YMeOHRVmFo0ZMwbDhw/HTTfdhIiICHz//fcAgB9//BE9e/bEvffei3bt2uHZZ5+tkAlytmHDhuHll1/Gs88+i549eyI3NxcTJkxw2vXffPNNzJw5E927d0dKSgp+/fVXaDQaAOas1pYtW3Dq1Cn0798fXbt2xZw5cxATE+O0+yei6imELYPjRERERHUYMzxERERU7zHgISIionqPAQ8RERHVewx4iIiIqN5jwENERET1HgMeIiIiqvcY8BAREVG9x4CHiIiI6j0GPERERFTvMeAhIiKieo8BDxEREdV7DHiIiIio3vt/3KeHDF2S1OMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -354,7 +414,7 @@ "# To measure accuracy after every batch initialize the SGDClassifier with warm_start=True\n", "# which keeps the weights obtained with previous batches\n", "\n", - "sgd_clf_binary_simulate = SGDClassifier(\n", + "model_concrete_partial = SGDClassifier(\n", " random_state=RANDOM_STATE,\n", " max_iter=N_ITERATIONS,\n", " fit_encrypted=True,\n", @@ -362,34 +422,36 @@ " warm_start=True,\n", ")\n", "\n", - "batch_size = sgd_clf_binary_simulate.batch_size\n", + "batch_size = model_concrete_partial.batch_size\n", "\n", - "classes = np.unique(y2_train)\n", + "classes = np.unique(y_train)\n", "\n", "# Go through the training batches\n", - "acc_history = []\n", - "for idx in range(x2_train.shape[0] // batch_size):\n", + "accuracy_scores = []\n", + "for idx in range(x_train.shape[0] // batch_size):\n", " batch_range = range(idx * batch_size, (idx + 1) * batch_size)\n", - " x_batch = x2_train[batch_range, ::]\n", - " y_batch = y2_train[batch_range]\n", + " x_batch = x_train[batch_range, ::]\n", + " y_batch = y_train[batch_range]\n", "\n", " # Fit on a single batch with partial_fit\n", " # Provide the list of all expected classes for the first iteration, as done in scikit-learn\n", " if idx == 0:\n", - " sgd_clf_binary_simulate.partial_fit(x_batch, y_batch, classes=classes, fhe=\"simulate\")\n", + " model_concrete_partial.partial_fit(x_batch, y_batch, classes=classes, fhe=\"simulate\")\n", " else:\n", - " sgd_clf_binary_simulate.partial_fit(x_batch, y_batch, fhe=\"simulate\")\n", + " model_concrete_partial.partial_fit(x_batch, y_batch, fhe=\"simulate\")\n", + "\n", + " model_concrete_partial.compile(x_train)\n", "\n", " # Measure accuracy of the model with FHE simulation\n", - " sgd_clf_binary_simulate.compile(x2_train)\n", - " y_pred_fhe = sgd_clf_binary_simulate.predict(x2_test, fhe=\"simulate\")\n", - " accuracy = (y_pred_fhe == y2_test).mean()\n", - " acc_history.append(accuracy)\n", + " y_pred_partial_fhe = model_concrete_partial.predict(x_test, fhe=\"simulate\")\n", + "\n", + " accuracy_partial = accuracy_score(y_test, y_pred_partial_fhe).mean()\n", + " accuracy_scores.append(accuracy_partial)\n", "\n", "# Plot the evolution of accuracy throughout the training process\n", "fig = plt.figure()\n", - "plt.plot(acc_history)\n", - "plt.title(f\"Accuracy evolution on breast-cancer. Final accuracy {acc_history[-1]*100:.2f}%\")\n", + "plt.plot(accuracy_scores)\n", + "plt.title(f\"Accuracy evolution on breast-cancer. Final accuracy {accuracy_scores[-1]*100:.2f}%\")\n", "plt.xlabel(\"Batch number\")\n", "plt.ylabel(\"Accuracy\")\n", "plt.grid(True)\n", @@ -460,50 +522,58 @@ "metadata": {}, "outputs": [], "source": [ - "from concrete.ml.deployment import FHEModelDev\n", + "# Define the directory where to save the deployment files\n", + "DEPLOYMENT_PATH = Path(\"fhe_training\")\n", + "DEPLOYMENT_PATH.mkdir(exist_ok=True)\n", "\n", + "deployment_dir = TemporaryDirectory(dir=str(DEPLOYMENT_PATH)) # pylint: disable=consider-using-with\n", + "deployment_path = Path(deployment_dir.name)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ "# Save the training FHE circuit for production\n", - "fhe_dev = FHEModelDev(\"fhe_training_sgd\", sgd_clf_binary_fhe)\n", + "fhe_dev = FHEModelDev(deployment_path, sgd_clf_binary_fhe)\n", "fhe_dev.save(mode=\"training\")" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ - "from concrete.ml.deployment import FHEModelClient\n", - "\n", "# On the client side, load the circuit.zip with the information to create\n", "# - the key\n", "# - the pre and post processing functions\n", "\n", - "fhe_client = FHEModelClient(\"fhe_training_sgd\")\n", + "fhe_client = FHEModelClient(deployment_path)\n", "fhe_client.load()\n", - "serialized_evaluation_key = fhe_client.get_serialized_evaluation_keys()" + "serialized_evaluation_keys = fhe_client.get_serialized_evaluation_keys()" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ - "from concrete.ml.deployment import FHEModelServer\n", - "\n", "# On the server side, we load the server.zip which contain the training model\n", - "fhe_server = FHEModelServer(\"fhe_training_sgd\")\n", + "fhe_server = FHEModelServer(deployment_path)\n", "fhe_server.load()" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ - "# Define utils function to evaluate the model, print it's accuracy\n", + "# Define utils function to evaluate the model\n", "\n", "\n", "def model_inference(weights, bias, X):\n", @@ -529,12 +599,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADG0UlEQVR4nOzdd3gU1dvG8e9seiGhlwSkR5AiCAbpRXpXAWk/ihUFC01FAQUUfVUUCwh2JQgoIlKUIhAQUKM06aFDEjokAULa7rx/LImEdNhkCdyf68oFmXPmzLM7s5t99pw5xzBN00REREREREQcwuLsAERERERERG4lSrJEREREREQcSEmWiIiIiIiIAynJEhERERERcSAlWSIiIiIiIg6kJEtERERERMSBlGSJiIiIiIg4kJIsERERERERB1KSJSIiIiIi4kBKskQkTx0+fBjDMPj6669ztV+LFi1o0aJFnsR0q6tQoQKDBg1ydhipQkNDMQyD+fPnO7Tdv//+m0aNGuHj44NhGGzdutWh7d+MbuTcOvs1dfHiRUqWLMns2bOdFoM4x65du3B1dWXHjh3ODkUk3yjJErnFff311xiGkfrj6elJQEAA7dq148MPP+TChQvODvGmkpIQXP1TtGhR7rvvPn04vIkkJSXRs2dPzp07x/vvv8+sWbMoX768s8Ni48aNvPbaa0RHRzs7lJvOBx98QKFChejdu3eG5S+88AKGYfDwww/nc2S3po0bN9KkSRO8vb0pXbo0zz77LBcvXszRvte+B6b8vPXWWxnWnzdvHg0bNsTHx4fChQvTqFEjVq9enVp+11130alTJ8aPH++QxyZSELg6OwARyR8TJ06kYsWKJCUlceLECUJDQ3n++ed57733WLRoEbVr186T45YvX57Lly/j5uaWq/1WrFiRJ/Hk1LPPPsu9994LwNmzZ5k3bx79+/cnOjqaoUOHOjU2gQMHDnDkyBE+++wzHnvsMWeHk2rjxo1MmDCBQYMGUbhwYYe3v3fvXiyW6/t+1JmvqaSkJD744AOGDx+Oi4tLunLTNJkzZw4VKlRg8eLFXLhwgUKFCjkh0lvD1q1buf/++6levTrvvfceERERvPvuu+zbt49ff/01R220adOGAQMGpNlWt27ddPVee+01Jk6cSI8ePRg0aBBJSUns2LGDyMjINPWGDBlCx44dOXDgAJUrV77+BydSQCjJErlNdOjQgfr166f+PmbMGFavXk3nzp3p2rUru3fvxsvLy+HHTek9yy13d3eHx5IbTZs2pUePHqm/P/XUU1SqVInvvvvutkqy4uPjcXd3v+4P9nnl1KlTAA5NZC5duoSPj4/D2suOzWYjMTExV68PDw+P6z6eM19TS5Ys4fTp0/Tq1SvD8tDQUCIiIli9ejXt2rVjwYIFDBw4MJ+jzJm4uDi8vb2dHUaWXn75ZYoUKUJoaCh+fn6Afajp448/zooVK2jbtm22bQQFBdG/f/8s6/z5559MnDiRKVOmMHz48Czrtm7dmiJFivDNN98wceLEnD8YkQLq5vqrKSL5qlWrVowbN44jR44QEhKSpmzPnj306NGDokWL4unpSf369Vm0aFG6NqKjoxk+fDgVKlTAw8ODsmXLMmDAAM6cOQNkfE/WiRMnGDx4MGXLlsXDw4MyZcrQrVs3Dh8+nFono/tHTp06xaOPPkqpUqXw9PTk7rvv5ptvvklTJ+V47777Lp9++imVK1fGw8ODe++9l7///vu6nyt3d3eKFCmCq2va76aSk5OZNGlS6nEqVKjAyy+/TEJCQpp6hmHw2muvpWv32ntsUoZ3btiwgREjRlCiRAl8fHx44IEHOH36dJp9TdPk9ddfp2zZsnh7e9OyZUt27tyZ7hjnzp1j1KhR1KpVC19fX/z8/OjQoQPbtm1LUy9lqOTcuXMZO3YsgYGBeHt7s3XrVgzD4P3330/X9saNGzEMgzlz5mT3FGK1Wnn55ZcpXbo0Pj4+dO3alWPHjqWr99dff9G+fXv8/f3x9vamefPmbNiwIbV80KBBNG/eHICePXtiGEaaa2X16tU0bdo0dehSt27d2L17d5pjvPbaaxiGwa5du+jbty9FihShSZMmqeUhISHUq1cPLy8vihYtSu/evTOM9do2R48eDUDFihVTh1ilXNeGYTBs2DBmz55NjRo18PDwYNmyZQC8++67NGrUiGLFiuHl5UW9evUyvIftRq6Xa19TKef7+++/54033qBs2bJ4enpy//33s3///nTHnjZtGpUqVcLLy4vg4GB+//33HN/ntXDhQipUqJBpD8bs2bO56667aNmyJa1bt850aG5kZCSPPvooAQEBeHh4ULFiRZ566ikSExNT62T3npTynF39fnP18xEaGprmOatZsyabNm2iWbNmeHt78/LLLwPw888/06lTp9RYKleuzKRJk7Bareni/uuvv+jYsSNFihTBx8eH2rVr88EHHwDw1VdfYRgGW7ZsSbff5MmTcXFxITIykjNnzrBnzx7i4uIyf6KB2NhYVq5cSf/+/VMTLIABAwbg6+vL999/n+X+V7t8+TLx8fGZlk+dOpXSpUvz3HPPYZpmlsMR3dzcaNGiBT///HOOjy9SkKknS+Q297///Y+XX36ZFStW8PjjjwOwc+dOGjduTGBgIC+99BI+Pj58//33dO/enR9//JEHHngAsN/I3rRpU3bv3s0jjzzCPffcw5kzZ1i0aBEREREUL148w2M+9NBD7Ny5k2eeeYYKFSpw6tQpVq5cydGjR6lQoUKG+1y+fJkWLVqwf/9+hg0bRsWKFfnhhx8YNGgQ0dHRPPfcc2nqf/fdd1y4cIEnn3wSwzB4++23efDBBzl48GCOhi5euHAh9UPZuXPn+O6779ixYwdffPFFmnqPPfYY33zzDT169GDkyJH89ddfvPnmm+zevZuffvop2+Nk5plnnqFIkSK8+uqrHD58mKlTpzJs2DDmzZuXWmf8+PG8/vrrdOzYkY4dO7J582batm2b5gMnwMGDB1m4cCE9e/akYsWKnDx5kpkzZ9K8eXN27dpFQEBAmvqTJk3C3d2dUaNGkZCQQLVq1WjcuDGzZ89O92317NmzKVSoEN26dcv2Mb3xxhsYhsGLL77IqVOnmDp1Kq1bt2br1q2pvairV6+mQ4cO1KtXj1dffRWLxcJXX31Fq1at+P333wkODubJJ58kMDCQyZMnpw7rLFWqFAC//fYbHTp0oFKlSrz22mtcvnyZjz76iMaNG7N58+Z011fPnj2pWrUqkydPxjTN1DjHjRtHr169eOyxxzh9+jQfffQRzZo1Y8uWLZn2nj344IOEh4czZ84c3n///dTrv0SJEql1Vq9ezffff8+wYcMoXrx4ajwffPABXbt2pV+/fiQmJjJ37lx69uzJkiVL6NSpU7bPbU6ul8y89dZbWCwWRo0aRUxMDG+//Tb9+vXjr7/+Sq3zySefMGzYMJo2bcrw4cM5fPgw3bt3p0iRIpQtWzbbY2zcuJF77rknw7KEhAR+/PFHRo4cCUCfPn0YPHgwJ06coHTp0qn1oqKiCA4OJjo6mieeeIJq1aoRGRnJ/PnziYuLw93d/brfk7Jy9uxZOnToQO/evenfv3/qtfb111/j6+vLiBEj8PX1ZfXq1YwfP57Y2Fjeeeed1P1XrlxJ586dKVOmDM899xylS5dm9+7dLFmyhOeee44ePXowdOhQZs+enW443uzZs2nRogWBgYG89tprTJgwgTVr1mSZ2G7fvp3k5OQ0IxfA/kVRnTp1MkzmMvL1118zffp0TNOkevXqjB07lr59+6aps2rVKho1asSHH37I66+/ztmzZyldujSvvPIKw4YNS9dmvXr1+Pnnn4mNjU2TAIrckkwRuaV99dVXJmD+/fffmdbx9/c369atm/r7/fffb9aqVcuMj49P3Waz2cxGjRqZVatWTd02fvx4EzAXLFiQrk2bzWaapmkeOnTIBMyvvvrKNE3TPH/+vAmY77zzTpZxN2/e3GzevHnq71OnTjUBMyQkJHVbYmKi2bBhQ9PX19eMjY1Nc7xixYqZ586dS637888/m4C5ePHiLI+7Zs0aE0j3Y7FYzDfeeCNN3a1bt5qA+dhjj6XZPmrUKBMwV69enboNMF999dV0xytfvrw5cODA1N9Tzlfr1q1Tn0PTNM3hw4ebLi4uZnR0tGmapnnq1CnT3d3d7NSpU5p6L7/8sgmkaTM+Pt60Wq1pjnvo0CHTw8PDnDhxYrrHXqlSJTMuLi5N/ZkzZ5qAuXv37tRtiYmJZvHixdMcKyMp7QYGBqaeJ9M0ze+//94EzA8++MA0Tfs1U7VqVbNdu3ZpHlNcXJxZsWJFs02bNuna/OGHH9Icq06dOmbJkiXNs2fPpm7btm2babFYzAEDBqRue/XVV03A7NOnT5r9Dx8+bLq4uKQ719u3bzddXV3Tbb/WO++8YwLmoUOH0pWlXEc7d+5MV3bt852YmGjWrFnTbNWqVZrt13u9mGb611TKc1i9enUzISEhdfsHH3xgAub27dtN0zTNhIQEs1ixYua9995rJiUlpdb7+uuvTSBNmxlJSkoyDcMwR44cmWH5/PnzTcDct2+faZqmGRsba3p6eprvv/9+mnoDBgwwLRZLhu9lKY89J+9JKc/Zteco5flYs2ZN6rbmzZubgDljxox07V17zkzTNJ988knT29s79b0zOTnZrFixolm+fHnz/PnzGcZjmqbZp08fMyAgIM3rdPPmzWneO1Ou2avjy8gPP/xgAua6devSlfXs2dMsXbp0lvubpmk2atTInDp1qvnzzz+bn3zyiVmzZk0TMKdPn55a59y5c6nvtb6+vuY777xjzps3z2zfvn2mz9l3331nAuZff/2VbQwiBZ2GC4oIvr6+qbMMnjt3jtWrV9OrV6/U3pwzZ85w9uxZ2rVrx759+1JvaP7xxx+5++67U3u2rmYYRobH8vLywt3dndDQUM6fP5/jGH/55RdKly5Nnz59Ure5ubmlzpi1du3aNPUffvhhihQpkvp706ZNAXuvTk6MHz+elStXsnLlSubNm0efPn145ZVXUof4pMQEMGLEiDT7pnwjv3Tp0hw/vms98cQTaZ7Dpk2bYrVaOXLkCGDvsUlMTOSZZ55JU+/5559P15aHh0fqPVVWq5WzZ8/i6+vLnXfeyebNm9PVHzhwYLr783r16oWnp2eaYVzLly/nzJkz2d63kWLAgAFpJjPo0aMHZcqUSX0et27dyr59++jbty9nz55NvfYuXbrE/fffz7p167DZbJm2f/z4cbZu3cqgQYMoWrRo6vbatWvTpk2b1ONcbciQIWl+X7BgATabjV69eqUe/8yZM5QuXZqqVauyZs2aHD3WzDRv3py77ror3farn+/z588TExND06ZNMzw/GcnuesnK4MGD09yvde1r5Z9//uHs2bM8/vjjaYbL9uvXL81rLDPnzp3DNM1M686ePZv69etTpUoVAAoVKkSnTp3SXGs2m42FCxfSpUuXdD008N/7zfW8J2XHw8ODwYMHp9t+9TlLea9s2rQpcXFx7NmzB4AtW7Zw6NAhnn/++XQ9oFfHM2DAAKKiotJcX7Nnz8bLy4uHHnoIsA9HNU0z2+GZly9fTo37Wp6enqnlWdmwYQPPPfccXbt2ZciQIWzatImaNWvy8ssvp+6fMjTw7NmzfP7554waNYpevXqxdOlS7rrrLl5//fV07aZcAymjBERuZUqyRISLFy+mfvjdv38/pmkybtw4SpQokebn1VdfBf6bdODAgQPUrFkzV8fy8PDg//7v//j1118pVaoUzZo14+233+bEiRNZ7nfkyBGqVq2abgKG6tWrp5Zf7Y477kjze8of95wmdrVq1aJ169a0bt2aXr16ERISQufOnXnppZdS73U5cuQIFosl9cNhitKlS1O4cOEcfcDNTHbxp7RdtWrVNPVKlCiR7sOszWbj/fffp2rVqnh4eFC8eHFKlCjBv//+S0xMTLpjV6xYMd22woUL06VLF7777rvUbbNnzyYwMJBWrVrl6DFdG6thGFSpUiX13ph9+/YB9iTv2mvv888/JyEhIcN4U6Q8J3feeWe6surVq6cmbFk91n379mGaJlWrVk0Xw+7du1Ov/euV0XML9okh7rvvPjw9PSlatCglSpTgk08+yfLxXu1GrvecXmvXXueurq6ZDu/NiHllOObVoqOj+eWXX2jevDn79+9P/WncuDH//PMP4eHhAJw+fZrY2Nhs32+u5z0pO4GBgRlOGrJz504eeOAB/P398fPzo0SJEqlfOKSctwMHDgBkG1ObNm0oU6ZMamJps9mYM2cO3bp1y/UsiynJ37X3hYJ9IpvrmeDI3d2dYcOGER0dzaZNm9Icx83NLc0kQRaLhYcffpiIiAiOHj2app2Ua+B6E16RgkT3ZInc5iIiIoiJiUn9AJXSUzBq1CjatWuX4T7XftjKreeff54uXbqwcOFCli9fzrhx43jzzTdZvXp1hlMEX4+MpomGjD/o5dT999/PkiVLCAsLS3OfzI18YMjoJnlwbPyTJ09m3LhxPPLII0yaNImiRYtisVh4/vnnM+wZyuxD2IABA/jhhx/YuHEjtWrVYtGiRTz99NMOm3kwJZZ33nmHOnXqZFjH19fXIcdKce1jtdlsGIbBr7/+muE5uNHjZ/Tc/v7773Tt2pVmzZoxffp0ypQpg5ubG1999VWapDYrN3K95MVr5WpFixbFMIwME74ffviBhIQEpkyZwpQpU9KVz549mwkTJjgkjhSZvV4zey1mdM6io6Np3rw5fn5+TJw4kcqVK+Pp6cnmzZt58cUXs+xxzYiLiwt9+/bls88+Y/r06WzYsIGoqKgc9xJfrUyZMoC9Z/dax48fT3cPZk6VK1cOsPdMAqmTIhUuXDjdNVSyZEnAnqhfncSnXAPXc2+cSEGjJEvkNjdr1iyA1ISqUqVKgP3bydatW2e5b+XKldmxY8d1Hbdy5cqMHDmSkSNHsm/fPurUqcOUKVPSzXKYonz58vz777/YbLY0H+pThuXkx0K0ycnJwH/DZMqXL4/NZmPfvn2pPWoAJ0+eJDo6Ok1MRYoUSbdAbWJiYoYfhHIipe19+/alnjOwf+N/7YfZ+fPn07Jly3STdkRHR+fqw0779u0pUaIEs2fPpkGDBsTFxfG///0vx/un9FSlME2T/fv3p67RljLznJ+fX7bXXkZSnpO9e/emK9uzZw/FixfPdor2ypUrY5omFStWJCgoKNcxXE/C/eOPP+Lp6cny5cvTDPH66quvct1WXkh5Xvfv30/Lli1TtycnJ3P48OFs19hzdXWlcuXKHDp0KF3Z7NmzqVmzZmov+dVmzpzJd999x4QJEyhRogR+fn7Zvt/k5D0ppafu2tdjbnqeQ0NDOXv2LAsWLKBZs2ap2699jCnX9I4dO7K9pgcMGMCUKVNYvHgxv/76KyVKlMj0i66s1KxZE1dXV/755580U+YnJiaydevWTKfRz07K8NGUiVwsFgt16tTh77//JjExMU1vX1RUVJq6KQ4dOoTFYrmu15ZIQaPhgiK3sdWrVzNp0iQqVqxIv379APs3kC1atGDmzJkZJgBXTwv90EMPsW3btgxn0cvsW/C4uLh0UwJXrlyZQoUKZTi8JUXHjh05ceJEmtnSkpOT+eijj/D19U2d0jsvLVmyBIC77747NSawT2N8tffeew8gTW9X5cqVWbduXZp6n376aabfnmendevWuLm58dFHH6V5rq+NBezfkl97Pn744Yd0i4Vmx9XVlT59+vD999/z9ddfU6tWrVwtYv3tt9+m3vsH9uTv+PHjdOjQAbDPPFa5cmXefffdDKeCvnZK8muVKVOGOnXq8M0336T5AL1jxw5WrFiRer6y8uCDD+Li4sKECRPSPWemaXL27Nks909J4q79AJ8VFxcXDMNIcy0cPnyYhQsX5riNvFS/fn2KFSvGZ599lvpFA9gTpJwOv23YsCH//PNPmm3Hjh1j3bp19OrVix49eqT7GTx4MPv37+evv/7CYrHQvXt3Fi9enK4d+O/9JifvSSmJz9WvR6vVyqeffpqjxwL/9f5dfY0kJiYyffr0NPXuueceKlasyNSpU9NdE9deX7Vr16Z27dp8/vnn/Pjjj/Tu3TvNPXA5ncLd39+f1q1bExISkub1NmvWLC5evEjPnj1Tt6XcP3b1PVIZvc4uXLjA1KlTKV68OPXq1Uvd/vDDD2O1WtMspREfH586Jf+1vWabNm2iRo0a+Pv7Z/kYRG4F6skSuU38+uuv7Nmzh+TkZE6ePMnq1atZuXIl5cuXZ9GiRWkWRJ02bRpNmjShVq1aPP7441SqVImTJ0/yxx9/EBERkbq+0ujRo5k/fz49e/bkkUceoV69epw7d45FixYxY8aM1GTkauHh4dx///306tWLu+66C1dXV3766SdOnjxJ7969M43/iSeeYObMmQwaNIhNmzZRoUIF5s+fz4YNG5g6dWqu71vIzu+//56aDKY8prVr19K7d2+qVasG2JOtgQMH8umnn6YOHwoLC+Obb76he/fuab71f+yxxxgyZAgPPfQQbdq0Ydu2bSxfvvy6h82UKFGCUaNG8eabb9K5c2c6duzIli1b+PXXX9O12blzZyZOnMjgwYNp1KgR27dvZ/bs2Wl6wHJqwIABfPjhh6xZs4b/+7//y9W+RYsWpUmTJgwePJiTJ08ydepUqlSpkrp0gMVi4fPPP6dDhw7UqFGDwYMHExgYSGRkJGvWrMHPz4/FixdneYx33nmHDh060LBhQx599NHUKdz9/f0zXKfsWpUrV+b1119nzJgxqdOUFypUiEOHDvHTTz/xxBNPMGrUqEz3T/kA+sorr9C7d2/c3Nzo0qVLlj1onTp14r333qN9+/b07duXU6dOMW3aNKpUqcK///6bbcx5zd3dnddee41nnnmGVq1a0atXLw4fPszXX39N5cqVc9R7161bN2bNmkV4eHhqL8Z3332HaZp07do1w306duyIq6tras/p5MmTWbFiBc2bN+eJJ56gevXqHD9+nB9++IH169dTuHDhHL0n1ahRg/vuu48xY8Zw7tw5ihYtyty5c9MkkNlp1KgRRYoUYeDAgTz77LMYhsGsWbPSJU4Wi4VPPvmELl26UKdOHQYPHkyZMmXYs2cPO3fuZPny5WnqDxgwIPX6unao4Mcff5yjKdzBvgxBo0aNUp+riIgIpkyZQtu2bWnfvn1qvbCwMFq2bMmrr76a+vqYNm1a6iQjd9xxB8ePH+fLL7/k6NGjzJo1K02P1ZNPPsnnn3/O0KFDCQ8P54477mDWrFkcOXIk3Ws1KSmJtWvX8vTTT+foORYp8PJxJkMRcYKU6YpTftzd3c3SpUubbdq0MT/44IM0U2pf7cCBA+aAAQPM0qVLm25ubmZgYKDZuXNnc/78+WnqnT171hw2bJgZGBhouru7m2XLljUHDhxonjlzxjTN9FO4nzlzxhw6dKhZrVo108fHx/T39zcbNGhgfv/992navXa6adM0zZMnT5qDBw82ixcvbrq7u5u1atVKbTdFyvEymiKeTKZRv1pGU7i7u7ub1apVM9944w0zMTExTf2kpCRzwoQJZsWKFU03NzezXLly5pgxY9JMf2+apmm1Ws0XX3zRLF68uOnt7W22a9fO3L9/f6ZTcl87TXVG00tbrVZzwoQJZpkyZUwvLy+zRYsW5o4dO9K1GR8fb44cOTK1XuPGjc0//vgj0ym9r50W/Vo1atQwLRaLGRERkWW9a9udM2eOOWbMGLNkyZKml5eX2alTJ/PIkSPp6m/ZssV88MEHzWLFipkeHh5m+fLlzV69epmrVq3KUay//fab2bhxY9PLy8v08/Mzu3TpYu7atStNnZTpsE+fPp1hzD/++KPZpEkT08fHx/Tx8TGrVatmDh061Ny7d2+2j3fSpElmYGCgabFY0kwVDphDhw7NcJ8vvvjCrFq1qunh4WFWq1bN/Oqrr1JjvNqNXC85Pd/XvmZTfPjhh2b58uVNDw8PMzg42NywYYNZr149s3379tk+JwkJCWbx4sXNSZMmpW6rVauWeccdd2S5X4sWLcySJUumTh1/5MgRc8CAAWaJEiVMDw8Ps1KlSubQoUPTTEGf3XuSadrf31q3bm16eHiYpUqVMl9++WVz5cqVGT5nNWrUyDC2DRs2mPfdd5/p5eVlBgQEmC+88IK5fPnyDKdZX79+vdmmTRuzUKFCpo+Pj1m7dm3zo48+Stfm8ePHTRcXFzMoKChdWU6ncE/x+++/m40aNTI9PT3NEiVKmEOHDk33fp9yDVz9vrhixQqzTZs2qe/9hQsXNtu2bZvm9Xe1kydPmgMHDjSLFi1qenh4mA0aNDCXLVuWrt6vv/6aZqp+kVudYZoOurNVRERuC3Xr1qVo0aKsWrXK2aGIE9lsNkqUKMGDDz7IZ599lm39SZMm8dVXX7Fv375MJ9u43Z05c4YyZcowfvx4xo0b5+xwHKp79+4YhnFDi7SLFCS6J0tERHLsn3/+YevWrQwYMMDZoUg+io+PTzcU7ttvv+XcuXPZDl1LMXz4cC5evMjcuXPzIMJbw9dff43Vas3VhDIFwe7du1myZAmTJk1ydigi+UY9WSIikq0dO3awadMmpkyZwpkzZzh48GCa+/jk1hYaGsrw4cPp2bMnxYoVY/PmzXzxxRdUr16dTZs2ZbiOlOTc6tWr2bVrF+PGjaNly5YsWLDA2SGJyA3SxBciIpKt+fPnM3HiRO68807mzJmjBOs2U6FCBcqVK8eHH36YOlnEgAEDeOutt5RgOcDEiRPZuHEjjRs35qOPPnJ2OCLiAOrJEhERERERcSDdkyUiIiIiIuJASrJEREREREQcSEmWiIiIiIiIAynJEhERERERcSAlWSIiIiIiIg6kJEtERERERMSBlGSJiIiIiIg4kJIsERERERERB1KSJSIiIiIi4kBKskRERERERBxISZaIiIiIiIgDKckSERERERFxICVZIiIiIiIiDqQkS0RERERExIGUZImIiIiIiDiQkiwREREREREHUpIlIiIiIiLiQEqyREREREREHEhJloiIiIiIiAMpyRIREREREXEgJVkiIiIiIiIOpCRLRERERETEgZRkiYiIiIiIOJCrswO42dlsNqKioihUqBCGYTg7HBERERERcRLTNLlw4QIBAQFYLJn3VynJykZUVBTlypVzdhgiIiIiInKTOHbsGGXLls20XElWNgoVKgTAl18ew9vbz8nRiIiIiIiIs8TFxfLII+VSc4TMKMnKRsoQQW9vPyVZIiIiIiKS7W1EmvhCRERERETEgZRkiYiIiIiIOJCSLBEREREREQfSPVkiIiIiIjcFE4slGcOwopWD8p9pgmm6YLO5Ajd2ApRkiYiIiIg4mcWSiJ/fcby84pRgOZFpwuXL3sTGlsFmc7/udpRkiYiIiIg4lY3ixQ/h6+tCkSIBuLq6c6M9KXI9TJKTEzl//jTu7oc4daoq13t3lZIsEREREREncnFJxNXVRvHi5fDw8HZ2OLc1d3cvXFzciI8/gotLIlar53W1o4kvREREREScKGV4oGE45qO5YYDFgoYdXqeU83Ajz596skRERERECjjDADc38HBJwsXDLXW7NSGJBKsbSUn2+40kfyjJEhEREREpwFxdwccz2f7Ljwtg/nw4fx6KFMHSowdeDz2ElztcinclOdm5sd4ulGSJiIiIiBRQrq7g422DZSswHnkETp5MU27Mnw+lSmF++SU+7dtzKc7ilESrSBGDkJCf6NSpe/4f3Al0T5aIiIiISAFkGFd6sJYtw+jaNV2ClerkSXv5smX4eCY7/F6tkydP8MILz1CnTiVKlfKgRo1y9O7dhbVrVzn2QNfJNE0mTx5PtWplKFPGi+7dW3PgwL48PaaSLBERERGRAsjtyq1XxiOPgNWadWWrFePRR9Ps5whHjx6mZct6/P77aiZOfIcNG7Yzf/4ymjZtyejRQx13oBvwwQdvM3Pmh7z33gxWrvwLb28fHnqoHfHx8Xl2TCVZIiIiIiIFkIdLEvz4Y+Y9WNc6cQIWLLDv5yAjRz6NYRj89lsYXbs+RJUqQVSvXoOhQ0ewcuWfme736qsvUr9+EAEB3tSpU4k33hhHUtJ/cW3fvo0uXVpSrlwh7rjDjxYt6rFlyz8AHD16hN69u1ChQhECA31o2LAGK1b8kuFxTNNkxoypjBo1lo4du1GzZm0++eRbTpyIYunShQ57Hq6le7JERERERG5ChQtnV8PNPslFLhjz5+PSqxeFPTIuj47OeVvnz59j1apljB37Bj4+PunK/f0LZ7pvoUKFmDbta8qUCWDnzu08//zj+PoW4rnnXgDgiSf6Ubt2XaZM+QQXFxe2b9+Kq6u9C2706KEkJSWydOk6fHx82LNnFz4+vhke58iRQ5w8eYIWLVpfFZc/9eo14O+//+Chh3rn/AHngpIsEREREZGC6vz5vK2fhYMH92OaJkFB1XK976hRY1P/f8cdFdi/fxQLFsxNTbIiI4/y7LOjU9uuXLlqav2IiKN07foQNWrUAqBChUqZHufkyRMAlChRKs32kiVLcerUiVzHnVNKskREREREbkJZ9SoZBvj7A0WK5K7RK/VjYm583SzzBhpYsGAeM2d+yOHDB7h06SLJyckUKuSXWv700yN49tnHmDdvFs2bt6Z7955UrFgZgCeffJaRI59i9eoVtGjRmi5dHqJmzdo39mAcTPdkiYiIiIgUMKZpX2jY7NEjd/v16GHfzwELE1euXBXDMAgP35Or/cLC/uCJJ/rRpk1H5s5dwtq1Wxg58hUSExNT67z00mv88cdO2rbtxO+/r+a+++5iyZKfABgw4DG2bDnIww//j127ttOqVX0+/fSjDI9VqlRpAE6fTnvf2qlTJylZsnSu4s4NJVkiIiIiIgVQgtUNHnoISpXKvjJA6dLw4IP2/RygSJGitGrVji++mMalS5fSlcfERGe4X1jYRsqVK8+oUa9Qt259KleuyrFjR9LVq1IliKefHs6CBSvo3PlBZs/+KrWsbNlyPPLIEGbNWsDQoSP55pvPMjxW+fIVKVWqdJrp5GNjY9m06S/uvbdhLh9xzinJEhEREREpgFIm4zO//BJcXLKu7OKC+cUXafZzhHffnYbVaqV162AWLfqRAwf2sXfvbmbO/JC2bTNOYipVqkpExFF+/HEuhw4dYObMD1N7qQAuX77M6NHDWL8+lKNHj/DnnxvYsuVvgoKqAzBmzPOsWrWcI0cOsW3bZtavX8Odd1bP8FiGYTBkyPO8++7r/PLLInbu3M5TTw2gdOmAPF0YWfdkiYiIiIgUQKYJl+Jd8WnfHnPRIvs6WCcymMyhdGl7gtW+PZfiLA4ZKpiiQoVKhIZuZsqUNxg7diQnTx6nePES3H13PaZM+STDfTp27MpTTw3nhReGkZiYQJs2nRg9ehxvvfUaAC4uLpw7d5YhQwZw+vRJihUrTufODzJmzAQArFYro0cPJSoqgkKF/Lj//vZMnvx+pjE+99wLxMVdYvjwJ4iJiea++5owf/4yPD09HfdEXMMwb+SOtdtAbGws/v7+zJ0bg7e3X/Y7iIiIiIjkgqtrPCVLHqJcuYq4u+f+g7+rK/h4Jtt/WbAAY/58+yyCRYrY79l68EHAnpAlJzsy8ltTYmI8x44d4tSpiiQnpz0fcXGx9O7tT0xMDH5+mecG6skSERERESnAkpMh9pIrbm7g0e0BXHr1Si2zJSSRkOjKVXNKSD5QkiUiIiKSDdM0OXz4X2Jjz1CixB0EBFTNfqebmNVq5cCBTVy+fJHAwCCKFy97Xe1ERoZz5swx/PxKUKFCLQzDcHCkklOmCYmJkIgbRrx9infTBNN0zCQXkjsFKslat24d77zzDps2beL48eP89NNPdO/ePct9QkNDGTFiBDt37qRcuXKMHTuWQYMG5Uu8IiIiUvD9/fcSvvpqDBERO1K33XlnE5544j2qVr3XiZFdn+XLP2POnNc5d+7olS0G9ep14sknP6B06cwXdb3anj1/8vnnIwkP35i6rVy52jzyyFvUq9chD6KW3LAnV86O4vZWoGYXvHTpEnfffTfTpk3LUf1Dhw7RqVMnWrZsydatW3n++ed57LHHWL58eR5HKiIiIreC9et/YNKkrkRGBgDLgQPAD+zbF8dLL7UgPDzMyRHmzvz5bzFt2hOcO9cUWA/sBz5jy5adjBrVmNOnj2bTAuzZ8wcvv9yS/fsTgfnYn5NfiYgowcSJnfnzz4V5+RBECoQCO/GFYRjZ9mS9+OKLLF26lB07/vvmqXfv3kRHR7Ns2bIcHUcTX4iIiNyekpOTGDToDmJjGwPfk/a76ctYLE2pWtWLd9753UkR5s758ycYPPgObLYRwFvXlJ7CYqlLq1btefbZL7JsZ/jwBhw8CKa5Frh6UgAr8CBFimzmyy8P4eJSoAZMOdWNTnwhjuWIiS8KVE9Wbv3xxx+0bt06zbZ27drxxx9/OCkiERERKSg2bfqV2NgTwGuk/8jkhc32Env3riciYm/+B3cdQkNDME1X4KUMSktisw0lNPQ7EhLiMm3jyJEdHDgQhmm+TNoEC8AFeJXz5yPYunWl4wIXKYBu6STrxIkTlLpmBexSpUoRGxvL5cuXM9wnISGB2NjYND8iIiJy+zl9+giG4QHUzKRG/dR6BcGpU0ewWKoAhTOpUZ/k5HhiYk5n2sZ/wwnrZ1KjLmBw6lTBeE5uVYYBFov9X3GOWzrJuh5vvvkm/v7+qT/lypVzdkgiIiLiBH5+JTDNBCCz+5T2p9YrCPz8imOax4D4TGrsxzAs+PoWybINu32Z1DgEmFfVk/xiGODuDl5e4O8Pfn72f7287NuVcOWvWzrJKl26NCdPnkyz7eTJk/j5+eHl5ZXhPmPGjCEmJib159ixY/kRqoiIiNxk7r23Mx4ehYApGZTaMIwpBATcRaVKdfI5suvTvHlfbLZoIKN7ri5jsXzMvfd2zfIe9CpV6lOqVFXsz0lGt/W/i5dXYerX7+iQmCVnXF3Bx8eeTC1cCD17QuvW9n8XLrRv9/Gx15P8cUsnWQ0bNmTVqlVptq1cuZKGDRtmuo+Hhwd+fn5pfkREROT24+XlS58+44APgeeBlC9edwG9Mc1lDBo0ucCsDRUQUJU2bR7DMJ4HJgNnsSdKf2AYHXBxOUyfPuOzbMNisTB48JvAEqAvsOdKyVFgGPAJffu+ioeHd149DLmGqyt4e8OKFVC2LPTuDfPnw6pV9n9797ZvX7HCXs9ZiVaRIgZLly50zsGdoEAlWRcvXmTr1q1s3boVsE/RvnXrVo4etXfjjxkzhgEDBqTWHzJkCAcPHuSFF15gz549TJ8+ne+//57hw4c7I3wREREpYB54YBSDBr2Nh8eXwB0YhhdQg0KF1jFq1Bzuu6+bs0PMlaef/oTOnYfi4jIBKHHl8TSiePEIJkxYRuXKdbNto1GjhxgxIgRf31VA9SttlMfDYxaPPvoeXbs+l8ePQlIYBnh6wrJl0LUrXDOAK9XJk/byZcvs9R39vcDJkyd44YVnqFOnEqVKeVCjRjl69+7C2rWrst85HyxevIAHH2xLpUrFKFLEYPv2rXl+zALVafjPP//QsmXL1N9HjBgBwMCBA/n66685fvx4asIFULFiRZYuXcrw4cP54IMPKFu2LJ9//jnt2rXL99hFRESk4DEMgwcfHE379kP4++/FxMScpmTJ8tSr1xE3N3dnh5drLi6uPP74VHr1eoW//17C5csXKFu2OnfffT8WS86/e2/Roh+NG/fgn39+4fTpo/j7l6RBg654evrkYfRyLTc3+7+PPAJWa9Z1rVZ49FE4dsy+X2KiY2I4evQw7ds3xt+/MBMnvsNdd9UiKSmJ1auXM3r0UMLC9mTfSB67dOkS993XhO7de/Hcc4/nyzEL7DpZ+UXrZImIiIhIXrredbK8vOz3XPXunfNjzZsH3bpBJhNt51rPnh3ZtetfwsL24uOTNsmOiYnG378wYB8uGBLyE506dQfg1VdfZOnSn4iKiqBkydL07NmPF14Yj9uVzHH79m28/PLzbN36D4ZhUKlSVd5/fyZ169bn6NEjvPDCMP78cz1JSYnccUcFJkx4h7Zts74X8OjRw9x9d0XWrdtCrVp1Mq3niHWyClRPloiIiIjI7aJw4ezrzJ+fuzbnz4devcDDI+Py6Oict3X+/DlWrVrG2LFvpEuwgNQEKyOFChVi2rSvKVMmgJ07t/P884/j61uI5557AYAnnuhH7dp1mTLlE1xcXNi+fSuurvYEbPTooSQlJbJ06Tp8fHzYs2cXPj6+OQ88HyjJEhEREREpoM6fz9v6WTl4cD+maRIUVC3X+44aNTb1/3fcUYH9+0exYMHc1CQrMvIozz47OrXtypWrptaPiDhK164PUaNGLQAqVKh0Iw8jTyjJEhERERG5CWXVq2QY9nWwimS+rFmGUurHxMCN3jR0I3cdLVgwj5kzP+Tw4QNcunSR5ORkChX6b/jd00+P4NlnH2PevFk0b96a7t17UrFiZQCefPJZRo58itWrV9CiRWu6dHmImjVr39iDcbACNbugiIiIiIjYE6SEBOjRI3f79ehh388RszJUrlwVwzAID8/d5BZhYX/wxBP9aNOmI3PnLmHt2i2MHPkKiVfNxvHSS6/xxx87adu2E7//vpr77ruLJUt+AmDAgMfYsuUgDz/8P3bt2k6rVvX59NOPbvwBOZCSLBERERGRAshqhYceglKlcla/dGl48MHsZyLMqSJFitKqVTu++GIaly5dSlceExOd4X5hYRspV648o0a9Qt269alcuSrHjh1JV69KlSCefno4CxasoHPnB5k9+6vUsrJly/HII0OYNWsBQ4eO5JtvPnPMg3IQJVkiIiIiIgVQUpL93y+/BBeXrOu6uMAXX6TdzxHefXcaVquV1q2DWbToRw4c2MfevbuZOfND2rZtmOE+lSpVJSLiKD/+OJdDhw4wc+aHqb1UAJcvX2b06GGsXx/K0aNH+PPPDWzZ8jdBQdUBGDPmeVatWs6RI4fYtm0z69ev4c47q2ca4/nz59i+fSt79uwCYN++vWzfvpWTJ0847om4hpIsEREREZECyDQhPh7at4dFi+w9VRkpXdpe3r69vb4jF3CqUKESoaGbadKkJWPHjqRRo5o8+GAb1q5dxZQpn2S4T8eOXXnqqeG88MIwmjWrw19/bWT06HGp5S4uLpw7d5YhQwZw771BPPJIL1q37sCYMRMAsFqtjB49lAYNqtOjR3sqVw7i3XenZxrjr78uolmzujz8cCcAHn20N82a1eWrr2Y47om4htbJyobWyRIRERGRvHS962T9tz94XtltwQL7NO3nz9snuejRwz5EEOwJVnKyAwO/RWmdLBERERGR21xyMly6BG5u9oWGe/X6rywhARIT7T+Sf5RkiYiIiIgUcKb5XyIVH2+f4t00HTs0UHJOSZaIiIiIyC1EyZXzaeILERERERERB1KSJSIiIiLiRCm9TpqP7uaQch5u5HQoyRIRERERcSKbzQ2bDRIT45wdimA/Dzab/bxcL92TJSIiIiLiRKbpwsWLhTlz5hQA7u7eGIbh5KhuP6ZpkpgYx5kzp7h4sTCmmc0Kz1lQkiUiInITiIjYw/LlnxERsQcvL18aNXqI++57AFfX6/8mVSA6+hRffTWarVtXYrNZKVu2GoMHv0tQ0L3ODk0kjYsX7SsJJyefwqKxZk5js8HFi4VTz8f1UpIlIiLiZPPmvc7s2eOwWIpjszXGYjnM+vUPU65cLSZOXEaxYgHODrFA+uOPn3jrrd6YZhLQBPAjJmY1o0Y1oF27Jxg6dIazQxS5isHFi2W4dKkkFksS6sjKf6ZpHyJ4Iz1YKZRkiYiIONHatXOYPXscMB6b7WXAA5sNYBORkd2YNKk777//l4YO5VJ09KkrCVZV4Geg8pWSWOA5li//lCpV7qFduyecF6RIBkzTBav1xj/ki3OpM1JERMRJTNNk/vy3MYwOwATA46rSethsX3Pw4N/s2LHWSREWXF99NfpKD9bVCRaAH/A5UIU5cyY5JTYRufUpyRIREXGS6OiTHDmyFdMclEmN+3FxCeSff37Jz7BuCdu2/QY0Jm2ClcIFGMy5c1H5G5SI3DaUZImIiDhJcnLilf8VyqSGAfheVU9yymq1Yu+1yowvoDWJRCRvKMkSERFxkqJFA/DzKw0szqTGXqzWvVSpUj8/w7ollC1bDViD/R6sjPyMh0dWSZiIyPVTkiUiIuIkLi6udOz4JIbxJRB6TWkchjGUQoVK0rhxDydEV7A9+ui7QDzwDGC9pjQEWEWrVn3zPS4RuT1odkEREREn6tlzDDt3bmDHjtaYZnegJXAci+VrXF2jeemlJbi7ezo5yoKnSpX6dOgwhF9/nQFsAAZjH5b5M7Ca0qWr8uSTHzs1RhG5dRmmaWpAchZiY2Px9/dn7twYvL01rEBERBwvKSmRFSs+Y+nSmURF7cbDw5emTXvQvfvIK8Pe5HqtXPkF3303gbNnowAbHh5+tGrVlyef/BiLVnwVkVyKi4uld29/YmJi8PPLPDdQkpUNJVkiIiIiIgI5T7L0FY6IiIiIiIgDKckSERERERFxICVZIiIiIiIiDqQkS0RERERExIGUZImIiIiIiDiQkiwREREREREHUpIlIiIiIiLiQEqyREREREREHEhJloiIiIiIiAMpyRIREREREXEgJVkiIiIiIiIOpCRLRERERETEgZRkiYiIiIiIOJCSLBEREREREQdSkiUiIiIiIuJArs4OQEREROwuX77I2bMReHr6Urx42etqw2q1cvLkIcCkVKmKuLhc35/6s2cjuXz5AsWKlcXLy/e62rh48Tznz5+gUKFiFC5c8rrauJlER5/iwoWzFClSBl/fwk6Lw2pNvnKOjSvn2MVpsdxq51jyRmJiPKdOHcHNzYOSJctjGIazQ8pzSrJEREScLCbmNCEhY1m9OoSkpDgAqlRpQJ8+47j33k45asNqtfLzz+/x888fcf78MQCKFClL167P0L37yBx/EP/nn1/47rtJ7N//JwBubt60bNmP/v1fz/GH6KiofcyaNZY//liAzZYMwN13t6N//wnceWeDHLVxM9m79y9CQsazbdsKACwWVxo1eoj+/V8nIKBKvsVhtSazcOEUfv75I6KjIwEoWvQOunV7hq5dh+drshUZGc63377Cn3/+hGlaAahTpz3/+98kqlatn29xyM3t8uWLzJnzGsuXf8Hly9EAlC1bk169XqJFi37ODS6PGaZpms4O4mYWGxuLv78/c+fG4O3t5+xwRETkFhMbe4aRIxtx+vQ5bLZngRbACQzjE0wzlGef/ZLWrQdn2YZpmkyZ8j/WrZsDDAIevlLyPYbxNY0b92TUqNlYLFnfJbB69bdMnToIw2iGaT4FBAChWCwfUrx4Yd59d0O2iVZExB5Gj27C5cuFsNmeB+4B9mGxfIhh7GHChF+pXbtlts/LzWLbttW89lpHTLMaNttzQBVgMxbLVLy8LvDOO+spW7Zansdhs9l4991+bNjwA6Y5GOgFmMA84GuaN+/LiBHf5ksPwdGju3jhhabEx/tfOcd1gXAslg+wWPYxceJyatZsludxyM0tPv4SL798PwcP7sRmexroAMRgGF9imovo3/8NevV62dlh5lpcXCy9e/sTExODn1/muYGSrGwoyRIRkbw0Y8Ywli2bg80WBlS+qsQEHsPNbS7ffBOZ5fC0v/9eyqRJnYE5QO9rSn8AevHKKz/ToEHXTNu4dCmGgQMDSUzsAXxJ2tu2D2KxBNO2bU+efvqTLB/P2LFt2bHjKDbbH0CRq0oSMIwOFC9+hM8+25dtwnczsFqtPP54Vc6erYhp/gJ4XFV6DoulIbVqVWDSpOV5Hsuff/7M5MndsZ/PHteUzgH6Mn78UurX75jnsYwZ04rdu09gs20ECl9VEo9htKNkyePMnLmnQJxjyTs//PAmISETMM0NQL1rSscBbzBz5j7KlKmcwd43r5wmWbr6RUREnCQxMZ5Vq7698i3vtR80DOANkpMTWbt2dpbtLFv2KRZLfdInWAA9sViCWbbssyzbWLv2O5KSEoDJpP94UAmbbSirV4eQkBCXaRsnThzi339XYrONJW2CBeCBaU7m9OmDbNu2KstYbhb//ruKM2cOYZpvkjbBAiiKzfYK27at4OTJw3key6+/forF0oD0CRZAbyyWe/j110/zPI6oqH3s3LkGm20caRMsAE9M8w1OntzHjh1r8zwWubn98sunmGZf0idYAGOwWAqzcuUX+R1WvlGSJSIi4iTnz58gIeEC0DSTGqVxcbmTqKjwLNs5enQvNltmbYDN1oxjx7JuIyoqHIulCvYhghlpRmLiRc6fP5FpG8eP77vyv8xiaYBhuGX7eG4WkZHhGIY7cG8mNexD4qKi9mVS7jgREeFZnGMDm60ZERF5/7z+91gzi6UxYBSYcyx5Izk5ibNnD5P5deKNad57S18nSrJERESc5L9h6JGZ1EjCZjuBl1fWw9V9ff2zaAMgAh+frNvw9vbHNE8BiZm2AeDlVSjLNuwyi+UUpplUYIbfe3v7YZqJwOlMakSk1strPj7Zn+P8iCP7c3wcMLO9ZuXW5uLiipubF5lfJyYWS8QtfZ0oyRIREXGSQoWKUqvW/Vgs04HkDGrMw2Y7S5MmvbJsp1mzXhjGQuBYBqURGMZPNG+edRuNG/fAZjuH/f6ea1mxWKZTo0ZL/P1LZNpGlSr1KVasPPBRJjWm4ebmxb33ds4ylpvFvfd2xtXVE5iWSY2PKV68IlWq5P1ses2b98QwFpDxh9ajGMbP2Z5jR7jzzgYUKVKWzM/xx7i5eefLvWFy8zIMgyZNemKxfA5kNMQ4FKt1V7bvbQWZkiwREREn6tNnHKa5BegDHLqyNQH4GovlSe677yEqVKiVZRtt2jxC4cKlsFjaAL9jnzTDBNZjsbSlcOEStGnzaJZtlC9fk4YNe2KxPI194ouEKyWHgL6Y5j/06TMuyzZcXFzo1+9VYC7wPHDqSkks8H/AG3Tr9jy+vtfer3VzKlSoKN26PQe8DrwNXLhScgp4DphHv37j82Xq9DZtHsPfvzgWS1tgA/+d43VYLG0pUqQMrVs/kudxuLi40rfveGA2MIL/evlisd/P9xYPPjjySs+b3M4eeugFXFxOYxhdgJ1XtiYDC7BYelG1akPq1m3rxAjzlmYXzIZmFxQRkby2ceOPfPDBY1y+HIOLS0VM8yw2WwyNGvVi+PCv8PDwzraNqKh9TJr0AJGRO3FxKQMYWK1RBATcxbhxPxEYGJRtGwkJl5k6dTAbNszDYvHDMIpjtR7C09OP5577nMaNM5p0Ib2ff36fb755GavViovLHdhsxzHNeLp0eY7Bg99x6uK5uWW1Wvnyy1EsWfIhhuGJxVIGq/UoLi4uDBz4Jt26PZ9vsURE7OX11x8gKmo3Li4BgInVepyyZWsyduwCAgKq5lssP/00hVmzXsFqNXFxKYfVGgUk0r37cAYO/D/NLCgA7Nixlrfe6k1s7AlcXCpgmhew2c5Sq1ZrXnxxLn5+xZwdYq5pCncHUZIlIiL5IT7+Ehs2/EBExB48PX1p1OghypWrnqs2bDYb27atYudO+8xuNWo04+67W+f6A29ExB42bvyRy5cvULZsNRo37omnp0+u2rhw4Rzr1s3h9Omj+PuXoGnT3hQvXjZXbdxMTp8+xvr184iJOU2JEnfQrFkfChUqmu9x2M/xb+zYsRbDMKhZswW1a7dySlITG3uWdevmcObMMfz9S9KsWW+KFQvM9zjk5paUlMhffy3kwIEtuLt7cu+9nalSJaMZBwsGJVkOkpJkPfBADDVq+BEc7OyIRERERETEGW7ZdbKmTZtGhQoV8PT0pEGDBoSFhWVZf+rUqdx55514eXlRrlw5hg8fTnx8fO4PvHMHoaEQEgLZHFJERERERG5jrs4OIDfmzZvHiBEjmDFjBg0aNGDq1Km0a9eOvXv3UrJkyXT1v/vuO1566SW+/PJLGjVqRHh4OIMGDcIwDN57771cHfvhGjvZ4VYcgrIf0y4iIiIiIrevAtWT9d577/H4448zePBg7rrrLmbMmIG3tzdffvllhvU3btxI48aN6du3LxUqVKBt27b06dMn296vjHSokvcLDYqIiIiISMFXYJKsxMRENm3aROvWrVO3WSwWWrduzR9//JHhPo0aNWLTpk2pSdXBgwf55Zdf6Ngx87UbEhISiI2NTfMjIiIiIiKSUwVmuOCZM2ewWq2UKlUqzfZSpUqxZ8+eDPfp27cvZ86coUmTJpimSXJyMkOGDOHll1/O9DhvvvkmEyZMcGjsIiIiIiJy+ygwPVnXIzQ0lMmTJzN9+nQ2b97MggULWLp0KZMmTcp0nzFjxhATE5P6c+zYsXyMWERERERECroC05NVvHhxXFxcOHnyZJrtJ0+epHTp0hnuM27cOP73v//x2GOPAVCrVi0uXbrEE088wSuvvJLhmhIeHh54eHg4/gGIiIiIiMhtocD0ZLm7u1OvXj1WrVqVus1ms7Fq1SoaNmyY4T5xcXHpEqmUVeZzvTzY/v0QFUl4OISHaxp3ERERERHJWIHpyQIYMWIEAwcOpH79+gQHBzN16lQuXbrE4MGDARgwYACBgYG8+eabAHTp0oX33nuPunXr0qBBA/bv38+4cePo0qVLarKVY1WqEHw6DKIgnCBCo+wrmmtxYhERERERuVqBSrIefvhhTp8+zfjx4zlx4gR16tRh2bJlqZNhHD16NE3P1dixYzEMg7FjxxIZGUmJEiXo0qULb7zxRu4PXq8eXZp60yVkBouj7iGMYEJDWxIebl86S8mWiIiIiIgAGGaux83dXmJjY/H39ydm7lz8vL3tG8PCIDyccVFDCCcIAgKVaImIiIiI3OLi4mLp3dufmJgY/Pz8Mq1XoHqybhpXsqlJQasZFx4IQU6OR0REREREbhoFZuILERERERGRgkBJloiIiIiIiAMpyRIREREREXEg3ZMlIiIityybzcbmzcv4559fSE5OpEqVejRv3g8vL998jyUm5jSrV39DZORevLwK0ahRD6pVa4hhGPkei9zaTNNk1671bNz4IwkJlyhX7i5athyAn18xZ4d221CSJSIiIrek06eP8tprXTh27F9cXKoChVix4gu++uolXnhhDvXqtc+3WJYt+5RPP30Wq9XAYqkFHOfnn9+ndu02jBnzAz4+/vkWi9zaLlw4x+uvP8ju3WtxcbkDKInN9i3ffPMyQ4fO4P77Bzo7xNuChgveiPBw2P4v4aGRhIZCSIizAxIRERGApKQExo5tR2RkLLABq3UvVusm4BDx8Y15440HOHx4e77EEha2mOnTnyQ5eTCmGYHVGobVegRYyI4dYbz9dt98iUNufaZpMnlyD/bu3QEsxWo9hNX6N6YZQXJyXz74YDBbtqx0dpi3BSVZ1ys4GPr3Z9JD2+hPCC1YA1GRhITYl9ESERER59m4cQHHj+/BZlsINAJShuTdgWn+iM1WioUL38uXWObOnYxhtACmAynDtSxAN2y2T9my5RcOHNiSL7HIrW3Pnj/YuXMNNtvXQEf++6hfAvgMi+U+vv/+TafFdztRknWjgoPp0uIikwJm0J8Q2P5vaq+Wki0RERHn+OuvhRjGfcDdGZR6YLMNYsOGBXkex/nzJ9i//09M80n+S/Su9iAWS3H+/POnPI9Fbn1//rkQF5cA7AnWtSzYbI+zc+caLl48n9+h3XZ0T5YjBAfbk62wMAj/lzA8CdcKxSIiIk4TH38J0yyRRY2SJCXF5UscdpnF4ophFCUhIe9jkVtfQsIloDiZ96OUvFLvMr6+RfIrrNuSerIcrEvQXoKDop0dhoiIyG3tjjtqYLGsBy5nWG4YKylbtkaex1GsWCCenv7Ab5nUOITVuo877sj7WOTWd8cdNbBadwJRmdRYiY9Pcfz9s/oCQhxBSZaIiIjcctq1ewKbLRp4FTCvKV2BaS6iU6cheR6Hu7snbdsOxmL5BNh5TWkShjEKLy9/mjTpleexyK2vefN+uLt7AqMA6zWlW7FYPqd9+8dwdXVzQnS3FyVZIiIicsspU6YyjzzyLvAOhtES+Br4ERiEYXTmnns60KbNo/kSS+/erxIYWB6LpSHwPLAQmI7FUh/DWMTw4V/h6emTL7HIrc3Hx5/nn/8Sw/geiyUYmIH9ehuGxdKEChWq07Pny84N8jahe7JERETkltS9+wjKlKnC/PnvsHfvYACKFatA586v063b8Hz7Nt/XtzBvv72O+fPfYtmyz7l06QPAoG7dTvTq9QnVqzfKlzjk9tCkSS8KFy7N99+/ydatTwMmhQqVpEOH53nwwRfx9i7k7BBvC4Zpmtf2octVYmNj8ff3J2buXPy8vbOufGU6wcV0ISQ8mKAg+5wYIiIi4lxxcbEkJyfi61sUi8V5A3msVisXL57D09MHD49sPleI3KD4+EskJMTh61sUFxcXZ4dzS4iLi6V3b39iYmLw8/PLtJ56shwtPBwIB4Lt/0WJloiIiLN5e2f+YSg/ubi4aNIByTeenj4aiuokSrIcKSWbCo0kiDWEE0RoVGCaIhERERERubUpyXK04GC6BEOXkBksjrqHMIIJDW1JeDgaPigiIiIichvQ7IJ5pX9/urS4yKSAGbRgDURFEhqaetuWiIiIiIjcotSTlZeudFtNClrNYnwICQ90ckAiIiIiIpLX1JMlIiIiIiLiQEqyREREREREHEhJloiIiIiIiAMpyRIREREREXEgJVkiIiIiIiIOpCQrP4SHQ+h/07iHhDg7IBERERERyStKsvJacHDqmln9CUldMyskRGtmiYiIiIjcipRk5Zfg4NTFifsTAtv/Te3VUrIlIiIiInLr0GLE+Sk42J5shYXRhR8YF+5JOEHOjkpERERERBxIPVlOFBwU7ewQRERERETEwZRkiYiISJ6w2WxcuhSD1Zp83W2Ypklc3AUSE+NvKJbExHji4i5gmuZ1t2G1JnPpUgw2m+2GYnGEhIQ4EhLinB2G5CGd44JNwwVFRETEoc6fP8mPP77FypXfcPnyedzcvGjWrDc9e44hIKBqjtqwWpP55ZfpLFo0jZMnwwGoVet+HnpoNPfc0y7HsWzevJwff3yH7dtXAVCqVBBduw6lY8encXHJ2cegyMhw5s9/i3Xr5pKUdBkvryK0bTuIBx98kSJFSuU4lhtlmiahoSEsXPgBhw5tAqBSpXt54IHnadasD4Zh5FsskjdM02T16m9ZuPADjhzZAkDlysE88MBwmjZ9WOe4ADHMG/lK5zYQGxuLv78/MXPn4uft7ZhGr8x0sZguhIQHExRkv11LRESkoDtzJoLRo5tw/vwFbLbHgHuAfVgsM/HwuMjkyaupXLlulm1Yrcm8+WZP/v57MabZC+gMXMBi+Rqb7U+GDJlGx45PZxvL0qXTmDlzGBbLfdhsg4BCwGIM4weCg7vy0kvfZ5toHTiwmTFjWpGY6IfN9iRQBdiMxfI5RYr48c47v1O8eNmcPDU3xDRNPv98OIsXf4BhdLzyvJgYxjxMcxkPPDCKwYPfyfM4JO+YpsnMmc/wyy/TMIxOmGZPwIZhzMU0V/DQQy8xcOCbzg7zthcXF0vv3v7ExMTg5+eXaT0NFxQRERGHmTnzWc6ft2KzbQX+D3gYGIvNtoOEhMpMmTIg2yF7K1d+SVjYIkzzZ+A7oC/wJDbbRuBZZs58hpMnD2fZxokTh/j002eB567s9+SVduZgmgv566+FrFr1dZZtmKbJu+8OIDGxKjbbDuCVK4/n/7DZtnD+fDKffvpcdk+JQ/z772oWL/4AmIZpLgUGAoMwzV+Bqfz007vs2LEuX2KRvLFlywp++WUaMAPTXIL9HA/GNJcD7/Ljj2+xa9cG5wYpOaYky1nCwyE8nKAg+381jbuIiBR0Z89GEhb2MzbbWKDcNaX+2Gz/R0TEDnbtWp9lO0uWfIJhdAE6XVNiAJMxjEKsWPFZlm2sWPEZhlEImHxlv6t1xjA6s3jx9Czb2LVrPZGRO7HZ3gau/cb6Dmy2l/nrr585ezYqy3YcYenST7BYagJPZVD6LBbLnfzyS9aPR25u9nNcB3gig9LhuLhU4ZdfPsnnqOR6KclyhuBgCAqiC4sh1L44cWioEi0RESnYjh7dhWnagLaZ1GgFuHLkyPZM2zBNk2PH/sU0M2vDB5utKYcPZ94GwOHD/2KzNQMyHupvmu04diz7NgzDDWiRSY12mKaVY8d2ZdmOIxw8+C82WzvSJ4wABjZbOw4cyPrxyM3Nfo7bkvE5tmC1tuPgQZ3jgkJJlrMEB0P//qmLE7dgjRYnFhGRAs3Dw+vK/85lUiMGSMbd3SuTcjAMAzc3ryzaAMM4c9WxMubu7oXFcjaLGmevHCfrNkwz+UrcGbeRUi+v2R9v1o8nu+dEbm7285f5dQ/ZX/dy81CS5Wz9+9OlxUUmBcygBf/1aoWEODswERGR3KlaNZhChUoBmQ3l+wKLxY169Tpk2c5993XDxeVrIDGD0h2Y5p80aNAtyzYaNOh25V6snRmUJmKxfMN992XdRr16HbBYXIAvM6nxOX5+pQkKyvvZqxo16obFMh84n0HpGSyWn2jUKOvHIzc3+zn+noyT+lMYxs86xwWIkqybwdW9Wi0iadHC2QGJiIjknpubOz16jAZmAu8AKWtbJQMhGMYrtG79CEWKlM6ynQceGIVpHgX6ACeuKtmExfIApUpVpVGjh7Jso3HjHpQsWQWLpTuw+aqS4xhGHwwjggceGJllG0WLlqF160cwjJeB2YD1Skk88DbwKT16jMbV1S3LdhyhffsheHi4YbF0AQ5eVbIfi6UzXl5etGuX0b08UlB07Pg07u7GlXN86KqScCyWznh7+9K27WPOCk9ySUmWiIiIOEz37iPo3n0k8AIWSyAWSzNcXCoA/6Nhw248+eQH2bZRuXJdXnrpB9zdl2MY5bBYGuHiUguoT6lSrkyatBw3N48s23B39+T115dTqpQrUA8Xl1pYLI0wjDtwc1vBSy/9QKVKdbKN5cknP6Rhw65Af1xcymOxNMNiCQRe5IEHRtGt2/Bs23CEYsUCmDjxV3x89gFVsFjuxcWlPlAVX98jTJy4LF/X7BLHK168LBMn/oq39x6gMhZL8JVzfCeFCkXy+uvL8fcv4ewwJYe0TlY28mSdrMyEhLA4aCRhBBMeDv375+3hRERE8kpU1D5WrfqaU6eO4O9fghYt+lOlSr1ctXHxYjRr1nzL/v3/4ObmQf36nbj33s45XkQY7Gtu/f33Ev75ZylJSQlUqVKfli0H4OtbOFex7N+/idDQEGJiTlOyZHnuv38wAQFVctWGIyQkXGb9+nls3x6KYRjUrNmCJk166V6dW0hCQhzr1s1l5851GIZB7dqtaNy4J+7uns4OTcj5OllKsrKhJEtERERERECLEYuIiIiIiDiFkiwREREREREHUpJ1swldA+HhREVpGncRERERkYJISdbN5MqaWcFRP6WumaXFiUVEREREChYlWTeb4ODUxYn7EwLb/01dnFjJloiIiIjIzU9J1s3oyuLEXVpcZF6tN2gREA5AeLiT4xIRERERkWwpybqZBQfb/wmKJijIybGIiIiIiEiOKMkSERERERFxICVZIiIiIiIiDqQkS0RERERExIGUZImIiIiIiDhQgUuypk2bRoUKFfD09KRBgwaEZTOveXR0NEOHDqVMmTJ4eHgQFBTEL7/8kk/ROshV0wpqGncRERERkZubq7MDyI158+YxYsQIZsyYQYMGDZg6dSrt2rVj7969lCxZMl39xMRE2rRpQ8mSJZk/fz6BgYEcOXKEwoUL53/w1ysoiC7hiwkLDQSCCI0KBFInHhQRERERkZuMYZqm6ewgcqpBgwbce++9fPzxxwDYbDbKlSvHM888w0svvZSu/owZM3jnnXfYs2cPbm5u13XM2NhY/P39iZk7Fz9v7xuK/4aEhLA46h7CCCaUlgQEQFCQki0RERERkfwSFxdL797+xMTE4Ofnl2m9AjNcMDExkU2bNtG6devUbRaLhdatW/PHH39kuM+iRYto2LAhQ4cOpVSpUtSsWZPJkydjtVozPU5CQgKxsbFpfm4KVxYnnhQwgxZn50NUJKGhEBLi7MBERERERORqBWa44JkzZ7BarZQqVSrN9lKlSrFnz54M9zl48CCrV6+mX79+/PLLL+zfv5+nn36apKQkXn311Qz3efPNN5kwYYLD43eI4GAIDmZSWBiLuYMw7EMHw8LUoyUicr0OHfqXf/5ZSnJyIpUr30O9eh1xcXHJVRvnz59kw4YfiI09TfHi5WjcuCc+Pv65aiMxMZ4//1xIRMQevLx8ue++ByhTpnKu2jBNk507f2fnznWYpknNms2oUaMZhmHkqh2R29G5c8fZuHE+sbFnKFGiPI0b98Tbu5Czw7puUVH7+fPPn4iPv8Qdd9xFgwbdcHPzcHZYt40Ck2RdD5vNRsmSJfn0009xcXGhXr16REZG8s4772SaZI0ZM4YRI0ak/h4bG0u5cuXyK2QREcknFy+e5+23+7J16zIsFj8Mwwur9STFipXnxRfnUq3afdm2YbPZ+O678cyf/zamaWCxlMBqPcGnnz7P4MH/R6dOQ3MUS1jYYt5//xEuXTqDi0sAphnNV1+9QPPm/XnmmU9xd/fMto0TJw4xeXIPDh/ejMVSFDCw2cZTvnxdXnllPqVLV8pRLCK3G5vNxjffvMTPP7+PabpgsRTHaj3OzJnP8fjj79Gu3ePODjFXEhIu8+GHj/H7799hsfhgGP5YrVEUKlSSESO+pl69Ds4O8bZQYIYLFi9eHBcXF06ePJlm+8mTJyldunSG+5QpU4agoKA030hWr16dEydOkJiYmOE+Hh4e+Pn5pfkREZFbi9Vq5bXXOvPvv38Dc7HZzmC1ngD+5vz5QMaPb0dU1L5s2/n++9f5/vs3sNlexjSPY7VGAEdITBzAzJnDWLXqm2zb2LVrPZMnP0hcXENgN1ZrJDbbaWA669b9wNSpg7Nt49KlGMaMacXRozHACmy201faWMmxYxcZM6YVFy9GZ9uOyO0oJGQsP/30Ljbbq5jmiSuv48MkJvZm2rQnWLdurrNDzJUpU/7Hhg0LgU+x2U5jtUYCO7l4sT6TJnVjz54/nRzh7aHAJFnu7u7Uq1ePVatWpW6z2WysWrWKhg0bZrhP48aN2b9/PzabLXVbeHg4ZcqUwd3dPc9jzlOhayB0DeHh9hneNbW7iEjObdmynPDwjdhsPwAPAymTI9XHZltGYqIvCxdOybKNuLhY5s9/GxgNvAYUvVISCEwDehIS8lqW9wEDzJkzCaiFaf4IVLuy1RsYgmlOZ/36uRw9uivLNn777SvOnYvEZlsJtMH+590AWmOzreTcuSh+++3LLNsQuR3Fxp5l4cL3gVeAsUDhKyXlgE+Brsya9SoFZZ64gwe38uefP2KzzQQeB7yulNyFaf4EVGPevDecF+BtpMAkWQAjRozgs88+45tvvmH37t089dRTXLp0icGD7d/yDRgwgDFjxqTWf+qppzh37hzPPfcc4eHhLF26lMmTJzN0aM6Gb9y0goNTJ8EIilqjSTBERHLp99/nYbHUAlpkUFoIm20woaFZf3v9999LSUy8BDyXQakBPMvZs4fZt+/vTNu4ePE827atwGZ7mv8Svav1w2Ipyvr187KMZe3aeZhmV6BiBqXlMc3urF2bdRsit6O//15McnIC8EwGpfbX8cmT4Rw8uDV/A7tO69d/j8VSAvuXR9dyx2Z7ik2blhIXd5NM7HYLK1D3ZD388MOcPn2a8ePHc+LECerUqcOyZctSJ8M4evQoFst/eWO5cuVYvnw5w4cPp3bt2gQGBvLcc8/x4osvOushOE7KJBghM1Kndg+PCiIkJFBTu4uIZOPSpWhstjuwf4jKSHni42Ow2Wxp/q5c24b9u8qATNv4r15mccSkqZueO4ZRJss2AC5cOA9kPKojpf0LF7Zl2YbI7ejixWgMwwvTTL/eql32r+ObyaVL0RhGIBl/aQP2x2Ny+fIFvL11S0xeKlBJFsCwYcMYNmxYhmWhoaHptjVs2JA//7yFx57270+XsDC6hM9gMV0IoT/h4fYiJVoiIhkrU6YKFksINlsikNHw8Q2UKFE50wQrpQ2wAX8BGU2SseFKvcxnCCxcuBTu7j4kJq7HPszvWqew2cIpXfqJTNsAKFu2KqdPb+Cq0fFpWCwbCAzM3UyFIreDgIAqmGYcsAWom0EN++u4oEwcU6ZMFWy2L4GzQLEMamzAw8MPP7/i+RzZ7adADReUTAQH21cmxv7Plf+KiEgm2rZ9DJvtFPB+BqVbMIy5dOyY9YxitWu3onjxihjGOODayZRisVje4K67mhMQUDXTNjw8vGjV6n9YLNOBI9eUmsCruLi40KJF/yxjad/+cWy2MGBBBqU/Y7P9Qfv2BWuGNJH8cM897SlcOBDDeAVIuqY0GovlTe6+ux0lS2bW23xzadnyf1gsJjAB+3vI1Q5hscygTZuBmso9HyjJEhGR2065ctXp0WMM8BLQB1gO/AmMxWJpQcWKtejUKeNREylcXFx49tlPMYy1WCyNgNnA38BMLJZ7cXc/xpNPfphtLH36vEbRooWwWBoA/weEAT9jGB2AGTzxxFQKFSqaZRv33tuZhg17YBgPA0OBtcA6YBiG0YMGDR6kQYNu2cYicrtxcXG98jpeiWE0BeZgfx1/gsVSH0/PUzzxREZfxtyc/P1L8Nhj7wEfYRidgcXY31PexGK5j+LFi/Lww+OcG+RtwjALynQpThIbG4u/vz8xc+fi5+3t7HAyFxbG4vA7CQv679tODRcUEcmcaZosX/4Z8+e/zalTBwDw8ChEmzaD6N//9Rzfr7Br1wZmzRrHzp1rADAMC/Xrd2bgwMnccUeNHLVx7txxvvlmDOvWzcVqTQDgjjvupm/f8TRq9GCO2rBak/nhhzdZvHgaFy7YlzspVKgUXbo8TY8eY3B1zeweDRHZsWMts2aNZ/fudYD9dRwc3I2BA9+kbNk7nRxd7q1f/wNz5kzi2LHtALi6etK8eR8GDHiTIkVKOTm6gi0uLpbevf2JiYnJcqknJVnZUJIlInJrs9lsREWFk5SUQJkyVfD09Lmuds6ciSAm5jRFiwZc94eYixejOXXqMJ6evpQpUxnDyGxijswlJSUSFWW/OTcgIAg3twK+ZIlIPjp9+hixsWcoViyQwoUzmwyjYDBNk+PHDxAff5FSpSri4+Pv7JBuCTlNsgrcxBciIiKOZLFYKFu2WvYVs1G8eFmKFy97Q234+hbG17fODbXh5uZO+fI1b6gNkdtViRLlKFGinLPDcAjDMAgIqOLsMG5buifrVpMytaCIiIiIiDiFerJuIV1YDFGRhET1J4pAwsOhf9YTUomIiIiIiIOpJ+tWERxsXzOrxUX6E0IL1kBUJG+/DWFhzg5OREREROT2oZ6sW01wMF24sjhx1D2EEUxoaEvCw+3rZ2kyDBERERGRvKUk61YUHGxPtsLCIDwStDixiIiIiEi+0XBBERERERERB1KSJSIiIiIi4kBKskRERERERBxISZaIiIiIiIgDKckSERERERFxIM0ueKuLioSoNYQHtEzdpGncRURERETyjnqybmXBwXRpcZFJATMIirIvThwaCiEhzg5MREREROTWpSTrVhccDP37MylgBv0JoQX2ZCskBMLCnB2ciIiIiMitR0nW7aJ//9Rerf4B9kQrPFyJloiIiIiIo+merNvJlZuxurCXMIIhyMnxiIiIiIjcgpRkiYiI3IDo6FMsWfIRq1aFcOHCaYoVK0fbtoPp0OEpvL0L5aiN+Pg4pk8fwsaNC0lMjMMwXLjjjjt59NH3qVPn/jx+BGmdOHGQRYumsm7dfOLjLxAYeCcdOjxB69aDcXV1y9dY5OYVF3eBX3/9hBUrvuLs2WMUKlSC1q3/R+fOz+DvX8LZ4Yk4nWGapunsIG5msbGx+Pv7EzN3Ln7e3s4O58ZdGR84Lvx/EGTvytJsgyIi1+fEiYO8+GILYmLOY7P1wz5EYAuG8T1ly1bjrbfWUKhQ0SzbiIu7yBNPVCE29hTQAWgFnAC+BGIYMuQjOnZ8Kq8fCgB79vzB+PHtSUz0wGYbAARgGKGY5hLq1GnHuHE/4+bmni+xyM0rNvYsY8a0JCIiHNPsBdQBwrFYZlO4cFHeeiuU0qUrOjlKkbwRFxdL797+xMTE4Ofnl2k93ZMlIiJynaZMGUBMjAc22x5gBjACmIVpbiYyMpKZM5/Nto0333yA2NgzwDJgKTASeAc4DDRk5szniYuLzbPHkCIpKZE33uhBYmJtbLYDwLvACExzEbCCbdtW8+OPb+V5HHLz+/TTZ4mMPI5pbgK+xX7dz8Bm2010tBtTpgxwcoQizqckS0RE5DocOLCFvXs3YLO9AwReU1oDm+0V1q//nujoU5m2kZgYz7//rgMeBdpeU1oI+BTTTOTbb19xaOwZ+euvhcTERGGzzbhy7Ku1xjQfYcmSGVityXkei9y8zp8/yfr132OzjQVqXFNaFpvtbfbuXc+hQ9ucEZ7ITUNJloiIyHXYt+9vwAA6Z1KjOzZbEocObc20jUOHtmGaiUC3TGpUByqyZ8+GGwk1R8LDw3BxqUz6D84puhMbe5wzZyLyPBa5eR06tBWbLZnMr9kugEF4uKYvltubJr64HYWHExz1EyFR/YkikPBw++1ZujdLRCTnXFxcAROIB3wzqBEHgMWS+Z9aNzePNHXTs7dvsbhcd5w5ZX888VeOaWRQI+6qenK7+u/8Z3bN2q8hXSdyu1NP1u3myuLEXVpcTLM4cWio1swSEcmNOnVaYxgWYFYmNb7F09OfO+9skGkbFSrUxtXVB/g6kxprgeM0adLrhmLNibp122G1RgKrMyw3jG8JDKxBsWLXDo2U20lQUAM8PPyw34uVkVkYhoW7726dn2GJ3HSUZN2ugoPp8sJd9sWJryRboaEQEqJkS0QkJ0qUuIMmTR7GYnkR+O2qEhP4DsN4j86dn8bT0yfTNiwWC/ff3x/7hBeTgaSrSncA/8PNzZfu3UfmwSNIq1atFlSsWA+L5RHg36tKkoD/wzQX0qPHKAwjo14uuV14efnSufPTGMYUYA72650r/67EYnmJJk16U6JEOecFKXITUJJ1u7vSqzWpxWpaBISnzOouIiI5MHToTKpXrwe0wWK5B+iDxVIN6Efjxj3o129itm089dR0qldvAryCfQKN3kAToBYuLmeZPPk3LJa8/3NtGAbjxi2kdGkf4G4MoxnQG4ulAvASPXu+TKtWA/M8Drn59es3kcaNHwL6YrFUx37d1wPaUr16fYYNm+nkCEWcT+tkZeOWWycrI1o7S0TkulmtVjZv/pXVq2cRHX2akiXL0abNI9So0SxXvT7r13/P3LmTOHPmOO7ubjRo0I2BA9/C17dw3gWfgaSkBDZsmM/69T8QF3eBcuXupF27J6hUqU6+xiE3N9M02blzHStXfsmpU8coUqQkLVv+j3vuaY+LS97fQyjiLDldJ0tJVjaUZImIiIiICGgxYhEREREREadQkiUiIiIiIuJASrJEREREREQcKFdJ1uXLl1m/fj27du1KVxYfH8+332a2ZoLc9MLDISqS8HD7fzWNu4iIiIjI9clxkhUeHk716tVp1qwZtWrVonnz5hw/fjy1PCYmhsGDB+dJkJLHgoMhKIhJATMIivpvceKQEGcHJiIiIiJS8OQ4yXrxxRepWbMmp06dYu/evRQqVIjGjRtz9OjRvIxP8ktwMPTvn2ZxYqIitTixiIiIiEgu5TjJ2rhxI2+++SbFixenSpUqLF68mHbt2tG0aVMOHjyYlzFKfkpZnDhgBv0D/uvVUqIlIiIiIpIzOU6yLl++jKura+rvhmHwySef0KVLF5o3b054eHieBChOcGX4YJegvfRvEUlAgLMDEhEREREpOFyzr2JXrVo1/vnnH6pXr55m+8cffwxA165dHRuZiIiIiIhIAZTjnqwHHniAOXPmZFj28ccf06dPH0zTdFhgIiIiIiIiBVGOk6wxY8bwyy+/ZFo+ffp0bDabQ4ISEREREREpqLQYsYiIiIiIiAMpyRIREREREXGgHE98Ibeh8HCIWgMEEhoVSHg4BAXZJx8UEREREZGMKcmSjAUHQ3AwXcLCIDSEMIIJjwoiNCowtVhERERERNJTkiVZCw6mSzB0CZnB4qh7CCOY0NCW6tUSkZvC99+/SVjYItzc3HnooRepX79jrts4eHArS5dOIykpgbp129KyZf88iDR7pmmyc+fvRETswcvLl3r1OuDrW8QpsdxMQkNns3nzctzcPOjQ4SmqVLkn122cPRvF1q0rSU5OpEqV+lSuXDcPIs2e/RyvIyJiL15eha6c48JOieXixfNs2vQrly9fpGzZatSo0RTDMJwSiyOcPRvJ1q2/kZycSNWq91KpUh1nhyS3OcO8jnnXZ82axYwZMzh06BB//PEH5cuXZ+rUqVSsWJFu3brlRZxOExsbi7+/PzFz5+Ln7e3scJwrLAyAceH/I5wgJVki4jRr1oTwwdRHsZmJV2018PT05aOPtlGqVMVs24iNPccLLzQkKmof8N+fQg8PP156aS716nVwfOCZ2LPnD6ZOfZSoqN2AAZi4uXnRteuz9O//Bi4uLvkWy81iy5aVTJ7ck4SEmKu2GpQuXYV3392In1/xbNtISIjjk0+GsWbNt5imNXV71aoNGTnyGwICquZB5BnbtWsDH3zwGMeP7+G/c+xN9+7P07fvxHw7x1arlZCQV1i06EOSki6nxhIQUJ3nn/+SatXuy5c4HCU+/hLTpz/N2rWz05zjoKBGjBz5LWXKVHZidHIriouLpXdvf2JiYvDz88u0Xq4nvvjkk08YMWIEHTt2JDo6GqvVfkEXLlyYqVOnXnfAUnAEB0U7OwQRuY1t27aa998fjM0MBH4CEoFoYCrx8UkMGVKdxMTELNuw2Ww8/fRdREUdAaYA54AkYBEJCaWZMKEb+/f/k7cP5IpDh/5l7Ng2nDhRGFgDJAPHSUoaxY8/vsPnnz+fL3HcTPbv38xrr3UmIaEE8DP2c3MeeJ8TJ47x9NM1s102xjRNJk/uQWjoPExzypX9k4CFHDhwjhdfbM65c8fz+qEAcODAFsaNa8vJk8WAtdjPcRRJScP54Ye3+PLLkfkSB8Bnnz3HggXvkpQ0Gjh+JZY1nDhRmLFjW3Po0L/5FsuNstlsvPHGg6xb9yOm+T7294FE4Cf27z/Niy825/z5E84NUm5buU6yPvroIz777DNeeeWVNN+61K9fn+3btzs0OBERkWu9915/wBPYAHQH3AB/4FlgPlZrAjNnDs2yjSVLPiI29iQwBxgOFME+gr4L8DvgzbRpQ/LqIaTx3XevkZwciM32G9AC+5/m0sBE4F2WLp3GiROH8iWWm8X06U9imp7AeqAr9nNTGHgOmEds7EkWLZqaZRv//ruaLVt+xWabc2W/wlfa6YbNFsqFC5ezbcNRvvvuNazW8thsK4Fm2M9xGeB14C2WLPmIU6eO5Hkcx48f4JdfpmOa7wITsF9nFqAFNttKkpMDmTt3Yp7H4Sjbtv3Gtm0rsNm+B57B/j7gBnTHZgslNvYCixd/6Nwg5baV6yTr0KFD1K2bfiyzh4cHly5dckhQIiIimTl//jQwCPuH1Gt1BIL4/fe5Wbbx66+fABWxJ2nXKgk8xoEDef+N/qVLMYSFLcJmGwZkNCT9SSyWQqxdOzvPY7mZ7N+/DXgEKJVBaRegMr/+OiPLNkJDQ7BYql2pf63S2GwD+e23b2841uxcvHief/5Zgs32DOCVQY2nMAxv1q2bk+exrF37HRaLH/BEBqU+2GzD+PPPhcTFxeZ5LI6wZs0sLJaaQEZDewOw2f7Hb7/Nyu+wRIDrSLIqVqzI1q1b021ftmwZ1atXd0RMIiIiWbAC1TIpM4AaJCVlPVzw0qVooPqV+hm5E0giOTn5OmPMmYsXz1+5jySzx+ONYZQjJuZUnsZxM7EPA0zCfg4yYgB3ERcXk0m5XXT0KWy2O8nqHF+4kPfPa2zsWUzTRuaPxxfDCMyXcxwTcwrDKEfGCT3AnZimlYsXz+d5LI5gP8dBOPsci2Qk17MLjhgxgqFDhxIfH49pmoSFhTFnzhzefPNNPv/887yIUURE5CouwOZMymzAJjw8Muox+I+fXwmio7dgT9gymnBgC4bhjqtr3k7C6+dXHBcXD6zWLUCbDGpEY7MdpHjxgXkax83EYrFgGB6Y5tZMaliBzdlOfFG8eFlcXFZcuXc843NcpEi5Gws2BwoXLonF4obNthVolUGNc9hsRyhePO9jKV68HKZ5EIjBPrTuWltwcfHI0aQiNwP7OV6L1Woj436DLRQtmvfPq0hGct2T9dhjj/F///d/jB07lri4OPr27csnn3zCBx98QO/evfMixjSmTZtGhQoV8PT0pEGDBoRdmfEuO3PnzsUwDLp37563Ad7qwsPtP1f+m8OnX0TEYUqWLAfMBsIzKJ0NHKVDhyezbOPBB1Nu+v86g9KDwNdUr97gxgLNAS8vX5o06YnF8jFwNoMaUzCMJFq0cM608s5y1133Ad8A+zMonQVE8sADo7Js4/77B2O1Hr5S/1r7sVhm0779Izcaara8vf1o3LgHFsuH2CdYudY7GIaV5s375XksLVr0xzQTsE/2cq2zWCwf06zZw3h6+uR5LI7QuvUjWK0HgO8yKN2LYcylXbvB+R2WCJDLJCs5OZlvv/2W1q1bs2/fPi5evMiJEyeIiIjg0UcfzasYU82bN48RI0bw6quvsnnzZu6++27atWvHqVNZdwUfPnyYUaNG0bRp0zyP8ZYWHAxBQXRhMUHb50NUJKGhEBLi7MBE5HbyyisLsfdmNAI+Bo4CO4EXgEF4ePjQv//kLNto1WoAZcoEYb83ZRSw40o704GGWCwmzzzzRZ49hqv16zcBb+94LJZGpCQQ8A/wKPA6vXuPo2jRjO4/u3U999xXuLgY2M/xNP47x6OBRylVqjKtWmXdu3fnnQ1o0WIA8NiV/XZeaWcaFktTSpYsR+fOz+Tlw0jVr99EvLwuYrE0xv5FQCTwN/Z7C9+ib9/XKFy4ZJ7HUaxYAL17jwMmYb++/rkSyywslkZ4eyfQp89reR6Ho1Sv3ohmzfpiGIOBF4FdwBHgIyyWZpQpU4GOHbOeBEckr+R6nSxvb292795N+fLl8yqmTDVo0IB7772Xjz/+GLCP2y5XrhzPPPMML730Uob7WK1WmjVrxiOPPMLvv/9OdHQ0CxcuzPExtU5WJkJCUhcnDicIAgK1bpaI5JtduzYwfnxbEhMv898aVy4UK1aG6dN34+Xlm20biYmJvPpqG3bu3Ih9GmsAgyJFAnnttaVUrFg7j6JPLyJiL598Mozt239L3ebnV4bevV+mU6ehBXqR2Ot1+PAOXnutA+fORfLfOXblrrsaMnHib7i7u2fbhtVqZe7cCSxa9BGXL0cDYBgu3HffAzz11LR8SWxSRETsuXKOV6Vu8/cPoE+fsXToMCTfzrFpmixdOo25cycTG/vfFPa1a7fhqac+JjAwKF/icBSrNZnvvnuVxYunER9vv0/PYnGlYcMHGTLkY/z9Szg5QrnV5HSdrFwnWS1atOD555/P92F3iYmJeHt7M3/+/DTHHjhwINHR0fz8888Z7vfqq6/y77//8tNPPzFo0KBsk6yEhAQSEhJSf4+NjaVcuXJKsjISFgbh4SymCyFRLYkikBYtlGiJSP7ZsmUla9Z8i7u7Fz17jsnRIsTXio09w6pV35CQcIn69TtSpUr9PIg0Z44fP0Bk5F48PX2pVq0hrq5uTovlZrF//2b++WcJ7u5etG49+LruF0pIiGPPnj9ITk6kQoW7KVYsIA8izZmoqP1ERYXj5VWIO++8z2nnODk5iT17/iA+/iKBgXcW+EV74+MvsXfvnyQnJ1KxYp3brvdX8k9Ok6xc39H79NNPM3LkSCIiIqhXrx4+PmnH7daunTff/J05cwar1UqpUmmncy1VqhR79uzJcJ/169fzxRdfZDgbYmbefPNNJkyYcCOh3j6uZFNd2AtBQYSEBzo5IBG53dSt24a6dTOaMCLn/PyK88AD+bcYbFbKlKlc4D/sOlqVKvdQpco9N9SGh4c3d999v4MiujEBAVUICKji7DBwdXWjZs1mzg7DYTw9fW6acywC15FkpUxu8eyzz6ZuMwwD0zQxDOPKLD7Od+HCBf73v//x2WefUbx4zr/1GjNmDCNGjEj9PaUnS0REREREJCdynWQdOuScVeeLFy+Oi4sLJ0+eTLP95MmTlC5dOl39AwcOcPjwYbp0+W8RQvvaG+Dq6srevXupXDn9t4UeHh54eHg4OHoREREREbld5DrJcsaEFwDu7u7Uq1ePVatWpd6TZbPZWLVqFcOGDUtXv1q1amzfvj3NtrFjx3LhwgU++OAD9U45SnCwfXrBqDUEcYnQ7bUJDy+mSTBERERE5LaV6yTr22+/zbJ8wIAB1x1MdkaMGMHAgQOpX78+wcHBTJ06lUuXLjF48ODUYwcGBvLmm2/i6elJzZo10+xfuHBhgHTb5Qb170+XsDC6hM9gMfcQEtWf0KhAwsOh/+21tIuIiIiISO6TrOeeey7N70lJScTFxeHu7o63t3eeJlkPP/wwp0+fZvz48Zw4cYI6deqwbNmy1Mkwjh49isWS6/WVxRGCgyE4mC5hYRAaYp/aPSqIkBBN7S4iIiIit5dcT+GekX379vHUU08xevRo2rVr54i4bhpaJ+s6pEztHjSSkHB7dqUeLREREREp6HI6hbtDun2qVq3KW2+9la6XS25TV3VbBRWsNQ1FRERERG6Yw8bWubq6EhUV5ajmRERERERECqRc35O1aNGiNL+bpsnx48f5+OOPady4scMCExERERERKYhynWSlTJ+ewjAMSpQoQatWrZgyZYqj4hIRERERESmQcp1kpSzoKyIiIiIiIunl+p6siRMnEhcXl2775cuXmThxokOCkltEeDiEhxMVZZ9wUERERETkdpDrJGvChAlcvHgx3fa4uDgmTJjgkKDkFhAURBcWExz1EwFn/yU0FEJClGyJiIiIyK0v10mWaZoYhpFu+7Zt2yhatKhDgpJbQHAw9O9PlxYXmVfrDVqwBqIiCQ1VoiUiIiIit7Yc35NVpEgRDMPAMAyCgoLSJFpWq5WLFy8yZMiQPAlSCrDgYAgOZlLIDBZH3UNYwAOEhgYRHq4FikVERETk1pTjJGvq1KmYpskjjzzChAkT8Pf3Ty1zd3enQoUKNGzYME+ClFtA//50CQmBoJYQZL9dS0Ty17Fju1m6dBpbt4ZimiZ3392Ujh2HUqFCLWeHVqDFx19izZpZrF31NTHRJylesgL3t32MJk164erq5uzwRETECXKcZA0cOBCAihUr0qhRI9zc9IdDRKSgWLt2Du+/PwAohs32IGDh1KmfWL78M5555nNatx7s7BALpOjoU4x/uTlHI/bS0YA7TZPNZ47y3o5QVi6fyfjXluHh4e3sMEVEJJ/l+p6s5s2bpyZY8fHxxMbGpvkREZGbS0TEXt5/fwA2W19stqPAdOBjrNbDmOZjfPTRYxw6tM3ZYRZIH77/Py5H7edfTBabJu8Cq2021gIHdm/kyy9HOjtEERFxglwnWXFxcQwbNoySJUvi4+NDkSJF0vyIiMjN5ddfpwNFgE8B96tK3IBpGEYZliz52CmxFWQREXv5Z8sK3rUlU+OasmbAGJuV1b99xcWL0U6ITkREnCnXSdbo0aNZvXo1n3zyCR4eHnz++edMmDCBgIAAvv3227yIUUREbsC2beuw2boBHhmUumKzPcS2bevyO6wCb9eu3wHokUl5LyAhKYH9+//Jt5hEROTmkON7slIsXryYb7/9lhYtWjB48GCaNm1KlSpVKF++PLNnz6Zfv355EaeIiOShDFbmEBERkeuU656sc+fOUalSJQD8/Pw4d+4cAE2aNGHdOn0TKtkIXQOha4jaflaLE4vkk7vvbobFshBIyKA0GReXH7n77ub5HFXBd9ddTQH4IZPyeYCHmwdVqtTPt5hEROTmkOskq1KlShw6dAiAatWq8f333wP2Hq7ChQs7NDi5xVxZnHhSwAxeKPZ56uLEISHODkzk1tahw9NANPA4aROtJOBpbLbjdOo0zBmhFWhly95J/brtGGVxZcc1ZWuBtwwLrVoPxte3sBOiExERZ8p1kjV48GC2bbPPQvXSSy8xbdo0PD09GT58OKNHj3Z4gHKLCQ5OTbb6E0IL1kBUJG+/rV4tkbxStuydjBgxC4tlDhbLHcBTwFAslvIYxhc8++wXVKxY29lhFkjPDv8W78Cq3I1BZ8NgJNDC4kILoMpdTXjkkSlOjlBERJzBME3TvJEGjhw5wqZNm6hSpQq1a996f6RjY2Px9/cnZu5c/Ly11olDhYVBeDiLg0YSEh4MQFCQPQ8TEceLiNjD0qXT2LJlzZXFiJvRqdNQypev6ezQCrSEhDjWrAm5shjxiSuLET9O48Y9tBixiMgtJi4ult69/YmJicHPzy/TejeUZMXHx+Pp6Xm9uxcISrLyWEgIi4NGEsZ/mZWSLBERERG5GeU0ycr1cEGr1cqkSZMIDAzE19eXgwcPAjBu3Di++OKL649YRERERETkFpDrJOuNN97g66+/5u2338bd/b9FLWvWrMnnn3/u0OBEREREREQKmlwnWd9++y2ffvop/fr1w8XFJXX73XffzZ49exwanIiIiIiISEGT6yQrMjKSKlWqpNtus9lISkpySFAiIiIiIiIFVa6TrLvuuovff/893fb58+dTt25dhwQlt5nwcAgPJzzc2YGIiIiIiNw419zuMH78eAYOHEhkZCQ2m40FCxawd+9evv32W5YsWZIXMcqtLCiILuGLISoSCCY0qiXh4ZrKXUREREQKrlz3ZHXr1o3Fixfz22+/4ePjw/jx49m9ezeLFy+mTZs2eRGj3MquWpx4UsCM1MWJQ0O1OLGIiIiIFEw5Xifr4MGDVKxYEcMw8jqmm4rWycpnISEsjrqHMIIJpSUBAerVEhEREZGbg8PXyapatSqnT59O/f3hhx/m5MmTNxalyLWu9GoFB0TSooU9wRIRERERKUhynGRd2+H1yy+/cOnSJYcHJCIiIiIiUpDl+p4sERERERERyVyOkyzDMNLdj3W73Z8lIiIiIiKSnRxP4W6aJoMGDcLDwwOA+Ph4hgwZgo+PT5p6CxYscGyEIiIiIiIiBUiOk6yBAwem+b1///4OD0ZERERERKSgy3GS9dVXX+VlHCJpRUVC1BrCCYKAQEDTuIuIiIhIwZDjJEsk3wQH04UwuoTPYHHUPYRE9Sc0KpDwcFAHqsiNuXjxPOHhYZimSdWq9+LnV8xpsRw+vJ3Tp49QqFBxgoKCsVg0F1NU1H4iI/fi5eVLtWqNcHV1c3ZI4mBRUfuIjAzHy6sQ1ao11DkWuUUpyZKbU3CwPdkKC4PQEMIIJjwqiLffDqRFC/VqieRWQkIcX345ktUrvyIhOQEAdxc3mrf8H489/gFeXr75Fsvu3Rv5fMZQ9h3amrotoER5+g9+hyZNeuZbHDeTiIi9zJz+JNt2rE3dVtSvOD16j6dTp2GaaOoWcOzYbqZPH8rOnWtSt/n5laFPn1fo2PFpnWORW4y+NpSbW3AwXVpcZFLADPoHrKFFCwgPh7AwZwcmUnBYrcm8PqEja5d/xrjkBPYDB4BJ1iT+WP0NE8a3ISkpIV9i2bPnD8a90pIih/9lERAFrAPqnz7C22/3Ys2aWfkSx83k+PEDjBndkMu71hMCRAL/AA/EnuHTT59l7tyJTo5QblRU1D5Gj27C7t0ngO+wn+W/iY1tz8yZw/jhh8lOjlBEHE1Jltz8goMhKCj116v+KyI5sHHjj2zbsZYlNiuvAJWBSsALwEqblV17/2Tdujn5EstXnw+nti2ZdaaNLkAZoCmwEOgHfPnps/mW8N0s5nz3KoUux7LRZqUfEADUAz4HxgLfz5vEuXPHnRqj3JjZs18lPr4QNtsGoA/2s1wf+BJ4ie++m8D58yedGqOIOJaSLBGRW9yqFZ/TxOJCywzK7gPaGhZ+W/5pnscREbGX3eF/8ZLNhsc1ZQYwDoi5FM3ffy/J81huFpcvX2TD+nk8Y7OS0d1xowB3TEJDQ/I7NHGQuLhYNmyYj832LFAkgxovYJourF07O79DE5E8pCRLROQWd+70UerarJmW32PaOHf6WJ7HcfZsBAB1Mim/E/AyLJw5E5HnsdwsYmPPkGRNpm4m5f5ABcOFM2fy/vxI3oiOPoXNlkTmV34RLJYKqa8PEbk1KMkSEbnF+RUpzR4j87f73YaBX+FSeR6Hv39JAPZmUn4EuGzaUuvdDgoVKoqLYWFPJuVxQMRt9pzcavz8imEYFjK/8i9imsd0jkVuMUqyRERucS3uH8Rvpo0tGZTtApaY0LLNI3keR/nyNal0Rw3eMQwy6ld7B/Dx8KFBg655HsvNwtvbj+AGXfnI4sKlDMpnABdtNpo375ffoYmD+PoWoX79zlgsH2FPm681HdO8TPPmffM7NBHJQ0qypGAJDyc83NlBiBQszZr1oXKF2rSxuPAl9o95l4FvgVYWV8oGBtGy5YA8j8MwDAY8MoV1QFfD4B/ABPYDQ4BpQO/+r+Pp6ZPnsdxMeveZQISrO/cbFlYDNuyzLo4DRmPQsdPTlC5d0blByg3p128CLi5HsFjaAKH8d5ZfAV6ic+dnKVHiDmeGKCIOZpimaTo7iJtZbGws/v7+xMydi5+3t7PDuX2FhUF4OIuj7iGMYEJpSUCAfaZBrZklkr3Y2LN8/OFg/gpbgsl/b/v167bj2eHfUrhw/g1V+uuvRXz2yVOcOheVuq2Qlx+9+0+ic+dnbsv1gvbs+ZOPpw7kaNR/3yJ5unnSudtw+vWbhIuLixOjE0fYvXsjH3zwGFFRu1O3ubv70L378/TtO1GLcYsUEHFxsfTu7U9MTAx+fn6Z1lOSlQ0lWTeZK8nWuKghhBNEFFqcWCQ3jh8/wM6d6zBNk7vuakJgoHPWRLBarWzb9hunTh3Bz6849ep1wMPDyymx3CxM02T37g0cO7YbT09f6tXrgK9vYWeHJQ5kmiY7d/5OZORevLwKUa9eB3x8/J0dlojkgpIsB1GSdZMKCfmvV+tsbQJqFVOvloiIiIjkqZwmWa75GJOI4/TvT5ewMLqwmnHhgRCU0QozIiIiIiL5TwOARUREREREHEhJloiIiIiIiAMpyRIREREREXEgJVkiIiIiIiIOVOCSrGnTplGhQgU8PT1p0KABYWFhmdb97LPPaNq0KUWKFKFIkSK0bt06y/oiIiIiIiI3qkAlWfPmzWPEiBG8+uqrbN68mbvvvpt27dpx6tSpDOuHhobSp08f1qxZwx9//EG5cuVo27YtkZGR+Ry55JnwcIiKJDw0kvBw+zJaIiIiIiLOVKDWyWrQoAH33nsvH3/8MQD/396dx0VV9XEc/8wMm6iAO0K4i0uZayiaiWVpGZlaqYmpWWZlm222qYVblmalZbtPD+b6ZGmZuVJpJuaWZUnuCuIuiCjLzH3+QAmMGUAGhuX7fr3mpd5z5sfvzgGZ35x7z7HZbAQFBfHYY48xevToPJ9vtVqpUqUKM2bM4L777svX19Q+WSXcxc2Jl8a3IYoI4gkkIAAiIlydmIiIiIiUNfndJ6vUzGSlpaWxefNmunXrlnXMbDbTrVs3NmzYkK8YKSkppKenU7VqVbt9UlNTSUpKyvGQEiwkJHPPrLBkIogijLUQH8eUKZrVEhERERHXKDVF1okTJ7BardSqVSvH8Vq1apGQkJCvGM8//zwBAQE5CrXLTZo0CV9f36xHUFBQofKWYhISQnhYMpEBs4gIWEtYQKwuHxQRERERlyg1RVZhTZ48mXnz5rF48WK8vLzs9nvhhRdITEzMehw6dKgYs5RCCQmB4GDCg3cBEBzs4nxEREREpFxyc3UC+VW9enUsFgtHjx7Ncfzo0aP4+/s7fO6bb77J5MmTWbVqFddee63Dvp6ennh6ehY6XxERERERKZ9KzUyWh4cHbdu2ZfXq1VnHbDYbq1evJjQ01O7zpkyZQmRkJMuXL6ddu3bFkaqIiIiIiJRjpWYmC2DUqFEMHjyYdu3aERISwvTp0zl37hxDhw4F4L777iMwMJBJkyYB8PrrrzNmzBi++OIL6tWrl3XvVqVKlahUqZLLzkNERERERMquUlVk9evXj+PHjzNmzBgSEhJo1aoVy5cvz1oM4+DBg5jN/0zOvf/++6SlpXHXXXfliDN27FjGjRtXnKmLiIiIiEg5UaqKLICRI0cycuTIXNuio6Nz/Hv//v1Fn5CUWLGxWvxCCiclJYno6Cg2xSwlI+089Rq2pUePhwgMLJ3fWCtXfsoHH4wkI+08ABZ3L4YNm8Zttz2c7xjp6amsW7eQ9esWcCElkYCgZnTvPpyGDdvkO4ZhGPzxx0+sWvUpxxP2UtmvJmFhEVx33e1YLMX7a+nEicN8/PFT/LFjLYY1g5oBjbnvvsm0anVTvmNYrVZ+/fVb1q6N4syZ49SsGUS3bkNp0SIMk8mU7zh7927j++8/5ODBv/D2rkTHjn3p3LkfHh72F2sSEZGSqVRtRuwK2oy4lMm2OXEMIUTTlYCAzGIrJMTVyUlpsn//Dl59pRtnEo9zowmqGAarzBZO22wMf+hdevZ81NUpFshTT7Vj357NuAE9yLwhdzmQBgQGNWfmzD/yjHHyZBxjX7qRg/GxXG8yc5Vh4yeLG3HWDHr3fpYhQ17Ps6iwWjN4e/oQon+YQyOzG9fZMvjbbOFXm5XmTTrwyrjlVKzo64Qzztu6dQt4643+WA2DboAvsAJIBG64YQDPPPNFnjFSUs7y2mvh7Nz5A2ZzG2y2JpjNW7DZdnH99f0YNeq/uLm5O4xhGAZRUS+zcOFEzOYAbLYbMJmOYBg/4O/fhAkTVlCjRh1nnLKIiBRSmduMWCRfsm1OHBkwK2tz4uho7Zkl+Zeaep7IsbcQePYkezBYYRjMBw7brDyGwQcfjGT79tV5xikpFi6czL49m7kZOAJ8DSy++PfbgbhDO/n002ccxjAMg8nj78CWsJftwE+GjbnAfmsGbwKLF7/BypWf5JnL/PmR/PTDF3wOxNoy+ALYZLPyAxD39ybenT6kEGeaf0lJJ3jrjf40Nwz2A98DC8h8TUYCP/44l6+/np5nnBkzhvPXX1uBVdhsm4EvsNn+BOayfv3/mDNnTJ4x1q79LwsXTgQmYbPtB+ZiGNHA7xw7lsprr92JPg8VESldVGRJ2XSx2IoMmEUEUYSxluj/nSQqSsWW5G3duvkcP53AIpuVutmOVwCmA63NFr5e/KZrkrsCX3wxhgrAQqBqtuN+wDwyZ3CWLJnuMMbOnevYtWcLn9oyyL4RhhvwNNAXE18tmuywGEhNPc+yJW/zOAaDgOxzXjcA02xWNmz8miNH9uT/5K7Qp58+Q4Zh8CWQfcv5CsDbwDXA4kWTHMY4duwA69cvwGZ7Hch+eaEJ6I9hjOLbb9/nwoVzdmMYhsGiRW9iMt0BjAayz3pdjc32GQcObOW339YU6PxERMS1VGRJ2XZpVitsDc/1Lfo3blI2bNnyPR3MFhrn0mYC7rNZ2bp1BTabrbhTuyJmazp3AZVzaasA9AfcbFaHMbZu/Z5aFje62WkfjMHhhD0cO3bAbow9ezaTlJLIIDvtA8j8pbRt20qHuTjD9u2r6Ag0yKXNDAwBTiceczjG27evxjBsQISdHvdx4UIiu3ZttBvj9OkEDh/egWHcZ6dHFyyWILZsWW43hoiIlDwqskRELmO1ZlDBwYyMN2A1bKXmEi4TmcWUPfm529RqzcALE/buuKqQrZ+jGNn7Xs4DsJgcx3AWm83m8LwrAMbFfvZk5mkC7C1M4X3xa+X9mth/VTJHrzheExERcR4VWSIilwkODuFn4ISd9i9NZhrXb4XFYinOtK5YOia+AnJ7m24DFgHpecRo3DiEA9Z0frPT/hVQpXI1atasa6cH1K3bAg+LO1/baV8OpBkGwcFFv0pNvXrX8gNwyk77l0BFT2/c3OyvdpiZpwEstdNjMWazO/Xrt7Ibo2rVAPz8Asl8BXOzE6s1luDg9nZjiIhIyaMiS8qH2NjMhxbBkHzo1m0oJjcPhmMi7bK2z4HvDRu33fGkCzK7Mh073UMCmXf8ZJ97M4BxwAGgVetbHMYICQmnRpXaPGS2kHhZ2xrgY5OZ7j0fdbiSno9PNW4Ii2CS2cL2y9qOAKPMbjRp2IbGja/L13kVxrBhU8kARvDvAvMzYDVww42DHcZo0KAVTZpcj9n8LHD4stbfMZsncv319+DnV9NuDIvFwu23P4zJNJvM5TeyO4vZPAJf39qEhvbJ+6RERKTE0BLuedAS7mVIVJSWdpd827hxCVMm98UfGGTNwBf4xmzhJ5uVm7vdz8jHPi7QHkiu1r+/LykpSTQF7iXzE7Z5wO+Ah4c3ixbZX5zhktjYGMa90g3P1PPcZ8sgAPjBZOZbw0brljfx0phvcXf3dBgjOfkMY14M48CB3+hjwHUY7AaizBY8K1djwuvrCQhoVOjzzY/Zs59n8ZdTCAAGk7kAyNfAz8BVgU2ZMfOPHBvc5yYhYR/PP9+FxMTT2Gz3AsHAFkymRQQFNWPSpDVUrlzVYYz09DQmTOjDli3LMJluxTC6Akcwm/+Lu3sqr732Hc2adXTGKYuISCHldwl3FVl5UJFVxlzcR+uVHXcTWy2UeAIJCIAIe/etS7m2b99vLF06nV9/+Yr09DQaNGjNreGP0anT3aWqwLrkhRe68OcfP2ZdwmADGjYOYepU+wszXC4hYR/ffPMOP//4BSnnkwkMaMzNtz5Ct25D89wP6pILF87x/fcfsmr5Bxw7fhDfytW44aYh9Ow5kipVahX8xAph3boF/PfzFzmRsBcDgwrePtx48wMMHfpGngXWJYmJx/n22xmsWvVfkpKOU61aED163E/37g/h7Z3bciP/lpGRzpo1n7Ns2QfExf2Fp2clbrjhLsLDn6B27YaFOUUREXEiFVlOoiKrjIqJYWlsE2IIIZZgzWiJiIiISJ60GbFIHsKDdxESfMbVaYiIiIhIGaMiS0RERERExIlUZImIiIiIiDiRiiwREREREREnUpElIiIiIiLiRCqypPyKjc3tryIiIiIiheLm6gREXOLSeu3RawnmHLEEExUVqKXcRURERKTQNJMl5VdICOFhyUQGzCKCKNjxG9HREBWVuWexiIiIiMiV0EyWlG8hIZnFVkwMRH9HDCeJjQ8mOj4wq1lEREREpCBUZIlAZqFFDOGsYSkViYoNdHVGIiIiIlJK6XJBERERERERJ1KRJSIiIiIi4kQqskRERERERJxIRZaIiIiIiIgTqcgSERERERFxIq0uKJJdbCwQC/GBWsb9ChmGQULCXlJSEqlZsx6VK1d1dUplxtGjB/jrr5+pXLkqrVrdjNnsms/JDMPgyJE9nD9/lpo1617xGB88+Ad7927D378BTZuGXlGMCxfOER//N25uHgQGNsFisVxRHCnbrFYrcXG7yMhIIyCgMV5eFV2dkoiUcSqyRC65tGdWVBQQRwwhREd3JTYWgoNVbOVHTMxS5kW9zO79vwHgZnajY6e7GDzkdWrUqOPi7Eqvfft+Y/LE3hw9uhfbxWMV3Dy4+bZHeOCBt4o1l19++Yr5c15hz4Hfgcwx7nT93QweMoXq1a/KV4xNm75h5jsPcDrxKMbFY5W8KtFvYCS9ej2ZrxjnzycTFfUya1Z8zLnUcwD4V7uKXneN5rbbHsFkMhX01KQMMgyD7757n0WL3uTEiX0AeHpW5pZbhjJw4Hi8vSu7OEMRKatMhmEYeXcrv5KSkvD19SVx3jx8vL1dnY4Ul5gYiI3llR13E1stlHgCCQiAiAhXJ1ZyrV79H95+ewg3mkw8ZhhcBfwEvGl2I82nGq9P3USNGkGuTrPUOXjwD55+vCWVbFaeA7oCR4H3gO+ATp3u5vnnFxRLLitXfsq77w6jm8nESMMgEPiRzDHO8K3BlGmbqFbN8R5zGzd+zesT7iQIeA64DtgNTAM2Af0HjGPAgLEOY6SmnueVF7twaM8WnrBZCQfOAbOBKKBXr1EMGza1kGcrZcFnnz3H4sVvAAOBIUBlYClm8zvUr9+MyZPX4ump3+0ikn8pKUn07+9LYmIiPj4+dvupyMqDiqxyLiaGpbFNiCGEWIIBFVq5SUk5y/2D/bk7NYXPgOxzCEeAtmY3mt7Qn6dG/ddFGZZejz12LYkHdrAVqJftuAE8DswEZszcSVBQsyLN49y5RO4fXJsBaef5mJxjHEfmGF/TNYInnvjMYZxBA6pS89xpYgC/bMczgDuA1SYzXyw8h4eHl90YX301jf9+9gzrDYPrLmt7CxgFvP32NurXb5nv85OyZ9++33jiiZbAG8Azl7VuxmTqyJAhE+jd+/I2ERH78ltkaeELEUdCQghnKSHBZwgOdnUyJde6dfO5kHqe8eR88w1QG3jSlsH6n+aTkpLkguxKr5SUJA4f2MGj5CywIPN1HkvmNd+ff/5Ckefy449zSU+/QCT/HuNA4HFbBj/98AUpKWftxvj99x9JPHeal8lZYEHmeYwH0gwbixZNdpjLyu/ep4/BvwosgJFAbbMb33//keMTkjJv5cqPMZv9gSdyaW2LYdzNsmX6PhGRoqEiS0QK7ciR3QRZ3LB3R04nIM2azsmTccWZVql36NCfWMl8/XJTHWgMJCTsLfJcEhL2UNfsRoCd9k5AWkYap08fsRsjNnZjVt/ctAE8gAMHdjjM5cjR/XQm94sw3IEOtgwSjux2GEPKviNH9mCztSfzuyI3nTh2bE9xpiQi5YiKLBEptIoV/Thh2Eix037g4p/e3r7FlVKZULVqbQAO2mlPJ/NyTG9v+5crOEvFin4cM2xcsNOenzGuUsXx+RwF0oDKlas5zKWSd+Wsr5eb/WYLFStVcRhDyr5Klfwwmx19pxygQgW/4kpHRMoZFVkiUmidOt1Nis1GbnfjWIF3zWaubtqRatXszYNIbmrUqIOfT3XeJbP4uNxc4DTQq9dTRZ7L9dffw1mblf/k0pYBzDCbufbqG6hSpZbdGJ0798fT7MZ0yHUe6l0yfynddZfjyx87dRnIZ2YLZ3JpWwdstVnp3Lm/wxhS9l1/fT9stm1kLs9yuUTM5tmEhen7RESKhoosESm02rUbctNNQxhlMvM2kHzxeCxwDyZiDIP+A19zYYal18BBk9gJ3AnsvHgsBfgAGA7UqBpIx459izyPgIDG3Nh1EI+bzLxL5mp+ALuAuzGxxYB+977qMIabmxs33/YwS4AHgEMXj58GXgMmAk2adcLfv77DOL16jeKCpzc3my38QmbBlg4sBO40Wwhu2Jbrrut5hWcqZUW7dj1p3LgDZnMfYAGZ3yUGsBGzuTseHhe4885Rrk1SRMosFVki4hQPPzKLsG73M8pkoobJTG2LO02AVRV9ee75hbRseZOrUyyVund/gAH3vsoqTFwN1ASqASOAKjXr8tY7vxVbLo+O/IguNw3hCf4Z46bA2op+PP/C/2jRIizPGMOHv0NY2CD+A9Ql83xqAuOAxsHtmTAhOs8Y/v71iZwYTXz1qwgFalncqGq2cA9Q95owxrz6PRaLtoEs7ywWC+PGfcu1114H9MNsrobF4g90oFq140yYsAp//wauTlNEyigt4Z4HLeEuxMSwNLrSP8u4BwRqc2IHjh8/yM8//4+UlCQCAhoTGtrH4XLckj8pKcl88cUY9u7dSoUKlejV6ymuvfZGl+Ry9Oh+fvll8cUxDiY0tHeBx/jkyXjmzHmZI0f24utbg/79x1Kv3jUFimG1Wtm2bQV//70JNzcP2ra9Vcu2S6727fuNzZuXkZGRRqNG7WjdujsWi8XVaYlIKaR9spxERZYAWZsTL41vQ9TJW4mvdi0BAajYEhERESlHtE+WiDOFhEBEBOFhycxvMYEw1kJ8HNHRmfWXiIiIiMglKrJECuJisRUZMIuIsDjCwiA21tVJiYiIiEhJoiJLRERERETEiVRkiYiIiIiIOJGKLBERERERESdSkSUiIiIiIuJEKrJEREREREScSEWWyJWKjYXYWOLjtYy7iIiIiPzDzdUJiJRKERGER0VBfBwQQnR0V2JjtTmxiIiIiGgmS+TKXdycODJgFmEnF2VtThwV5erERERERMSVVGSJFMalzYn7bieCKMICMncmjorSJYQiIiIi5ZUuFxRxhpAQwmOjILirqzMRERERERfTTJaIiIiIiIgTqcgSERERERFxIhVZIiIiIiIiTqR7skRcbO/ebaxd+1/OnEmgWrWruOmmIQQFNXN1Wi61dm0Un38+muTk03h4VKBHj4e4997XsFgs+Y5x/PhBPvnkafbs2YLFYqFdu9uJiBiPl5d3vmOkpV1g7txX2bDhS6zWdOrWbcGwYdOoXbthgc4nOnoOX301leTkU/j51aJ//7G0a3dbgWKcOnWEVas+49ChnVSoUInQ0L60bHkTZnP+PytLTT3PunUL2LFjLYZhcPXVN9ClywA8PfP/mhiGwY4d0axfv5CUlCQCA5vQrdtQqle/qkDnIyIiUpaZDMMwXJ1EQcycOZM33niDhIQEWrZsybvvvkuIg42JFi5cyCuvvML+/ftp3Lgxr7/+Orfdlv83N0lJSfj6+pI4bx4+3vl/IyLlUFQUS4OfJoZ/vh8d7ZmVkZHOO28PJfqHOfhb3Ag2DHZi4oQtg9tufZjhD80o0BvossBqtTJsWF1OnYrDB7gW2AvEA55uHrz/4V6qVw/MM87cua+yYO44ANoBycAfgKfZwgtjvqVNm+55xvjzz/WMfbErF6zpNAX8gF8BG3D7HU/xwAPT8oyRkpLM449dzbHjB6kJNAZ2AqeBenVbMO2tLbi55f1Z13ffzeKjDx7DAxttMHHUZOJvawZNG13Hy+OW4eNTPc8Yu3dvZsKrt3Iy8ThtzW6YgV9tGfhWqsoLryylWbOOecZITj7NxMhwfv9zPQ0sbgQaBluAC4bBkPvfpFevp/KMISIiUpqlpCTRv78viYmJ+Pj42O1Xqt7BzZ8/n1GjRjF27Fi2bNlCy5Yt6d69O8eOHcu1/88//8yAAQMYNmwYW7du5c477+TOO+/k999/L+bMpVwIDobotRC9ltjoOGJjHS/jPvuzZ1n/4xd8ChyyZvCDzUqcLYN3gO++e58FC8YXV+YlxqhRbTl1Ko4JQALwE3AQmA+QkcbIR5rmGWPDhsXMnzuOW4FDwC/A78B2oI7NysTXepKUdMJhjAsXUhj7YldqWtOJAf4ENgBxwN3A0iVvsXLlJ3nmMvr5jpw6fpDZF5+7DjgCTAcOHNjBa6/l/YHPpk3f8v77D/OQLYN4m42fbFZ2WTNYDZzcu5VJ4+8gr8/Kzpw5xrhXutHg7Cn+JrO4irFlsAe4JuUMkWO7c+LE4TxzefP1u4nb9QvLgd3WDH60WTlis/KEYeOTT0axfv2iPGOIiIiUB6WqyJo2bRoPPvggQ4cOpXnz5syaNQtvb28+/fTTXPu//fbb9OjRg2effZZmzZoRGRlJmzZtmDFjRjFnLuVCSEjW5sQRRMGO37I2J7682Dp79hTLv3ufMYbBUP65btcDeAx4Eli6eCqpqeeL8QRc6/z5ZA7t285g4EWgwsXjFuAe4E3g/IVkNm5c4jDOf2Y/jz+wCKid7fi1wLdAus3K7NnPOYwRFfUyF6zpfAVcl+14TSAKaATM/WKswxhxcbs4eGAHrwGD+WeMPYEngJHA79tWkpx8xmGcLxdMoLPJzLuA78VjJuBG4D+2DP74awN//vmzwxgrVnxEekoS39qsNMp2vD6w1GaDtPMsXz7LYYzduzezZftqPrZZ6X4xB4DKZI7NLSYTi+a9lmfBJyIiUh6UmiIrLS2NzZs3061bt6xjZrOZbt26sWHDhlyfs2HDhhz9Abp37263P0BqaipJSUk5HiL5dnFz4vCwZOa3mEAYayE+jujonIXW1q0rSMtI4wE7YR4Azp5PYufOn4oh6ZLhyy/fIAN40E77YDL/w5o/P9JhnGNH/uZ+MouZyzUGOgO//rrMYYxffllMK6B1Lm1uZI7PyZNx2Gw2uzGWLHkb28W+uXkAyACHM2JJSSf5Y9cGHjRsWUVNdt2BQIsbGzd+bTcGQMzP/+NOw0aNXNr8gH42KzF5zELFxCyhmsWNXrm0mYAHDYM9B3Zw8mScwzgiIiLlQakpsk6cOIHVaqVWrVo5jteqVYuEhIRcn5OQkFCg/gCTJk3C19c36xEUFFT45KX8uVhsRQbMIiJgLWFh5Lh8MC0tc4aqqp2nV7v4Z3mayTp37gzwz7lfrhLgTuZiFI4Y2H9dAWoAtow0hzEyMtLs5gGZORpARkaG3T4XLpwDoIqDGADnz5+1GyOv7xMz4Icpq5/dOKkpDl+Tahf7OJKaeh4fTNhbeuTS+eSVi4iISHlQaoqs4vLCCy+QmJiY9Th06JCrU5LSLDg4t79Sv35LAL6387TlF/+sV69F0eRVAnXq1BcT/5z75dYBF4CmTUMdxvHy9OY7O23ngVVATf8GDmMEBjZhPWBvHnsZUMHNHQ8PD7sxWrQIA2CFnfZL59m69c12Y1Sp4k+VSlXtfp8cBP60ZlCv3rV2YwDUbdiG781u5DbvZgDLzBbqNmzjMEa9eteyz5rO33balwOVKlSmenV9MCUiIlJqiqzq1atjsVg4evRojuNHjx7F398/1+f4+/sXqD+Ap6cnPj4+OR4iztawYRuaNGzDC2YLpy5rOwKMM1to07Ib/nkUA2XJ1VffgIdHBSaSuaJgdmeBUWTOZA0f7vieyk5dBrIS+PKy4wYwBkgEBg2a5DDG0KFTSAWehX8VJt8DXwGtQ3K7cO4fN944GG93L54jczXB7OKAcUAVn+o0a9bJbgyLxY2bb3uYj80WNl3Wlg48iYkKXt7ccMMAh7ncetsj7LZl8FYubbOA321Wetz2iMMYnTrdhW/FKjxhMpN6Wdt24D2zhZtueQAPDy+HcURERMqDUlNkeXh40LZtW1avXp11zGazsXr1akJDc/9kOzQ0NEd/gJUrV9rtL1KcHnvqcw5VqMzVZjfGAvOAF4AWZjeSfaoz4tEPXZxh8Xv5lW84A7QEnibzNZkANAW2Ar3vednh7BFkFmE1ql3FXcBdZC5U8QEQSuYCDe3b3+lw9gigUaN2hHW9jw/JXAL+PWAOMADoCfj6VOfJJ//jMIbZbObxp6PYdTH/Vy+ez2jgGuCYyczol75yGAPgrrteoF7DttxgMvMAMBd4C2hpdmOJ2cwTo+ZQoUIlhzGaN7+evn2f5xngZpOZT4HZwK0mM48A4bc/RqtWjl8TDw8vnnp2LqvNFq41uzH1Yi4PA6FmC/51rmbAgHF5no+IiEh5UKr2yZo/fz6DBw/mgw8+ICQkhOnTp7NgwQL++usvatWqxX333UdgYCCTJmV+Sv3zzz/TpUsXJk+eTM+ePZk3bx4TJ05ky5YtXHPNNfn6mtonSwolJoalsU2ICY7IOpR976yEhH18+eXr/LDmc86nnaeSVyW63nw/ffo8T7VqAS5I2PV27fqFiRN7c/Z0AhlkfhLk6VWJ+4dNo3t3e8ti5JSWlsb06ffx64YvuWBNB8DH25eevZ5iwADHqwJm9+WXb/DV/yZz5mzmfKOn2Y1W193O00/Pyfemxjt2RPP++w9z5PBfWMlcOKNOg9Y8/vinNGjQKl8xUlNT+Prrt1jx7UyOnT6CxWQmpP0d9Ok7miZN2ucrhmEYrFu3gCWL32DX7s0ANK7fktvvfJqwsAhMptyW1vi3PXu28L9FkzM3aLZZqeZbk5tvfZg773wab+/K+YohIiJSWuV3n6xSVWQBzJgxI2sz4latWvHOO+/Qvn3mm4ywsDDq1avH7Nmzs/ovXLiQl19+OWsz4ilTpmgzYik+eRRZl1itVlJTz+HlVancbUBsT1paGseO7adatSAqVKiQ9xNyYbPZSEo6gYeHF97eV37pb0pKMmlpKfj4VL/i8UlLS+Ps2RP4+tbM1wbEuTEMg/Pnk/Hw8MLNzf2KYsA/C6p4el7Z6wpgtWaQmnqeChUq5btAExERKe3KbJFV3FRkSaFcKrIIIZZggoNzL7JEREREpOTLb5F1ZR+nikj+hIQQHhsF8XFACNE7riU2tpqKLREREZEyTNcliRS1i5sTRwbMyrE5cVSUqxMTERERkaKgIkukOFzanLjvdiKIyiy2yCy0Lm1QLCIiIiJlgy4XFClOISGEEwOxcRCcd3cRERERKX00kyUiIiIiIuJEKrJEREREREScSJcLirhAOEuJiQ4klmDiCSQ2FiIi8n6eiIiIiJR8mskSKW6XFsEImPXPIhjxcVoEQ0RERKSMUJEl4irZlnaPIEpLu4uIiIiUEbpcUMSVQkIyVxyMiYHYtcQQAsHBxMRos2IRERGR0kozWSIlRHjwLlenICIiIiJOoCJLRERERETEiVRkiYiIiIiIOJGKLBERERERESdSkSUiTnfhwjlOnz6K1ZpxxTHS09M4ffooqannnZjZlUlJSSIx8Tg2m82leVitGZw5c4zz55NdmoezlKQxFhERcSatLihSUsTGZv+jVK4u+Ndfv7BowXh+3fwdNsOGj7cvN97yAPfc8xKVKlXJV4zTpxOYP3880as/IyU1BYvZQocOvbmn3yvUr39tEZ9BTps2fcuXCyfyx18/A1Cjij/de46kd+9ncHf3LLY8UlLOsmjRJFYtn8WZ5NMAtGnZjbv6vcw113Qptjyc5eTJeBYsGE/06tmcTzuPxWyhY8e+3NPvFerWvcbV6YmIiBSayTAMw9VJlGRJSUn4+vqSOG8ePt7erk5HyrKYGJZGVyKGEGIJJp5AwsJKT7G1adM3TJrQm6YYjLBZuQr4CfjIbMHPvyETp/yMj081hzFOnDjMC892IOP0UR62ZXAdsAd4z2zhsMWdcZErad78+mI4G/jmmxl8+OFjXG82c7/Nhh/wLfBfk5nm13ThlXHfFUuhlZKSxMujO3Pk4B8Ms1m5EUgAPjRb2G4YjHrmCzp37lfkeTjL8eMHGf1MB4zE4zxsy6AdsBt4z+xGvJs7r45fTdOmoa5OU0REJFcpKUn07+9LYmIiPj4+dvupyMqDiiwpdlFRLI1vQwwhRNOVgAAIDi7ZxVZa2gXuH1ybLimJ/M8wcM/WtgsINVvo0H04Dz/8nsM4kyf15cDGJfxiy+CqbMdTgO4mM3uqX8X7H+3DbC7aK52PHz/I8AfqM9Kw8RZgytYWDdxsMjH4/mn06vVkkeYBMHv283z/1VTW26y0zHbcCkRg4muPCnz2+RG8ve3/R1+STBzfi7hfl/GLLYOAbMfPAbeYLRyoUYeZH+wu8jEWERG5EvktsvRbTKSkiYggPCyZyIBZhLEW4uOIjYWYGFcnZt/69YtIOneGaZcVWABNgMdtVqJXz+bChXN2Y5w+ncDGX77ihcsKLABv4A3DxpHjB9m2baWTs/+3FSs+xttkYjw5CyyAMKCvAd9/O6PI88jISGf19x/w0GUFFoAFmIpBWtp5oqPnFHkuznDyZBwxm5by0mUFFkBF4HWblbij+9ixY60r0hMREXEaFVkiJVFICAQHExm2huCAcwQHuzohxw4e/IM6Fnca2WnvBpxPO8+JE4fsxoiLi8Vq2LjJTnt7wNts5tChnYXMNm8HD/5BB8NGJTvtN2NwOGEPVqu1SPM4c+YoiecS7b4mAUAzi1uxvCbOcPjwLmyGYfd8OgFepuIZYxERkaKkIktECs3LqyJnDBtpdtqPXfzT09P+JbdeXhVz9L1cEpBqMxzGcBYvr4ocM1nsth8DPNzci/yStkvnau81sQEnKZ7XxBnyGuMzQKphw8OjdJyPiIiIPSqyRKTQQkN7k2SzsiCXNgOYZTLTuH5LqlcPshujfv1W1KoWyAd22j8FMJm47rrwwiechw4derPdlkFuV2imAZ+Y3egQ2heT6fKLCZ2rcuWqtGjemQ/NZnJbPP4b4Ig1g9DQPkWah7M0atSWmlVq2x3jjwGL2Y3rrutZnGmJiIg4nYosESm0OnWuJjTkDh42W1hE5qIMAKeAx4GVho27+o91WJRYLBb69hvDF8DLZM5cAaQDnwEvmMzc1O1+qlW7/G4e5wsJCad+UHP6mN34gcxCEeAQcLfJxEET9O7zbJHnAXBXv5f5xWYwjH9mgGxkFlhDzBZaXhNGcHAJXhUlG4vFjT79XuFzYCxw9uLxNOAT4GWTmZtveYAqVfxdlqOIiIgzqMgSEad48uk5NGt1M3cDQRY32lrcCTSZ+cDizogRMwkN7Z1njO7dH2TgwEgmm8wEmC20tbgRaHHjfqBD53t4aETRLzYBmcXAmNdWUqFOc8KAhhY3WlncqYeJ1Z7ejH5xMQ0btimWXFq3voXHn/iML9w8CDKZaWtxp67FjXAgqFknnn/xyyKfUXOmW28dwYAB4xhvMlE72xg/AHS8oT8PPPi2q1MUEREpNC3hngct4S4uc3E5wVdiB3Fp5YuSvIz7JX//vYmffppPSkoSAQGNufHGwfj51SxQjBMnDrNmzX84dmw/lStXo0uXgdSr16KIMrbPZrOxfftqNm1aSnp6Kg0atKZLl4F4e1cu9lySkk6ydu1/OXRoJxUqVCI0tC/NmnUsVQVWdsePH2LNmv9w/PgBKleuTljYQG1ELCIiJZ72yXISFVniMjExEBvLK/EjsjYnDgiAiAhXJyYiIiJSPmmfLJHSLiQEIiKIDJhFBFFZe2ZFRZXsPbNEREREyjsVWSIlXbbNiSOIgvg4oqNRsSUiIiJSQrm5OgERyYeQEAgJITwmBmLXEkMIJX6HYhEREZFySjNZIqVMePAuV6cgIiIiIg6oyBIREREREXEiFVkiIiIiIiJOpCJLRERERETEiVRkiYiIiIiIOJFWFxQpbWJjCQk+Q1TsP4dCQlyXjoiIiIjkpCJLpDS5VE1FryWYc8QSTHR8YI4mEREREXEtFVkipU1ICOEhEB41i6XxbYghhOjorsTGZm6dpWJLRERExLV0T5ZIaRURQXhYMpEBswhjLcTHER0NMTGuTkxERESkfNNMlkhpdnHaKjJ4DUupSFRsoIsTEhERERHNZImIiIiIiDiRiiwREREREREn0uWC5cD51FQW/fwzvx84gLenJ3d26EDL+vVdnZaUMDabjd9+W8OOHWsxDINmzTrRpk0PLBZLgeIcPryLn39exLlziQQGBnP99f3w9q5cRFmLiIiIlDwqssq4bzZtYvDUqZxKSaGBxcJpw2Dc3LmEt21L1LPP4uPt7eoUpQRISNjLxMjb2X/oT/wtbliARYsmEVirPi+8spQ6da7OM0Za2gVmvHM/0T/OpbLZQnWTma+tGXz60ROMePRDwsIGFv2JiIiIiJQAulywDNu4axd9Jkzg+vPn+RvYY7Vy1GbjC+CHrVu5Z9IkDMNwdZriYikpSYx5MQy3uL+JBuKtGRyyZrABqHr8IGNeDOPMmWN5xpnx7jB++Wk+HwLHbFb2WtPZj0Gf1BTemjaIzZuXF/GZiIiIiJQMKrLKsIkLFtAEWGQYNLp4zB0YAMy22fh++3Y27trlugTFeWJjMx8Xl3GPisr/U9es+ZzjJw6zwpZBF8B08dEBWGmzciH5FMuXf+AwRlxcLNE/fME7ho0HAa+Lx4OA/wDXm0wsmDuuwKclIiIiUhqpyCqjUlJT+ebXX3nIZsM9l/ZewFUWCwvWry/u1MTZQkIy98xiKRFEZe2ZFRWVvz2z1v84l9uA3O7SqwXcbbPx8w9zHMdYv4hKZguDcmkzA48aNv6M3cjJk3F5JyQiIiJSyqnIKqPOXbiAzTCwt2uSGQgAklJSijErKVLZNieOICrHrJajYuv8uTNchf3LRq8CzqckOfzS588nUc1kzprByi0GZF6aKCIiIlLWqcgqo6pWqkS1ihX5yU77KeA3m43ggIDiTEuK2qVZrbBkIgLWEhYQm+dTagc150ezm90yK9psofZVTR3GCAxswiFrBgfstP8AeLh5UK3aVXZ6iIiIiJQdKrLKKIvFwrDu3fnYbGbnZW0GMAawmc0MuekmF2QnxSE8eBchwWfy7Ne9x0P8YcvgP7m0fQ2st1npftsjDmNcf/09eHtV5HlMWC9rOwi8bXbjhrCBWspdREREygUVWWXYC3fdRb3AQDqZzbxM5mzCQuAWk4mZwFsPPkhNPz+X5iiu17LlTdzc7X7uBwYD3wErgOHAXSYTHTv0pkOH3g5jeHlV5OHHPmahCTqbzcwBfgTGA+3Mbpir1mbQoIlFfCYiIiIiJYP2ySrD/CpV4ofXX2fMnDm8s2oVE1JTAWhXvz5f9utH79BQF2coJYHJZOLRkR9Rp24Lvv1qKp+fPAxAdb9aDAh/gj59ns3XhsSdO/ejUqWqLJg7joi/fgbA092Tzl3uJSJiAlWq+BfpeYiIiIiUFCZDGyU5lJSUhK+vL4nz5pXqjXtTUlM5fOIE3p6eXFW9uqvTkaJ2caWLpYQTFRtCcHDm7Vp5sVqtHDu2H8MwqFWrHhbLlX0Oc+rUEVJSkqhWLZAKFSpdUQwRERGRkiYlJYn+/X1JTEzEx8fHbj/NZJUT3p6eBAfaW2tQJJPFYqF27YaFjlO1am2qVq3thIxERERESp9Sc0/WqVOnGDhwID4+Pvj5+TFs2DCSk5Md9n/sscdo0qQJFSpUoE6dOjz++OMkJiYWY9YiLhQbm+Ov+dkzS0REREQKr9TMZA0cOJAjR46wcuVK0tPTGTp0KMOHD+eLL77ItX98fDzx8fG8+eabNG/enAMHDjBixAji4+NZtGhRMWcvUswuXRsYvZZgzhFLMNHxgTmaRERERKRolIp7sv7880+aN2/Opk2baNeuHQDLly/ntttu4/DhwwTkc6+nhQsXEhERwblz53Bzy199WVbuyZJyLCqKpfFtiCGEaLoSEEC+79ESERERkX/k956sUnG54IYNG/Dz88sqsAC6deuG2Wxm48aN+Y5z6cVwVGClpqaSlJSU4yFSql3cnDgyYBZhrIX4OKKjISrK1YmJiIiIlE2l4nLBhIQEatasmeOYm5sbVatWJSEhIV8xTpw4QWRkJMOHD3fYb9KkSbz66qtXnKtIiXRx2ioyeA1LqUgMgdlv2RIRERERJ3LpTNbo0aMxmUwOH3/99Vehv05SUhI9e/akefPmjBs3zmHfF154gcTExKzHoUOHCv31RURERESk/HDpTNbTTz/NkCFDHPZp0KAB/v7+HDt2LMfxjIwMTp06hb+/4w1Oz549S48ePahcuTKLFy/G3d3dYX9PT088PT3zlb+IiIiIiMjlXFpk1ahRgxo1auTZLzQ0lDNnzrB582batm0LwJo1a7DZbLRv397u85KSkujevTuenp4sWbIELy8vp+UuIiIiIiKSm1Kx8EWzZs3o0aMHDz74IDExMaxfv56RI0fSv3//rJUF4+LiaNq0KTEXNwNKSkrilltu4dy5c3zyySckJSWRkJBAQkICVqvVlacjIiIiIiJlWKlY+AJgzpw5jBw5kptuugmz2Uzfvn155513strT09PZtWsXKSkpAGzZsiVr5cFGjRrliLVv3z7q1atXbLmLiIiIiEj5USr2yXIl7ZMlZcqlPbMCehMdH0xAAEREuDopERERkdKhTO2TJSJOEhFBeMAWQuIXZ+2ZFRUFF6+yFREREREnUJElUt5k25w4gqgcmxOr2BIREREpPBVZIuVRSEhWsRVBFGEBmTsTa4NiERERkcJTkSVSnoWEZF4+GHyG4GBXJyMiIiJSNpSa1QVFAOJPnuT+d97hh+3buWCz4Q40r1+fmSNG0KlZs2LNJWrtWl6OiuLw8ePYgEoeHvTt3JkPHn4YDw+PYssjPSODj1esYNa33/LH4cNU9PSkT8eOPN27N9fUrVtseThLSkoS33wzg9XLP+DoycP4VPSlc9f7uPPOp6lRIyhfMQzD4Mcf57Fs6dv8vXszFouFNm160Kv3szRv3qmIz0BERETKO60umAetLlhy7EtI4NpHHyUtPZ0BQHtgH/AxcBaY+9xz3HX99cWSy7OffsrUr76iLjAMqAJ8CywHgqpV4+8PPiiWQistPZ1ekZGs3L6dXsBNhsExYLbZzFGzmSWvvMLNrVs7DhIVxVLCiSGEWIIJDs68mtAVzp49xcujO3Pk8F/0N2y0B/YAn5ot2Lx9iJz0I3XrXuMwhmEYvDfzIb5f8RE3mcz0MmycA/5rduNPm5WRj33MzTffXxynIyIiImVMflcXVJGVBxVZJUfTESM4Eh/POqBFtuOngK7AbouFs//7H2Zz0V4FuysujuYPP8xdQBTgnq3tS+AuYECXLsx5+ukizQNg8qJFjPnvf1lmGHTLdvwC0Mdk4pcKFTg0ezYVvbzsB4mJgdhYlsa3IYoI4gl02dLub08fwpboKH6yWbk62/GTQFezhbMBwbw98w9MJpPdGOvWLWDKlH58BgzJdtwGjAA+NZmZ9eEeatWqVwRnICIiImWZlnCXMuXA0aP8HR/P8+QssACqAm8DKVYr05csKfJcRn3yCRZgJjkLLIA+QDjw9fr1RZ6HzWbjvaVLGXRZgQXgBcw0DM6kpDDvxx8dB7p8EQwXLe1+9uwpfvrhC56/rMACqAZMs1nZf/hPdu5c5zDOsqXv0MVsyVFgQeZ/dm8BFU0mvv/+Q6flLSIiInI5FVlSKny/bRs2MguY3HQBvIHVv/1W5Lns2L+fUKC6nfZewLmMDJJTUoo0j+OJiRw6fdrua1IfuNZi4dfdu/MXMCTE7tLuxeHgwT9Is6bbPZ+bgAomM7t3/+owzp49m7nDZs21rSJwk83K7r+1Vr2IiIgUHS18IaWC98X7m87aaU8F0gEv98vnlpzP3WIhyUH7pRw93Ir2x8vj4rnae02Mi20eBXlNQkIyi62oKAjuSgyBQOaMVlHfp+Xm5niMzwPpGFn97MaxuHOWC3bbk0wm3N0dXD4pIiIiUkiayZJSoU9oKB4mE7PttM8ns8ga0aNHkefS87rr2AbsyKXNBnwG1PTxKfKFL6pUqkSHRo2YbTKR242V64C9Vis927Ur0jycpUGD1lSpXM3uGM8FrAa0aeN4jNuEhPO5xY2MXNoOAmsNaHfd7YVLVkRERMQBFVlSKnh7eXFz27Z8BMyArDfQBrAKeAwI9PPLeyU9J5gYEYGX2Uwf4K9sx5OBR4HtwHN9+xZ5HgDP3X03awyDF8ic6blkKxBhNtOqbl26tWxZLLkUlru7B3f0eZYPgPfIOcbfA0+ZLXQM7U3t2g0dxunVaxQHbDaGAGeyHd8H3Gm24OdTjS5dBjo9fxEREZFLVGRJqfHViy/Som5dHgOuIvPep2uAmwG3ChX4eerUYsmjkrc3S8aO5ZDZTDOgI3A7UAv4ABgUFsbTvXsXSy69Q0N5Y+hQpgCBZjN3AO3NZtoAlfz9WTJmTJGvtuhMvXs/S49bR/AoUM/ixp3ANWYLPYD6zTrx2BOf5RmjUaO2jHrmCxZY3Ak0mekJdDGZaAgcrFyVsZGr8PauXKTnISIiIuWblnDPg5ZwL3nm/vADkxYtIuH0aSpXqMDQbt0Y3bcvbkV8D9TlTiUlMfrzz1m2eTMZGRk0DghgytChhDZtWqx5AOyOj+ejFSv44+BBKnp50Sc0lN4dOhTsfqzsoqJYGvw0MfxzI1Zx7p21Z88WVq78hGNH91HZpzpdugykVaubC1Qwnjp1hBUrPmb33zFY3Dxo06YHXbrci5dXxSLMXERERMoy7ZPlJCqypFxycZElIiIiUhLlt8jS6oIikrvotcA5YgO6Zh1SoSUiIiKSt9Jzs4aIFJ+LmxNHBswiOH5t1p5Zxbk5sYiIiEhppZksEcndxT2zIqNmsTS+DTGEEP2/a4mNrUZwsGa1REREROzRTJaIOJZtVuu5Ft8BEBurWS0RERERezSTJSJ5uzRtFQvBwa5NRURERKSk00yWiIiIiIiIE6nIEhERERERcSIVWSIiIiIiIk6kIktERERERMSJVGSJSMHExro6AxEREZESTasLiki+hbMU4uOIio8gnkBiYyEiwtVZiYiIiJQsmskSkfwJCcnaMyuCKMJYC/FxTJmiPbNEREREslORJSIFExKStTlxBFEEnPyN6GiIilKxJSIiIgK6XFBErkRISGaxFRMDsb8RE3ytqzMSERERKTE0kyUiIiIiIuJEKrJEREREREScSEWWiIiIiIiIE6nIEhERERERcSIVWSIiIiIiIk6k1QVFpHDi4yB+LbEBXbMOhYS4MB8RERERF1ORJSJXLiSEcGIIj53FK/EQSzDR8YGXmkRERETKJRVZIlI4F/fMioyaxdL4NsQQQvT/riU2thrBwSq2REREpPzRPVki4hwREYSHJRMZMIvnWnwH8XHExkJMjKsTExERESlemskSEee5OG0Vzi5iCIFgF+cjIiIi4gKayRIREREREXEizWTlwTAMAJJSUlyciUgpkZqa+Ud6MqQmAaAfHxERESkLUlIy39tcqhHsMRl59SjnDh8+TFBQkKvTEBERERGREuLQoUNcddVVdttVZOXBZrMRHx9P5cqVMZlMDvsmJSURFBTEoUOH8PHxKaYMJS8al5JJ41IyaVxKJo1LyaRxKZk0LiVTWRkXwzA4e/YsAQEBmM3277zS5YJ5MJvNDqvU3Pj4+JTqb56ySuNSMmlcSiaNS8mkcSmZNC4lk8alZCoL4+Lr65tnHy18ISIiIiIi4kQqskRERERERJxIRZYTeXp6MnbsWDw9PV2dimSjcSmZNC4lk8alZNK4lEwal5JJ41Iylbdx0cIXIiIiIiIiTqSZLBERERERESdSkSUiIiIiIuJEKrJEREREREScSEWWiIiIiIiIE6nIKqRTp04xcOBAfHx88PPzY9iwYSQnJ+fruYZhcOutt2Iymfjqq6+KNtFypqDjcurUKR577DGaNGlChQoVqFOnDo8//jiJiYnFmHXZM3PmTOrVq4eXlxft27cnJibGYf+FCxfStGlTvLy8aNGiBcuWLSumTMuXgozLRx99ROfOnalSpQpVqlShW7dueY6jXJmC/rxcMm/ePEwmE3feeWfRJlhOFXRczpw5w6OPPkrt2rXx9PQkODhY/5cVgYKOy/Tp07N+xwcFBfHUU09x4cKFYsq27Pvxxx8JDw8nICAg3+9ro6OjadOmDZ6enjRq1IjZs2cXeZ7FypBC6dGjh9GyZUvjl19+MX766SejUaNGxoABA/L13GnTphm33nqrARiLFy8u2kTLmYKOy44dO4w+ffoYS5YsMXbv3m2sXr3aaNy4sdG3b99izLpsmTdvnuHh4WF8+umnxh9//GE8+OCDhp+fn3H06NFc+69fv96wWCzGlClTjJ07dxovv/yy4e7ubuzYsaOYMy/bCjou9957rzFz5kxj69atxp9//mkMGTLE8PX1NQ4fPlzMmZdtBR2XS/bt22cEBgYanTt3Nnr16lU8yZYjBR2X1NRUo127dsZtt91mrFu3zti3b58RHR1tbNu2rZgzL9sKOi5z5swxPD09jTlz5hj79u0zvv/+e6N27drGU089VcyZl13Lli0zXnrpJePLL7/M1/vavXv3Gt7e3saoUaOMnTt3Gu+++65hsViM5cuXF0/CxUBFViHs3LnTAIxNmzZlHfvuu+8Mk8lkxMXFOXzu1q1bjcDAQOPIkSMqspysMOOS3YIFCwwPDw8jPT29KNIs80JCQoxHH300699Wq9UICAgwJk2alGv/e+65x+jZs2eOY+3btzceeuihIs2zvCnouFwuIyPDqFy5svGf//ynqFIsl65kXDIyMoyOHTsaH3/8sTF48GAVWUWgoOPy/vvvGw0aNDDS0tKKK8VyqaDj8uijjxo33nhjjmOjRo0yOnXqVKR5llf5eV/73HPPGVdffXWOY/369TO6d+9ehJkVL10uWAgbNmzAz8+Pdu3aZR3r1q0bZrOZjRs32n1eSkoK9957LzNnzsTf3784Ui1XrnRcLpeYmIiPjw9ubm5FkWaZlpaWxubNm+nWrVvWMbPZTLdu3diwYUOuz9mwYUOO/gDdu3e3218K7krG5XIpKSmkp6dTtWrVokqz3LnScXnttdeoWbMmw4YNK440y50rGZclS5YQGhrKo48+Sq1atbjmmmuYOHEiVqu1uNIu865kXDp27MjmzZuzLincu3cvy5Yt47bbbiuWnOXfysPvfL17LISEhARq1qyZ45ibmxtVq1YlISHB7vOeeuopOnbsSK9evYo6xXLpSscluxMnThAZGcnw4cOLIsUy78SJE1itVmrVqpXjeK1atfjrr79yfU5CQkKu/fM7ZpK3KxmXyz3//PMEBAT865ejXLkrGZd169bxySefsG3btmLIsHy6knHZu3cva9asYeDAgSxbtozdu3fzyCOPkJ6eztixY4sj7TLvSsbl3nvv5cSJE1x//fUYhkFGRgYjRozgxRdfLI6UJRf2fucnJSVx/vx5KlSo4KLMnEczWbkYPXo0JpPJ4SO/b0gut2TJEtasWcP06dOdm3Q5UJTjkl1SUhI9e/akefPmjBs3rvCJi5QRkydPZt68eSxevBgvLy9Xp1NunT17lkGDBvHRRx9RvXp1V6cj2dhsNmrWrMmHH35I27Zt6devHy+99BKzZs1ydWrlWnR0NBMnTuS9995jy5YtfPnll3z77bdERka6OjUpwzSTlYunn36aIUOGOOzToEED/P39OXbsWI7jGRkZnDp1yu5lgGvWrGHPnj34+fnlON63b186d+5MdHR0ITIv24pyXC45e/YsPXr0oHLlyixevBh3d/fCpl0uVa9eHYvFwtGjR3McP3r0qN0x8Pf3L1B/KbgrGZdL3nzzTSZPnsyqVau49tprizLNcqeg47Jnzx72799PeHh41jGbzQZkztrv2rWLhg0bFm3S5cCV/LzUrl0bd3d3LBZL1rFmzZqRkJBAWloaHh4eRZpzeXAl4/LKK68waNAgHnjgAQBatGjBuXPnGD58OC+99BJms+Ycipu93/k+Pj5lYhYLNJOVqxo1atC0aVOHDw8PD0JDQzlz5gybN2/Oeu6aNWuw2Wy0b98+19ijR4/mt99+Y9u2bVkPgLfeeovPPvusOE6v1CrKcYHMGaxbbrkFDw8PlixZok/qC8HDw4O2bduyevXqrGM2m43Vq1cTGhqa63NCQ0Nz9AdYuXKl3f5ScFcyLgBTpkwhMjKS5cuX57jXUZyjoOPStGlTduzYkeP3yB133EHXrl3Ztm0bQUFBxZl+mXUlPy+dOnVi9+7dWUUvQGxsLLVr11aB5SRXMi4pKSn/KqQuFcKGYRRdsmJXufid7+qVN0q7Hj16GK1btzY2btxorFu3zmjcuHGOpcIPHz5sNGnSxNi4caPdGGh1Qacr6LgkJiYa7du3N1q0aGHs3r3bOHLkSNYjIyPDVadRqs2bN8/w9PQ0Zs+ebezcudMYPny44efnZyQkJBiGYRiDBg0yRo8endV//fr1hpubm/Hmm28af/75pzF27Fgt4V4ECjoukydPNjw8PIxFixbl+Lk4e/asq06hTCrouFxOqwsWjYKOy8GDB43KlSsbI0eONHbt2mV88803Rs2aNY3x48e76hTKpIKOy9ixY43KlSsbc+fONfbu3WusWLHCaNiwoXHPPfe46hTKnLNnzxpbt241tm7dagDGtGnTjK1btxoHDhwwDMMwRo8ebQwaNCir/6Ul3J999lnjzz//NGbOnKkl3CWnkydPGgMGDDAqVapk+Pj4GEOHDs3x5mPfvn0GYKxdu9ZuDBVZzlfQcVm7dq0B5PrYt2+fa06iDHj33XeNOnXqGB4eHkZISIjxyy+/ZLV16dLFGDx4cI7+CxYsMIKDgw0PDw/j6quvNr799ttizrh8KMi41K1bN9efi7FjxxZ/4mVcQX9eslORVXQKOi4///yz0b59e8PT09No0KCBMWHCBH1YVwQKMi7p6enGuHHjjIYNGxpeXl5GUFCQ8cgjjxinT58u/sTLKHvvoy6Nw+DBg40uXbr86zmtWrUyPDw8jAYNGhifffZZseddlEyGoXlSERERERERZ9E9WSIiIiIiIk6kIktERERERMSJVGSJiIiIiIg4kYosERERERERJ1KRJSIiIiIi4kQqskRERERERJxIRZaIiIiIiIgTqcgSERERERFxIhVZIiJSKgwZMgSTyfSvx+7du50Sf/bs2fj5+Tkl1pX68ccfCQ8PJyAgAJPJxFdffeXSfERE5MqoyBIRkVKjR48eHDlyJMejfv36rk7rX9LT06/oeefOnaNly5bMnDnTyRmJiEhxUpElIiKlhqenJ/7+/jkeFosFgK+//po2bdrg5eVFgwYNePXVV8nIyMh67rRp02jRogUVK1YkKCiIRx55hOTkZACio6MZOnQoiYmJWTNk48aNA8h1RsnPz4/Zs2cDsH//fkwmE/Pnz6dLly54eXkxZ84cAD7++GOaNWuGl5cXTZs25b333nN4frfeeivjx4+nd+/eTni1RETEVdxcnYCIiEhh/fTTT9x333288847dO7cmT179jB8+HAAxo4dC4DZbOadd96hfv367N27l0ceeYTnnnuO9957j44dOzJ9+nTGjBnDrl27AKhUqVKBchg9ejRTp06ldevWWYXWmDFjmDFjBq1bt2br1q08+OCDVKxYkcGDBzv3BRARkRJFRZaIiJQa33zzTY7i59Zbb2XhwoW8+uqrjB49Oqt4adCgAZGRkTz33HNZRdaTTz6Z9bx69eoxfvx4RowYwXvvvYeHhwe+vr6YTCb8/f2vKLcnn3ySPn36ZP177NixTJ06NetY/fr12blzJx988IGKLBGRMk5FloiIlBpdu3bl/fffz/p3xYoVAdi+fTvr169nwoQJWW1Wq5ULFy6QkpKCt7c3q1atYtKkSfz1118kJSWRkZGRo72w2rVrl/X3c+fOsWfPHoYNG8aDDz6YdTwjIwNfX99Cfy0RESnZVGSJiEipUbFiRRo1avSv48nJybz66qs5ZpIu8fLyYv/+/dx+++08/PDDTJgwgapVq7Ju3TqGDRtGWlqawyLLZDJhGEaOY7ktbHGp4LuUD8BHH31E+/btc/S7dA+ZiIiUXSqyRESk1GvTpg27du3KtQAD2Lx5MzabjalTp2I2Z675tGDBghx9PDw8sFqt/3pujRo1OHLkSNa///77b1JSUhzmU6tWLQICAti7dy8DBw4s6OmIiEgppyJLRERKvTFjxnD77bdTp04d7rrrLsxmM9u3b+f3339n/PjxNGrUiPT0dN59913Cw8NZv349s2bNyhGjXr16JCcns3r1alq2bIm3tzfe3t7ceOONzJgxg9DQUKxWK88//zzu7u555vTqq6/y+OOP4+vrS48ePUhNTeXXX3/l9OnTjBo1KtfnJCcn59j3a9++fWzbto2qVatSp06dwr1IIiJSbLSEu4iIlHrdu3fnm2++YcWKFVx33XV06NCBt956i7p16wLQsmVLpk2bxuuvv84111zDnDlzmDRpUo4YHTt2ZMSIEfTr148aNWowZcoUAKZOnUpQUBCdO3fm3nvv5ZlnnsnXPVwPPPAAH3/8MZ999hktWrSgS5cuzJ492+G+Xr/++iutW7emdevWAIwaNYrWrVszZsyYK31pRETEBUzG5Reai4iIiIiIyBXTTJaIiIiIiIgTqcgSERERERFxIhVZIiIiIiIiTqQiS0RERERExIlUZImIiIiIiDiRiiwREREREREnUpElIiIiIiLiRCqyREREREREnEhFloiIiIiIiBOpyBIREREREXEiFVkiIiIiIiJOpCJLRERERETEif4PeqyKnHFL6wYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3HklEQVR4nOzdd3QUVRvH8e/spockhF6lI0gXEOnF0KsKSFEQ7IKFpqJ0FHhVFFRQLFjoRUAQpUiVokiV3lvoLQkQ0nbm/SMQCemwyRL4fc7Jgcy9c+eZspt9dubea1iWZSEiIiIiIiJOYXN1ACIiIiIiIvcSJVkiIiIiIiJOpCRLRERERETEiZRkiYiIiIiIOJGSLBERERERESdSkiUiIiIiIuJESrJEREREREScSEmWiIiIiIiIEynJEhERERERcSIlWSKS4Y4cOYJhGPzwww9pWq9evXrUq1cvXWK61xUuXJhnn33W1WHEWblyJYZhMHv2bKe2+88//1CjRg18fX0xDIOtW7c6tf270Z2cW1e/pq5cuUKuXLmYMmWKy2IQ5+rQoQPt27d3dRgiLqckS+Q+9MMPP2AYRtyPl5cX+fLlo3Hjxnz22WdcvnzZ1SHeVW4kBDf/ZMuWjUcffVQfDu8i0dHRtGvXjosXL/Lpp58yadIkChUq5OqwWLduHUOGDCEkJMTVodx1xo4di5+fHx06dEi0/K233sIwDJ566qkMjuzetG7dOmrVqoWPjw958uTh9ddf58qVK6la99b3wBs/o0aNilfv7bff5ueff2bbtm3psQsimYabqwMQEdcZNmwYRYoUITo6mtOnT7Ny5UrefPNNPvnkE+bPn0/58uXTZbuFChXi2rVruLu7p2m9JUuWpEs8qfX6669TtWpVAC5cuMCMGTN4+umnCQkJoUePHi6NTeDgwYMcPXqUb775hueff97V4cRZt24dQ4cO5dlnnyVr1qxOb3/v3r3YbLf3nakrX1PR0dGMHTuWXr16YbfbE5RblsW0adMoXLgwCxYs4PLly/j5+bkg0nvD1q1beeyxxyhdujSffPIJwcHBfPzxx+zfv5/ff/89VW00bNiQLl26xFtWqVKlBL9XqVKF0aNH89NPPzktfpHMRkmWyH2sadOmVKlSJe73/v37s3z5clq0aEGrVq3YvXs33t7eTt/ujbtnaeXh4eH0WNKidu3atG3bNu73V155haJFizJ16tT7KsmKiIjAw8Pjtj/Yp5ezZ88CODWRuXr1Kr6+vk5rLyWmaRIVFZWm14enp+dtb8+Vr6lff/2Vc+fOJflo2cqVKwkODmb58uU0btyYOXPm0LVr1wyOMnXCw8Px8fFxdRjJevfddwkMDGTlypX4+/sDsY+avvDCCyxZsoRGjRql2EbJkiV5+umnU6zXvn17Bg8ezPjx48mSJcsdxy6SGd1dfyFFxOUaNGjAwIEDOXr0KJMnT45XtmfPHtq2bUu2bNnw8vKiSpUqzJ8/P0EbISEh9OrVi8KFC+Pp6UmBAgXo0qUL58+fBxLvk3X69Gm6detGgQIF8PT0JG/evLRu3ZojR47E1Ums/8jZs2d57rnnyJ07N15eXlSoUIEff/wxXp0b2/v444/5+uuvKVasGJ6enlStWpV//vnnto+Vh4cHgYGBuLnF/74qJiaG4cOHx22ncOHCvPvuu0RGRsarZxgGQ4YMSdDurX1sbjzeuXbtWnr37k3OnDnx9fXl8ccf59y5c/HWtSyL999/nwIFCuDj40P9+vXZuXNngm1cvHiRvn37Uq5cObJkyYK/vz9NmzZN8IjPjUclp0+fzoABA8ifPz8+Pj5s3boVwzD49NNPE7S9bt06DMNg2rRpKR1CHA4H7777Lnny5MHX15dWrVpx/PjxBPX+/vtvmjRpQkBAAD4+PtStW5e1a9fGlT/77LPUrVsXgHbt2mEYRrxrZfny5dSuXRtfX1+yZs1K69at2b17d7xtDBkyBMMw2LVrF506dSIwMJBatWrFlU+ePJnKlSvj7e1NtmzZ6NChQ6Kx3tpmv379AChSpEjcI1Y3rmvDMOjZsydTpkyhTJkyeHp6smjRIgA+/vhjatSoQfbs2fH29qZy5cqJ9mG7k+vl1tfUjfM9c+ZMPvjgAwoUKICXlxePPfYYBw4cSLDtcePGUbRoUby9vXnkkUf4888/U93Pa968eRQuXJhixYolWj5lyhQeeugh6tevT1BQUJKP5p44cYLnnnuOfPny4enpSZEiRXjllVeIioqKq5PSe9KNY3bz+83Nx2PlypXxjlnZsmXZtGkTderUwcfHh3fffReAX375hebNm8fFUqxYMYYPH47D4UgQ999//02zZs0IDAzE19eX8uXLM3bsWAC+//57DMNgy5YtCdYbMWIEdrudEydOcP78efbs2UN4eHjSBxoICwtj6dKlPP3003EJFkCXLl3IkiULM2fOTHb9m127do2IiIhk6zRs2JCrV6+ydOnSVLcrcq/RnSwRSeCZZ57h3XffZcmSJbzwwgsA7Ny5k5o1a5I/f37eeecdfH19mTlzJm3atOHnn3/m8ccfB2I7steuXZvdu3fTvXt3Hn74Yc6fP8/8+fMJDg4mR44ciW7zySefZOfOnbz22msULlyYs2fPsnTpUo4dO0bhwoUTXefatWvUq1ePAwcO0LNnT4oUKcKsWbN49tlnCQkJ4Y033ohXf+rUqVy+fJmXXnoJwzD48MMPeeKJJzh06FCqHl28fPly3IeyixcvMnXqVHbs2MF3330Xr97zzz/Pjz/+SNu2benTpw9///03I0eOZPfu3cydOzfF7STltddeIzAwkMGDB3PkyBHGjBlDz549mTFjRlydQYMG8f7779OsWTOaNWvG5s2badSoUbwPnACHDh1i3rx5tGvXjiJFinDmzBkmTJhA3bp12bVrF/ny5YtXf/jw4Xh4eNC3b18iIyMpVaoUNWvWZMqUKfTq1Ste3SlTpuDn50fr1q1T3KcPPvgAwzB4++23OXv2LGPGjCEoKIitW7fG3UVdvnw5TZs2pXLlygwePBibzcb3339PgwYN+PPPP3nkkUd46aWXyJ8/PyNGjIh7rDN37twA/PHHHzRt2pSiRYsyZMgQrl27xueff07NmjXZvHlzguurXbt2lChRghEjRmBZVlycAwcOpH379jz//POcO3eOzz//nDp16rBly5Yk75498cQT7Nu3j2nTpvHpp5/GXf85c+aMq7N8+XJmzpxJz549yZEjR1w8Y8eOpVWrVnTu3JmoqCimT59Ou3bt+PXXX2nevHmKxzY110tSRo0ahc1mo2/fvoSGhvLhhx/SuXNn/v7777g6X375JT179qR27dr06tWLI0eO0KZNGwIDAylQoECK21i3bh0PP/xwomWRkZH8/PPP9OnTB4COHTvSrVs3Tp8+TZ48eeLqnTx5kkceeYSQkBBefPFFSpUqxYkTJ5g9ezbh4eF4eHjc9ntSci5cuEDTpk3p0KEDTz/9dNy19sMPP5AlSxZ69+5NlixZWL58OYMGDSIsLIyPPvoobv2lS5fSokUL8ubNyxtvvEGePHnYvXs3v/76K2+88QZt27alR48eTJkyJcHjeFOmTKFevXrkz5+fIUOGMHToUFasWJFsYrt9+3ZiYmLiPbkAsV8UVaxYMdFkLjE//PAD48ePx7IsSpcuzYABA+jUqVOCeg899BDe3t6sXbs27m+DyH3HEpH7zvfff28B1j///JNknYCAAKtSpUpxvz/22GNWuXLlrIiIiLhlpmlaNWrUsEqUKBG3bNCgQRZgzZkzJ0GbpmlalmVZhw8ftgDr+++/tyzLsi5dumQB1kcffZRs3HXr1rXq1q0b9/uYMWMswJo8eXLcsqioKKt69epWlixZrLCwsHjby549u3Xx4sW4ur/88osFWAsWLEh2uytWrLCABD82m8364IMP4tXdunWrBVjPP/98vOV9+/a1AGv58uVxywBr8ODBCbZXqFAhq2vXrnG/3zhfQUFBccfQsiyrV69elt1ut0JCQizLsqyzZ89aHh4eVvPmzePVe/fddy0gXpsRERGWw+GIt93Dhw9bnp6e1rBhwxLse9GiRa3w8PB49SdMmGAB1u7du+OWRUVFWTly5Ii3rcTcaDd//vxx58myLGvmzJkWYI0dO9ayrNhrpkSJElbjxo3j7VN4eLhVpEgRq2HDhgnanDVrVrxtVaxY0cqVK5d14cKFuGXbtm2zbDab1aVLl7hlgwcPtgCrY8eO8dY/cuSIZbfbE5zr7du3W25ubgmW3+qjjz6yAOvw4cMJym5cRzt37kxQduvxjoqKssqWLWs1aNAg3vLbvV4sK+Fr6sYxLF26tBUZGRm3fOzYsRZgbd++3bIsy4qMjLSyZ89uVa1a1YqOjo6r98MPP1hAvDYTEx0dbRmGYfXp0yfR8tmzZ1uAtX//fsuyLCssLMzy8vKyPv3003j1unTpYtlstkTfy27se2rek24cs1vP0Y3jsWLFirhldevWtQDrq6++StDerefMsizrpZdesnx8fOLeO2NiYqwiRYpYhQoVsi5dupRoPJZlWR07drTy5csX73W6efPmeO+dN67Zm+NLzKxZsyzAWr16dYKydu3aWXny5El2fcuyrBo1alhjxoyxfvnlF+vLL7+0ypYtawHW+PHjE61fsmRJq2nTpim2K3Kv0uOCIpKoLFmyxI0yePHiRZYvX0779u3j7uacP3+eCxcu0LhxY/bv38+JEycA+Pnnn6lQoUKi314ahpHotry9vfHw8GDlypVcunQp1TH+9ttv5MmTh44dO8Ytc3d3jxsxa9WqVfHqP/XUUwQGBsb9Xrt2bSD2rk5qDBo0iKVLl7J06VJmzJhBx44dee+99+Ie8bkRE0Dv3r3jrXvjG/mFCxemev9u9eKLL8Y7hrVr18bhcHD06FEg9o5NVFQUr732Wrx6b775ZoK2PD094/pUORwOLly4QJYsWXjwwQfZvHlzgvpdu3ZN0D+vffv2eHl5xXuMa/HixZw/fz5V/TYg9nGlmwczaNu2LXnz5o07jlu3bmX//v106tSJCxcuxF17V69e5bHHHmP16tWYpplk+6dOnWLr1q08++yzZMuWLW55+fLladiwYdx2bvbyyy/H+33OnDmYpkn79u3jtn/+/Hny5MlDiRIlWLFiRar2NSl169bloYceSrD85uN96dIlQkNDqV27dqLnJzEpXS/J6datW7z+Wre+VjZu3MiFCxd44YUX4j0u27lz53ivsaRcvHgRy7KSrDtlyhSqVKlC8eLFAfDz86N58+bxrjXTNJk3bx4tW7ZMcIcG/nu/uZ33pJR4enrSrVu3BMtvPmc33itr165NeHg4e/bsAWDLli0cPnyYN998M8Ed0Jvj6dKlCydPnox3fU2ZMgVvb2+efPJJIPZxVMuyUnw889q1a3Fx38rLyyuuPDlr167ljTfeoFWrVrz88sts2rSJsmXL8u677ya6fmBgYNydf5H7kZIsEUnUlStX4j78HjhwAMuyGDhwIDlz5oz3M3jwYOC/QQcOHjxI2bJl07QtT09P/ve///H777+TO3du6tSpw4cffsjp06eTXe/o0aOUKFEiwQAMpUuXjiu/2QMPPBDv9xsf8FKb2JUrV46goCCCgoJo3749kydPpkWLFrzzzjtxfV2OHj2KzWaL+3B4Q548eciaNWuqPuAmJaX4b7RdokSJePVy5syZ4MOsaZp8+umnlChRAk9PT3LkyEHOnDn5999/CQ0NTbDtIkWKJFiWNWtWWrZsydSpU+OWTZkyhfz589OgQYNU7dOtsRqGQfHixeP6xuzfvx+ITfJuvfa+/fZbIiMjE433hhvH5MEHH0xQVrp06biELbl93b9/P5ZlUaJEiQQx7N69O+7av12JHVuIHRji0UcfxcvLi2zZspEzZ06+/PLLZPf3Zndyvaf2Wrv1Ondzc0vy8d7EWNcfx7xZSEgIv/32G3Xr1uXAgQNxPzVr1mTjxo3s27cPgHPnzhEWFpbi+83tvCelJH/+/IkOGrJz504ef/xxAgIC8Pf3J2fOnHFfONw4bwcPHgRIMaaGDRuSN2/euMTSNE2mTZtG69at0zzK4o3k79Z+oRA7kM3tDHDk4eFBz549CQkJYdOmTQnKLcu67SRW5F6gPlkikkBwcDChoaFxH6Bu3Cno27cvjRs3TnSdWz9spdWbb75Jy5YtmTdvHosXL2bgwIGMHDmS5cuXJ+iTcLsSGyYaEv+gl1qPPfYYv/76Kxs2bIjXT+ZOPlwk1kkenBv/iBEjGDhwIN27d2f48OFky5YNm83Gm2++meidoaQ+hHXp0oVZs2axbt06ypUrx/z583n11VedNvLgjVg++ugjKlasmGgdZ49eduu+mqaJYRj8/vvviZ6DO91+Ysf2zz//pFWrVtSpU4fx48eTN29e3N3d+f777+Mltcm5k+slPV4rN8uWLRuGYSSa8M2aNYvIyEhGjx7N6NGjE5RPmTKFoUOHOiWOG5J6vSb1WkzsnIWEhFC3bl38/f0ZNmwYxYoVw8vLi82bN/P2228ne8c1MXa7nU6dOvHNN98wfvx41q5dy8mTJ1N9l/hmefPmBWLv7N7q1KlTCfpgplbBggWB2DuTt7p06VKCL1FE7idKskQkgUmTJgHEJVRFixYFYh/FCwoKSnbdYsWKsWPHjtvabrFixejTpw99+vRh//79VKxYkdGjRycY5fCGQoUK8e+//2KaZrwP9Tcey8mIiWhjYmIA4ib0LFSoEKZpsn///rg7agBnzpwhJCQkXkyBgYEJJqiNiopK9INQatxoe//+/XHnDGK/8b/1w+zs2bOpX79+gkE7QkJC0jQQQJMmTciZMydTpkyhWrVqhIeH88wzz6R6/Rt3qm6wLIsDBw7EzdF2Y+Q5f3//FK+9xNw4Jnv37k1QtmfPHnLkyJHiEO3FihXDsiyKFClCyZIl0xzD7STcP//8M15eXixevDjeI17ff/99mttKDzeO64EDB6hfv37c8piYGI4cOZLiHHtubm4UK1aMw4cPJyibMmUKZcuWjbtLfrMJEyYwdepUhg4dSs6cOfH390/x/SY170k37tTd+npMy53nlStXcuHCBebMmUOdOnXilt+6jzeu6R07dqR4TXfp0oXRo0ezYMECfv/9d3LmzJnkF13JKVu2LG5ubmzcuDHekPlRUVFs3bo1yWH0U3Lj8dGbB3KB2Ovg+PHjtGrV6rbaFbkX6HFBEYln+fLlDB8+nCJFitC5c2cAcuXKRb169ZgwYUKiCcDNw0I/+eSTbNu2LdFR9JL6Fjw8PDzBkMDFihXDz88v0cdbbmjWrBmnT5+ON1paTEwMn3/+OVmyZIkb0js9/frrrwBUqFAhLiaAMWPGxKv3ySefAMS721WsWDFWr14dr97XX3+d5LfnKQkKCsLd3Z3PP/883rG+NRaI/Zb81vMxa9asuL51qeXm5kbHjh2ZOXMmP/zwA+XKlUvTJNY//fRTXN8/iE3+Tp06RdOmTQGoXLkyxYoV4+OPP45LZG9265Dkt8qbNy8VK1bkxx9/jPcBeseOHSxZsiTufCXniSeewG63M3To0ATHzLIsLly4kOz6N5K4Wz/AJ8dut2MYRrxr4ciRI8ybNy/VbaSnKlWqkD17dr755pu4LxogNkFK7eO31atXZ+PGjfGWHT9+nNWrV9O+fXvatm2b4Kdbt24cOHCAv//+G5vNRps2bViwYEGCduC/95vUvCfdSHxufj06HA6+/vrrVO0L/Hf37+ZrJCoqivHjx8er9/DDD1OkSBHGjBmT4Jq49foqX7485cuX59tvv+Xnn3+mQ4cO8frApXYI94CAAIKCgpg8eXK819ukSZO4cuUK7dq1i1t2o//Yzf2pEnudXb58mTFjxpAjRw4qV64cr2zXrl1ERERQo0aNZOMSuZfpTpbIfez3339nz549xMTEcObMGZYvX87SpUspVKgQ8+fPjzch6rhx46hVqxblypXjhRdeoGjRopw5c4b169cTHBwcN79Sv379mD17Nu3ataN79+5UrlyZixcvMn/+fL766qu4ZORm+/bt47HHHqN9+/Y89NBDuLm5MXfuXM6cOUOHDh2SjP/FF19kwoQJPPvss2zatInChQsze/Zs1q5dy5gxY9LcbyElf/75Z1wyeGOfVq1aRYcOHShVqhQQm2x17dqVr7/+Ou7xoQ0bNvDjjz/Spk2beN/6P//887z88ss8+eSTNGzYkG3btrF48eLbGlIaYr9N7tu3LyNHjqRFixY0a9aMLVu28Pvvvydos0WLFgwbNoxu3bpRo0YNtm/fzpQpU+LdAUutLl268Nlnn7FixQr+97//pWndbNmyUatWLbp168aZM2cYM2YMxYsXj5s6wGaz8e2339K0aVPKlClDt27dyJ8/PydOnGDFihX4+/uzYMGCZLfx0Ucf0bRpU6pXr85zzz0XN4R7QEBAovOU3apYsWK8//779O/fP26Ycj8/Pw4fPszcuXN58cUX6du3b5Lr3/gA+t5779GhQwfc3d1p2bJlsnfQmjdvzieffEKTJk3o1KkTZ8+eZdy4cRQvXpx///03xZjTm4eHB0OGDOG1116jQYMGtG/fniNHjvDDDz9QrFixVN29a926NZMmTWLfvn1xdwinTp2KZVlJ3gFp1qwZbm5ucXdOR4wYwZIlS6hbty4vvvgipUuX5tSpU8yaNYs1a9aQNWvWVL0nlSlThkcffZT+/ftz8eJFsmXLxvTp0+MlkCmpUaMGgYGBdO3alddffx3DMJg0aVKCxMlms/Hll1/SsmVLKlasSLdu3cibNy979uxh586dLF68OF79Ll26xF1ftz4q+MUXX6RqCHeInYagRo0acccqODiY0aNH06hRI5o0aRJXb8OGDdSvX5/BgwfHvT7GjRsXN8jIAw88wKlTp5g4cSLHjh1j0qRJCfqnLV26FB8fHxo2bJjq4ydyz8nAkQxF5C5xY7jiGz8eHh5Wnjx5rIYNG1pjx46NN6T2zQ4ePGh16dLFypMnj+Xu7m7lz5/fatGihTV79ux49S5cuGD17NnTyp8/v+Xh4WEVKFDA6tq1q3X+/HnLshIO4X7+/HmrR48eVqlSpSxfX18rICDAqlatmjVz5sx47d463LRlWdaZM2esbt26WTly5LA8PDyscuXKxbV7w43tJTZEPEkMo36zxIZw9/DwsEqVKmV98MEHVlRUVLz60dHR1tChQ60iRYpY7u7uVsGCBa3+/fvHG/7esizL4XBYb7/9tpUjRw7Lx8fHaty4sXXgwIEkh+S+dZjqxIaXdjgc1tChQ628efNa3t7eVr169awdO3YkaDMiIsLq06dPXL2aNWta69evT3JI71uHRb9VmTJlLJvNZgUHBydb79Z2p02bZvXv39/KlSuX5e3tbTVv3tw6evRogvpbtmyxnnjiCSt79uyWp6enVahQIat9+/bWsmXLUhXrH3/8YdWsWdPy9va2/P39rZYtW1q7du2KV+fGcNjnzp1LNOaff/7ZqlWrluXr62v5+vpapUqVsnr06GHt3bs3xf0dPny4lT9/fstms8UbKhywevTokeg63333nVWiRAnL09PTKlWqlPX999/HxXizO7leUnu+b33N3vDZZ59ZhQoVsjw9Pa1HHnnEWrt2rVW5cmWrSZMmKR6TyMhIK0eOHNbw4cPjlpUrV8564IEHkl2vXr16Vq5cueKGjj969KjVpUsXK2fOnJanp6dVtGhRq0ePHvGGoE/pPcmyYt/fgoKCLE9PTyt37tzWu+++ay1dujTRY1amTJlEY1u7dq316KOPWt7e3la+fPmst956y1q8eHGiw6yvWbPGatiwoeXn52f5+vpa5cuXtz7//PMEbZ46dcqy2+1WyZIlE5Sldgj3G/7880+rRo0alpeXl5UzZ06rR48eCd7vb1wDN78vLlmyxGrYsGHce3/WrFmtRo0axXv93axatWrW008/naqYRO5VhmU5qReriIjctypVqkS2bNlYtmyZq0MRFzJNk5w5c/LEE0/wzTffpFh/+PDhfP/99+zfvz/JwTbud+fPnydv3rwMGjSIgQMHujqcFG3dupWHH36YzZs3JzlYjcj9QH2yRETkjmzcuJGtW7fSpUsXV4ciGSgiIiLBo3A//fQTFy9eTPHRtRt69erFlStXmD59ejpEeG/44YcfcDgcaRpQxpVGjRpF27ZtlWDJfU93skRE5Lbs2LGDTZs2MXr0aM6fP8+hQ4fi9eOTe9vKlSvp1asX7dq1I3v27GzevJnvvvuO0qVLs2nTpkTnkZLUW758Obt27WLgwIHUr1+fOXPmuDokEUkDDXwhIiK3Zfbs2QwbNowHH3yQadOmKcG6zxQuXJiCBQvy2WefxQ0W0aVLF0aNGqUEywmGDRvGunXrqFmzJp9//rmrwxGRNNKdLBERERERESdSnywREREREREnUpIlIiIiIiLiREqyREREREREnEhJloiIiIiIiBMpyRIREREREXEiJVkiIiIiIiJOpCRLRERERETEiZRkiYiIiIiIOJGSLBERERERESdSkiUiIiIiIuJESrJEREREREScSEmWiIiIiIiIEynJEhERERERcSIlWSIiIiIiIk6kJEtERERERMSJlGSJiIiIiIg4kZIsERERERERJ1KSJSIiIiIi4kRKskRERERERJxISZaIiIiIiIgTKckSERERERFxIiVZIiIiIiIiTqQkS0RERERExIncXB3A3c40TU6ePImfnx+GYbg6HBERERERcRHLsrh8+TL58uXDZkv6fpWSrBScPHmSggULujoMERERERG5Sxw/fpwCBQokWa4kKwV+fn4AHJ84EX8fHxdHIyIiIiIirhIWHk7B7t3jcoSkKMlKwY1HBP19fJRkiYiIiIhIit2INPCFiIiIiIiIEynJEhERERERcSIlWSIiIiIiIk6kPlkiIiIiIncBC4ix2XAYBmjqoIxnWdgtCzfT5E6PvpIsEREREREXi7LZOOXvT7i3txIsV7IsfK5dI29YGB6medvNKMkSEREREXEhEzicIwf2LFnIFxiIh5vbHd9JkbSzgKiYGM5dusRhDw9KnD17232rlGSJiIiIiLhQlN2O6eZGwRw58PH0dHU49zVvDw/c7XaORkQQZbfj5XDcVjsa+EJERERExJWuPx5oc9ZjgoYBNpseO7xNcefhDo6f7mSJiIiIiGR2hgHu7mC3w813wyIjweGA6GiwLNfFd59RkiUiIiIikpm5uYGXV+z/f/4ZZs+GS5cgMBDatoUnnwQPD4iIgJgY18Z6n1CSJSIiIiKSWbm5gY8PLFoE3bvDmTPxy2fPhty5YeJEaNIEwsNdkmgZgYHMnTyZNs2bZ/i2XUF9skREREREMiPDiL2DtWgRtGqVMMG64cyZ2PJFi2LrO7mv1ukzZ3jtrbcoWrEinrlzU7BMGVp26MCyVaucup3bZVkWg0aMIG+pUnjnzUtQmzbsP3gwXbepJEtEREREJDNyd4/9t3v32H5XyXE44Lnn4q/nBEeOHaNy/fos//NPPho2jO1r17Jo9mzq165Nj379nLadO/Hh2LF8NmECX33yCX8vXYqvjw+Nn3ySiIiIdNumkiwRERERkczIbo/tg5XUHaxbnT4Nc+bEruckr/bpg2EYbPjjD55s1YqSxYtTpnRpevfowV9Llya53tuDB1OyShV88uWjaMWKDPzgA6Kjo+PKt23fTv2WLfErWBD/Bx6gcr16bNyyBYCjx47RskMHAgsXxjd/fspUr85vS5Ykuh3Lshjz1VcM6NuX1s2aUb5sWX768ktOnj7NvIULnXYcbqU+WSIiIiIid6OsWVOuM3t22tqcPRvat48/AuHNQkJS3dTFS5dYtGwZHwwYgK+vb4LyrAEBSa7r5+fHD+PGkS9vXrbv3MkLb76JX5YsvPXGGwB0fvFFKpUvz5ejR2O329m6fTvubrGpS49+/YiKjmb1woX4+vqya88esiSyfYDDR49y+swZgurVi1sWEBBAtcqVWf/PP3R48slU729aKMkSEREREcmsLl1K3/rJOHDoEJZlUapkyTSvO6Bv37j/F37gAfoeOMD0OXPikqxjJ07Q7/XX49ouUaxYXP1jwcE82aoV5cqUAaBo4cJJbuf09bt8uXPmjLc8d65cnD57Ns1xp5aSLBERERGRu1Fyd5UMAwICYodpT4sb9UND73jeLOsO1p8xZw6fTZjAwSNHuHL1KjExMfj7+cWV9371VZ5//XUmzZhBUN26tGvThmJFigDw+ksv8UqfPixZvpygevV4smVLypcte0f74mzqkyUiIiIiktlYVuxEw23bpm29tm1j13PCxMQlihXDMAz27NuXpvXWb9hA5xdfpFnDhvw6fTpbVq3ivT59iIqKiqsz5J132Ll+Pc0bNWL5n3/y0KOPMvfXXwF4vksXDm3ZwjNPPcX2Xbuo0qABn3/9daLbypM7NwBnzp2Lt/zM2bPkyZUrTXGnhZIsEREREZHMyOGInWj4eiKRojx54IknUh6JMJWyBQbSuEEDxn33HVevXk1QHhIamuh66zZsoFDBgrzXty9VKlWiRLFiHD1+PEG9ksWL0+vVV1kyZw5PtGjB91OmxJUVLFCAl7t3Z86kSfTp0YNvfvwx0W0VKVSIPLlzxxtOPiwsjL83baJ61app3eVUU5IlIiIiIpIZ3RiNb+LElEcMtNvhu+/ir+cE4z7+GIfDwSNBQfw8fz77Dx5k9969fDZhAtUbNUp0nRJFi3IsOJjpP//MwcOH+WzChLi7VADXrl2jZ79+rFyzhqPHjrH2r7/4Z8sWSl/vn/Vm//4sXraMw0ePsnnbNlasWUPpBx9MdFuGYfDmyy/z/scfM/+339i+cyddXnmFfHnypOvEyOqTJSIiIiKSGVkWRERAkyYwf37sPFinTyeslydPbILVpAmEhzvlUcEbihYuzOaVK/lg9Gj6DBjAqTNnyJkjB5UrVODL0aMTXadVs2b0euUVer71FpFRUTRv2JCB/foxZNQoAOx2OxcuXqTLyy9z5tw5cmTPzhMtWjC0f38AHA4HPfr1I/jkSfz9/Gjy2GN8OmJEkjG+9cYbXA0P58VevQgJDaXWo4+yaPZsvLy8nHYcbmVYd9Jj7T4QFhZGQEAAodOn4+/j4+pwREREROQeE+HmxuFcuShSsCBeHh5pb8DNDW4kDHPmxA7TfulS7CAXbdvGPiIIsQlZTIzzAr9HRURFcfj4cYqcPYvXLccrLDycgA4dCA0Nxd/fP8k2dCdLRERERCQzi4mBq1fB3R1at46dB+uGyEiIior9kQyjJEtEREQkBZZl8e+RI5wPC+OBnDkpkS+fq0O6Iw6Hg00HD3Ll2jVK5s9PgRw5bqudfSdOcPz8eXL6+1OucGEMw3BypJJqlvVfIhURETvEu2U59dFASb1MlWStXr2ajz76iE2bNnHq1Cnmzp1LmzZtkl1n5cqV9O7dm507d1KwYEEGDBjAs88+myHxioiISOb36z//0O/7SewJPhK3rPqDZRj7YneqlijhusBu0zeLFzNk2ixOXoydiNXAoGnlKnz+0gsUzZMnVW38tWcPb377PX/v2x237KGCRfi4exeaVq6cLnFLGii5crlMNbrg1atXqVChAuPGjUtV/cOHD9O8eXPq16/P1q1befPNN3n++edZvHhxOkcqIiIi94JZa9bQavj77D1RAlgMHARm8fd+D+q88x4b0jg/kKuNmj2bF8eN4+TFhsAa4AAW37B4yzmq9X2HY7fMJZSY9Xv2UPfdAfxzwAeYTewx+Z3dwUVoPmw48/76K313QiQTyLQDXxiGkeKdrLfffpuFCxeyY8eOuGUdOnQgJCSERYsWpWo7GvhCRETk/hQdE0O+Z5/nfFg9YBbxv5u+ht1Wi0dKRLLuo5GuCTCNTl+6RMFuzxFj9gFG3VJ6FjdbRZ5pUIaJr7+ebDuVe/Vj6yF/TGs1cPPobA4MHid34F8cn/g1bikNKS5x7njgC3EqZwx8kanuZKXV+vXrCQoKirescePGrF+/3kURiYiISGbx+6ZNnA+7CAwl4Ucmbxxmf9bv3cne4GAXRJd2k1euxLTcgXcSKc1FjNmTKStXEx4ZmWQbO44eZfPBvZjWe8RPsADsWAzh9KVzLN261XmBi2RC93SSdfr0aXLfMgN27ty5CQsL49q1a4muExkZSVhYWLwfERERuf8cPXcOm+EJlE2iRpW4epnB0bNnsduKAlmTqFGFqJgozoWGJtnGf48TVkmiRiXA4OjZs7cdpziBYYDNFvuvuMQ9nWTdjpEjRxIQEBD3U7BgQVeHJCIiIi6Q098f04oEjiVR40Bcvcwgh78/phUMRCRR4wA2w0ZglizJthFrfxI1DgPWTfUkwxgGeHgQ7e0HAQHg7w8BAbG/e3go4cpg93SSlSdPHs6cORNv2ZkzZ/D398fb2zvRdfr3709oaGjcz/HjxzMiVBEREbnLtKhaFR9PH2B0IqUmhvExJfM9QMWiRTM6tNvSqW5dHGYo8F0ipdew2z6nRdVHku2DXqV4cYrkzo/Bx0Bi3fo/xs87C82qJHWnS9KFmxsxvv7EeHgzZ56Ndu0gKAjatYM582zEeHgT4+sfO2mxZIh7OsmqXr06y5Yti7ds6dKlVK9ePcl1PD098ff3j/cjIiIi958s3t4M6dge+Ax4E7jxxesuDJ7Cshbz4bNPZ5q5oUrky8dzDRthGG8CI4ALxCZK67EZTXCzH2ZIx6eSbcNms/FRt2ewWAh0AvZcLzkG9AS+ZFinp/Dx9Ey3/ZBbuLlh+viyZAkUKGDQoYPB7NmwbBnMng0dOhgUKGCwZAmYPr4uS7SMwEDmLVzokm27QqZKsq5cucLWrVvZer0z5eHDh9m6dSvHjsXexu/fvz9dunSJq//yyy9z6NAh3nrrLfbs2cP48eOZOXMmvXr1ckX4IiIiksn0ffxxPnz2WXw8vwEewGZ4A2XI5reMaX370vrRR10dYpp89eorvNaiKW72IUDO6/tTg4I5DrBk6GAqFSuWYhtP1qjB5N69CcyyCCh9vY1C+Hr+wCfPPccbrVql707IfwyDGC9fFi2CVq0MbnmAK86ZM7HlixZBjJev0x8dPH3mDK+99RZFK1bEM3duCpYpQ8sOHVi2apVTt3O75ixYQKMnniB70aIYgYFs3b493beZqe4Zbty4kfr168f93rt3bwC6du3KDz/8wKlTp+ISLoAiRYqwcOFCevXqxdixYylQoADffvstjRs3zvDYRUREJPMxDIN+TzzBy02asOCffzgXGkqhXLloVrkyHu7urg4vzdzsdsa+8AID2rfn13/+4fK1a5QuUIDHKlTAZkv9d++d69Wjbc2a/LZxI8fOnSNXQACtqlXD1+vWEQclXV2/Brt3N3A4kq/qcMBzzxkcP27FrhcV5ZQQjhw7Rs0mTcgaEMBHw4ZR7qGHiI6OZvHy5fTo1489GzY4ZTt34urVq9R69FHat2nDC2+8kSHbzLTzZGUUzZMlIiIiIunpdufJivb2Y848Gx06pP7O1IwZFo+3NnG/dvl2Qk2gWbt2/LtrF3s3bMDX1zdeWUhoKFkDAoDYxwXnTp5Mm+bNAXh78GDmLlxI8MmT5MmVi87t2jHorbdwv544btu+nTfffZeNW7diGAYlihZlwqefUqVSJY4eO0bPt95izV9/ERUdTeEHHuCjoUNp1qhRsrEeOXaMIhUqsGX1aiqWK5dkPWfMk5Wp7mSJiIiIiNw3smZNttid2H5XaTF7tkH79nbwTKLtkJBUt3Xx0iUWLVvGBwMGJEiwgLgEKzF+fn78MG4c+fLmZfvOnbzw5pv4ZcnCW9fvNHV+8UUqlS/Pl6NHY7fb2bp9O+7X+5P16NePqOhoVi9ciK+vL7v27CFLItt3JSVZIiIiIiKZ1KVL6Vs/OQcOHcKyLEqVLJnmdQf07Rv3/8IPPEDfAweYPmdOXJJ17MQJ+r3+elzbJW7qL3gsOJgnW7WiXJkyABQtXPgO9iJ9KMkSEREREbkbJXdXyTAgIIDAwLQ1GVc/NBTusNfQnfQ6mjFnDp9NmMDBI0e4cvUqMTEx+Pv5xZX3fvVVnn/9dSbNmEFQ3bq0a9OGYkWKAPD6Sy/xSp8+LFm+nKB69XiyZUvKl01q0nDXyFSjC4qIiIiICGBZREc6aNs2bYlO27ax691pggWxd5cMw2DPvn1pWm/9hg10fvFFmjVsyK/Tp7Nl1Sre69OHqJsG4xjyzjvsXL+e5o0asfzPP3no0UeZ++uvADzfpQuHtmzhmaeeYvuuXVRp0IDPv/76jvfHmZRkiYiIiIhkQu6OSJ58EnLnTl39PHngiSdi13OGbIGBNG7QgHHffcfVq1cTlIeEhia63roNGyhUsCDv9e1LlUqVKFGsGEePH09Qr2Tx4vR69VWWzJnDEy1a8P2UKXFlBQsU4OXu3ZkzaRJ9evTgmx9/dMo+OYuSLBERERGRzCg6GoCJEy3s9uSr2u3w3XdWvPWcYdzHH+NwOHgkKIif589n/8GD7N67l88mTKB6EqP9lShalGPBwUz/+WcOHj7MZxMmxN2lArh27Ro9+/Vj5Zo1HD12jLV//cU/W7ZQ+nr/rDf792fxsmUcPnqUzdu2sWLNGko/+GCSMV68dImt27eza0/s5Nl79+9n6/btnE5qYjEnUJIlIiIiIpIZWRZuEVdp0gTmz7fIkyfxannyxJY3aQJuEVed8qjgDUULF2bzypXUr1WLPgMGULZGDRo+8QTLVq3iy9GjE12nVbNm9HrlFXq+9RYV69Rh3d9/M7Bfv7hyu93OhYsX6fLyy5SsWpX23bvTNCiIof37A+BwOOjRrx+lq1WjSdu2lCxWjPEff5xkjPN//51KderQ/KmnAOjw3HNUqlOHr77/3mnH4VaaJysFmidLRERERNLT7c6TFcfNjRiv2CHM58yJHab90qXYQS7atrV44onr1SKuwi3zPklCmidLREREROR+FxOD29UwcHfn8daesfNgXRcdaeIWFQk3DSoh6U9JloiIiIhIZmdZEBWFO1EQYcQO8W5ZuOuhNZdQkiUiIiIici+xLKf2u5K008AXIiIiIiIiTqQkS0RERETEla7fddJ4dHeHuPNwB+dDSZaIiIiIiAu5myaYJuEanOKuEB4VBaYZe15uk/pkiYiIiIi4kN2yyHrlCmfPnwfAx8MDwzBcHNX9x7IswqOiOHv+PFmvXMF+B3eylGSJiIjcBfYEB/PN4sXsDj6Bn7cXT9aoweOPPoq7m/5U34mzISH0+/57lm7dSoxpUrpAAT7u1o2qJUu6OjSRePJcuQLA2ZgYsOlhM5cxTbJeuRJ3Pm6X3rlFRERc7P0ZMxg4ZQp2W3YcZi1stpPMXPMhpQsW5o9hg8mXPburQ8yU5q5fT9tRozGtaKAW4M+50OU80rcfLzVuxFc9erg6RJE4BpD3yhVyXb1KtM0WOwS7ZCzLwt007+gO1g1KskRERFxo2qpVDJwyBRiEw3wX8CS2G8Am9p9oRYvhI9n06Ud6dCiNzoaE0HbUx5hWSeAXoNj1kjDgDSYs/pGHixfnxcaNXRekSCLsloXd4XB1GHKHdC9SRETERSzLYsTsediMJsBQwPOm0srEmD+y5dA+Vu3Y4aIIM69+33+PacUQP8EC8Ae+BYozdNoMl8QmIvc+JVkiIiIuciYkhB1HD2Ja3ZKo8Rhu9nz8tnFjhsZ1L/hj2zagJvETrBvsQDdOXryYsUGJyH1DSZaIiIiLRMXEXP+fXxI1DAx8b6onqRXjMIm9a5WULIDmJBKR9KEkS0RExEXyZctGDv9swIIkauwl2rGfKsWLZ2RY94TSBfIDK4jtg5WYX/Dx9MnAiETkfqIkS0RExEXc7HZ6NGuEzZgIrLylNByb8SrZ/QJpW7OmC6LL3D5+7jkgAngNuHUQgcnAMro2qJPhcYnI/UFJloiIiAv1b9eOumVLYxhBGDwJjAMG4GYrgYf7ema/0xcvDw9Xh5npVClenFeaNgEmAQ8CHwCfAY8Bz1AsTz6+eOklV4YoIvcww7KcMBD8PSwsLIyAgABCp0/H30ePFYiIiPNFRUfzzZIljFu4hH0nj+Hj6c1TtWvQp00bShUo4OrwMrXvli5lyNTpBF+4CJj4evrSpUFtvnjpJWya8FVE0igsPJyADh0IDQ3F3z/pfp9KslKgJEtERERERCD1SZa+whEREREREXEiJVkiIiIiIiJOpCRLRERERETEiZRkiYiIiIiIOJGSLBERERERESdSkiUiIiIiIuJESrJEREREREScSEmWiIiIiIiIEynJEhERERERcSIlWSIiIiIiIk6kJEtERERERMSJlGSJiIiIiIg4kZIsERERERERJ1KSJSIiIiIi4kRKskRERERERJzIzdUBiIiISKwr164RfOECWby8KJAjx2214XA4OHzmDBZQJHdu3Oz222rnxIULXL52jQLZs5PF2/u22rh05QqnL10iu58fubJmva027iZnQ0K4cPkyeQMDyZoli8viiLl+jg1iz7H9Ns+xM9xr51jSR0RUFEfPnsXT3Z1CuXJhGIarQ0p3SrJERERc7FxoKAMmT+an5auIiI4AoHLxBxnasT3Nq1ZNVRsOh4NPfvmFT3/5jVOXzgKQJzAnvVo1o0+bNqn+IP7bxo0MmTqTfw7sAcDL3Ytn6tfh/aefTvWH6P0nT/LepMnMWb8eh+kAIKjCw7z/dEeqPfhgqtq4m/y9dy8DJk/lj21bALDb7DxZowYfPN2Z4vnyZVgcMQ4Ho+fN49NfFnIm5DwA+bLlolfr5vRq1SpDk619J07w7k+TmfvXX5hW7DluVLEyHzzTiSolSmRYHHJ3u3LtGkOmTePrxX9w+doVAEoVKMyA9k/QuV491waXzgzLsixXB3E3CwsLIyAggNDp0/H38XF1OCIico85HxbGI33e5ti5azjMN4B6wGlsxnhMaxUTX3+dbkFBybZhWRadR3/K9NWrsegKdLheMgPD+JH2NWsytW9vbLbkewn8tHw5z44Zi2HUxrReBfIBK7HbxlIwhyd/fzwqxURrT3Aw1fu9w+VrgTjMXsDDwH7strHYjD0sHjqI+uXLp+LI3B2Wb9tGkyHDMa1SOMw3geLAZuy2T/HzvsT6j0ZRqkCBdI/DNE06ffwJM9euxbKeBZ4CLGA6Bj/SqW4dJvXulSF3CHYdO0aNt97lSkS26+e4ErAPu20Mdts+lg4bQp2yZdM9Drm7XY2IoN67A9lyKBiH2QNoCoRiGN9hWQv44Omnebd9e1eHmWZh4eEEdOhAaGgo/v7+SdZTkpUCJVkiIpKeen71FV8tWo/D/AcodlOJBTyHl/s0Tv04MdnH0xb+8w8thg8HpvFfgnXDLKA9v7z3Hq2qVUuyjdCrV8nbtTvXotoDE4nfbfsQdltVXmj0CF+++mqy+/PYgMGs2nEVh/kXEHhTSSQ2owkFcuzl8Ddfppjw3Q0cDgdFXniFExdKY1q/A543lV7EbnuU+uWysHT40HSP5Ze//qLNiBHEns+2t5ROAzqxcNAgmlWpku6x1O0/gLW7o3CY64GsN5VEYDMaUSjXIQ5MGJcpzrGkn5GzZjFg8kxMay1Q+ZbSgRh8wP4JX1Esb15XhHfbUptk6eoXERFxkYioKL5ftvL6t7zFbik1gBFExsQwZdWqZNv5atES7LbKJEywANpht1VlwqIlybYxddUqIqKjgREk/HhQFIfZkx+XryI8MjLJNg6fPs3yf7fgMAcSP8EC8MS0RnLs3CmWbduWbCx3i2X//svx86cxrVHET7AAsuEwB/DHti0cOXMm3WP58vcl2G2PkDDBAuiA3VaJr35fnO5x7D95ktU7/8VhDiJ+ggXghWmN4PCZE6zasSPdY5G72/jflmJaHUmYYAH0x2YL4LulSzM6rAyjJEtERMRFTl+6RHhkOFA7iRp5cLOXYN/Jk8m2s+vYSRxmnSTLHWZddh0/lWwb+06exM1WlNhHBBNTh2tR1zh96VKSbew/dWMbSe1PNQzDPcX9uVvsO3ECw/AAkuoXF3vM92fA/uwOPpXMOTZwmHXZHZz8OXaG//Y1qXNcEzAyzTmW9BEdE0PwhdPceI0k5INpVb2nrxMlWSIiIi7y32PoJ5KoEY1lnsE/hdH9smbxSaYNgGCy+ibfRoCPD5Z1DohKsg0Av2RiCUhxf85iWdGZ5vF7fx8fLCsKOJdEjeC4eukt0Delc3ycAJ/bGwUyLVI+x6cAK8VrVu5tbnY7nu6eJH2dWNhtwff0daIkS0RExEWy+flRr1wF7LZxQEwiNWYQY16kfa1aybbTqU4NbMY84HgipcHYjLl0qlsz2Tba1qxJjHmJ2P49t3Jgs42jTpny5AwISLKNKsWLkz97buDzJGqMw9PdkxapHDHR1VpUrYqHmwcwLokaX1AwRx6qFC+e7rF0rFsDmzGHxD+0HsMw5qd4jp2h2oMPkicwJ0mf4y/wcvfKkL5hcvcyDIP2tWrgZvsGCE+kxkpiHLtTfG/LzJRkiYiIuNCQjk9hWVsx6AAcvr40EvgBm+0lHn+0BuUKF062je4NG5I7awB2WxDwJ7GDZljAGuy2huTK6s9zDRsm20bZQoV4snpNbLZXiR344kbfq8MYdMSyNjGkY/IjgdntdoZ3fgqYDrwJnL1eEgb8D4MP6N26JYEunGMqLbL5+dGrdUsM3gc+BC5fLzkLvAHMYFjnpzJk6PTnGzYkZ4AfbraGwFr+O8ercbM1JG9gIN1TGIXSGdzsdoZ1ag9MAXrz312+MGL7842i3xOtCfD1TfdY5O729pNP4mY/i81oAey8vjQGmIPd1o5HSpSmUaVKLowwfWl0wRRodEEREUlvP69bR7exX3D52lXc7YUwrYs4zDDa1qjFj73ewMfz1kEXEtp/8iQth49k74mjuNnzAAYxjlOUzPcACwb2p2T+/Cm2cS0ykq5jPmPW2j+x2/ywGdmJdhwli5cv37/Rg7Y1U3en5NNffuGdHycR7bBwsxfAYZ7BsiJ4o2VLPu72rEsnz00rh8NBn4nf89mvv2IYXthtuYlxBONuN/hf12d4s3XrDItlb3AwLd8fxf6Tx3Cz5wUsYhynKVWgMPMHvEOJDJyza/TcufSfNAWHA+z2/Dgcp4Eoerdpxf+6dtXIggLAqh07aDfqY86FXcTd/gCWdYUY8yL1y1Vk1tt9yZ7M6Hx3Kw3h7iRKskREJCNcjYhg1tq17AkOJouXF0/WqEHpggXT1IZpmizbto1VO2O/Na5TpgxBFSqk+QPvnuBgfl63jsvXrlGqQAHa1ayJr5dXmtq4ePky01av5ti5c+QMCKBD7doUyJEjTW3cTY6fO8eMNWs4FxrKAzlz0rFOHbL5+WV4HKZp8se2bazasQPDMKhXtiwNypd3SVJzISyMaatXc/z8eXIFBNChTh3yZ8+e4XHI3S0qOpp5f//NloMH8fLwoEXVqlTOgEds04uSLCdRkiUiIiIiInAPz5M1btw4ChcujJeXF9WqVWPDhg3J1h8zZgwPPvgg3t7eFCxYkF69ehEREZFB0YqIiIiIyP0mUyVZM2bMoHfv3gwePJjNmzdToUIFGjduzNmzZxOtP3XqVN555x0GDx7M7t27+e6775gxYwbvvvtuBkcuIiIiIiL3i0yVZH3yySe88MILdOvWjYceeoivvvoKHx8fJk6cmGj9devWUbNmTTp16kThwoVp1KgRHTt2TPHul4iIiIiIyO3KNElWVFQUmzZtIuim4UltNhtBQUGsX78+0XVq1KjBpk2b4pKqQ4cO8dtvv9GsWbMktxMZGUlYWFi8HxERERERkdRyc3UAqXX+/HkcDge5c+eOtzx37tzs2bMn0XU6derE+fPnqVWrFpZlERMTw8svv5zs44IjR45k6NChTo1dRERERETuH5nmTtbtWLlyJSNGjGD8+PFs3ryZOXPmsHDhQoYPH57kOv379yc0NDTu5/jx4xkYsYiIiIiIZHaZ5k5Wjhw5sNvtnDlzJt7yM2fOkCdPnkTXGThwIM888wzPP/88AOXKlePq1au8+OKLvPfee4nOKeHp6YlnKiZ9FBERERERSUymuZPl4eFB5cqVWbZsWdwy0zRZtmwZ1atXT3Sd8PDwBInUjVnmNT2YiIiIiIikh0xzJwugd+/edO3alSpVqvDII48wZswYrl69Srdu3QDo0qUL+fPnZ+TIkQC0bNmSTz75hEqVKlGtWjUOHDjAwIEDadmyZVyyJSIiIiIi4kyZKsl66qmnOHfuHIMGDeL06dNUrFiRRYsWxQ2GcezYsXh3rgYMGIBhGAwYMIATJ06QM2dOWrZsyQcffOCqXRARERERkXucYem5uWSFhYUREBBA6PTp+Pv4uDocERERERFxkbDwcAI6dCA0NBR/f/8k62WaPlkiIiIiIiKZgZIsERERERERJ1KSJSIiIiIi4kRKskRERERERJwoU40uKCIiIpIWpmmyaPNmftu4kaiYGCoXL07nunXJ4u2d4bGcCw3lx+XL2XviBH7e3rStUYPqpUphGEaGxyL3NsuyWLNrFz+vW8fVyEgeKliQLvXrkz2ZgRrEuTS6YAo0uqCIiEjmdOzcOZoOeZ9dxw/jbi+OhR8OxzayePsw860+NKlcOcNi+XrRInp+/S0Ohw2brQxwmhjHCRqUr8Sc/m8R4OubYbHIve3i5cu0fn8Ua3Zvx81eEMiJae7AzQ5f93iFro895uoQMzWNLigiIiL3rcjoaB4bMIR9J0xgLdGOfcQ4NmNxmCsRdWj9wUi2HzmSIbEs2LCBl8aPJzqmO6YVTIxjIzGOY8A8Vu04yFMfjs6QOOTeZ1kWj4/4H+v3ngAWEuM4QoxjE6YVTFRMZ7qN/YylW7a4Osz7gpIsERERuefMWbeOA6eOE2P+AtQAbjyS9wCWNQfTzMMn837JkFiGT5+NzagLjAeyX19qA1rjML9h8ZaNbDl4MENikXvb+j17WL3zXxzmj0Az/vuonxP4FputGu/P/Nl1Ad5HlGSJiIjIPWfe339jM6oBFRIp9STG7MastX+lexynL13inwN7MK2X+S/Ru9kTuNmyM/ev9I9F7n3z/voLN3teYhOsW9lwmC+yeue/XLpyJaNDu+8oyRIREZF7zpWICEwrVzI1chERHZHucVyNuLGNnEnUcMMwAgmPjEz3WOTedzUyEoMcJP0RP/Y1cU3XW7pTkiUiIiL3nLIPPIDd9idwLdFyw1hCqQKF0j2O/Nmzk8UrC/BHEjUOE+04SJkHHkj3WOTeV+aBB4hx7AJOJlFjKVl9A8gZEJCRYd2XlGSJiIjIPefFxo0xzVBgMHDrQMpLwFpAz+aN0z0OLw8Pnm/UALttPLDzltJoDKMPft6+tK9VK91jkXtf57p18fLwwKAP4LildCt22ze83CQIdzfN4pTelGSJiIjIPadY3rx83L0b8BE2ox7wA/Az8Cw2owVNHq7Mcw0bZkgsgzt04MH82bHbHgXeBOYB47HbKmMz5vNTr9fx9fLKkFjk3hbg68sPb76GYczCbqsKfEXs9dYTu60m5Qrn59127Vwb5H1C82SlQPNkiYiIZF7z//6bUbPnsX5v7F2kAtnz8FqLxvRq3TpDv80PvXqVUbNn89WiPwi5GoqBQdPKVXivfVtqlC6dYXHI/WH1jh18MPNnlm7djIVFNr9AXmnakLefeAI/fZ69I6mdJ0tJVgqUZImIiGR+YeHhRMXEkC1LFmw21z3I43A4uHjlCr5eXvh4erosDrk/XI2IIDwykmxZsmC3210dzj0htUmWHsgUERGRe97d8kWp3W7XoAOSYXy9vPQoqouoT5aIiIiIiIgTKckSERERERFxIiVZIiIiIiIiTqQkS0RERERExImUZImIiIiIiDiRkiwREREREREnUpIlIiIiIiLiREqyREREREREnEhJloiIiIiIiBMpyRIREREREXEiJVkiIiIiIiJOpCRLRERERETEiZRkiYiIiIiIOJGSLBERERERESdSkiUiIiLpwjRNQq9eJcbhuO02LMvicng4EVFRdxRLRFQUl8PDsSzrttuIcTgIvXoV0zTvKBZnCI+MJDwy0tVhSDrSOc7c3FwdgIiIiNxbzly6xKiff2bi0hWEXbuMp7snHevU4t127SiRL1+q2ohxOBj/22+Mnf87h84EA1CvXAXeefJxGj/8cKpjWbx5M6N+nsvK7dsAKJq7AG+0asqrzZrhZrenqo19J04wcvZspq1eQ2R0JP7efjzXqAFvP/EEuQMDUx3LnbIsi8krVzJ63q9sO7wfgEpFS9L38ZZ0rFMHwzAyLBZJH5Zl8dPy5Yye9yvbjx4E4OFiD9Lv8ZY8Vbu2znEmYlh38pXOfSAsLIyAgABCp0/H38fH1eGIiIjc1YLPn+fRfv05fSkKh/kC8DCwHzfbV3h7hrJqxHAqFSuWbBsxDgdPjvwfC/75B6x2WLQELmO3fY/D/JtxL7/Mq82apRjLuIUL6TlhAnZbNRxmN8APg/lgzKbVI48w+523Uky0Nh88SN3+A4mIykqM+TJQHNiM3fYNeQM9Wf/RCArkyJHKo3P7LMvizW+/5bMFC7AZTTGtpwALmzEd01pM38cf56Nu3dI9Dkk/lmXRc8IExv/2GzajGabVHjCxGdMwraW88+STjOza1dVh3vfCwsMJ6NCB0NBQ/P39k6ynxwVFRETEaXpO+IbTl9xwmNuA/wFPAQOIMXcSHlmSTqPHpvjI3sSlS1mwYQOW9QsW04BOwEs4zPXA67w24WuOnDmTbBuHT5/m9a+/Ad64vt5LQCcspmNZ8/jl77/4YdmyZNuwLItOH4/hWtSDxJg7gfeu78//cJhbOX3Jzmtff5Oq43Knlv/7L58tWACMw7R+A7oCz2Jai4AxfDx3Lqt37MiQWCR9LNmyhfG//QZ8hWktJPYcd8O0lgAfM+rnn1m7a5drg5RUU5IlIiIiTnHiwgXmb/gbhzkQKHhLaQAO80P2BB9hTQofFD//dTEYLYDmt5QYwAgMIwvfLFmSbBvfLFmCYWQBRlxf72YtsBnN+WzB78m2sWbXLvaeOIrD/Ai49RvrB4gx32P+3xs4eeFCsu04w7iFv+NmKwO8kkjp67jZSjLut+T3R+5usee4AvBiIqW9cLMXY7zOcaahJEtEREScYtexY1iWCTRKokYDDNzYfvRokm1YlsWu44exrMZJ1PDFYdZh+5Gk2wDYduQIDrMukPij/qbVhF3HjyTbxr9HjmAY7kC9JGo0xrQc7Dp+PNl2nGHzoaPEmE1ImDACGMSYTdhy8Fi6xyHpZ8uhY8SYjUn8HNuIcTRh86H0v9bEOZRkiYiIiFN4e3pe/9/FJGqEYhGDt4dHkm0YhoGnu2cybYDNOIe3Z9JtAPh4eGCznU+mxoXr20mat4cHlhUDhCbZxo166c3H0yNue0nF4pPCMZG7W+w1nfR1D+fx9XTPqHDkDinJEhEREad4pEQJsvsFAkn1U/oON5sbTStXTradNo8+gpv9eyCxYdt3YFp/07patWTbaF2tGqa5HtiZSGkUbrYfePzRR5Jto2nlythtNmBiEjW+JYd/Nh4pWTLZdpyhbY1HsNtmAZcSKT2PzTaXJ2tUTfc4JP20rVEVu20GiSf1Z7EZv/BkjeSvWbl7KMkSERERp/Bwd6d/2zbABOAjIOJ6SQwwGZvxHt2DgsiTwrDn/R5vA9YxDDoAp28q2YSbrQ1FcufnyRo1km2jbc2aFM6VDzdba2DzTSWnMIwOYATT9/E2ybaRN1s2ugcFYTPeBaYAN+b7igA+BL6mf9s2uLul/4w4Lzdpgq+nDbutBXDoppID2G3N8fd248XGST1iKZnBq82a4e1hYbO1AA7fVLIPu605AT6ePN8oqUdx5W6jJEtEREScpnebNvRp0wZ4C7stH3ZbbdzshYBneKJ6VT576YUU26hUrBiz33kLL49FGEZB7LbquNnLAlUonDuKZcMH4+me/GNTXh4eLHt/CIVzRwGVcbOXxW6rjmE8gLf7In5+5y0qFi2aYiyfv/Qij1evAjyNm/0B7Lba2G35gLfp+/jj9GrdOuWD4gT5smdnybBBZPXdDRTHzVYFN3tloATZshxg6bDBGTpnlzhfgRw5Ys+xzw6gGG62qtfP8YNk9zvMH+8PIWdAgKvDlFTSPFkp0DxZIiIiabf/5El+WLaMo2fPkjMggKfr1aNy8eJpaiPkyhV+WrGCjQcO4OnuTvMqVWhRtWqqJxGG2Dm3fv3nHxZu3EhkdDRVihenS/36ZM2SJU2xbDpwgMkrV3IuNJRCuXLR7bHHKJ7KiZWd6VpkJDPWrGHl9u0YhkG9smVpX6vWTf3hJLMLj4xk+urVrN65E8MwaFC+PO1q1sQrA/r+ScpSO0+WkqwUKMkSERERERHQZMQiIiIiIiIuoSRLRERERETEiZRkiYiIiIiIOJGSLBERERERESdSkiUiIiIiIuJESrJEREREREScSEmWiIiIiIiIEynJEhERERERcSIlWSIiIiIiIk6kJEtERERERMSJlGSJiIiIiIg4UaZLssaNG0fhwoXx8vKiWrVqbNiwIdn6ISEh9OjRg7x58+Lp6UnJkiX57bffMihaERERERG537i5OoC0mDFjBr179+arr76iWrVqjBkzhsaNG7N3715y5cqVoH5UVBQNGzYkV65czJ49m/z583P06FGyZs2a8cGLiIiIiMh9IVMlWZ988gkvvPAC3bp1A+Crr75i4cKFTJw4kXfeeSdB/YkTJ3Lx4kXWrVuHu7s7AIULF87IkEVERERE5D6TaR4XjIqKYtOmTQQFBcUts9lsBAUFsX79+kTXmT9/PtWrV6dHjx7kzp2bsmXLMmLECBwOR5LbiYyMJCwsLN6PiIiIiIhIamWaO1nnz5/H4XCQO3fueMtz587Nnj17El3n0KFDLF++nM6dO/Pbb79x4MABXn31VaKjoxk8eHCi64wcOZKhQ4c6PX4REbk7/Xv4MAs3biQqJoaHixWjWeXK2O32NLVx5tIlZq1dy7mwMArmyEG7mjUJ8PVNUxsRUVHM++sv9gQHk8Xbm8cffZRiefOmqQ3Lsvhz505W79yJZVnUKVuWOmXKYBhGmtoRuR+duniR2evWcT4sjEI5c9KuZk38fHxcHdZtO3DyJHP/+ourERE89MADtK5WDc/rT3ZJ+jMsy7JcHURqnDx5kvz587Nu3TqqV68et/ytt95i1apV/P333wnWKVmyJBERERw+fDjuD+Ynn3zCRx99xKlTpxLdTmRkJJGRkXG/h4WFUbBgQUKnT8c/E7/QREQkvktXrvDUh6NZunUTdpsfhuFNjOMs+bPnZvbbfXi0VKkU2zBNk0FTp/K/2XMwLRt2Ww5iHGfw8vDgo25d6NG8eapiWbBhA10//ZxLV0Nxt+fFYYVimdfoVLce377WAy8PjxTbOHz6NG1GfMi/Rw7gZgsEDGLMi5QrVIx5771N0Tx5UhWLyP3GNE3e+fFHPvllPpblht2WnRjHabw8PBn7QndeaNzY1SGmybXISLp/9gXT/1yF3eaDzQgg2nGKbH6BTO79Ok0rV3Z1iJlaWHg4AR06EBoair+/f5L1Ms3jgjly5MBut3PmzJl4y8+cOUOeJP5w5M2bl5IlS8b7RrJ06dKcPn2aqKioRNfx9PTE398/3o+IiNxbHA4HTYcMZ/m/h4HpOMwLxDjOAP9w6lJRggYNZf/Jkym28/7MmXwwcyYx5nuY1imiHSewOMq1qGfpOWECPy5blmIba3bt4vERIwkJrw3sJtpxEtM8h8V4pq1eT9cxn6XYRujVq9TpP4hdx0xgCTHmeWLM88BSdh83qNN/ICFXrqTYjsj9aMDkyXw0dx4Ocwimdfr66/gI16I68eK4cUxfvdrVIaZJ59GfMnPtP8DXOMzzRDtOAju5dOVRWg3/gL+SeAJMnCvTJFkeHh5UrlyZZTf9wTJNk2XLlsW7s3WzmjVrcuDAAUzTjFu2b98+8ubNi0cqvhUUEZF70+ItW/h7324c5mzgKeDGIzRVMM3FREb5M3revGTbCAsPZ+TsuUA/YAiQ7XpJfmAc0I4Bk2ck2w8YYOi0GUA5LGsOcOPumQ/wMqY1nplrVrPr2LFk2/j+jz84cfECMeYfQENi/7wbQBAx5h+cvHiRiX/8kWwbIvejC2FhjJ43H3gPGABkvV5SEPgGaMl7k6aTSR78YuuhQ8z9ax2mOQF4AfC+XvIQljUPi1IMnzHLhRHePzJNkgXQu3dvvvnmG3788Ud2797NK6+8wtWrV+NGG+zSpQv9+/ePq//KK69w8eJF3njjDfbt28fChQsZMWIEPXr0cNUuiIjIXWDGn39it5UF6iVS6keM2Z0pK9ck28bCf/4hIuoa8EYipQbwOsEXTvPP/v1JtnHpyhX+2LYFh9mD/xK9m3XGzRbIjDXJxzJl1VosqyVQJJHSQlhWG6asWptsGyL3owX//ENUTDTwWiKlBvAGh84Es/XQoQyO7PbMXLMGN1sOYr88upUHDvNVft+0kbDw8IwO7b6TaQa+AHjqqac4d+4cgwYN4vTp01SsWJFFixbFDYZx7NgxbLb/8saCBQuyePFievXqRfny5cmfPz9vvPEGb7/9tqt2QURE7gIhV6/iMAsR+yEqMYW4EnEF0zTj/V25tY3Y7yrzJdnGf/USFxpXViiJGh4YRp5k2wC4ePlqMm3Etn/xcuIj8Yrcz0KuXMFmeGNaCedbjZXy6/huEnL1KoaRj8S/tAEohIXF5WvXNNZAOstUSRZAz5496dmzZ6JlK1euTLCsevXq/PXXX+kclYiIZCbF8+bFzbaOGDMKSOzx8bUUypkvyQTrRhtgAn8DjybaBpDsCIG5s2bFy8ObiKg1xD7md6uzxJgHKJanVpJtAJQqkIej59bgMBMvt9vWUDJ/7sQLRe5jxfPlw7TCgS1ApURqxL6OM8vAMcXz5sVhLgcuANkTqbEWX09fcmjMgXSXqR4XFBERcYbnGzUixjwHfJpI6RZsxnReaZZY0vOfBuXLUzBHHmzGAODWwZTCsNvep9ZD5SiRL6k7XeDt6cmzDepit40Djt5SagGDcbcbPF2vXrKxvNSkEQ7zH2BOIqW/4DD/4uUmjZJtQ+R+1OThh8mdNQeG8S4QfUtpCHbbCIIqPEyhXEnd6bq7PFO/PnabCQwl9j3kZoex276ke8P6Gso9AyjJEhGR+07pggXp37Yt8A7QEVgM/AUMwG6rS4UiD9AzheHX7XY7E19/FZuxCputOjAF+AeYgN1WBW+Po4x76fkUYxnSsSP5srnjZnsE+B+wAfgFw2gCfMVnLz5PNj+/ZNtoUbUqT1SviWE8BfQAVgGrgZ4YRlvaVKtO62rVUoxF5H7jFvc6XorNqAVMI/Z1/CV2W2V8vU7x2YvPuTjK1MsZEMCnz3cHPscwmgMLiH1PGYmbrRoFc3gz8KnE+muJs2WaebJcJSwsjICAAM2TJSJyj7Esi28WL2bE7HkcPRs7XLuPpw/PNWzA+08/ner3/LW7dvHupKms3vkvAIZho3mVqozq+gxlHnggVW2cuniRd378iWmr1xDtiL0rVuaBogzr1J4natRIVRsxDgcjZ81i7ILfuXD5EgDZ/QJ5vWVT+rdti7tbpushIJJhVu3YwXuTprJ29w4g9nXc6pFq/K/rMzxYoICLo0u7WWvWMHjaTHYfPwKAh5sHnerWZlSXLuQODHRtcJlcaufJUpKVAiVZIiL3NtM02XfyJJHR0RTPmxdfL6/baif4/HnOhYaSL1u22/4QE3LlCkfOniWLlxfF8ubFMJIamCNpUdHR7Ls+x1fJfPnw0GNBIql2/Nw5zoeFkT97dnJlzerqcO6IZVkcPHWKKxERFMmdmwBfX1eHdE9QkuUkSrJERERERARSn2SpT5aIiIiIiIgTKckSERERERFxIiVZIiIiIiIiTqQkS0RERERExImUZImIiIiIiDiRkiwREREREREnUpIlIiIiIiLiREqyREREREREnEhJloiIiIiIiBMpyRIREREREXEiJVkiIiIiIiJOpCRLRERERETEiZRkiYiIiIiIOJGSLBERERERESdSkiUiIiIiIuJEbq4OQEREJDM7GxLC57/+yg/LVnP+cigFsufghUYNeKVpU/x8fFLVRnhEBC+PH8/sdf9wLSoCw7BR9oF8fPrcczxWsWL67sAtDp0+zZj585m+ej1XIsIpmb8ArzZtSLegINzd9LFBYl0OD+fL33/n6yXLOXHhPDn8AugWVJfXWrQgZ0CAq8MTcTnDsizL1UHczcLCwggICCB0+nT8U/nHUkRE7g+HTp+m1tvvcTY0HIf5NFAS2ILNmEmpAvn5c9T7ZPPzS7aNK+HhFHnxZc6HhQJNgQbAaWAiEMr4l1/glWbN0ntXAFi/Zw8NBw0lIsobh9kVyIdhrMCyFtKw4sP8OvBdPNzdMyQWuXtdCAujdv8B7A0+hWm1ByoC+7DbJpM7qy9rRr1PkTx5XBylSPoICw8noEMHQkND8ff3T7KeHhcUERG5TZ1Hj+FcqD8Ocy/wFdAbmIRpbWbviVBem/B1im08PnIk58MuA4uAhUAf4CPgCFCdHhO+Iyw8PN324Yao6GjafPA/rkVVxGEeAj4GemNZC4AlLNu2nVE//5zuccjd77Wvv2HficuY1ibgJ2Kv+69wmHs4G5KFzqPHujhCEddTkiUiInIbthw8yF97dxFjfgzkv6W0DA5zADPXrOVsSEiSbURERbHs313Ac0CjW0r9gK+xrGje++knZ4aeqHl//83Z0AuY5oTr275ZEKbVnS9+XUyMw5Huscjd68ylS8xcswaHORAoc0tpAWLMj1i/dyfbDh92RXgidw0lWSIiIrfhn/37AQNokUSNNsSYMWxN5sPmtsOHsaxooHUSNUoDRVi7Z88dxZoaG/btw91elIQfnG9ow7mwCwSfP5/uscjda+vhwzhMB0lfsy0Bgw379mVgVCJ3HyVZIiIit8HNbgcsICKJGrGP+LnZkv5T6xnXvympxwFj27cn04azuNntWERc32ZiwuPqyf3rv/Of1DUbew3pOpH7nZIsERGR2xBUsSKGYQMmJVHjJ7J4ZaHagw8m2Ub5woXxcPMGfkiixirgFO1r1bqjWFOjcaVKxDhOAssTLTeMH3kwfyHyZ8+e7rHI3atayZL4evoS2xcrMZMwDBtBFSpkZFgidx0lWSIiIrfhgZw5aV+rFnbbW8AfN5VYwFQM4xNea9EEXy+vJNuw2Wx0e6wOsQNejACibyrdATyDp7sPfdq0cf4O3KJeuXJUKFICN1s34N+bSqKB/2FZv/BO2zYYhpHuscjdK4u3N6+1aIJhjAam8d+dTwtYit32Nk/Vqk3BnDldF6TIXUBJloiIyG36pser1ChdBGiI3VYJ6Iib7UGgM+1r1mBY584ptjH+lVeoVbo08B6xA2h0AGoB5XC3n2fViKHYMuBxQcMw+HVgf4rkMYAK2IzaQAfcbIWAd3i3XTu6NmiQ7nHI3W9Y5860q1kd6ISbrRTQEbvtYaARNUsX5Zuer7o4QhHX0zxZKdA8WSIikhyHw8HvmzczafkKToeEUThXdro3bEidMmXSdNdn5po1DJ8+nePnQ/DysNOm2iOM6tqVrFmypGP0CUVGRzN77VpmrllLaHgEDxXMx4uNG1OxaNEMjUPubpZlsXrnTiYuXcqRsxfIGxjAM/Xr0eThh7GrP5bcw1I7T5aSrBQoyRIREREREdBkxCIiIiIiIi6hJEtERERERMSJlGSJiIiIiIg4UZqSrGvXrrFmzRp27dqVoCwiIoKffkpqzgQREREREZH7Q6qTrH379lG6dGnq1KlDuXLlqFu3LqdOnYorDw0NpVu3bukSpIiIiIiISGaR6iTr7bffpmzZspw9e5a9e/fi5+dHzZo1OXbsWHrGJyIiIiIikqmkOslat24dI0eOJEeOHBQvXpwFCxbQuHFjateuzaFDh9IzRhERERERkUwj1UnWtWvXcHNzi/vdMAy+/PJLWrZsSd26ddm3b1+6BCgiIiIiIpKZuKVcJVapUqXYuHEjpUuXjrf8iy++AKBVq1bOjUxERERERCQTSvWdrMcff5xp06YlWvbFF1/QsWNHLMtyWmAiIiIiIiKZkWEpM0pWWFgYAQEBhE6fjr+Pj6vDERERERERFwkLDyegQwdCQ0Px9/dPsp4mIxYREREREXEiJVkiIiIiIiJOpCRLRERERETEiZRkiYiIiIiIOFGqh3AXERG524ycOZP5Gzbg4e7O208+SbMqVdLcxtZDhxi3cCGR0dE0qlSJp+vXT4dIU2ZZFn/u3Mme4GCyeHvTtHJlArNkcUksd5MpK1eyePNmPN3deaVpUx4uXjzNbZy8cIGlW7cSFRNDleLFqVSsWDpEmjLLsli9cyd7g4Pxu36Os7roHF+6coXfN23iyrVrlCpQgNplymAYhkticYYTFy7wx/VzXLVECSoWLerqkOQ+d1ujC06aNImvvvqKw4cPs379egoVKsSYMWMoUqQIrVu3To84XUajC4qI3H0mr1hB1zFfYFrRNy01yOLlzb+fj6VI7twptnExLIxH33qb/SdPAv/9KfTx9GX2O31pWrmy8wNPwvo9e+g65gv2nzwGGICFp7snb7ZqwQdPP43dbs+wWO4WS7dsoc2IDwmPvHrTUoNiefLy18cfkiOZUb1uCI+M5NUvJzBpxQpMyxG3vGqJ0kzp8wYl8uVLh8gTt3bXLp4dO44Dp45z4xx7uXvRu01LhnXqlGHn2OFw8N7kyYyZ/yuR0ZFxsZTI9wA/vdmTR0uVypA4nOVqRAQvj/+KqatWxTvHj5QszdQ+b1Isb14XRif3onQbXfDLL7+kd+/eNGvWjJCQEByO2As6a9asjBkz5rYDFhERSY3l27bxzKefY1oFgblAFBACjOFKhMmDL/cgKioq2TZM06TUq6+x/+R5YDRwEYgG5hMemZ/mQ0ew8cCB9N2R6/49fJjHBgzm4Ol8wAogBjhFZPRbfPjzXN749tsMieNusvnAARoPeZ/wyLzAL8Sem0vApxw8fZHSr/bENM1k27AsiydGjGLSynWY1ujr60cD89hy0EHNt9/j1MWL6b0rAGw5eJCggUM4dKYgsIrYc3ySiOg+jJz1M70nTsyQOABe/+YbPpwzj8jot4FT12NZwcHT+WgwYDD/Hj6cYbHcKdM0afPBSKau/gvT+pTY94EoYC6bDkRT8+33OH3pkmuDlPtWmpOszz//nG+++Yb33nsv3rcuVapUYfv27U4NTkRE5FZPf/IJ4AWsAdoA7kAA8Dowm2hHFD0mTEi2jc9//ZVzYZeAaUAvIJDYJ+hbAn9i4cPL48al2z7cbNDU6UTFFMA0lwH1iP3TnAcYhsXHjF/4G4dPn86QWO4WL40fj2V5E3uOWxF7brICbwAzOB8Wwpj585NtY/m//7J4yyZMc9r19bJeb6c1MeYqLl6OSbENZxk0dTrRjsKY5h9AHWLPcV7gfSxG8fmvCzl69my6x3Hw1Cm+/O13LOtjYCix15kNqIdp/kFUTAGGTp+R7nE4yx/btvHHti2Y5izgNWLfB9yBNjjMVZwPi+SzBQtcG6Tct9KcZB0+fJhKlSolWO7p6cnVq1cTWUNERMR5Tl26AjxL7IfUWzUDHmT6n38m28aXv/8OFCE2SbtVLuB5Nh08ekdxpkbo1ass2LABh/kakNgj6S9hs2VhyqpV6R7L3WTTgaNAdyCxxz5bAsX46vffk21j8sqVuNkevF7/VnlwmM8y8Y+Vdxpqii5ducJvG//BYb4OeCdS4xVshjfTVq9O91imrlqFzeYHvJhIqS8O8zXm/fU3YeHh6R6LM0xasQI3WxmgaSKl+XCYXfj+j/vrtSN3jzQnWUWKFGHr1q0Jli9atIjSpUs7IyYREZFkxABJ9RsxgIeIjHYkUR4r5OpVoPT1+ol5EIghJibmdoNMlUtXrlzvR5LU/vhgMwpwNjQ0XeO4m5imiUU0secgMbHnOCSFROBMSCgxZimSO8cXL4fcdpypdSEsDNMySXp/smAz8mXIOT4bGorNKEDiCT3Ag5iWg0tXrqR7LM4Qe44fJLlzfCEDzrFIYtI8umDv3r3p0aMHERERWJbFhg0bmDZtGiNHjuTb+/C5cRERyWhuwOYkykxgEz6e7sm2kNPfnzMhWwAHkNiAA1uwGR64uaXvILw5/P1xt3sQ7dgCNEykRggO8wgFc1RL1zjuJjabDZvhgWltTaKGA9hMzhQGviiYIztu9q3EOJI+x3kDc95ZsKmQK2tW3GxuxJhbgQaJ1LiIwzxOwRx10j2Wgjly4LBWAKHEPlp3qy242z1SNajI3eC/c2yS+H2DzeTNlv7nWCQxab6T9fzzz/O///2PAQMGEB4eTqdOnfjyyy8ZO3YsHTp0SI8Y4xk3bhyFCxfGy8uLatWqsWHDhlStN336dAzDoE2bNukboIiIpKsiuQKBKcC+REqnAMd4qWlijw/9p98TTxDb6f+HREoPAT9Qs3TahwpPqyze3rSvVQM32+fAhURqjMYwoni6Xr10j+VuUvuhEsCPQGKDj0wCTtD38ceTbaPbY48R4zh6vf6tDmCzTeHFJo/dcawp8ffxoW3NGrjZxhI7wMqtPsJmxNC5bt10j+XpevXAiiR2sJdbXcDN9jkd6tTE18sr3WNxhu5BQcQ4DgFTEyndi82YwYuNE0tsRdJfmpKsmJgYfvrpJ4KCgti/fz9Xrlzh9OnTBAcH89xzz6VXjHFmzJhB7969GTx4MJs3b6ZChQo0btyYsyl0Fj1y5Ah9+/aldu3a6R6jiIikr3nvvUfsHasawBfAMWAn8BbwLD6eXox4+ulk2+jSoAEl8uYjtm9KX2DH9XbGA9Vxs5l899pr6bcTNxnWuRN+Plew26pzI4GAjcBzwPsM6vAUebNly5BY7hbfv/EGbnaL2HM8jv/OcT/gOYrmzkvXBsl/eK724IM8U68+Bs9fX2/n9XbGYbfVokiubLzWokW67scNwzt3Iot3CHZbDWK/CDgB/ENs38JRDO3UgVxZs6Z7HPmyZ2dQh/bAcGKvr43XY5mE3VYdP5+rDO3YMd3jcJYapUvToU5dDKMb8DawCzgKfI7dVptieXPSo1kz1wYp9600z5Pl4+PD7t27KVSoUHrFlKRq1apRtWpVvvjiCyD2ue2CBQvy2muv8c477yS6jsPhoE6dOnTv3p0///yTkJAQ5s2bl+ptap4sEZG7z9pdu2g4aAjXoiL5b44rOwWyZ2X3+PFk8U5sgIH4oqKiaDh4MKt37iW2nxeAQd7AbCwaMojyRYqkU/QJ7Q0O5pUvv2bF9q1xy3L6Z2dQhyfp0bx5pp4k9nbtOHKExkOGcfLiBf47x27UfqgkfwwbhoeHR4ptOBwOhk6fzpj5C7l8Lbafkc2w0+bRR/nylZcyJLG5YU9wMK98OYGV27fFLcsVkJ0hHdvxctOmGXaOLcti3MKFDJv+M+fC/rt72qB8Jb585UVK5s+fIXE4S4zDweCpU/lswe9ciYg9x3abnSeqV2fcyy+RMyCxxyJFbl9q58lKc5JVr1493nzzzQx/7C4qKgofHx9mz54db9tdu3YlJCSEX375JdH1Bg8ezL///svcuXN59tlnU0yyIiMjiYyMjPs9LCyMggULKskSEbkLLd2yhZ9WrMDbw4P+7dqlahLiW50PC+PHZcu4GhlJsypVqFI8/R8TTMrBU6fYe+IEWby8qF6qFO7p3CcsM9h84AC/btyIt4cH3YKCbqu/UHhkJOv37CEqJoYKhQuTL3v2dIg0dQ6cPMm+kyfx8/bm0QcfdNk5jo6JYf2ePVyJiODB/Pkz/aS9VyMi+GvvXqJiYqhYpMh9d/dXMk5qk6w0v7JfffVV+vTpQ3BwMJUrV8bX1zdeefny5dMebSqcP38eh8NB7lv+gObOnZs9e/Ykus6aNWv47rvvEh0NMSkjR45k6NChdxKqiIhkkIaVKtEwkWlF0iKHvz99Uujfk1GK5c2b6T/sOtvDxYvz8B0mvj6enjxWoYKTIrozxfPlo3i+fK4OA3c3N+qULevqMJzG18vrrjnHInAbSdaNwS1ef/31uGWGYWBZFoZh4HAkP2xuRrl8+TLPPPMM33zzDTly5Ej1ev3796d3795xv9+4kyUiIiIiIpIaaU6yDh8+nB5xpChHjhzY7XbOnDkTb/mZM2fIkydPgvoHDx7kyJEjtGz53ySEpmkC4Obmxt69eylWrFiC9Tw9PfH09HRy9CIiIiIicr9Ic5LligEvADw8PKhcuTLLli2L65NlmibLli2jZ8+eCeqXKlWK7du3x1s2YMAALl++zNixY3V3SkRERERE0kWak6yffvop2fIuXbrcdjAp6d27N127dqVKlSo88sgjjBkzhqtXr9KtW7e4befPn5+RI0fi5eVF2VueNc56fRShW5eLiIiIiIg4S5qTrDfeeCPe79HR0YSHh+Ph4YGPj0+6JllPPfUU586dY9CgQZw+fZqKFSuyaNGiuMEwjh07hs2W5vmVRUREREREnCbNQ7gnZv/+/bzyyiv069ePxo0bOyOuu4bmyRIREREREUj9EO5Oue1TokQJRo0aleAul4iIiIiIyP3Gac/Wubm5cfLkSWc1JyIiIiIikimluU/W/Pnz4/1uWRanTp3iiy++oGbNmk4LTEREREREJDNKc5J1Y/j0GwzDIGfOnDRo0IDRo0c7Ky4REREREZFMKc1J1o0JfUVERERERCShNPfJGjZsGOHh4QmWX7t2jWHDhjklKBERERERkcwqzUnW0KFDuXLlSoLl4eHhDB061ClBiYiIiIiIZFZpTrIsy8IwjATLt23bRrZs2ZwSlIiIiIiISGaV6j5ZgYGBGIaBYRiULFkyXqLlcDi4cuUKL7/8croEKSIiIiIiklmkOskaM2YMlmXRvXt3hg4dSkBAQFyZh4cHhQsXpnr16ukSpIiI3Lndx48zbuFClm7dhWVZNKhQmh7NmlGucGFXh5apXY2IYNKKFUxetoyzISE8kCsX3Ro1on2tWri7pXl8KRERuQcYlmVZaVlh1apV1KhRA3d39/SK6a4SFhZGQEAAodOn4+/j4+pwRERuy7RVq3jm0zEYZCfGfBKw4Wafg8M8w3ev9aRbUJCrQ8yUzoaE8Ni777IrOJjmhkFJy2KLzcZy06RemTIsHDIEH09PV4cpIiJOEhYeTkCHDoSGhuLv759kvTT3yapbt25cghUREUFYWFi8HxERubvsDQ7mmU/H4DA7E2MeB8YDXxDjOIplPcdzn3/BtsOHXR1mpvTsp59y/uRJ/gXmWxYfA8tMk1XAP7t303fiRBdHKCIirpDmJCs8PJyePXuSK1cufH19CQwMjPcjIiJ3l/G//45BIPA14HFTiTswHruRh89/Xeia4DKxvcHB/L5lCx+ZJmVuKasDvGOa/PDHH4QkMiKviIjc29KcZPXr14/ly5fz5Zdf4unpybfffsvQoUPJly8fP/30U3rEKCIid2DZtl3EmG2AxB5bcyPGbMuybbsyOKrM789dscesbRLl7YFr0dFsPHAgw2ISEZG7Q5p75C5YsICffvqJevXq0a1bN2rXrk3x4sUpVKgQU6ZMoXPnzukRp4iIpKNEZuYQERGR25TmO1kXL16kaNGiAPj7+3Px4kUAatWqxerVq50bnYiI3LHHKjyE3TYXiEykNAY3+2yCKjyU0WFlerUfij1ms5IonwF4u7tTpXjxDItJRETuDmlOsooWLcrh6x2kS5UqxcyZM4HYO1xZs2Z1anAiInLnXm3aFAgBXiB+ohUNvILDPE3P5s1dEVqm9mCBAjSrVIl+Nhs7bilbBYwyDJ4NCiJrliyuCE9ERFwozUlWt27d2LZtGwDvvPMO48aNw8vLi169etGvXz+nBygiInfmwQIFmNy7F3bbVNxsBYFXgB642R7AZkxk4uuvUb5IEVeHmSl936sXufLnpwLQ0jDoA9S32agHVHvoIT7u3t21AYqIiEukeZ6sWx09epRNmzZRvHhxypcv76y47hqaJ0tE7hV7goMZt3AhS7bsxLIsHqtQmh7Nm1O2UCFXh5aphUdGMnnFCibdNBlx90aNaFuzpiYjFhG5x6R2nqw7SrIiIiLw8vK63dUzBSVZIiIiIiIC6TgZscPhYPjw4eTPn58sWbJw6NAhAAYOHMh33313+xGLiIiIiIjcA9KcZH3wwQf88MMPfPjhh3h4/DepZdmyZfn222+dGpyIiIiIiEhmk+Yk66effuLrr7+mc+fO2O32uOUVKlRgz549Tg1OREREREQks0lzknXixAmKJzLnh2maREdHOyUoERERERGRzCrNSdZDDz3En3/+mWD57NmzqVSpklOCEhERERERyazSPLbsoEGD6Nq1KydOnMA0TebMmcPevXv56aef+PXXX9MjRhERERERkUwjzXeyWrduzYIFC/jjjz/w9fVl0KBB7N69mwULFtCwYcP0iFFERERERCTTSPWdrEOHDlGkSBEMw6B27dosXbo0PeMSERERERHJlFJ9J6tEiRKcO3cu7vennnqKM2fOpEtQIiIiIiIimVWqkyzLsuL9/ttvv3H16lWnByQiIiIiIpKZpblPloiIiIiIiCQt1UmWYRgYhpFgmYiIiIiIiPwn1QNfWJbFs88+i6enJwARERG8/PLL+Pr6xqs3Z84c50YoIiIiIiKSiaQ6yeratWu8359++mmnByMiIiIiIpLZpTrJ+v7779MzDhERERERkXtCqpMsERHJ/C5ducKGffuwLIuqJUqQ3d/fZbFsP3KEo+fOkcPPj0dKlsRm01hMB06eZO+JE2Tx9qZGqVK4u+nP9L1m/8mT7DtxAj9vb6rrHIvcs/TKFhG5D4RHRtJ34kR+WLqUazExAHja7Txdvz5jXniBLN7eGRbLut27eeOrr9h4+HDcsmI5czKyWzfa1aqVYXHcTfYGB/Pq+PEs37Ejblkef3/e7dCBns2ba6Cpe8Du48d5efwEVu/8N25ZTv/sDO7YllebNdM5FrnH6GtDEZF7XIzDQcuhQ/lp8WLei4nhAHAQGOZwMHP5cpoMGkRkdHSGxLJ+zx4ee+897EeOMB84CawGyp47R/sPP2TSihUZEsfd5OCpU9Tq148Tu3YxGTgBbASah4Xx+tdfM2z6dBdHKHdq/8mTVO/Xn7W7o4CpxJ7lfzgX1oqeEyYwYtYsF0coIs6mJEtE5B7387p1LN+xgwWmyXtAMaAo8BawxDRZu3cv01avzpBY+n77LeVMk1WWRUsgL1AbmAt0Bnp//XWGJXx3iyFTp+J97RprTZPOQD6gMvAtMAB4f8YMTl286NIY5c4MmjKVKxFZcZjrgI7EnuUqwETgHYZMnc6ZS5dcGqOIOJeSLBGRe9z3S5ZQ22ajfiJljwKNDYOJixenexx7g4NZt28fb5smnreUGcBA4PzVq/z6zz/pHsvd4sq1a8xcs4aepkn2RMr7Ah7A5JUrMzYwcZqw8HBmr12Hw3wDCEykxluYlhtTVq3K6NBEJB0pyRIRuccFnztHRdNMsrySZRF87lz6x3HhAgAVkyh/EPA2DILPn0/3WO4W58PCiHI4qJREeQBQxDA4fh8dk3vN2ZAQYswYkr7yA7HbHoh7fYjIvUFJlojIPS5XYCB7k+lUv8cwyJU1a/rHERAAwN4kyo8C1ywrrt79IJufH3bDYE8S5eHA8fvsmNxrsvv7YzNsJH3lX8G0gnWORe4xSrJERO5xzzz2GEstiy2JlO0CFlgWXRo2TPc4yhYqRIUHHuBjw8CRSPlHgL+nJ62qVUv3WO4W/j4+tK5WjS9sNq4mUv4VcNk06Vy3bkaHJk4SmCULzapUxW77jNi0+VbjMa0IOukci9xTlGSJiNzjOtapQ6XChWlkszGR2I9514CfgMdsNkrlz0+X+on12HIuwzD4X/furAJaGwYbAQs4ALwMjAOGPv00vl5e6R7L3WRwx46ccHMjyDBYDpjEjro4EOgH9GjenCJ58rg0Rrkzwzt3xN1+BJstCFjJf2f5PeAdXm/Rggdy5nRliCLiZEqyRETucV4eHix5/31qVanC84Av4AN0BR6uUIHlI0dm2DxZjR9+mLnvvsv2wECqEvtHqAQw09ubsS+8wButWmVIHHeT8kWK8Mf77xOWNy+PAXYgP/CJuztvt23LmOefd3GEcqcqFi3KsveHUizPCaA+N86yl8envNe+HZ88193FEYqIsxmWZVmuDuJuFhYWRkBAAKHTp+Pv4+PqcERE7sjBU6dYvXMnlmVR66GHKJk/v0vicDgc/LFtG0fPniWHvz9NK1fG2/PWMQfvL5ZlsXb3bnYfP04WLy+aVq5M1ixZXB2WOJFlWfy5cyd7T5zAz9ubppUrE+Dr6+qwRCQNwsLDCejQgdDQUPz9/ZOspyQrBUqyREREREQEUp9k6XFBERERERERJ1KSJSIiIiIi4kRKskRERERERJxISZaIiIiIiIgTKckSERERERFxokyXZI0bN47ChQvj5eVFtWrV2LBhQ5J1v/nmG2rXrk1gYCCBgYEEBQUlW19EREREROROZaoka8aMGfTu3ZvBgwezefNmKlSoQOPGjTl79myi9VeuXEnHjh1ZsWIF69evp2DBgjRq1IgTJ05kcOQiIiIiInK/yFTzZFWrVo2qVavyxRdfAGCaJgULFuS1117jnXfeSXF9h8NBYGAgX3zxBV26dEnVNjVPloiIiIiIwD04T1ZUVBSbNm0iKCgobpnNZiMoKIj169enqo3w8HCio6PJli1bknUiIyMJCwuL9yMiIiIiIpJamSbJOn/+PA6Hg9y5c8dbnjt3bk6fPp2qNt5++23y5csXL1G71ciRIwkICIj7KViw4B3FLSIiIiIi95dMk2TdqVGjRjF9+nTmzp2Ll5dXkvX69+9PaGho3M/x48czMEoREREREcns3FwdQGrlyJEDu93OmTNn4i0/c+YMefLkSXbdjz/+mFGjRvHHH39Qvnz5ZOt6enri6el5x/GKiIiIiMj9KdPcyfLw8KBy5cosW7Ysbplpmixbtozq1asnud6HH37I8OHDWbRoEVWqVMmIUEVERERE5D6Wae5kAfTu3ZuuXbtSpUoVHnnkEcaMGcPVq1fp1q0bAF26dCF//vyMHDkSgP/9738MGjSIqVOnUrhw4bi+W1myZCFLliwu2w8REREREbl3Zaok66mnnuLcuXMMGjSI06dPU7FiRRYtWhQ3GMaxY8ew2f67Offll18SFRVF27Zt47UzePBghgwZkpGhi4iIiIjIfSJTzZPlCponS+T+FRYezuSVK/l1wwYio6KoWKwYLzVpQsn8+V0d2m2ZuHQpPSdMIDIqCgAPd3c+ee45XmnWLNVtREZHM2vNGmatWcPl8HBKFizIi40b83CxYqluw7Is/ty5k4l//MHR06fJkTUrnevVo0XVqrjZ7WnerzsRfP48vb79llXbt2M6HBTJl49RXbrwWMWKqW7D4XCwcONGJq1YyZmQMArnykG3oMeoV64chmGkup2thw7x9eLF7Dx2An8fL9rWqM5TtWvj5eFxG3smIiLpIbXzZCnJSoGSLJH70/YjR2gycCBnQkN5zDDIalkss9m4aJp8/tJL9Gje3NUhpkmVXr3YcvAgbkATYjvkLgKigFIFC7Jz3LgU2zhx4QKN3nuPXSdPUtswyG9ZrLHbCXY46Pf44/zv2WdTTCpiHA66jRnD5FWrKGGzUcU0OWCz8Y9pUvPBB1k4ZAgBvr5O2OOUzVyzhqc/+giHZREEBABLgFCgY506TO3bN8U2LoeH02zYB6zZtR27rRIOsxRutk3EmPtoX6s2k3v3wt0t+YdGLMtiwOTJjJg1CzdbXmLMutiMk5jWaorlKcDyD4byQM6czthlERG5Q/fcZMQiIhnlWmQkzQYPJuflyxwEFlsWM4DjpslrQM8JE1i2bZuLo0y9UbNmseXgQRoCp4BfgLnX/98C2HP8OH0nTky2DcuyeOL997l8+jTbgNWWxTTgsMPBx8BHc+fy3dKlKcYyfMYMpq1axU/AXtNkKrDBNFkF7Ny/n+5jxtzBnqbe+bAwnvnoIx6yLI4Ai4GZxB6TnsC01asZ88svKbbz/BfjWb/nCPAHDnMzMJUYcw8wjVlr1zNoypQU25i0YgUjZs0CRhJjHgWmYVqrgB0cPWunxbAR6PtQEZHMRUmWiMgtZqxZQ/ClS8wyTQrdtNwbGAM8bLPxydy5rgnuNgyaOhVvYBaQ7ablWYHpxN7BGTN/frJtrNm1iw0HD/KdaXLzRBhuQB+gLfDx7NnJJgPXIiP5Yv58XgeeAW6+51UHGG2azP37bw6eOpXqfbtdfSdOJNqymAPcPOW8NzAWKAt8OHt2sm0cPXuWWWvX4DA/BB67qcQAOmBZvfli4WKuRkQk2YZlWYyaPQ/DaAm8A7jfVFqGGPMHth89yPJ//03T/omIiGspyRIRucXizZupbrNRIpEyA3jGNFm8ZQumaWZ0aLfH4aAt4JdIkTfQAbCnsC+Lt2whj91OUBLlXYC9p09z9OzZJNvYdPAgF8PDeSaJ8o7E/lFaunVrsrE4wx/btlEDKJpImQ14FjgdGprsOV62bRuWZQJPJ1GjC1cirvD33r1JtnH60iV2Bx/BsromUaMubvYCLNq8Ock2RETk7qMkS0TkFjEOB97J3JHxARyWlWke4TKITaaSkprepjEOB17Ev/t0M++b6iXXxs11b+UB2A0j2TacxTTNZPfbG7Cu10tKbJwG4JVEjdgtxKTYxo0tJsbAwCtDjomIiDiPkiwRkVs8UrIka4HzSZTPNQyqFCmCPYNHwrtd0cA8ICaRMhOYnUTZzR4pUYIjDgdJPbQ2D8jt50ehXLmSbKNcoUJ42u0k1dNpERBlWTxSsmQK0dy58oULswq4mET5HCDA0xO3ZAatiI3TAhYkUWMubjY3KhYpkmQb+bJlI3fWHMQewcTsItpxgGoZcExERMR5lGSJiNyiW1AQdjc3XiJ29L2b/QQssix6tmrlgshuT/uaNTlNbI+fm++9WcAQ4CgQVKlSsm20fOQR/t/encfZWPd/HH+d64zZmMXOaOwKkSxhLFGULbet25obWVLSQotUJIoWklJJon6JcEeiRCQRkqWUyL6P3WyHWc51/f4Y5jaaOTNjrtnfz8fjPMr1vc7H5zrfGXPec53re4UWLcpQwyDiurE1wEcOBw916OBxJb3igYH0admSSYbB9cuGnARGGgYNq1ThjmopfVDTXpMHDiQBGEpiCL3WbGA10Pvuuz3WuL1yZcJuuRUv4yng2HWjf+A0XqF7s6aUCg5OtYbT6WT4fW0xHHNIXH7jWlEYxkOUDCpO17CwNI9JRERyDy3hngYt4S5SMC3dvJl/T5pEGeABt5sgYLlhsM40Gdi6NTOHD8/QPZByWlDPnkS6XFQHepP4G7b5wB+Av7c3MWks8gDwy99/0+bFF/GKjaWvaRICrHM4WGZZ3FOnDkvHjMGnUCGPNS5GR9Nq9Gh2Hj5MN8uiAbAPmGsYBAQE8ONrr1E1JCSzh5suz86ZwxtffkkI0I/EBUC+An4GapQrxx/Tpye7wX1KDoaH0/TZ5zkd4cJt9gFuBrZhOBZRI/Qm1k0cT7GAlK6G+5+4+Hg6vzKJb7f9iuFoi2ndDZzEaXyKb6FLrHx5DE1q1LDjkEVEJJN0nyybKGSJFFy/HzzI219/zdebNhEbH0/dypV5pGNH/t20aZ4KWFe1eO451v/5Z9JHGEygQbVqbJ48Od01DoaHM23ZMhauW0fkpUvcHBLCkHbtGNC6dZr3g7oq5vJlPvzuO2atWMHhM2coERDAA61a8WiHDpQuWjTjB5YJC9av5/lPP+VweDgWEOjvT/977uGNAQPSDFhXnYmI4N3ly/n4+7Wci4ygXPGSPNS2FQ+1aUNAOn9uxCck8OmaNUz/ZiV7jh+jsI8fPe8M4/GOHalStmwmjlBEROykkGUThSwREREREQHdjFhERERERCRHKGSJiIiIiIjYSCFLRERERETERgpZIiIiIiIiNlLIEhERERERsZFCloiIiIiIiI0UskRERERERGykkCUiIiIiImIjhSwREREREREbKWSJiIiIiIjYSCFLRERERETERgpZIiIiIiIiNlLIEhERERERsZFCloiIiIiIiI0UskRERERERGzkldMNiEj+YlkWB8LDiXC5qFiqFMUCAnK6pXzj8KlT/Lx7N8UCArjn9tsxjJz5PZllWew/eZKoS5eokIk5/vPIEXYcOEDlMmUIq179hmrEXL7M3hMn8Pby4pZy5XA6nTdUR/I3t9vNnuPHiUtIoFpICIV9fXO6JRHJ5xSyRMQ2X//yCy999hnbDh0CoJBhcH/Tpkzq35/yJUvmbHN52O8HD9L11Vc5eOoU5pVthb28GNy+PW8NGpStvSzZtIlxc+ey4/BhIHGO/92sGa/1789NJUqkq8ayLVsYMm0a4RERWFe2Bfv6MrZPH57o1CldNaIvXeKFzz5j9sqVRMbGAlCxeHGeuv9+HmnfHofDkeFjk/zHsize//ZbJi1awtGz4QD4+/gz6N5WTOjThwB//xzuUETyK31cUERs8cnq1fxrwgSKHj7MYmAL8Jppsm7DBpqMHMnRM2dyusU86c8jR2j05JNcPHWKicAvwNfAnQkJTF26lO6vvZZtvXy8ahVdXn2VkkeOsITEOZ5kmqxdv54mI0dy/Ny5NGt8tXkzXcaPxzcigveAX4H5wM2XLzNi1izGzZuXZo1LsbHc88ILzFq+nEdjY9kIfA80O3eOR2fM4KmPP87MYUo+8uycOQz74AOOnm0FrAI24Yp9kunLf+Cu58fguhLQRUTs5rAsy0p7t4IrMjKSoKAgIubPJ1C/8RJJUZTLRbl+/egaG8ts4NpzCCeBBoZBqzvv5NMRI3Kow7zrtuHDOXr4MNuBitdst4DHgPeAP6ZPp0ZoaJb2ERETQ7l+/egZF8dMks/xcRLnuN1dd/Hx4497rFOyVy+KxsTwCxB8zfYE4F/AaoeDiIUL8fX2TrXGlCVLGDV7NhssizuuG3sLGAHsePtt6lSqlO7jk/zn94MHqfP448AbwFPXjW7FcDThtf59eKpLlxzoTkTyqkiXi6CePYmIiCAwMDDV/XQmS0Qy7Yv164mJjWUCyd98A5QFHjdNFvz0E5EuVw50l3dFulzsOnyYYSQPWJD4Oo8FnMBzn36a5b3MW7eO2Ph4Xuafc1wOGG6azPvxR6I8zPG6P/7gbEwML5A8YEHiZ9cnAHGWxaRFizz2MvPbb+mWQsACeBQIMQxmfved5wOSfO+jVavwMkoDKQX/+pjWv3n/m1XZ3ZaIFBAKWSKSaftOnqSC08lNqYw3BWLd7nR9nEz+56+jR3GT+PqlpARQDTgQHp7lvewPD6eSYRCSynhT4HJCAicvXEi1xua//07aNyX1AG9g55XrvVLt5dQpmqUyVghoZJrsP3nSYw3J//adDCfBbEziV0VKmnLotL5ORCRrKGSJSKYFFy7MGcsitXMYV98yB+kjtxlStlgxAI6kMh5P4scxs+OjzMGFC3PKsricynh65rhs0aJA6sdzCogDiqexWmGwvz+eYthhwyC4SBGPNST/K1qkME7jkIc9DhPgp68TEckaClkikmn/btqUGNNkdgpjbuBdw6B59eqEFC+e3a3laeVLlqRUYCDvkBg+rjcPuAA8mc4V+TKje7NmRJomn6QwlgBMNwzuuvVWSl8JUinp2bw5fobBVCCli4HfIfGH0nP33++xlx4tWjDHMLiYwth6YJtp0rN5c481JP/r0awZbvM3YF0KoxF4GbN5oGVq51VFRDJHIUtEMq1K2bIMaNWKEQ4HbwPRV7b/DfQANlsWY/v0ybkG87BX+vZlF9AZ2HVlmwuYAQwBQosVo1uTJlneR7WQEPrddRePORy8A8Rc2b4H6A5stSzG9O7tsYaXlxeD2rdnKTAIOHpl+wXgZeBVIKxGDSqVKeOxzohOnYj38eFew2ATiYEtHlgIdDEMGlapQoc7UrpiSwqSDg0acEe16jiNLsACEr9KLGAzTuNefL1djOjcOUd7FJH8S6sLpkGrC4qkT1x8PI9+8AGzvv8eb6CoYXDS7aZ44cLMGD48W4JAfvXy/PlM+Pxz4oGSQBRwGahcqhRbpkyhmIfVjewUGx/PsPff5+Pvv8fX4SD4yhyXKFyYmY8/TufGjdNV5z9TpvD52rWYJF5XdoHEM54Nb76Z9ZMm4eWV9i0ct+3fT/eJE9l/+jSlnE4uWRZRpsm9t93G5888Q/Fsek0kdzsfFUXPN6awasdWnEYRHA4/EtxnKF+yLP8d9RQNqlXL6RZFJI9J7+qCCllpUMgSyZgjZ87w359/JtLlolpICF3Dwjwuxy3pE+1yMebzz9l+4ABF/Px4slMn7r7tthzp5dCpUyzetIlIl4ubQ0LocgNzfOLcOV6YO5cDJ09SMiiIsT17UqtixQzVcLvdrNyxgy179+Lt5UW7+vW1bLuk6PeDB/lm61biEhJoULUqberWxel05nRbIpIHKWTZRCFLRERERERA98kSERERERHJEQpZIiIiIiIiNlLIEhERERERsZFCloiIiIiIiI0UskRERERERGykkCUiIiIiImIjhSwREREREREbKWSJiIiIiIjYSCFLRERERETERgpZIiIiIiIiNlLIEhERERERsZFCloiIiIiIiI0UskRERERERGykkCUiIiIiImIjhSwREREREREbeeV0AyIF3Y4DB/i/H34g/OJFbipenP6tWlEjNDSn28pRn/3wA6M+/ZQL0dH4eXvzUNu2vNy7N06nM901jpw5w8hZs9i2fz9Op5P7GjRgwgMP4O/rm+4al+PiGDdvHl9u3Ei8203tChWYMnAgVcqWzdDxzF27lslLlnA+OprSwcGM7dmT9g0aZKjGyfPnmf399+w6epQifn50CwujVZ06GEb6f1d2KTaWBevX88POnViWxZ233kqvFi3w9/FJdw3Lsli7cycLN2wg0uXilnLlGNC6NTeVKJGh4xEREcnPHJZlWTndREZMnz6dN954g/DwcOrUqcM777xDw4YNU91/4cKFvPjiixw6dIhq1arx2muv0b59+3T/fZGRkQQFBRExfz6B/v52HIIIAPEJCTz49tt89uOPlHU6udmy2AWcMU0eadeOdx56KENvoPMDt9tNhYEDOX7+PIHAbcAB4ATg7+XF3x9+SLl0vJkfN28e4+fNA6ABEA38CfgaBkvGjKFNvXpp1tjw11/cO3o0Lreb6kAw8CtgAo//619MGTQozRrRLhe1hg/n8JkzlAKqAbuAC8BtFSqw9a238PJK+3ddH3z7LY/NmEEhoD5wyuHgb7ebxlWr8vVLL1EiMDDNGlv37aPjuHGcjIiggWFgAFtMkxJFirDkxRdpUqNGmjUuREfTefx41v31F1WcTspZFtuAS5bFGw8+yJOdOqVZQ0REJC+LdLkI6tmTiIgIAj38/M1T7+C++OILRowYwdixY9m2bRt16tShTZs2nD59OsX9f/75Z3r16sXAgQPZvn07nTt3pnPnzvzxxx/Z3LnIPz0zezZfrFvHx8ARt5u1pskx02Qa8P633zJhwYKcbjHb1R8xguPnz/MKEA78BBwBvgDcCQnUfOSRNGss3riRl+fNox1wFNgE/AH8BoSaJp1efpmzkZEea7guX+ae0aMp4XbzC/AXsBE4DvwbmLp0KbNWrUqzl6bPPsvxM2eYc+W564GTwFRg5+HDtH/55TRrLN+yhYfff58hpskJ02SdabLb7WY1cODAAbpOmEBavys7ffEibV58kdCoKPaSGK42myb7geouF+3HjuXY2bNp9tLztdf4Y88eVgB73W5+vNLT45bFiFmzWLRhQ5o1RERECoI8FbKmTJnC4MGDGTBgADVr1uSDDz7A39+fjz/+OMX93377bdq2bcvTTz9NjRo1GD9+PPXq1ePdd9/N5s5FkjsfFcUH337LGMtiAP/73K43MBx4Api6eDGXYmNzqsVsF33pEn8ePEg/YDTgd2W7E+gOvAlEXb7M0s2bPdZ5ds4cygCLgGs/1HcbsByIM02emTPHY40XPvuMS243S4A7rtleCvgMqAqM+/xzjzX2HD/OH4cP8zLQj//NsQ/wOPAosHbHDi5GR3usM2nBAu50OHgHCLqyzQHcDcwxTX7avZuf//rLY42ZK1ficrlYZppUvWZ7JWCpaWLGxfHBihUea2zdt4+Vv/3GTNOkzZUeAAJInJs2Dgevzp+fZuATEREpCPJMyIqLi2Pr1q20bt06aZthGLRu3ZqNGzem+JyNGzcm2x+gTZs2qe4PEBsbS2RkZLKHiN1Wbt/O5YQEUvvA2SDgwqVL/LRrV3a2laPe+PJLEoDBqYz3I/EfrPFffOGxzqGTJ3mQxDBzvWpAc+DbX3/1WGPxpk3cDtRNYcyLxPk5du4cpmmmWuPtpUsxr+ybkkFAPHg8I3YuMpL1e/YwyLKSQs212gA3OZ18lUbw/Ornn+lsWZRMYSwY6G6afJXGWailv/xCCaeTlD4Q6AAGWRbbDx/m+LlzHuuIiIgUBHkmZJ09exa3203p0qWTbS9dujTh4eEpPic8PDxD+wNMnDiRoKCgpEdoAV+AQLLGpbg4AIqlMl786n4F6EzWxZgY4H/Hfr0iQCESF6PwxCT11xWgJJCQkOCxRlxCQqp9QGKPVhp1Yi5fBqCohxoAUZcupVojra8T40r9S2m8JpdiYz2+JsVJ+2vtUmwsQSSeWUytBunoRUREpCDIMyEruzz33HNEREQkPY4ePZrTLUk+VKdSJQC+S2X86ge3alesmB3t5ArdmjbFwf+O/XrrgctAWPXqHusU8fHh21TGLgHfAxXKlPFY45Zy5fgZSO089jckLsTh7e2dao2WtWsDsDKV8avHeU/dlM6XJSpTtCilihRJ9evkCPCn281taXyd3FalCisNg5TOu1nAt4bBbVWqeK5RsSL73W72pjK+Agj28yNUqwyKiIjknZBVokQJnE4np06dSrb91KlTlEnlDVOZMmUytD+Aj48PgYGByR4idqtXpQoNq1RhtGFw/rqxk8A4w6BNnTpUTiMM5Cd33nor/t7evEriioLXigJGkHgm690hQzzW6d6iBauAL6/bbgFjgAhgYt++Hmu8PmAAl4Gn4R/B5DtgCdDew6qmAP3uvpuAQoV4hsTVBK91HHgJKB0YSFMPq/p5OZ0Mbt+eWYbBluvG4oEngSK+vvS6806PvTzcvj17TZO3Uhj7ANhpmgxNY9XV+5s2pUThwjzhcHD9Oa/fgPcNgwH33ouvh+ApIiJSUOSZkOXt7U39+vVZvXp10jbTNFm9ejVhYWEpPicsLCzZ/gCrVq1KdX+R7PTxk09y0s+PWobBWGA+8Bxwm2EQFxjI+8OG5XCH2W/piy9yEagDjCTxNXkFqA5sB57t3t3j2SNIDGHlixfnfuB+EheqmAGEkbhAQ+dGjTyePQJoULUqfe+6iw9JXAL+PWAu0AvoAJQMDOSTJ57wWMMwDGaPHMmeK/2Pu3I8o4BawBmHg/8+/7zHGgDP3X8/dapU4U6Hg8HAPOAt4HbDYKlh8OmIERTx8/NYo1nNmjzbrRtPAfc6HHwMzAHaOxw8Ajx2333cc/vtHmv4envz2dNPs9owqGMYTL7Sy8NAE8OgWvnyvNSrV5rHIyIiUhDkqftkffHFF/Tr148ZM2bQsGFDpk6dyoIFC9i9ezelS5fmP//5D+XKlWPixIlA4hLuLVq0YNKkSXTo0IH58+fz6quvsm3bNmrVqpWuv1P3yZKsdDA8nNe+/JLP1qwhJi6OIF9f+t1zD8927UpIcU9XBeVfm/bsocurr3L2wgUSSPxNUGFfXyYPHMjgNm3SVSMuLo7/TJ3K1xs34nK7ASju78/wTp0Ym4Eg8MaXX/Lmf//L6agoAPwMgzZ33MHckSPTfVPjtTt38vD777P32DHcJC6cUbtyZT5+7DFur1w5XTVcsbG89dVXzFi+nKMXLuB0OOjUqBHPdOtGo1tuSVcNy7JYsH49by1ezOZ9+wCoX6kSj3fuzAMtW+JwpLS0xj9t27+f1xYt4suNG0kwTUKCghjcrh0jO3cmQP9GiohIPpfe+2TlqZAF8O677ybdjPj2229n2rRpNGrUCICWLVtSsWJF5lyzPPPChQt54YUXkm5G/Prrr+tmxJLruN1uYmJjKeLrW+BuQJyauLg4Dp0+TWjx4vilcaYmNaZpcjYyEl9v70x9/0a7XLji4igRGHjD8xMXF8fZqChKBQWl6wbEKbEsi+hLl/D19qbQDdaA/y1y4eeT0hqM6ZPgdnMpNpYifn7pDmgiIiJ5Xb4NWdlNIUtERERERCD9IUu/MhcREREREbGRQpaIiIiIiIiNFLJERERERERspJAlIiIiIiJiI4UsERERERERGylkiYiIiIiI2EghS0RERERExEYKWSIiIiIiIjZSyBIREREREbGRQpaIiIiIiIiNFLJERERERERspJAlIiIiIiJiI4UsERERERERGylkiYiIiIiI2EghS0RsF3P5MqcuXCDB7b7hGnHx8Zy6cIFLsbE2dnZjIl0uzkREYJpmjvaR4HZz+uJFoi9dytE+7JKb5lhERMROXjndgIjkH5t27+bVBQtYvnUrpmVRzN+fAffey/Pdu1O0SJF01Qi/cIEJX3zBp6tXExUbi5dh0KVxY17o0YPbKlXK4iNIbvmWLby2cCE/7d4NwE1FizK0Qwee6tIFn0KFsq2PKJeLiYsW8dGKFZyJjgagTZ06PNejBy1q1cq2Puxy4tw5JixYwP+tXk10XBxehkG3Jk14oUcPalWokNPtiYiIZJrDsiwrp5vIzSIjIwkKCiJi/nwC/f1zuh2RXGvZli10feUVqgMPmSY3AT8BHxkG5cqUYd3rr1M8MNBjjWNnz9Ls6aeJuXCBoabJHcB+4H3D4LjTyXfjx9OsZs2sPxjg3WXLGP7hhzQ3DAaYJsHAN8CnDgd31qrFspdeypagFelycdeoUfx95AgPmiZ3A+HATMNgh2Ux96mn6NG8eZb3YZcjZ87Q7KmnuBwRwVDTpAGwj8Q5PunlxaoJEwirXj2n2xQREUlRpMtFUM+eREREEOjhfY1CVhoUskTSdjkujpv69aOpy8Uiy+La6LEHaGIY9GjThvcefthjnfsnTmTz5s1svBLSrnIBbR0Ojpcowd6ZMzGMrP2k85EzZ6g8aBCPWhZvAY5rxtYC9zgcvPHggzzRqVOW9gHw7Jw5vLdkCetNkzrXbHcDfYGvvb05/umneebfpy4TJrDt11/ZaJqEXLM9BmhjGJwuWZLdM2Zk+RyLiIjciPSGLP0UE5FMW7RhA+diYph8XcACuAUYbpr83+rVxFy+nGqN8AsXWLJpE6OuC1gA/sDrlsWBM2dYtWOHvc2n4KOVKynscDCB5AELoCVwv2XxwfLlWd5HfEICs777jiHXBSwAJ/AmcCkujrlr12Z5L3Y4fu4cS7dsYfR1AQugMDDJNNl76hQ/7NyZE+2JiIjYRiFLRDLtzyNHqOh0UjWV8dZAdFwcR8+eTbXG38eP47YsWqUy3ggobBjsOno0k92m7c8jR2hsWaR2FVlrYE94OO5MLOyRHqcuXuRcTEyqr0kIcKvTmS2viR32HDuG6WGOmwK+DkeeOR4REZHUKGSJSKYV9vXlgmURl8r46Sv/9ffx8Vjj2n2vFwlcNk2PNexS2NeX047rz2H9z2nAx8sryz/SdvVYU3tNTOAsnl/X3CStOb4IxFoW/t7e2dWSiIhIllDIEpFM6xIWRoRpsiCFMQuY4XBQv1IlQkuUSLXG7ZUqUaF4cWakMv4xgMNBxzvuyHzDaejSuDE7TJNfUhiLAz42DLqGheHwEMTsUCwggJY1azLTMEhp8fhlwAm3m65hYVnah13qV61KaNGiqc7xR4CXYdAhG+ZYREQkKylkiUim3Vq+PF0aNuQRw2ARiYsyAJwHHgNWWhbP9+zpMZQ4nU5G9+jB58ALJJ65AogHZgPPORw82Lo1IcWLZ92BXNGxYUNuCw2lm2HwI4lBEeAo0N3h4IjDwVNdu2Z5HwDP9ejBRtNkEP87A2SSGLAGGAatatWi4c03Z0svmeXldPJcjx58CowFoq5sjwNmAS84HAy6917KFC2aYz2KiIjYQSFLRGzx6ciR3Hn77fwbKO90cofTSTmHgw+dTqYPHUqXdJxtGdymDeP79GGSw0E5w+AOp5ObnE4eBLo1b847Q4dm+XFAYhj49uWXKVW+PC2Bqk4n9ZxOKgI/+Pjw39GjqVelSrb0cm/dusx+/HHmeXkR6nDQwOmkotNJR6BOjRosHD06y8+o2Wlou3a81KsXExwOQq6Z40FA9zvvZOrgwTndooiISKZpCfc0aAl3kYzZsncvX/z0E5EuF9VCQuh3992UCg7OUI1jZ8/yyZo1HDp9muIBAfRp0YLaFStmSb+emKbJ6t9+4+stW4iNj6du5cr0adGCgBz4t+BcZCT/98MP7Dp6lCJ+fnQLC6NJjRp5KmBd6+iZM3yyZg2Hz5yhREAAfVq21I2IRUQk19N9smyikCUiIiIiIqD7ZImIiIiIiOQIhSwREREREREbKWSJiIiIiIjYSCFLRERERETERgpZIiIiIiIiNlLIEhERERERsZFCloiIiIiIiI0UskRERERERGykkCUiIiIiImIjhSwREREREREbKWSJiIiIiIjYSCFLRERERETERgpZIiIiIiIiNlLIEhERERERsZFCloiIiIiIiI28croByXqXYmNZ9PPP/HH4MP4+PnRu3Jg6lSrldFuSy5imyZrff+eHnTuxLIumNWrQtl49nE5nhursOXaMRT//TERMDDeXK0ePZs0I8PfPoq5FREREch+HZVlWTjeRm0VGRhIUFETE/PkE5sE3isu2bKHf5Mmcd7mo7HRywbK4YJp0rF+fz55+Ok8ek9jvQHg4ncePZ+fRo5R1OnECx9xuqpUuzeIXX+TW8uXTrHE5Lo5B06Yxd906Ag2Dkg4HB91uCvv48P6wYfRp2TLLj0NEREQkK0W6XAT17ElERASBgYGp7qePC+Zjm/fsoesrr9Ds0iX2Avvdbk6ZJp8DP27fTveJE1HGlkiXi9ajR3P5+HHWAsfdbo643WwE/M6cofXo0Zy+eDHNOoPfeYf//vQTHwKnTJN9bjeHgE6xsfSdMoUVW7dm5WGIiIiI5BoKWfnYqwsWcAuwyLKoemVbIaAXMMc0+e6339i8Z0/ONSi5wqdr1nDk7Fm+M01aAI4rj8bAStMkMjqaGStWeKzx9/HjfPbjj0yzLAYDvle2hwKfAM0dDsbPm5eFRyEiIiKSeyhk5VOu2FiW/forD5kmhVIY7wTc5HSyYMOG7G5NcpkF69bRAUjpKr3SwL9NkwU//uixxqINGwgwDPqmMGYAj1gWP//9N8fPnct8wyIiIiK5nEJWPhVz+TKmZVEulXEDCCHxo2JSsEXGxKT6dQJwE2l/nUReukQJhyPpDFZKNUhHHREREZH8QCErnypWpAjFCxfmp1TGzwO/myY3h4RkZ1uSC90cGspPhkFqV+f9aBjcfNNNqYwmuqVcOQ673RxOrQbg6+XFTcWLZ6ZVERERkTxBISufcjqdDGzTho8Mg13XjVnAGMA0DPq3apUD3UluMqRtW/4wTT5JYewrYL1p8lD79h5rdG/WjABfX0YB7uvGjgDTDIPeLVtqKXcREREpEBSy8rHn7r+fiuXK0dQweIHEswkLgXsdDqYDbw0eTKng4BztUXJeqzp1GNi6NQ8C/YBvgZXAEOB+h4NujRvTpXFjjzUK+/oyY/hwFjgc3GkYzAXWAROAOwwD/2LFeKVvSldsiYiIiOQ/uk9WGvL6fbIuREczZu5cPvn+e6JiYwFoULkyo3v0oEtYWA53J7mFaZpM+/pr3l6yhENXFqcoFxzMsI4debprV7zSeUPiVdu3M37ePH7avRsAv0KF6NWiBRMeeICyxYplWf8iIiIi2SG998lSyEpDXg9ZV7liYzl29iz+Pj7cVKJETrcjuZTb7ebQ6dNYlkXF0qXTHa6ud/L8eSJdLsoVL04RPz+buxQRERHJGekNWV7Z2JPkIH8fH24u52kNOZHEa/mqlC2b6TplixXTmSsREREpsPLMNVnnz5+nT58+BAYGEhwczMCBA4mOjva4//Dhw7nlllvw8/OjfPnyPPbYY0RERGRj1yIiIiIiUtDkmZDVp08f/vzzT1atWsWyZctYt24dQ4YMSXX/EydOcOLECd58803++OMP5syZw4oVKxg4cGA2di0iIiIiIgVNnrgm66+//qJmzZps2bKFBg0aALBixQrat2/PsWPHCEnnvZ4WLlzIAw88QExMDF5e6fukZH65JktERERERDInvddk5YkzWRs3biQ4ODgpYAG0bt0awzDYvHlzuutcfTE8BazY2FgiIyOTPURERERERNIrT4Ss8PBwSpUqlWybl5cXxYoVIzw8PF01zp49y/jx4z1+xBBg4sSJBAUFJT1CQ0NvuG8RERERESl4cjRkjRo1CofD4fGx+8r9djIjMjKSDh06ULNmTV566SWP+z733HNEREQkPY4ePZrpv19ERERERAqOHF3CfeTIkfTv39/jPpUrV6ZMmTKcPn062faEhATOnz9PmTJlPD4/KiqKtm3bEhAQwOLFiylUqJDH/X18fPDx8UlX/yIiIiIiItfL0ZBVsmRJSpYsmeZ+YWFhXLx4ka1bt1K/fn0A1qxZg2maNGrUKNXnRUZG0qZNG3x8fFi6dCm+vr629S4iIiIiIpKSPHFNVo0aNWjbti2DBw/ml19+YcOGDTz66KP07NkzaWXB48ePU716dX755RcgMWDde++9xMTEMGvWLCIjIwkPDyc8PBy3252ThyMiIiIiIvlYjp7Jyoi5c+fy6KOP0qpVKwzDoFu3bkybNi1pPD4+nj179uByuQDYtm1b0sqDVatWTVbr4MGDVKxYMdt6FxERERGRgiPPhKxixYrx+eefpzpesWJFrr3lV8uWLckDtwATEREREZF8Jk98XFBERERERCSvUMgSERERERGxkUKWiIiIiIiIjRSyREREREREbJRnFr4QAThx7hwPTpvGj7/9xmXTpBBQs1Ilpg8dStMaNbK1l89++IEXPvuMY2fOYAJFvL3p1rw5Mx5+GG9v72zrIz4hgY9WruSD5cv589gxCvv40LVJE0Z26UKtChWyrQ+7RLpcvLtsGbNWrODQuXMUL1yY3nfdxcjOnQlNx331ACzLYv66dbz79dds2bcPL6eTtvXqMbJLF5rWrJnFRyAiIiIFncPSEnweRUZGEhQURMT8+QT6++d0OwXawfBwbhs2jLj4eHoBjYCDwEdAFDDvmWe4v1mzbOnl6Y8/ZvKSJVQABgJFgeXACiC0eHH2zpiRLUErLj6eTuPHs+q33+gEtLIsTgNzDINThsHSF1/knrp1s7wPu5yPiuKuUaP4+9gxelkWDYH9wGzDwPD3Z83EiWkGR8uyGDp9Oh+uXElrh4N/WRYxwGeGwS7T5KPhw3nwnnuy43BEREQkn4l0uQjq2ZOIiAgCAwNT3U8hKw0KWblH9aFDOXniBOuB2tdsPw/cBexzOon6738xjKz9FOye48ep+fDD3A98BhS6ZuxL4H6gV4sWzB05Mkv7AJi0aBFj/u//+MayaH3N9stAV4eDTX5+HJ0zh8K+vlneix0GTJ3K0rVrWWea3HrN9nPA3YaBFRLCb9On43A4Uq2xYP16erz+OrOB/tdsN4GHgVkOB/s+/JCKpUtnxSGIiIhIPpbekKVrsiRPOHzqFHtPnOBZkgcsgGLA24DL7Wbq0qVZ3suIWbNwAtNJHrAAugIdga82bMjyPkzT5L2vv6bvdQELwBeYbllcdLmYv25dlvdih/NRUcz78UeeuS5gARQHJpsmO48dY/2uXR7rTP/6a1oaRrKABYn/2E0BijgcfPjdd7b1LSIiInI9hSzJE77bsQOTxACTkhaAP7D699+zvJedhw4RBpRIZbwTEJOQQLTLlaV9nImI4OiFC6m+JpWA25xOft23L0v7sMufR44Q63anejytAD+HI83j2bp/Px1NM8WxwsDdpsmve/dmqlcRERERTxSyJE/wv3J9U1Qq47FAPOBb6PpzS/Yr5HQS6WH8ao/eXlm7roz3lWNN7TWxrox5Z8NrYoerr1dqx3OJxDlO63X1djpTrQEQ5XDgk0deExEREcmbFLIkT+gaFoa3w8GcVMa/IPEN+NC2bbO8lw533MEOYGcKYyYwGygVGJjlC18ULVKExlWrMsfhIKULK9cDB9xuOjRokKV92KVu5cqUDghIdY7nAW7Lom29eh7rtG/YkP9zOklIYewIsMay6HDHHZlrVkRERMQDhSzJE/x9fbmnfn1mAu9C0htoC/geGA6UCw7OlpX0Xn3gAXwNg67A7mu2RwPDgN+AZ7p1y/I+AJ75979ZY1k8R+KZnqu2Aw8YBrdXqEDrOnWypZfM8i5UiCe7dmUG8B7J5/g7YIRh0C0sjCply3qs82SnThwyTfoDF6/ZfhDoYhiUCgykT4sWtvcvIiIicpVCluQZS0aPpnaFCgwHbiLx2qdawD2Al58fP0+enC19FPH3Z+nYsRw1DGoATYD7gNLADKBvy5aM7NIlW3rpEhbGGwMG8DpQzjD4F9DIMKgHFClThqVjxmT5aot2erpLF4a2a8cwoJLTSWegtmHQFqhfowazHn88zRr1q1Zl7lNPsdDppJzDQQegpcNBFeBkQAArxo8nQCuFioiISBbSEu5p0BLuuc+8H39k4qJFhF+4QICfHwNat2ZUt254ZfE1UNc7HxnJqE8/5ZutW0lISKBaSAivDxhAWPXq2doHwL4TJ5i5ciV/HjlCYV9fuoaF0aVx4zxzPdb1tu3fz6xVqzh06hTFr5x5uuf22zMUGE+eP89HK1eyZe9eCnl50bZePXq3aJFnlrMXERGR3Ef3ybKJQpaIiIiIiIDukyUiIiIiIpIjFLJERERERERspJAlIiIiIiJiI4UsERERERERGylkiYiIiIiI2EghS0RERERExEYKWSIiIiIiIjZSyBIREREREbGRQpaIiIiIiIiNFLJERERERERspJAlIiIiIiJiI4UsERERERERGylkiYiIiIiI2EghS0RERERExEYKWSIiIiIiIjZSyBIREREREbGRQpaIiIiIiIiNFLJERERERERspJAlIiIiIiJiI4UsERERERERGylkiYiIiIiI2EghS0RERERExEYKWSIiIiIiIjZSyBIREREREbGRQpaIiIiIiIiNvHK6gdzOsiwAIl2uHO5ERERERERy0tVMcDUjpMZhpbVHAXfs2DFCQ0Nzug0REREREckljh49yk033ZTquEJWGkzT5MSJEwQEBOBwODzuGxkZSWhoKEePHiUwMDCbOpS0aF5yJ81L7qR5yZ00L7mT5iV30rzkTvllXizLIioqipCQEAwj9Suv9HHBNBiG4TGlpiQwMDBPf/HkV5qX3EnzkjtpXnInzUvupHnJnTQvuVN+mJegoKA099HCFyIiIiIiIjZSyBIREREREbGRQpaNfHx8GDt2LD4+PjndilxD85I7aV5yJ81L7qR5yZ00L7mT5iV3KmjzooUvREREREREbKQzWSIiIiIiIjZSyBIREREREbGRQpaIiIiIiIiNFLJERERERERspJCVSefPn6dPnz4EBgYSHBzMwIEDiY6OTtdzLcuiXbt2OBwOlixZkrWNFjAZnZfz588zfPhwbrnlFvz8/ChfvjyPPfYYERER2dh1/jN9+nQqVqyIr68vjRo14pdffvG4/8KFC6levTq+vr7Url2bb775Jps6LVgyMi8zZ86kefPmFC1alKJFi9K6des051FuTEa/X66aP38+DoeDzp07Z22DBVRG5+XixYsMGzaMsmXL4uPjw80336x/y7JARudl6tSpST/jQ0NDefLJJ7l8+XI2dZv/rVu3jo4dOxISEpLu97Vr166lXr16+Pj4ULVqVebMmZPlfWYrSzKlbdu2Vp06daxNmzZZP/30k1W1alWrV69e6XrulClTrHbt2lmAtXjx4qxttIDJ6Lzs3LnT6tq1q7V06VJr37591urVq61q1apZ3bp1y8au85f58+db3t7e1scff2z9+eef1uDBg63g4GDr1KlTKe6/YcMGy+l0Wq+//rq1a9cu64UXXrAKFSpk7dy5M5s7z98yOi+9e/e2pk+fbm3fvt3666+/rP79+1tBQUHWsWPHsrnz/C2j83LVwYMHrXLlylnNmze3OnXqlD3NFiAZnZfY2FirQYMGVvv27a3169dbBw8etNauXWvt2LEjmzvP3zI6L3PnzrV8fHysuXPnWgcPHrS+++47q2zZstaTTz6ZzZ3nX9988431/PPPW19++WW63tceOHDA8vf3t0aMGGHt2rXLeueddyyn02mtWLEiexrOBgpZmbBr1y4LsLZs2ZK07dtvv7UcDod1/Phxj8/dvn27Va5cOevkyZMKWTbLzLxca8GCBZa3t7cVHx+fFW3mew0bNrSGDRuW9Ge3222FhIRYEydOTHH/7t27Wx06dEi2rVGjRtZDDz2UpX0WNBmdl+slJCRYAQEB1ieffJJVLRZINzIvCQkJVpMmTayPPvrI6tevn0JWFsjovLz//vtW5cqVrbi4uOxqsUDK6LwMGzbMuvvuu5NtGzFihNW0adMs7bOgSs/72meeeca69dZbk23r0aOH1aZNmyzsLHvp44KZsHHjRoKDg2nQoEHSttatW2MYBps3b071eS6Xi969ezN9+nTKlCmTHa0WKDc6L9eLiIggMDAQLy+vrGgzX4uLi2Pr1q20bt06aZthGLRu3ZqNGzem+JyNGzcm2x+gTZs2qe4vGXcj83I9l8tFfHw8xYoVy6o2C5wbnZeXX36ZUqVKMXDgwOxos8C5kXlZunQpYWFhDBs2jNKlS1OrVi1effVV3G53drWd793IvDRp0oStW7cmfaTwwIEDfPPNN7Rv3z5bepZ/Kgg/8/XuMRPCw8MpVapUsm1eXl4UK1aM8PDwVJ/35JNP0qRJEzp16pTVLRZINzov1zp79izjx49nyJAhWdFivnf27FncbjelS5dOtr106dLs3r07xeeEh4enuH9650zSdiPzcr1nn32WkJCQf/xwlBt3I/Oyfv16Zs2axY4dO7Khw4LpRublwIEDrFmzhj59+vDNN9+wb98+HnnkEeLj4xk7dmx2tJ3v3ci89O7dm7Nnz9KsWTMsyyIhIYGhQ4cyevTo7GhZUpDaz/zIyEguXbqEn59fDnVmH53JSsGoUaNwOBweH+l9Q3K9pUuXsmbNGqZOnWpv0wVAVs7LtSIjI+nQoQM1a9bkpZdeynzjIvnEpEmTmD9/PosXL8bX1zen2ymwoqKi6Nu3LzNnzqREiRI53Y5cwzRNSpUqxYcffkj9+vXp0aMHzz//PB988EFOt1agrV27lldffZX33nuPbdu28eWXX7J8+XLGjx+f061JPqYzWSkYOXIk/fv397hP5cqVKVOmDKdPn062PSEhgfPnz6f6McA1a9awf/9+goODk23v1q0bzZs3Z+3atZnoPH/Lynm5KioqirZt2xIQEMDixYspVKhQZtsukEqUKIHT6eTUqVPJtp86dSrVOShTpkyG9peMu5F5uerNN99k0qRJfP/999x2221Z2WaBk9F52b9/P4cOHaJjx45J20zTBBLP2u/Zs4cqVapkbdMFwI18v5QtW5ZChQrhdDqTttWoUYPw8HDi4uLw9vbO0p4LghuZlxdffJG+ffsyaNAgAGrXrk1MTAxDhgzh+eefxzB0ziG7pfYzPzAwMF+cxQKdyUpRyZIlqV69useHt7c3YWFhXLx4ka1btyY9d82aNZimSaNGjVKsPWrUKH7//Xd27NiR9AB46623mD17dnYcXp6VlfMCiWew7r33Xry9vVm6dKl+U58J3t7e1K9fn9WrVydtM02T1atXExYWluJzwsLCku0PsGrVqlT3l4y7kXkBeP311xk/fjwrVqxIdq2j2COj81K9enV27tyZ7OfIv/71L+666y527NhBaGhodrafb93I90vTpk3Zt29fUugF+PvvvylbtqwClk1uZF5cLtc/gtTVIGxZVtY1K6kqED/zc3rljbyubdu2Vt26da3Nmzdb69evt6pVq5ZsqfBjx45Zt9xyi7V58+ZUa6DVBW2X0XmJiIiwGjVqZNWuXdvat2+fdfLkyaRHQkJCTh1GnjZ//nzLx8fHmjNnjrVr1y5ryJAhVnBwsBUeHm5ZlmX17dvXGjVqVNL+GzZssLy8vKw333zT+uuvv6yxY8dqCfcskNF5mTRpkuXt7W0tWrQo2fdFVFRUTh1CvpTRebmeVhfMGhmdlyNHjlgBAQHWo48+au3Zs8datmyZVapUKWvChAk5dQj5UkbnZezYsVZAQIA1b94868CBA9bKlSutKlWqWN27d8+pQ8h3oqKirO3bt1vbt2+3AGvKlCnW9u3brcOHD1uWZVmjRo2y+vbtm7T/1SXcn376aeuvv/6ypk+friXcJblz585ZvXr1sooUKWIFBgZaAwYMSPbm4+DBgxZg/fDDD6nWUMiyX0bn5YcffrCAFB8HDx7MmYPIB9555x2rfPnylre3t9WwYUNr06ZNSWMtWrSw+vXrl2z/BQsWWDfffLPl7e1t3Xrrrdby5cuzueOCISPzUqFChRS/L8aOHZv9jedzGf1+uZZCVtbJ6Lz8/PPPVqNGjSwfHx+rcuXK1iuvvKJf1mWBjMxLfHy89dJLL1lVqlSxfH19rdDQUOuRRx6xLly4kP2N51OpvY+6Og/9+vWzWrRo8Y/n3H777Za3t7dVuXJla/bs2dned1ZyWJbOk4qIiIiIiNhF12SJiIiIiIjYSCFLRERERETERgpZIiIiIiIiNlLIEhERERERsZFCloiIiIiIiI0UskRERERERGykkCUiIiIiImIjhSwREREREREbKWSJiEie0L9/fxwOxz8e+/bts6X+nDlzCA4OtqXWjVq3bh0dO3YkJCQEh8PBkiVLcrQfERG5MQpZIiKSZ7Rt25aTJ08me1SqVCmn2/qH+Pj4G3peTEwMderUYfr06TZ3JCIi2UkhS0RE8gwfHx/KlCmT7OF0OgH46quvqFevHr6+vlSuXJlx48aRkJCQ9NwpU6ZQu3ZtChcuTGhoKI888gjR0dEArF27lgEDBhAREZF0huyll14CSPGMUnBwMHPmzAHg0KFDOBwOvvjiC1q0aIGvry9z584F4KOPPqJGjRr4+vpSvXp13nvvPY/H165dOyZMmECXLl1seLVERCSneOV0AyIiIpn1008/8Z///Idp06bRvHlz9u/fz5AhQwAYO3YsAIZhMG3aNCpVqsSBAwd45JFHeOaZZ3jvvfdo0qQJU6dOZcyYMezZsweAIkWKZKiHUaNGMXnyZOrWrZsUtMaMGcO7775L3bp12b59O4MHD6Zw4cL069fP3hdARERyFYUsERHJM5YtW5Ys/LRr146FCxcybtw4Ro0alRReKleuzPjx43nmmWeSQtYTTzyR9LyKFSsyYcIEhg4dynvvvYe3tzdBQUE4HA7KlClzQ7098cQTdO3aNenPY8eOZfLkyUnbKlWqxK5du5gxY4ZClohIPqeQJSIiecZdd93F+++/n/TnwoULA/Dbb7+xYcMGXnnllaQxt9vN5cuXcblc+Pv78/333zNx4kR2795NZGQkCQkJycYzq0GDBkn/HxMTw/79+xk4cCCDBw9O2p6QkEBQUFCm/y4REcndFLJERCTPKFy4MFWrVv3H9ujoaMaNG5fsTNJVvr6+HDp0iPvuu4+HH36YV155hWLFirF+/XoGDhxIXFycx5DlcDiwLCvZtpQWtrga+K72AzBz5kwaNWqUbL+r15CJiEj+pZAlIiJ5Xr169dizZ0+KAQxg69atmKbJ5MmTMYzENZ8WLFiQbB9vb2/cbvc/nluyZElOnjyZ9Oe9e/ficrk89lO6dGlCQkI4cOAAffr0yejhiIhIHqeQJSIied6YMWO47777KF++PPfffz+GYfDbb7/xxx9/MGHCBKpWrUp8fDzvvPMOHTt2ZMOGDXzwwQfJalSsWJHo6GhWr15NnTp18Pf3x9/fn7vvvpt3332XsLAw3G43zz77LIUKFUqzp3HjxvHYY48RFBRE27ZtiY2N5ddff+XChQuMGDEixedER0cnu+/XwYMH2bFjB8WKFaN8+fKZe5FERCTbaAl3ERHJ89q0acOyZctYuXIld9xxB40bN+att96iQoUKANSpU4cpU6bw2muvUatWLebOncvEiROT1WjSpAlDhw6lR48elCxZktdffx2AyZMnExoaSvPmzenduzdPPfVUuq7hGjRoEB999BGzZ8+mdu3atGjRgjlz5ni8r9evv/5K3bp1qVu3LgAjRoygbt26jBkz5kZfGhERyQEO6/oPmouIiIiIiMgN05ksERERERERGylkiYiIiIiI2EghS0RERERExEYKWSIiIiIiIjZSyBIREREREbGRQpaIiIiIiIiNFLJERERERERspJAlIiIiIiJiI4UsERERERERGylkiYiIiIiI2EghS0RERERExEYKWSIiIiIiIjb6fyY2BzUWKzjbAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -551,7 +621,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADISElEQVR4nOzdeZyN5f/H8dd9zqyGGfsyQ/Y9ZBvZh0RkUCRqslVaUBFFSCj6tWpR1Ld9KkoUKRKGaJkSkm3sjGGsY2yznXP//jgzJ2N2ZubM8n4+HvOoua/rvs7nzH3MnM+5rvtzGaZpmoiIiIiIiEiusLg6ABERERERkaJESZaIiIiIiEguUpIlIiIiIiKSi5RkiYiIiIiI5CIlWSIiIiIiIrlISZaIiIiIiEguUpIlIiIiIiKSi5RkiYiIiIiI5CIlWSIiIiIiIrlISZaIuMzBgwcxDIOPP/44R+cFBQURFBSUJzEVdTVq1GDYsGGuDuOaXLhwgQceeIDKlStjGAZPPPGEq0PKE4Zh8Nxzz13Tua6+vkeOHMHLy4uNGze6LAZxjRUrVlCyZElOnjzp6lBECgQlWSLF2Mcff4xhGM4vLy8v/P396dGjB2+++Sbnz593dYgFSlhYWKqfl2EYlC1blptvvpnPP//c1eEVebNmzeLjjz/mkUce4bPPPuO+++7j119/5bnnniMmJibf4vjhhx+uOQkq6mbMmEGbNm1o3759uu0DBw7EMAyefvrpfI6saFq6dCktWrTAy8uLG264gWnTppGUlJStc/fu3cuAAQMoU6YMJUqUoEOHDqxduzbTcxITE2nUqBGGYfDKK6+karvtttuoU6cOs2fPvubnI1KUuLk6ABFxvRkzZlCzZk0SExM5fvw4YWFhPPHEE7z22mssXbqUpk2b5snjVq9encuXL+Pu7p6j83766ac8iSe7HnvsMVq3bg3A6dOnWbhwISEhIcTExDBq1CiXxlaUrVmzhptvvplp06Y5j73yyitMnz6dYcOGUbp06XyJ44cffmDu3Ll5lmhdvnwZN7dr+/O8e/duLBbXfH568uRJPvnkEz755JN022NjY1m2bBk1atTgyy+/5MUXX8QwjHyOsuj48ccf6devH0FBQbz11lts27aN559/nhMnTvDuu+9meu6RI0do27YtVquVCRMm4OPjw0cffUT37t1ZvXo1nTp1Sve8t956i8OHD2c47kMPPcT48eOZPn06pUqVuq7nJ1LomSJSbH300UcmYP75559p2lavXm16e3ub1atXNy9duuSC6AqetWvXmoD59ddfpzoeHx9vBgQEmO3atXNRZNlXvXp1c+jQobky1uXLl02bzZYrY2VHzZo1zdtvvz3VsZdfftkEzAMHDuTqY128eDHDtlGjRpnZ/fOZmJhoxsfH51ZYBdprr71ment7m+fPn0+3/cMPPzTd3d3NNWvWmIAZFhaWzxFmj91uLxS/8xo1amQ2a9bMTExMdB6bPHmyaRiGuXPnzkzPffTRR003Nzdz165dzmMXL140q1WrZrZo0SLdc6Kjo00/Pz9zxowZJmC+/PLL6faxWq3mBx98cI3PSqTo0HJBEUlX165dmTp1KocOHSI0NDRV265duxgwYABly5bFy8uLVq1asXTp0jRjxMTEMHbsWGrUqIGnpydVq1ZlyJAhnDp1Ckj/nqzjx48zfPhwqlatiqenJ1WqVKFv374cPHjQ2Se9e7JOnDjB/fffT6VKlfDy8qJZs2ZpPlFPebxXXnmF9957j9q1a+Pp6Unr1q35888/r/ln5eHhQZkyZdLMPiQlJTFz5kzn49SoUYNnnnmG+Pj4VP0yugfn6vtrUpZ3bty4kXHjxlGhQgV8fHy444470twHYZomzz//PFWrVqVEiRJ06dKF7du3p3mMM2fOMH78eJo0aULJkiXx9fWlZ8+ebN26NVW/lKWSCxYsYMqUKQQEBFCiRAm2bNmCYRi8/vrracb+9ddfMQyDL7/8MsOfXUJCAs8++ywtW7bEz88PHx8fOnbsmGrZUspjHzhwgOXLlzuXag4bNowJEyYAULNmTefxK18roaGhtGzZEm9vb8qWLcugQYM4cuRIqhiCgoK48cYb2bRpE506daJEiRI888wz6cY7bNgw5s6dC5Bq2Sikfn3NmTPHed137NiRreeZ4urXw3PPPYdhGOzdu9c5Y+fn58fw4cO5dOlSqnOv5zVjt9t57rnn8Pf3d75mduzYke37vL799lvatGlDyZIl023//PPPufXWW+nSpQsNGzbMcIntrl27GDhwIBUqVMDb25v69eszefLkVH2OHj3K/fffj7+/P56entSsWZNHHnmEhISEVD+zq6X8PK58jdSoUYPevXuzcuVKWrVqhbe3N/Pnzwfgo48+omvXrlSsWBFPT08aNWqU4SzRjz/+SOfOnSlVqhS+vr60bt2aL774AoBp06bh7u6e7v1KI0eOpHTp0sTFxXHs2DF27dpFYmJiuo+RYseOHezYsYORI0em+r3z6KOPYpomixYtyvT8X375hebNm1O/fn3nsRIlStCnTx/+/vtv9uzZk+aciRMnUr9+fUJCQjIct2LFijRt2pTvvvsu08cXKQ60XFBEMnTffffxzDPP8NNPP/Hggw8CsH37dtq3b09AQAATJ07Ex8eHr776in79+vHNN99wxx13AI4iBR07dmTnzp2MGDGCFi1acOrUKZYuXUpkZCTly5dP9zH79+/P9u3bGTNmDDVq1ODEiROsWrWKw4cPU6NGjXTPuXz5MkFBQezdu5fRo0dTs2ZNvv76a4YNG0ZMTAyPP/54qv5ffPEF58+f56GHHsIwDF566SXuvPNO9u/fn62li+fPn3cmimfOnOGLL77g33//5YMPPkjV74EHHuCTTz5hwIABPPnkk/zxxx/Mnj2bnTt3smTJkiwfJyNjxoyhTJkyTJs2jYMHDzJnzhxGjx7NwoULnX2effZZnn/+eXr16kWvXr34+++/6d69u/NNaIr9+/fz7bffctddd1GzZk2io6OZP38+nTt3ZseOHfj7+6fqP3PmTDw8PBg/fjzx8fE0aNCA9u3b8/nnnzN27NhUfT///HNKlSpF3759M3wusbGx/O9//2Pw4ME8+OCDnD9/ng8++IAePXoQHh7OTTfdRMOGDfnss88YO3YsVatW5cknnwSgSZMmJCQk8OWXX/L66687X1MVKlQA4IUXXmDq1KkMHDiQBx54gJMnT/LWW2/RqVMnNm/enGp54enTp+nZsyeDBg0iJCSESpUqpRvvQw89RFRUFKtWreKzzz5Lt89HH31EXFwcI0eOxNPTk7Jly2breWZl4MCB1KxZk9mzZ/P333/zv//9j4oVK/J///d/WZ6bndfMpEmTeOmllwgODqZHjx5s3bqVHj16EBcXl+X4iYmJ/PnnnzzyyCPptkdFRbF27VrnBx+DBw/m9ddf5+2338bDw8PZ759//qFjx464u7szcuRIatSowb59+1i2bBkvvPCCc6zAwEBiYmIYOXIkDRo04OjRoyxatIhLly6lGi+7du/ezeDBg3nooYd48MEHncnHu+++S+PGjenTpw9ubm4sW7aMRx99FLvdnmpp8Mcff8yIESNo3LgxkyZNonTp0mzevJkVK1Zwzz33cN999zFjxgwWLlzI6NGjneclJCSwaNEi+vfvj5eXF5MmTeKTTz7hwIEDGf6+A9i8eTMArVq1SnXc39+fqlWrOtszEh8fT5kyZdIcL1GiBACbNm2ibt26zuPh4eF88sknbNiwIcslni1btuTbb7/NtI9IseDqqTQRcZ3Mlgum8PPzM5s3b+78/pZbbjGbNGlixsXFOY/Z7XazXbt2Zt26dZ3Hnn32WRMwFy9enGZMu91umqZpHjhwwATMjz76yDRN0zx79myGy1Cu1LlzZ7Nz587O7+fMmWMCZmhoqPNYQkKC2bZtW7NkyZJmbGxsqscrV66ceebMGWff7777zgTMZcuWZfq4KcsFr/6yWCzmCy+8kKrvli1bTMB84IEHUh0fP368CZhr1qxxHgPMadOmpXm8q5f2pVyvbt26OX+GpmmaY8eONa1WqxkTE2OapmmeOHHC9PDwMG+//fZU/Z555hkTSDVmXFxcmiV/Bw4cMD09Pc0ZM2akee61atVKs5Rq/vz5JpBqiVJCQoJZvnz5LJcmJiUlpVlOd/bsWbNSpUrmiBEj0vw8srtc8ODBg6bVak1zXbZt22a6ubmlOt65c2cTMOfNm5dprCkyWi6Y8vry9fU1T5w4cc3P8+rXw7Rp00wgTb877rjDLFeuXKpj1/qaOX78uOnm5mb269cv1XjPPfdcmtdMevbu3WsC5ltvvZVu+yuvvGJ6e3s7/y1GRESYgLlkyZJU/Tp16mSWKlXKPHToUKrjV8Y+ZMgQ02KxpPt7K6Vfys/saik/jytfL9WrVzcBc8WKFWn6p7dssEePHmatWrWc38fExJilSpUy27RpY16+fDnDuNu2bWu2adMmVfvixYtNwFy7dq1pmqY5dOjQbC1/TXndHz58OE1b69atzZtvvjnT84ODg83SpUs7r8eVMQLmK6+8kuo5BAYGmoMHDzZN87/XeUa/p2fNmmUCZnR0dKYxiBR1Wi4oIpkqWbKks8rgmTNnWLNmDQMHDnTO5pw6dYrTp0/To0cP9uzZw9GjRwH45ptvaNasmXNm60oZfRLq7e2Nh4cHYWFhnD17Ntsx/vDDD1SuXJnBgwc7j7m7u/PYY49x4cIF1q1bl6r/3XffnepT3I4dOwKOWZ3sePbZZ1m1ahWrVq1i4cKFDB48mMmTJ/PGG2+kiglg3Lhxqc5NmYVZvnx5tp/f1UaOHJnqZ9ixY0dsNhuHDh0C4OeffyYhIYExY8ak6pdeyXNPT09noQSbzcbp06cpWbIk9evX5++//07Tf+jQoXh7e6c6NnDgQLy8vFIt/1q5ciWnTp3KdGkRgNVqdc482O12zpw5Q1JSEq1atUr38bNr8eLF2O12Bg4c6Hydnjp1isqVK1O3bt00y/Q8PT0ZPnz4NT/elfr37++cTUuRG8/z4YcfTvV9x44dOX36NLGxsVmem9VrZvXq1SQlJfHoo4+mOm/MmDHZiu306dMA6c6OgGNW8/bbb3cWQ6hbty4tW7ZM9Zo5efIk69evZ8SIEdxwww2pzk+J3W638+233xIcHJxmFufKfjlVs2ZNevTokeb4la/1c+fOcerUKTp37sz+/fs5d+4cAKtWreL8+fNMnDgRLy+vDOMZMmQIf/zxB/v27XMe+/zzz6lWrRqdO3cGHDNipmlmOosFjtl7cLxur+bl5eVsz8gjjzxCTEwMd999N5s3byYiIoInnniCv/76K9X4KTFt27YtWzOm8N9rIGW2X6S4UpIlIpm6cOGC843R3r17MU2TqVOnUqFChVRfKRXfTpw4AcC+ffu48cYbc/RYnp6e/N///R8//vgjlSpVolOnTrz00kscP3480/MOHTpE3bp101RVa9iwobP9Sle/gUt5U5DdxK5JkyZ069aNbt26MXDgQEJDQ+nduzcTJ0503nNx6NAhLBYLderUSXVu5cqVKV26dJqYciKr+FPGvnK5DziW0V39Jthut/P6669Tt25dPD09KV++PBUqVOCff/5xvom8Us2aNdMcK126NMHBwc77T8Dx5jEgIICuXbtm+Xw++eQTmjZtipeXF+XKlaNChQosX7483cfPrj179mCaJnXr1k3zWt25c6fzdZoiICDgmpaZpSe9nxFc//O8ntdtdl8zV79ey5Ytm2HilB7TNNMc27lzJ5s3b6Z9+/bs3bvX+RUUFMT333/vTBJTPuTI7PfGyZMniY2NzfHvlqxkdM02btxIt27d8PHxoXTp0lSoUMF5v17KdUtJmrKK6e6778bT09OZWJ47d47vv/+ee++9N8fJYUryd/X9nQBxcXFpPgi5Ws+ePXnrrbdYv349LVq0oH79+ixfvty5JDPlvrrY2FgmTZrEhAkTqFatWrZiS3kNqHKkFHdKskQkQ5GRkZw7d875xstutwMwfvx450zO1V9Xv0nLqSeeeIKIiAhmz56Nl5cXU6dOpWHDhlneY5ATVqs13ePpvUHMrltuuYW4uDjCw8NTHb+eNxo2my3d47kZ/6xZsxg3bhydOnUiNDSUlStXsmrVKho3buy83lfK6M3bkCFD2L9/P7/++ivnz59n6dKlDB48OMty4qGhoQwbNozatWvzwQcfsGLFClatWkXXrl3TffzsstvtGIbhHO/qr5TCBlk9r2uR3li58Tyv57rnxWv+SuXKlQPST/hSCueMHTuWunXrOr9effVV4uLi+Oabb3Ilhitl9O8uo39T6V2zffv2ccstt3Dq1Clee+01li9fzqpVq5z3Hub09VmmTBl69+7tTLIWLVpEfHx8lrO96alSpQoAx44dS9N27NixNPdSpmf06NFER0fz66+/8tdff7Fr1y78/PwAqFevHuDYIiEhIYG7776bgwcPcvDgQSIjIwHHtT548GCa+zxTXgMZ3XcrUlyo8IWIZCjlxv6UZTS1atUCHEvxunXrlum5tWvX5t9//72mx61duzZPPvkkTz75JHv27OGmm27i1VdfTVPlMEX16tX5559/sNvtqd7U79q1y9me11I2AL1w4YLzMe12O3v27HHOqAFER0cTExOTKqYyZcqk2Uw3ISEh3TdQ2ZEy9p49e5zXDByzAFe/CV60aBFdunRJU7QjJiYmR2+SbrvtNipUqMDnn39OmzZtuHTpEvfdd1+W5y1atIhatWqxePHiVG+Mr9wLKzMZvZmuXbs2pmlSs2ZN5xvG3HItifP1Ps+8lvKa2bt3b6pZndOnT2d7pszb25sDBw6kOm6aJl988QVdunRJsxQRHIVUPv/8c4YPH+58rWb2e6NChQr4+vpm+bslZfYtJiYmVYGTnMwgL1u2jPj4eJYuXZpqJvDqpaa1a9d2xp3Vh0xDhgyhb9++/Pnnn3z++ec0b96cxo0bZzumFCmFUv766y8CAwOdx6OiooiMjGTkyJHZGsfHx4e2bds6v//555/x9vZ2biZ9+PBhzp49m26Ms2bNYtasWWzevDlV4ZYDBw44Z8RFijPNZIlIutasWcPMmTOpWbMm9957L+AozxsUFMT8+fPTTQCuLE/cv39/tm7dmm4VvYw+Pb906VKaSma1a9emVKlS6S6LSdGrVy+OHz+eqlJaUlISb731FiVLlnTe75CXvv/+ewCaNWvmjAlgzpw5qfq99tprANx+++3OY7Vr12b9+vWp+r333nsZfuqelW7duuHu7s5bb72V6md9dSzgmOG4+np8/fXXznvrssvNzY3Bgwfz1Vdf8fHHH9OkSZNsbWKdMsNyZQx//PEHv/32W7Ye18fHByBNknrnnXditVqZPn16mudnmqbzHqJrkdFjZuZ6n2deu+WWW3Bzc0tTnvztt9/O1vnu7u60atXKeU9Pio0bN3Lw4EGGDx/OgAED0nzdfffdrF27lqioKCpUqECnTp348MMP02x4m/Jzs1gs9OvXj2XLlqV5rCv7pSQ+V/67unjxYoYbJacnvWt27tw5Pvroo1T9unfvTqlSpZg9e3aa319Xv/Z69uxJ+fLl+b//+z/WrVuXZhYruyXcGzduTIMGDdL8nnj33XcxDIMBAwakinnXrl1ZLkv99ddfWbx4Mffff79zRuuxxx5jyZIlqb5SZoGHDRvGkiVL0iy13LRpU6rETaS40kyWiPDjjz+ya9cukpKSiI6OZs2aNaxatYrq1auzdOnSVDdzz507lw4dOtCkSRMefPBBatWqRXR0NL/99huRkZHO/ZUmTJjAokWLuOuuuxgxYgQtW7bkzJkzLF26lHnz5jmTkStFRERwyy23MHDgQBo1aoSbmxtLliwhOjqaQYMGZRj/yJEjmT9/PsOGDWPTpk3UqFGDRYsWsXHjRubMmeO8pyy3/PLLL843UynPad26dQwaNIgGDRoAjmRr6NChvPfee8TExNC5c2dnGeR+/frRpUsX53gPPPAADz/8MP379+fWW29l69atrFy58pqX21SoUIHx48cze/ZsevfuTa9evdi8eTM//vhjmjF79+7NjBkzGD58OO3atWPbtm18/vnnqWbAsmvIkCG8+eabrF27Nts3yffu3ZvFixdzxx13cPvtt3PgwAHmzZtHo0aNnLOCmWnZsiUAkydPZtCgQbi7uxMcHEzt2rV5/vnnmTRpEgcPHqRfv36UKlWKAwcOsGTJEkaOHMn48eNz/ByvfMzHHnuMHj16YLVaM3195sbzzGuVKlXi8ccf59VXX6VPnz7cdtttbN261fmayc7sXd++fZk8eTKxsbH4+voCjnvzrFZrqg8VrtSnTx8mT57MggULGDduHG+++SYdOnSgRYsWjBw5kpo1a3Lw4EGWL1/Oli1bAMcMyk8//UTnzp0ZOXIkDRs25NixY3z99dds2LCB0qVL0717d2644Qbuv/9+JkyYgNVq5cMPP6RChQppEriMdO/eHQ8PD4KDg3nooYe4cOEC77//PhUrVkz1IZOvry+vv/46DzzwAK1bt+aee+6hTJkybN26lUuXLqVK7Nzd3Rk0aBBvv/02Vqs1VbEeINsl3AFefvll+vTpQ/fu3Rk0aBD//vsvb7/9Ng888ECq2fMlS5YwfPhwPvroI+d+Z4cOHWLgwIH06dOHypUrs337dubNm0fTpk2ZNWuW89wWLVrQokWLVI+bssdY48aN6devX6q2EydO8M8//6Qqby9SbOVnKUMRKVhSyhmnfHl4eJiVK1c2b731VvONN95IU943xb59+8whQ4aYlStXNt3d3c2AgACzd+/e5qJFi1L1O336tDl69GgzICDA9PDwMKtWrWoOHTrUPHXqlGmaaUu4nzp1yhw1apTZoEED08fHx/Tz8zPbtGljfvXVV6nGvbqEu2maZnR0tDl8+HCzfPnypoeHh9mkSRPnuCkyKz1MBmXUr5ReCXcPDw+zQYMG5gsvvGAmJCSk6p+YmGhOnz7drFmzpunu7m5Wq1bNnDRpUqry96ZpmjabzXz66afN8uXLmyVKlDB79Ohh7t27N8Ny3FeXrk6JK6UMdMqY06dPN6tUqWJ6e3ubQUFB5r///ptmzLi4OPPJJ5909mvfvr3522+/pfkZpzzG119/nenPqHHjxqbFYjEjIyMz7ZfCbrebs2bNMqtXr256enqazZs3N7///ntz6NChZvXq1VP1Ta+Eu2ma5syZM82AgADTYrGkKX/9zTffmB06dDB9fHxMHx8fs0GDBuaoUaPM3bt3O/t07tzZbNy4cbbiNU1HOfYxY8aYFSpUMA3DcJYKz+z1lZPnefVrMaUc+cmTJ1P1y6gc+bW+ZpKSksypU6ealStXNr29vc2uXbuaO3fuNMuVK2c+/PDDWf5coqOjTTc3N/Ozzz4zTdNRxr9cuXJmx44dMz2vZs2aqbaJ+Pfff8077rjDLF26tOnl5WXWr1/fnDp1aqpzDh06ZA4ZMsSsUKGC6enpadaqVcscNWpUqjL5mzZtMtu0aWN6eHiYN9xwg/naa69l+DNL73Vlmqa5dOlSs2nTpqaXl5dZo0YN8//+7//MDz/8MN0y60uXLjXbtWtnent7m76+vmZgYKD55ZdfphkzPDzcBMzu3bunactuCfcUS5YsMW+66SbT09PTrFq1qjllypQ0v4dSnvOVvw/PnDlj9u3b16xcubLp4eFh1qxZ03z66acz/J1/pcxe5++++65ZokSJbI0jUtQZpplLd72KiEix17x5c8qWLcvq1atdHYrkgpiYGMqUKcPzzz/P5MmTs+x///33ExERwS+//JIP0RVOW7du5aabbuLTTz/N1n2LhUnz5s0JCgri9ddfd3UoIi6ne7JERCRX/PXXX2zZsoUhQ4a4OhS5BuntrZRyH19QUFC2xpg2bRp//vknGzduzMXIipb333+fkiVLcuedd7o6lFy1YsUK9uzZw6RJk1wdikiBoJksERG5Lv/++y+bNm3i1Vdf5dSpU+zfvz/NpqxS8H388cd8/PHH9OrVi5IlS7Jhwwa+/PJLunfvzsqVK10dXqG3bNkyduzYwdSpUxk9erSzCI6IFE0qfCEiItdl0aJFzJgxg/r16/Pll18qwSqkmjZtipubGy+99BKxsbHOYhjPP/+8q0MrEsaMGUN0dDS9evVi+vTprg5HRPKYZrJERERERERyke7JEhERERERyUVKskRERERERHKRkiwREREREZFcpCRLREREREQkFynJEhERERERyUVKskRERERERHKRkiwREREREZFcpCRLREREREQkFynJEhERERERyUVKskRERERERHKRkiwREREREZFcpCRLREREREQkFynJEhERERERyUVKskRERERERHKRkiwREREREZFcpCRLREREREQkFynJEhERERERyUVKskRERERERHKRkiwREREREZFcpCRLREREREQkFynJEhERERERyUVKskRERERERHKRkiwREREREZFc5ObqAAo6u91OVFQUpUqVwjAMV4cjIiIiIiIuYpom58+fx9/fH4sl4/kqJVlZiIqKolq1aq4OQ0RERERECogjR45QtWrVDNuVZGWhVKlSAHz44RFKlPB1cTQiIiIiIuIqly7FMmJENWeOkBElWVlIWSJYooSvkiwREREREcnyNiIVvhAREREREclFSrJERERERERykZIsERERERGRXKR7skRERERECgQTiyUJw7ChnYPyn2mCaVqx292A67sASrJERERERFzMYknA1/cY3t6XlGC5kGnC5csliI2tgt3ucc3jKMkSEREREXEpO+XLH6BkSStlyvjj5ubB9c6kyLUwSUpK4OzZk3h4HODEibpc691VSrJERERERFzIak3Azc1O+fLV8PQs4epwijUPD2+sVnfi4g5htSZgs3ld0zgqfCEiIiIi4kIpywMNI3femhsGWCxo2eE1SrkO1/Pz00yWiIiIiEghZxjg7g6e1kSsnu7O47b4ROJt7iQmOu43kvyhJEtEREREpBBzcwMfryTHN98shkWL4OxZKFMGy4ABePfvj7cHXIxzIynJtbEWF0qyREREREQKKTc38ClhhxU/YYwYAdHRqdqNRYugUiXMDz/E57bbuHjJ4pJEq0wZg9DQJdx+e7/8f3AX0D1ZIiIiIiKFkGEkz2CtWIHRp0+aBMspOtrRvmIFPl5JuX6vVnT0cZ56agw33VSLSpU8ady4GoMGBbNu3ercfaBrZJoms2Y9S4MGVahSxZt+/bqxb9+ePH1MJVkiIiIiIoWQe/KtV8aIEWCzZd7ZZsO4//5U5+WGw4cP0qVLS375ZQ0zZrzMxo3bWLRoBR07dmHChFG590DX4Y03XmL+/Dd57bV5rFr1ByVK+NC/fw/i4uLy7DGVZImIiIiIFEKe1kT45puMZ7Cudvw4LF7sOC+XPPnkoxiGwc8/h9OnT3/q1KlHw4aNGTVqHKtW/Z7hedOmPU2rVvXw9y/BTTfV4oUXppKY+F9c27ZtJTi4C9WqleKGG3wJCmrJ5s1/AXD48CEGDQqmRo0yBAT40LZtY3766Yd0H8c0TebNm8P48VPo1asvN97YlHff/ZTjx6NYvvzbXPs5XE33ZImIiIiIFEClS2fVw91R5CIHjEWLsA4cSGnP9NtjYrI/1tmzZ1i9egVTpryAj49PmnY/v9IZnluqVCnmzv2YKlX82b59G0888SAlS5bi8cefAmDkyHtp2rQ5r776LlarlW3btuDm5piCmzBhFImJCSxfvh4fHx927dqBj0/JdB/n0KEDREcfJyio2xVx+dGyZRv+/PM3+vcflP0nnANKskRERERECquzZ/O2fyb279+LaZrUq9cgx+eOHz/F+f833FCDvXvHs3jxAmeSdfToYR57bIJz7Nq16zr7R0Yepk+f/jRu3ASAGjVqZfg40dHHAahQoVKq4xUrVuLEieM5jju7lGRl06ZN0LGjq6MQERERkeIis1klwwA/P6BMmZwNmtz/3Lnr3zfLvI4BFi9eyPz5b3Lw4D4uXrxAUlISpUr5OtsffXQcjz32AAsXfkbnzt3o1+8uatasDcBDDz3Gk08+wpo1PxEU1I3g4P7ceGPT63syuUz3ZGXTL79AeLiroxARERERcSRItvhEzAEDcnbegAGO83JhY+LatetiGAYREbtydF54+G+MHHkvt97aiwULvmfdus08+eRkEhISnH0mTnyO337bTvfut/PLL2u4+eZGfP/9EgCGDHmAzZv3c/fd97Fjxza6dm3Fe++9le5jVapUGYCTJ1Pft3biRDQVK1bOUdw5oSQrmzqynrAwCA1VsiUiIiIirhdvc4f+/aFSpaw7A1SuDHfe6TgvF5QpU5auXXvwwQdzuXjxYpr2c+di0j0vPPxXqlWrzvjxk2nevBW1a9flyJFDafrVqVOPRx8dy+LFP9G79518/vlHzraqVasxYsTDfPbZYkaNepJPPnk/3ceqXr0mlSpVTlVOPjY2lk2b/qB167Y5fMbZpyQrm6ZU+ZAg1kLUUWeyJSIiIiLiKinF+MwPPwSrNfPOVivmBx+kOi83vPLKXGw2G926BbJ06Tfs27eH3bt3Mn/+m3Tvnn4SU6tWXSIjD/PNNws4cGAf8+e/6ZylArh8+TITJoxmw4YwDh8+xO+/b2Tz5j+pV68hAJMmPcHq1Ss5dOgAW7f+zYYNa6lfv2G6j2UYBg8//ASvvPI8P/ywlO3bt/HII0OoXNk/TzdG1j1Z2XX33cxcPI9lUS0IJ5CIqHqEhgZQrx4EBro6OBEREREpbkwTLsa54XPbbZhLlzr2wTqeTjGHypUdCdZtt3HxkiVXlgqmqFGjFmFhf/Pqqy8wZcqTREcfo3z5CjRr1pJXX3033XN69erDI4+M5amnRpOQEM+tt97OhAlTefHF5wCwWq2cOXOahx8ewsmT0ZQrV57eve9k0qTpANhsNiZMGEVUVCSlSvlyyy23MWvW6xnG+PjjT3Hp0kXGjh3JuXMx3HxzBxYtWoGXl1fu/SCuYpjXc8daMRAbG4ufnx/nFizAt0QJx1rBiAiWRbUglBCiCMDfHyVbIiIiInJN3NziqFjxANWq1cTDI+dv/N3cwMcryfHN4sUYixY5qgiWKeO4Z+vOOwFHQpaUlJuRF00JCXEcOXKAEydqkpSU+npcuhTLoEF+nDt3Dl9f3wxG0ExWzgUGQmAgweHhEBbqnNUKiwpwNouIiIiI5JekJIi96Ia7O3j2vQPrwIHONnt8IvEJblxRU0LygZKsaxUYSHAgBIf+t4QwLKwLERGa1RIRESlqTNPk4MF/iI09RYUKN+DvXzfrkwowm83Gvn2buHz5AgEB9Shfvuo1jXP0aASnTh3B17cCNWo0wTCMXI5Usss0ISEBEnDHiHOUeDdNMM3cKXIhOVOokqz169fz8ssvs2nTJo4dO8aSJUvo169fpueEhYUxbtw4tm/fTrVq1ZgyZQrDhg3LvaBCQggODyc4Yh5To3DOakVEQEhI7j2MiIiIuMaff37PRx9NIjLyX+ex+vU7MHLka9St29qFkV2blSvf58svn+fMmcPJRwxatrydhx56g8qVM97U9Uq7dv3O//73JBERvzqPVavWlBEjXqRly555ELXkhCO5cnUUxVuhqi548eJFmjVrxty5c7PV/8CBA9x+++106dKFLVu28MQTT/DAAw+wcuXK3A0sMBBCQpjpP48QQp1VCFXuXUREpHDbsOFrZs7sw9Gj/sBKYB/wNXv2XGLixCAiIgrXH/pFi15k7tyRnDnTEdgA7AXeZ/Pm7Ywf356TJw9nMQLs2vUbzzzThb17E4BFOH4mPxIZWYEZM3rz++/f5uVTECkUCm3hC8MwspzJevrpp1m+fDn//vvfJ0+DBg0iJiaGFStWZOtx0hS+yIoKY4iIiBQJSUmJDBt2A7Gx7YGvSP3Z9GUslo7UrevNyy//4qIIc+bs2eMMH34Ddvs44MWrWk9gsTSna9fbeOyxDzIdZ+zYNuzfD6a5DriyKIANuJMyZf7mww8PYLUWqgVTLnW9hS8kd+VG4YtCNZOVU7/99hvdunVLdaxHjx789ttvefegybNawUEXUs1qhYVpVktERKQw2bTpR2JjjwPPkfYtkzd2+0R2795AZOTu/A/uGoSFhWKabsDEdForYrePIizsC+LjL2U4xqFD/7JvXzim+QypEywAKzCNs2cj2bJlVe4FLlIIFemPGI4fP06lq3bArlSpErGxsVy+fBlvb+8058THxxMfH+/8PjY29toeXIUxRERECrWTJw9hGJ6Y5o0Z9Gjl7Fe1av38C+wanThxCIulDjZb6Qx6tCIpKY5z505SsWL1dHv8t5ywVQZjNAcMTpw4dH3BynUxjCsLX7g6muKpSM9kXYvZs2fj5+fn/KpWrdr1DZg8qzXTf16qWa3Q0FwJV0RERPKIr28FTDMeyOg+pb3OfoWBr295TPMIEJdBj70YhoWSJctkOobDngx6HADMK/pJfjEM8PAAb2/w8wNfX8d/vb0dx1X4MX8V6SSrcuXKREdHpzoWHR2Nr69vurNYAJMmTeLcuXPOryNHjlx/ICqMISIiUui0bt0bT89SwKvptNoxjFfx929ErVo35XNk16Zz53uw22OA9O65uozF8jatW/ehRImM7zOpU6cVlSrVxfEzSW+K5BW8vUvTqlWvXIlZssfNDXx8HMnUt9/CXXdBt26O/377reO4j4+jn+SPIp1ktW3bltWrV6c6tmrVKtq2bZvhOZ6envj6+qb6yjVXzGqFEJpqVkvJloiISMHi7V2SwYOnAm8CTwApH7zuAAZhmisYNmxWodkbyt+/Lrfe+gCG8QQwCziNI1H6DcPoidV6kMGDn810DIvFwvDhs4HvgXuAXckth4HRwLvcc880PD2zUSxMcoWbG5QoAT/9BFWrwqBBsGgRrF7t+O+gQY7jP/3k6OeqRKtMGYPly791zYO7QKFKsi5cuMCWLVvYsmUL4CjRvmXLFg4fdkzjT5o0iSFDhjj7P/zww+zfv5+nnnqKXbt28c477/DVV18xduxYV4TvoMIYIiIihcYdd4xn2LCX8PT8ELgBw/AGGlOq1HrGj/+Sm2/u6+oQc+TRR9+ld+9RWK3TgQrJz6cd5ctHMn36CmrXbp7lGO3a9WfcuFBKllwNNEweozqenp9x//2v0afP43n8LCSFYYCXF6xYAX36wFULuJyiox3tK1Y4+uf25wLR0cd56qkx3HRTLSpV8qRx42oMGhTMunWrsz45Hyxbtpg77+xOrVrlKFPGYNu2LXn+mIWqhHtYWBhdunRJc3zo0KF8/PHHDBs2jIMHDxIWFpbqnLFjx7Jjxw6qVq3K1KlTc7QZcY5LuOdUaOh/hTHoonLvIiIiBdClS+f5889lzqIQLVv2wt3dw9VhXbNz507y55/fc/nyeapWbUizZrdgseTss/fExHj++usHTp48jJ9fRdq06YOXl08eRVy0XWsJdw8Px1fVqhknWFeqXBmOHIGEBMdXbjh8+CC33dYeP7/STJo0g0aNmpCYmMiaNSv55JP3CA93zHaWKWMQGrqE22/vlzsPnAMLFnzG4cMHqFzZn8cff5D16zfTpMlNGfbPjRLuhSrJcoU8T7LAubfW1KiHiaCec2+tkJC8eTgRERERKTiuNcny9nbcczVoUPYfa+FC6NsXLl/OeZzpueuuXuzY8Q/h4bvx8UmdZJ87F4OfX2kgbZI1bdrTLF++hKioSCpWrMxdd93LU089i7u7OwDbtm3lmWeeYMuWvzAMg1q16vL66/Np3rwVhw8f4qmnRvP77xtITEzghhtqMH36y3Tvnvm9gIcPH6RZs5r5kmTp9reCIDAQAgOZeUW594ioeoSGBmhWS0RERKSYKl066z6LFuVszEWLYOBA8PRMvz0mJvtjnT17htWrVzBlygtpEizAmWClp1SpUsyd+zFVqvizffs2nnjiQUqWLMXjjz8FwMiR99K0aXNeffVdrFYr27Ztwc3NkYBNmDCKxMQEli9fj4+PD7t27cDHp2T2A88HSrIKkpAQgsPDCY5wJFuhUSGERQVoby0RERERSdfZs3nbPzP79+/FNE3q1WuQ43PHj5/i/P8bbqjB3r3jWbx4gTPJOnr0MI89NsE5du3adZ39IyMP06dPfxo3bgJAjRq1rudp5AklWQVN8qxWcHg4hIU6Z7XCogKczSIiIiJS9GU2q2QYjn2wymS8rVm6UvqfO3f9GxVfz11HixcvZP78Nzl4cB8XL14gKSmJUqX+W3736KPjeOyxB1i48DM6d+5Gv353UbNmbQAeeugxnnzyEdas+YmgoG4EB/fnxhubXt+TyWWFqrpgsRIYSPBTjVLtraVy7yIiIiICjgQpPh4GDMjZeQMGOM7LjaoMtWvXxTAMIiJ2Zd35CuHhvzFy5L3cemsvFiz4nnXrNvPkk5NJuKIax8SJz/Hbb9vp3v12fvllDTff3Ijvv18CwJAhD7B5837uvvs+duzYRteurXjvvbeu/wnlIiVZBd0Ve2tdWe49NNTVgYmIiIiIK9ls0L8/VKqUvf6VK8OddzrOyw1lypSla9cefPDBXC5evJim/dy5mHTPCw//lWrVqjN+/GSaN29F7dp1OXLkUJp+derU49FHx7J48U/07n0nn3/+kbOtatVqjBjxMJ99tphRo57kk0/ez50nlUuUZBUGyXtrXTmrRdRRzWqJiIiIFGOJiY7/fvghWK2Z97Va4YMPUp+XG155ZS42m41u3QJZuvQb9u3bw+7dO5k//026d2+b7jm1atUlMvIw33yzgAMH9jF//pvOWSqAy5cvM2HCaDZsCOPw4UP8/vtGNm/+k3r1GgIwadITrF69kkOHDrB1699s2LCW+vUbZhjj2bNn2LZtC7t27QBgz57dbNu2hejo47n3g7iKkqzC5IpZrRBCU81qKdkSERERKV5ME+Li4LbbYOlSx0xVeipXdrTfdpujf25u4FSjRi3Cwv6mQ4cuTJnyJO3a3cidd97KunWrefXVd9M9p1evPjzyyFieemo0nTrdxB9//MqECVOd7VarlTNnTvPww0No3boeI0YMpFu3nkyaNB0Am83GhAmjaNOmIQMG3Ebt2vV45ZV3Mozxxx+X0qlTc+6++3YA7r9/EJ06Neejj+bl3g/iKtonKwv5sk/WtQgPZ1lYSUdhjOS9tYKCVBhDREREpLC51n2y/jsfvJJPW7zYUab97FlHkYsBAxxLBMGRYCUl5WLgRZT2ySrOAgMJDoTgK/bWCgvronLvIiIiIsVMUhJcvAju7o6NhgcO/K8tPh4SEhxfkn+0XLCwU2EMERERkWLPNB2J1OXLjvLssbGO/16+rATLFZRkFQUqjCEiIiIiyUwT7PbcvfdKckZJVlGiwhgiIiIiIi6ne7KKmsBAx/1a4eEQFuoojBFVj7CoAGeziIiIiBQcKTNOqkdXMKRch+u5HEqyiioVxhAREREpFOx2d+x2SEi4hKent6vDKfYSEi5htzuuy7VSklXUhYQQHB5OcMQ8pkbhnNWKiICQEFcHJyIiIiKmaeXChdKcOnUCAA+PEhiG4eKoih/TNElIuMSpUye4cKE0ppnFDs+ZUJJVHCQvIZx5xaxWRFQ9QkMDNKslIlJAREbuYuXK94mM3IW3d0natevPzTffgZvbtX+SKhATc4KPPprAli2rsNttVK3agOHDX6FevdauDk0klQsXHDsJJyWdwKKqCS5jt8OFC6Wd1+NaaTPiLBTYzYivVXg4RESwLKoFoYQQRQD+/lpCKCLiSgsXPs/nn0/FYimP3d4ei+UYdns41ao1YcaMFZQr5+/qEAul335bwosvDsI0E4EOgC+wBoijR4+RjBo1z7UBiqTDMGxYLIloIiv/Oaoyumc6g6XNiCV9KowhIlKgrFv3JZ9/PhV4Frv9GcATux1gE0eP9mXmzH68/vofWjqUQzExJ5ITrLrAd0Dt5JZY4HFWrnyPOnVa0KPHSNcFKZIO07Ris137MjUpGDQZWVwFBhL8VKNUe2up3LuISP4yTZNFi17CMHoC0wHPK1pbYrd/zP79f/Lvv+tcFGHh9dFHE5JnsK5MsMAxm/U/oA5ffjnTJbGJSNGnJKu4u2JvrZRNjFOSLRERyVsxMdEcOrQF0xyWQY9bsFoD+OuvH/IzrCJh69afgfakTrBSWIHhnDkTlb9BiUixoSRLHGsEQ0JSzWoRdVSzWiIieSwpKSH5/0pl0MMASl7RT7LLZrPhmLXKSElAt6WLSN5QkiX/uWJWK4TQVLNaSrZERHJf2bL++PpWBpZl0GM3Nttu6tRplZ9hFQlVqzYA1uK4Bys93+HpmVkSJiJy7ZRkSWrJs1rBQRdSzWqFhSnREhHJbVarG716PYRhfAiEXdV6CcMYRalSFWnffoALoivc7r//FSAOGAPYrmoNBVbTtes9+R6XiBQPqi4o6QsMJDgQgq/YWyssrAsRESr3LiKSm+66axLbt2/k33+7YZr9gC7AMSyWj3Fzi2HixO/x8PBycZSFT506rejZ82F+/HEesBEYjmNZ5nfAGipXrstDD73t0hhFpOjSPllZKHL7ZF2L5L21pm67i4hybZ17a4WEuDowEZGiITExgZ9+ep/ly+cTFbUTT8+SdOw4gH79nkxe9ibXatWqD/jii+mcPh0F2PH09KVr13t46KG3sWjHVxHJoezuk6UkKwtKsq4QGuqc1YqgHvgHaFZLRERERIqN7CZZ+ghHsk+FMUREREREsqR7siRnAgMd92uFh0NYqGNWK6oeYVEBzmYRERERkeJMSZZcGxXGEBERERFJl5YLyvW5Yglh0OlFqZYQioiIiIgUR0qy5Pol7601s8nXqfbW0r1aIiIiIlIcKcmS3KPCGCIiIiIiuidLcpkKY4iIiIhIMackS/KGCmOIiIiISDGl5YKSt1QYQ0RERESKGSVZkvdUGENEREREihElWZJ/VBhDRERERIoB3ZMl+UuFMURERESkiFOSJa6hwhgiIiIiUkRpuaC4lgpjiIiIiEgRoyRLXE+FMURERESkCFGSJQWHCmOISDF3+fIFIiN3cepU5DWPYbPZiIraS1TUHmy2pGse5/Tpo0RG7uLy5QvXPMaFC2c5cmQnMTEnrnmMgiQm5gRHjuzkwoUYl8ZhsyURFbWHqKi92Gw2l8ZS1K6x5I2EhDgiI3cTHX0Q0zRdHU6+0D1ZUrCoMIaIFEPnzp0kNHQKa9aEkph4CYA6ddowePBUWre+PVtj2Gw2vvvuNb777i3Onj0CQJkyVenTZwz9+j2J1WrN1jh//fUDX3wxk717fwfA3b0EXbrcS0jI85QuXTFbY0RF7eGzz6bw22+LsdsdiV6zZj0ICZlO/fptsjVGQbJ79x+Ehj7L1q0/AWCxuNGuXX9CQp7H379OvsVhsyXx7bev8t13bxETcxSAsmVvoG/fMfTpMzbb1zg3HD0awaefTub335dgmo5E76abbuO++2ZSt26rfItDCrbLly/w5ZfPsXLlB1y+HANA1ao3MnDgRIKC7nVtcHnMMItLOnmNYmNj8fPz49yCBfiWKOHqcIqf0ND/CmPQBX9/FcYQkaIlNvYUTz7ZjpMnz2C3PwYEAccxjHcxzTAee+xDunUbnukYpmny6qv3sX79l8Aw4O7klq8wjI9p3/4uxo//HIsl8wUsa9Z8ypw5wzCMTpjmI4A/EIbF8ibly5fmlVc2ZploRUbuYsKEDly+XAq7/QmgBbAHi+VNDGMX06f/SNOmXbL8uRQUW7eu4bnnemGaDbDbHwfqAH9jsczB2/s8L7+8gapVG+R5HHa7nVdeuZeNG7/GNIcDAwETWAh8TOfO9zBu3KcYhpHnsRw+vIOnnupIXJxf8jVuDkRgsbyBxbKHGTNWcuONnfI8DinY4uIu8swzt7B//3bs9keBnsA5DONDTHMpISEvMHDgM64OM8cuXYpl0CA/zp07h6+vb4b9lGRlQUlWARAeDhERTN12FxHl2hJFAP7+EBLi6sBERK7fvHmjWbHiS+z2cKD2FS0m8ADu7gv45JOjlCxZOsMx/vxzOTNn9ga+BAZd1fo1MJDJk7+jTZs+GY5x8eI5hg4NICFhAPAhqe8o2I/FEkj37nfx6KPvZvp8pkzpzr//HsZu/w0oc0VLPIbRk/LlD/H++3uyTPgKApvNxoMP1uX06ZqY5g+A5xWtZ7BY2tKkSQ1mzlyZ57H8/vt3zJrVD8f1HHBV65fAPTz77HJateqV57FMmtSVnTuPY7f/CpS+oiUOw+hBxYrHmD9/V6G4xpJ3vv56NqGh0zHNjUDLq1qnAi8wf/4eqlSpnc7ZBVd2kyy9+qXgU2EMESmiEhLiWL360+RPea9+o2EAL5CUlMC6dZ9nOs6KFe9hsbQibYIFcBcWSyArVryf6Rjr1n1BYmI8MIu0bw9qYbePYs2aUOLjL2U4xvHjB/jnn1XY7VNInWABeGKaszh5cj9bt67ONJaC4p9/VnPq1AFMczapEyyAstjtk9m69Seiow/meSw//vgeFksb0iZYAIOwWFrw44/v5XkcUVF72L59LXb7VFInWABemOYLREfv4d9/1+V5LFKw/fDDe5jmPaRNsAAmYbGUZtWqD/I7rHyjJEsKDxXGEJEi5uzZ48THnwc6ZtCjMlZrfaKiIjId5/Dh3djtGY0BdnsnjhzJfIyoqAgsljo4lgimpxMJCRc4e/Z4hmMcO7Yn+f8yiqUNhuGe5fMpKI4ejcAwPIDWGfRwLImLitqTQXvuiYyMyOQaG9jtnYiMzPuf63/PNaNY2gNGobnGkjeSkhI5ffogGb9OSmCarYv060RJlhQuybNawUEXUs1qhYUp0RKRwqdEiZSlJkcz6JGI3X4cb++Ml6QAlCzpl8kYAJH4+GQ+RokSfpjmCSAhwzEAvL1LZTqGQ0axnMA0E6943gVbiRK+mGYCcDKDHpHOfnnNxyfra5wfcWR9jY8BZpavWSnarFY33N29yfh1YmKxRBbp14mSLCmcAgMJfqqRc1YriLWa1RKRQqdUqbI0aXILFss7QHrl1hdit5+mQ4eBmY7TqdNADONb4Eg6rZEYxhI6d858jPbtB2C3n8Fxf8/VbFgs79C4cRf8/CpkOEadOq0oV6468FYGPebi7u5N69a9M42loGjdujdubl7A3Ax6vE358jWpUyfvq+l17nwXhrGY9N+0HsYwvsvyGueG+vXbUKZMVTK+xm/j7l4iX+4Nk4LLMAw6dLgLi+V/QHpLjMOw2XZk+butMFOSJYXbFUsIg04vSrWEUESkMBg8eCqmuRkYDBxIPhoPfIzF8hA339yfGjWaZDrGrbeOoHTpSlgstwK/4CiaYQIbsFi6U7p0BW699f5Mx6he/Ubatr0Li+VRHIUv4pNbDgD3YJp/MXjw1EzHsFqt3HvvNGAB8ASQsndSLPB/wAv07fsEJUtefb9WwVSqVFn69n0ceB54CTif3HICeBxYyL33PpsvpdNvvfUB/PzKY7F0Bzby3zVej8XSnTJlqtCt24g8j8NqdeOee54FPgfG8d8sXyyO+/le5M47n0yeeZPirH//p7BaT2IYwcD25KNJwGIsloHUrduW5s27uzDCvKXqgllQdcFC5Ipy7xHUA/8AlXsXkULh11+/4Y03HuDy5XNYrTUxzdPY7edo124gY8d+hKdn1n9/oqL2MHPmHRw9uh2rtQpgYLNF4e/fiKlTlxAQUC/LMeLjLzNnznA2blyIxeKLYZTHZjuAl5cvjz/+P9q3T6/oQlrfffc6n3zyDDabDav1Buz2Y5hmHMHBjzN8+Mv5up/T9bLZbHz44Xi+//5NDMMLi6UKNtthrFYrQ4fOpm/fJ/ItlsjI3Tz//B1ERe3EavUHTGy2Y1SteiNTpizG379uvsWyZMmrfPbZZGw2E6u1GjZbFJBAv35jGTr0/1RZUAD49991vPjiIGJjj2O11sA0z2O3n6ZJk248/fQCfH3LuTrEHFMJ91yiJKuQSS73viyqBaGEOMu9K9kSkYIuLu4iGzd+TWTkLry8StKuXX+qVWuYozHsdjtbt65m+3ZHZbfGjTvRrFm3HL/hjYzcxa+/fsPly+epWrUB7dvfhZeXT47GOH/+DOvXf8nJk4fx86tAx46DKF++ao7GKEhOnjzChg0LOXfuJBUq3ECnToMpVapsvsfhuMY/8++/6zAMgxtvDKJp064uSWpiY0+zfv2XnDp1BD+/inTqNIhy5QLyPQ4p2BITE/jjj2/Zt28zHh5etG7dmzp10qs4WDgoycolSrIKqfBwloWVdM5qRRFAUJASLRERERG5dkV2n6y5c+dSo0YNvLy8aNOmDeFZVDmYM2cO9evXx9vbm2rVqjF27Fji4uLyKVpxGRXGEBEREREXKVRJ1sKFCxk3bhzTpk3j77//plmzZvTo0YMTJ06k2/+LL75g4sSJTJs2jZ07d/LBBx+wcOFCnnnmmXyOXFxGhTFEREREJJ8VquWCbdq0oXXr1rz99tuAY11ytWrVGDNmDBMnTkzTf/To0ezcuZPVq//bWf7JJ5/kjz/+YMOGDdl6TC0XLEJUGENERERErkORWy6YkJDApk2b6Natm/OYxWKhW7du/Pbbb+me065dOzZt2uRcUrh//35++OEHevXKeO+G+Ph4YmNjU31JEXHFrFYIoalmtbSEUERERERyi5urA8iuU6dOYbPZqFSpUqrjlSpVYteuXemec88993Dq1Ck6dOiAaZokJSXx8MMPZ7pccPbs2UyfPj1XY5cCJDDQcb9WeDiEhTpmtaLqERYV4GwWEREREbkehWYm61qEhYUxa9Ys3nnnHf7++28WL17M8uXLmTlzZobnTJo0iXPnzjm/jhw5ko8RS75RYQwRERERySOFZiarfPnyWK1WoqOjUx2Pjo6mcuXK6Z4zdepU7rvvPh544AEAmjRpwsWLFxk5ciSTJ09Od08JT09PPD09c/8JSMEUEkJweDjBEfOYuu00EbQlLCqAiAgICXF1cCIiIiJSGBWamSwPDw9atmyZqoiF3W5n9erVtG3bNt1zLl26lCaRStllvhDV+5C8FhgIISHMbPK1c1aLqKOa1RIRERGRa1JoZrIAxo0bx9ChQ2nVqhWBgYHMmTOHixcvMnz4cACGDBlCQEAAs2fPBiA4OJjXXnuN5s2b06ZNG/bu3cvUqVMJDg52JlsiTlfMai2LakFoVIhzVktVCEVEREQkuwpVknX33Xdz8uRJnn32WY4fP85NN93EihUrnMUwDh8+nGrmasqUKRiGwZQpUzh69CgVKlQgODiYF154wVVPQQo6FcYQERERketUqPbJcgXtk1XMXbG3Vhhd8PfXrJaIiIhIcVXk9skScYkr9tYKOr0o1d5aIiIiIiLpUZIlkhUVxhARERGRHFCSJZJdV8xqhRCaalZLyZaIiIiIpChUhS9EXE6FMUREREQkC0qyRK5FYCDBgRAcOu+/whhhXVTuXUSkgLHb7fz99wr++usHkpISqFOnJZ0734u3d8l8j+XcuZOsWfMJR4/uxtu7FO3aDaBBg7YYhpHvsUjRZpomO3Zs4NdfvyE+/iLVqjWiS5ch+PqWc3VoxYaqC2ZB1QUlS+HhEBHB1G13EVGuLVEE4O8PISGuDkxEpHg7efIwzz0XzJEj/2C11gVKYbNtwdvbl6ee+pKWLW/Lt1hWrHiP9957DJvNwGJpAhzDZoukadNbmTTpa3x8/PItFinazp8/w/PP38nOneuwWm8AKmK3/4PVamHUqHnccstQV4dYqKm6oEh+UWEMEZECJzExnilTenD0aCywEZttNzbbJuAAcXHteeGFOzh4cFu+xBIevox33nmIpKThmGYkNls4Ntsh4Fv+/Tecl166J1/ikKLPNE1mzRrA7t3/Asux2Q5gs/2JaUaSlHQPb7wxnM2bV7k6zGJBSZZIblFhDBGRAuPXXxdz7Ngu7PZvgXZAypK8GzDNb7DbK/Htt6/lSywLFszCMIKAd4CU5VoWoC92+3ts3vwD+/ZtzpdYpGjbtes3tm9fi93+MdCL/97qVwDex2K5ma++mu2y+IoTJVkiuSl5Vis46EKqWa2wMCVaIiL56Y8/vsUwbgaapdPqid0+jI0bF+d5HGfPHmfv3t8xzYf4L9G70p1YLOX5/fcleR6LFH2///4tVqs/jgTrahbs9gfZvn0tFy6cze/Qih0VvhDJCyqMISLiUnFxFzHNCpn0qEhi4qV8icMho1jcMIyyxMfnfSxS9MXHXwTKk/E8SsXkfpcpWbJMfoVVLGkmSyQvXbGEMOj0olRLCEVEJO/ccENjLJYNwOV02w1jFVWrNs7zOMqVC8DLyw/4OYMeB7DZ9nDDDXkfixR9N9zQGJttOxCVQY9V+PiUx88vsw8gJDcoyRLJayqMISKS73r0GIndHgNMA64upPwTprmU229/OM/j8PDwonv34Vgs7wLbr2pNxDDG4+3tR4cOA/M8Fin6One+Fw8PL2A8YLuqdQsWy/+47bYHcHNzd0F0xYuSLJH8osIYIiL5pkqV2owY8QrwMobRBfgY+AYYhmH0pkWLntx66/35EsugQdMICKiOxdIWeAL4FngHi6UVhrGUsWM/wsvLJ19ikaLNx8ePJ574EMP4CoslEJiH4/U2GoulAzVqNOSuu55xbZDFhPbJyoL2yZI8ER7OsrCShBNIBPWIIoCgIN2rJSKS2/74YymLFr3M7t0bAChXrga9ez9C375j8/XT/IsXz7Fo0YusWPE/Ll48BRi0bHk7AwdOomHDdvkWhxQP//67nq++ms2WLSsBk1KlKtKz54PceefTlChRytXhFWrZ3SdLSVYWlGRJngoN/a8wBl3w91dhDBGRvHDpUixJSQmULFkWi8V1C3lsNhsXLpzBy8sHT0+9r5C8FRd3kfj4S5QsWRar1erqcIoEbUYsUhioMIaISL4oUcIXX9/yLk2wAKxWK35+FZRgSb7w8vLBz6+CEiwXUJIl4moqjCEiIiJSpCjJEikoVBhDREREpEjQZsQiBUlgoGMj4/BwCAt1FMaIqkdYVICzWUREREQKNiVZIgVRYCDBgRAcOu+/whhhXYiIUGEMERERkYJOywVFCjIVxhAREREpdJRkiRR0KYUx+m9VYQwRERGRQkBJlkhhERiowhgiIiIihYDuyRIpTFQYQ0RERKTAU5IlUhipMIaIiIhIgaXlgiKFmQpjiIiIiBQ4SrJECruUwhhNvlZhDBEREZECQEmWSFFxxayWCmOIiIiIuI7uyRIpSlQYQ0RERMTllGSJFEUqjCEiIiLiMlouKFKUqTCGiLiQ3W7n4sVz2GxJ1zyGaZpcunSehIS464olISGOS5fOY5rmNY9hsyVx8eI57Hb7dcWSG+LjLxEff8nVYUge0jUu3DSTJVLUJS8hnBkezrKwfc4lhKGhAZrVEpE8cfZsNN988yKrVn3C5ctncXf3plOnQdx11yT8/etmawybLYkffniHpUvnEh0dAUCTJrfQv/8EWrToke1Y/v57Jd988zLbtq0GoFKlevTpM4pevR7Fas3e26CjRyNYtOhF1q9fQGLiZby9y9C9+zDuvPNpypSplO1YrpdpmoSFhfLtt29w4MAmAGrVas0ddzxBp06DMQwj32KRvGGaJmvWfMq3377BoUObAahdO5A77hhLx4536xoXIoZ5PR/pFAOxsbH4+flxbsECfEuUcHU4ItcnPBwiIlgW1YJQQogiAH9/LSEUkdxz6lQkEyZ04OzZ89jtDwAtgD1YLPPx9LzArFlrqF27eaZj2GxJzJ59F3/+uQzTHAj0Bs5jsXyM3f47Dz88l169Hs0yluXL5zJ//mgslpux24cBpYBlGMbXBAb2YeLEr7JMtPbt+5tJk7qSkOCL3f4QUAf4G4vlf5Qp48vLL/9C+fJVs/OjuS6mafK//41l2bI3MIxeyT8XE8NYiGmu4I47xjN8+Mt5HofkHdM0mT9/DD/8MBfDuB3TvAuwYxgLMM2f6N9/IkOHznZ1mMXepUuxDBrkx7lz5/D19c2wn5KsLCjJkiIpPJxlYSUds1rUI4oAgoKUaInI9XvhhTv5888/sdt/Bapd0XIOi+UW/P3jmTv3n0w/kV+x4j3eeecRYClw+xUtJvAEhvE27723j0qVamQ4xvHjB3jooTqY5hjgdeDKx/se6MPo0e/RvfsDGY5hmiaPPtqEY8e8sdtXA1e+oTqMxdKewMBAnnnmmwzHyC1bt65m6tRuwFzg6gTzDeAJZs1ax403dsrzWCRv/P33Sp577jZgHvDQVa2vAuN58cUNNGrUPv+DE6fsJlm6J0ukOAoMJPipRs5y70GsVbl3Eblup08fJTz8O+z2KaROsAD8sNv/j8jIf9mxY0Om43z//bsYRjCpEyxwJEqzMIxS/PTT+5mO8dNP72MYpYBZpE6wAHpjGL1ZtuydTMfYsWMDR49ux25/idQJFsAN2O3P8Mcf33H6dFSm4+SG5cvfxWK5EXgkndbHsFjq88MPmT8fKdgc1/gmYGQ6rWOxWuvwww/v5nNUcq2UZIkUZyqMISK56PDhHZimHeieQY+ugBuHDm3LcAzTNDly5B9MM6MxfLDbO3LwYMZjABw8+A92eycg/VUoptmDI0eyHsMw3IGgDHr0wDRtHDmyI9NxcsP+/f9gt/cgbcIIYGC392DfvsyfjxRsjmvcnfSvsQWbrQf79+saFxZKskSKu8BACAlhZv+tzlktoo5qVktEcszT0zv5/85k0OMckISHh3cG7WAYBu7u3pmMAYZx6orHSp+HhzcWy+lMepxOfpzMxzDNpOS40x8jpV9eczzfzJ9PVj8TKdgc1y/j1z1k/bqXgkNJlog4BAY6Z7VCCE01q6VkS0Syo27dQEqVqgRktJTvAywWd1q27JnpODff3Ber9WMgIZ3WfzHN32nTpm+mY7Rp0zf5vrDt6bQmYLF8ws03Zz5Gy5Y9sViswIcZ9Pgfvr6VqVcv729obdeuLxbLIuBsOq2nsFiW0K5d5s9HCjbHNf6K9JP6ExjGd7rGhYiSLBH5T/KsVnDQhVSzWmFhSrREJGvu7h4MGDABmA+8DKTsbZUEhGIYk+nWbQRlylTOdJw77hiPaR4GBgPHr2jZhMVyB5Uq1aVdu/6ZjtG+/QAqVqyDxdIP+PuKlmMYxmAMI5I77ngy0zHKlq1Ct24jMIxngM8BW3JLHPAS8B4DBkzAzc0903Fyw223PYynpzsWSzCw/4qWvVgsvfH29qZHj/Tu5ZHColevR/HwMJKv8YErWiKwWHpTokTJTAu1SMGiJEtE0lJhDBG5Rv36jaNfvyeBp7BYArBYOmG11gDuo23bvjz00BtZjlG7dnMmTvwaD4+VGEY1LJZ2WK1NgFZUquTGzJkrcXf3zHQMDw8vnn9+JZUquQEtsVqbYLG0wzBuwN39JyZO/JpatW7KMpaHHnqTtm37ACFYrdWxWDphsQQAT3PHHePp23dslmPkhnLl/Jkx40d8fPYAdbBYWmO1tgLqUrLkIWbMWJGve3ZJ7itfviozZvxIiRK7gNpYLIHJ17g+pUod5fnnV+LnV8HVYUo2qYR7FlTCXYq95L21pm67i4hybZ17a4WEuDowESnIoqL2sHr1x5w4cQg/vwoEBYVQp07LHI1x4UIMa9d+yt69f+Hu7kmrVrfTunXvbG8iDI49t/7883v++ms5iYnx1KnTii5dhlCyZOkcxbJ37ybCwkI5d+4kFStW55ZbhuPvXydHY+SG+PjLbNiwkG3bwjAMgxtvDKJDh4G6V6cIiY+/xPr1C9i+fT2GYdC0aVfat78LDw8vV4cmaJ+sXKMkSyTZVXtr4R+gTYxFRESkWNE+WSKSu1QYQ0RERCRbsj/fLiISGOhItsLDISzUMasVVY+wqABns4iIiEhxpyRLRHIuMJDgQAgOnceyqBaEE0hYWBciItASQhERESn2tFxQRK5dcrn3mf7zCDq9KNUSQhEREZHiSkmWiFyf5L21ZvbfmmpvLd2rJSIiIsWVkiwRyR0qjCEiIiIC6J4sEclNKowhIiIioiRLRPKACmOIiIhIMablgiKSd1QYQ0RERIohJVkikrdUGENERESKGSVZIpI/VBhDREREiolCl2TNnTuXGjVq4OXlRZs2bQjP4t1ZTEwMo0aNokqVKnh6elKvXj1++OGHfIpWRFJJntUKDrqQalYrLEyJloiIiBQdharwxcKFCxk3bhzz5s2jTZs2zJkzhx49erB7924qVqyYpn9CQgK33norFStWZNGiRQQEBHDo0CFKly6d/8GLyH9UGENERESKMMM0TdPVQWRXmzZtaN26NW+//TYAdrudatWqMWbMGCZOnJim/7x583j55ZfZtWsX7u7u1/SYsbGx+Pn5cW7BAnxLlLiu+EUkHeHhEBHB1G13EVGuLVEE4O8PISGuDkxEREQktUuXYhk0yI9z587h6+ubYb9Cs1wwISGBTZs20a1bN+cxi8VCt27d+O2339I9Z+nSpbRt25ZRo0ZRqVIlbrzxRmbNmoXNZsvwceLj44mNjU31JSJ5SIUxREREpIgpNMsFT506hc1mo1KlSqmOV6pUiV27dqV7zv79+1mzZg333nsvP/zwA3v37uXRRx8lMTGRadOmpXvO7NmzmT59eq7HLyJZCAwkmHCCIxxLCEOjQgiLCtASQslzBw78w19/LScpKYHatVvQsmUvrFZrjsY4ezaajRu/Jjb2JOXLV6N9+7vw8fHL0RgJCXH8/vu3REbuwtu7JDfffAdVqtTO0RimabJ9+y9s374e0zS58cZONG7cCcMwcjSOSHF05swxfv11EbGxp6hQoTrt299FiRKlXB3WNYuK2svvvy8hLu4iN9zQiDZt+uLu7unqsIqNQrNcMCoqioCAAH799Vfatm3rPP7UU0+xbt06/vjjjzTn1KtXj7i4OA4cOOD8g/naa6/x8ssvc+zYsXQfJz4+nvj4eOf3sbGxVKtWTcsFRfJTeDjLwkoSTiAR1COKAIKClGhJ7rpw4SwvvXQPW7aswGLxxTC8sdmiKVeuOk8/vYAGDW7Ocgy73c4XXzzLokUvYZoGFksFbLbjeHh4MXz4/3H77aOyFUt4+DJef30EFy+ewmr1xzRjsNsv07lzCGPGvIeHh1eWYxw/foBZswZw8ODfWCxlAQO7/TTVqzdn8uRFVK5cK1uxiBQ3drudTz6ZyHffvY5pWrFYymOzHcPDowQPPvgaPXo86OoQcyQ+/jJvvvkAv/zyBRaLD4bhh80WRalSFRk37mNatuzp6hALtSK3XLB8+fJYrVaio6NTHY+OjqZy5crpnlOlShXq1auX6hPJhg0bcvz4cRISEtI9x9PTE19f31RfIpLPAgMJfqqRs9x7EGtV7l1ylc1m47nnevPPP38CC7DbT2GzHQf+5OzZAJ59tgdRUXuyHOerr57nq69ewG5/BtM8hs0WCRwiIWEI8+ePZvXqT7IcY8eODcyadSeXLrUFdmKzHcVuPwm8w/r1XzNnzvAsx7h48RyTJnXl8OFzwE/Y7SeTx1jFkSMXmDSpKxcuxGQ5jkhxFBo6hSVLXsFun4ZpHk/+d3yQhIRBzJ07kvXrF7g6xBx59dX72LjxW+A97PaT2GxHge1cuNCKmTP7smvX7y6OsHgoNEmWh4cHLVu2ZPXq1c5jdrud1atXp5rZulL79u3Zu3cvdrvdeSwiIoIqVarg4eGR5zGLyHVKLvc+038eQacXpdpbS+R6bN68koiIX7HbvwbuBlKKI7XCbl9BQkJJvv321UzHuHQplkWLXgImAM8BZZNbAoC5wF2Ehj6X6X3AAF9+ORNogml+AzRIPloCeBjTfIcNGxZw+PCOTMf4+eePOHPmKHb7KuBWHH/eDaAbdvsqzpyJ4uefP8x0DJHiKDb2NN9++zowGZgClE5uqQa8B/Ths8+mUUgWfrF//xZ+//0b7Pb5wIOAd3JLI0xzCdCAhQtfcF2AxUihSbIAxo0bx/vvv88nn3zCzp07eeSRR7h48SLDhzs+5RsyZAiTJk1y9n/kkUc4c+YMjz/+OBERESxfvpxZs2YxalT2lm+ISAGgwhiSB375ZSEWSxMgKJ3WUtjtwwkLy/zT6z//XE5CwkXg8XRaDeAxTp8+yJ49f2Y4xoULZ9m69Sfs9kf5L9G70r1YLGXZsGFhprGsW7cQ0+wD1EyntTqm2Y916zIfQ6Q4+vPPZSQlxQNj0ml1/DuOjo5g//4t+RvYNdqw4Ssslgo4Pjy6mgd2+yNs2rScS5dU2C2vFZrCFwB33303J0+e5Nlnn+X48ePcdNNNrFixwlkM4/Dhw1gs/+WN1apVY+XKlYwdO5amTZsSEBDA448/ztNPP+2qpyAi10qFMSQXXbwYg91+A443UempTlzcOex2e6q/K1eP4fis0j/DMf7rl1Ec51L1TcsDw6iS6RgA58+fBdJf1ZEy/vnzWzMdQ6Q4unAhBsPwxjTT7rfqkPW/44Lk4sUYDCOA9D+0AcfzMbl8+TwlSuiWmLxUqJIsgNGjRzN69Oh028LCwtIca9u2Lb//rrWnIkVCYKAj2QoPh7BQR2GMqHqERQU4m0Wyo0qVOlgsodjtCUB6y8c3UqFC7QwTrJQxwA78AaRXJGNjcr+MKwSWLl0JDw8fEhI24Fjmd7UT2O0RVK48MsMxAKpWrcvJkxu5YnV8KhbLRgICclapUKQ48Pevg2leAjYDzdPp4fh3XFgKx1SpUge7/UPgNFAunR4b8fT0xde3fD5HVvwUquWCIiKACmPIdeve/QHs9hPA6+m0bsYwFtCrV+YVxZo27Ur58jUxjKnA1cWUYrFYXqBRo874+9fNcAxPT2+6dr0Pi+Ud4NBVrSYwDavVSlBQ5rtz33bbg9jt4cDidFq/w27/jdtuK1wV0kTyQ4sWt1G6dACGMRlIvKo1BotlNs2a9aBixYxmmwuWLl3uw2Ixgek4fodc6QAWyzxuvXWoSrnnAyVZIlJ4qTCGXKNq1RoyYMAkYCIwGFgJ/A5MwWIJombNJtx+e/qrJlJYrVYee+w9DGMdFks74HPgT2A+FktrPDyO8NBDb2YZy+DBz1G2bCksljbA/wHhwHcYRk9gHiNHzqFUqbKZjtG6dW/ath2AYdwNjALWAeuB0RjGANq0uZM2bfpmGYtIcWO1uiX/O16FYXQEvsTx7/hdLJZWeHmdYOTI9D6MKZj8/CrwwAOvAW9hGL2BZTh+p8zGYrmZ8uXLcvfdU10bZDFRaPbJcpXY2Fj8/Py0T5ZIQXfV3lr4B+heLcmUaZqsXPk+ixa9xIkT+wDw9CzFrbcOIyTk+Wzfr7Bjx0Y++2wq27evBcAwLLRq1ZuhQ2dxww2NszXGmTPH+OSTSaxfvwCbzbFX4w03NOOee56lXbs7szWGzZbE11/PZtmyuZw/79jupFSpSgQHP8qAAZNwc8voHg0R+fffdXz22bPs3LkecPw7Dgzsy9Chs6latb6Lo8u5DRu+5ssvZ3LkyDYA3Ny86Nx5MEOGzKZMmUoujq5wy+4+WUqysqAkS6QQCQ+HiAhHYQxCiCIAf38VxpDM2e12oqIiSEyMp0qVOnh5+VzTOKdORXLu3EnKlvW/5jcxFy7EcOLEQby8SlKlSm0MI6PCHBlLTEwgKioCAH//eri7a8sSkew6efIIsbGnKFcugNKlMyqGUTiYpsmxY/uIi7tApUo18fHxc3VIRYKSrFyiJEukELpqViuKAIKClGiJiIjI9cluklXoqguKiGQpMJDgQAgOdZR7DyeQsLAuKvcuIiIi+UKFL0Sk6FJhDBEREXEBJVkiUrQFBkJICDP7b3WWeyfqqMq9i4iISJ5RkiUixUNgoHNWK4TQVLNaSrZEREQkN+meLBEpPgIDHclWeDiEhToKY0TVIywqwNksIiIicr2UZIlI8aPCGCIiIpKHtFxQRIovFcYQERGRPKAkS0SKNxXGEBERkVymJEtEBFQYQ0RERHKN7skSEUmhwhgiIiKSC5RkiYhcTYUxRERE5DpouaCISEZUGENERESugZIsEZHMqDCGiIiI5JCSLBGR7FBhDBEREckm3ZMlIpJdKowhIiIi2aAkS0Qkp1QYQ64QE3OC779/i9WrQzl//iTlylWje/fh9Oz5CCVKlMrWGHFxl3jnnYf59ddvSUi4hGFYueGG+tx//+vcdNMtefwMUjt+fD9Ll85h/fpFxMWdJyCgPj17jqRbt+G4ubnnayxScF26dJ4ff3yXn376iNOnj1CqVAW6dbuP3r3H4OdXwdXhibicYZqm6eogCrLY2Fj8/Pw4t2ABviVKuDocESlowsMhIoKp2+4iolxbogjA3x9CQlwdmOSH48f38/TTQZw7dxa7/V6gHrAZw/iKqlUb8OKLaylVqmymY1y6dIGRI+sQG3sC6Al0BY4DHwLnePjht+jV65G8fioA7Nr1G88+exsJCZ7Y7UMAfwwjDNP8nptu6sHUqd/h7u6RL7FIwRUbe5pJk7oQGRmBaQ4EbgIisFg+p3Tpsrz4YhiVK9d0cZQieePSpVgGDfLj3Llz+Pr6ZthPSVYWlGSJSLaEh7MsrKRjCSH1wD9As1rFwIQJHdizJxq7PQwIuKJlOxZLZzp0uI3x4zMvRzl16q1s3boW+AHofkXLeaAXhhHOl1+epESJjP+Y54bExARGjKjJ+fO1sNt/AK6chfsZw7idwYMnM2jQs3kahxR8r7xyLxs2/JT8um98RUskFksQdetW4eWXf3FRdCJ5K7tJlgpfiIjkBhXGKHb27dvM7t0bsdtfJnWCBdAYu30yGzZ8RUzMiQzHSEiI459/1gP3kzrBAkeS8x6mmcCnn07O1djT88cf33LuXBR2+zxSJ1gA3TDNEXz//TxstqQ8j0UKrrNno9mw4Svs9imkTrAAqmK3v8Tu3Rs4cGCrK8ITKTCUZImI5Jbkcu/BQRdSlXsPC1OiVRTt2fMnYAC9M+jRD7s9kQMHtmQ4xoEDWzHNBKBvBj0aAjXZtWvj9YSaLRER4VittUn7xjlFP2Jjj3HqVGSexyIF14EDW7Dbk8j4NRsMGERE6JeeFG8qfCEikttUGKNYsFrdABOIA0qm0+MSABZLxn9q3d09U/VNyzG+xWK95jizy/F84pIf00inx6Ur+klx9d/1z+g163gN6XUixZ1mskRE8kryrNZM/3kEnV6UagmhFH433dQNw7AAn2XQ41O8vPyoX79NhmPUqNEUNzcf4OMMeqwDjtGhw8DrijU7mjfvgc12FFiTbrthfEpAQGPKlbt6aaQUJ/XqtcHT0xf4NIMen2EYFpo165afYYkUOEqyRETyUvISwpn9t6ZaQqh7tQq/ChVuoEOHu7FYngZ+vqLFBL7AMF6jd+9H8fLyyXAMi8XCLbeEAMuBWUDiFa3/Avfh7l6Sfv2ezINnkFqTJkHUrNkSi2UE8M8VLYnA/2Ga3zJgwHgMI71ZLikuvL1L0rv3oxjGq8CXOF7vJP93FRbLRDp0GESFCtVcF6RIAaAkS0QkP6gwRpE0atR8GjZsCdyKxdICGIzF0gC4l/btB3DvvTOyHOORR96hYcMOwGQcBTQGAR2AJlitp5k162cslrz/c20YBlOnfkvlyj5AMwyjEzAIi6UGMJG77nqGrl2H5nkcUvDde+8M2rfvD9yDxdIQx+u+JdCdhg1bMXr0fBdHKOJ6KuGeBZVwF5Fcd1W59ygCCArSvVqFlc1m4++/f2TNms+IiTlJxYrVuPXWETRu3ClHsz4bNnzFggUzOXXqGB4e7rRp05ehQ1+kZMnSeRd8OhIT49m4cREbNnzNpUvnqVatPj16jKRWrZvyNQ4p2EzTZPv29axa9SEnThyhTJmKdOlyHy1a3IbVmvf3EIq4ivbJyiVKskQkz4SG/lcYgy74+6swhoiISEGmfbJERAo6FcYQEREpkpRkiYi4kgpjiIiIFDlKskRECgIVxhARESkycpRkXb58mQ0bNrBjx440bXFxcXz6aUZ7JoiISJaSZ7WCgy6kmtUKC1OiJSIiUphkO8mKiIigYcOGdOrUiSZNmtC5c2eOHTvmbD937hzDhw/PkyBFRIqVwECCn2rknNUKYq1mtURERAqRbCdZTz/9NDfeeCMnTpxg9+7dlCpVivbt23P48OG8jE9EpPhSYQwREZFCKdsl3CtVqsTPP/9MkyZNAMf+CI8++ig//PADa9euxcfHB39/f2w2W54GnN9Uwl1ECoSr9tbCP0Dl3kVERPJZrpdwv3z5Mm5ubs7vDcPg3XffJTg4mM6dOxMREXF9EYuISMZUGENERKTQcMu6i0ODBg3466+/aNiwYarjb7/9NgB9+vTJ3chERCS1wEBHshUeDmGhjlmtqHqERQU4m0VERMT1sj2Tdccdd/Dll1+m2/b2228zePBgsrnyUERErocKY4iIiBRo2b4nq7jSPVkiUqCFh0NEBFO33UVEubZEEYC/P4SEuDowERGRoifX78kSEZECKHlvrZn9t6baW0uzWiIiIq6jJEtEpChQYQwREZECI9uFL0REpIBTYQwREZECQUmWiEhRExhIcCAEh85jWVQLwgkkLKwLERFoby0REZF8oCRLRKSoCgkhODyc4Ih5TN12mgjaEhYVQERE0SmM8dVXswkPX4q7uwf9+z9Nq1a9cjzG/v1bWL58LomJ8TRv3p0uXVzzwzFNk+3bfyEychfe3iVp2bInJUuWcUksBUlY2Of8/fdK3N096dnzEerUaZHjMU6fjmLLllUkJSVQp04ratdungeRZs1xjdcTGbkbb+9Syde4tEtiuXDhLJs2/cjlyxeoWrUBjRt3xDAMl8SSG06fPsqWLT+TlJRA3bqtqVXrJleHJMXcNVUX/Oyzz5g3bx4HDhzgt99+o3r16syZM4eaNWvSt2/fvIjTZVRdUESKhPBwloWVdCwhpB74BxTqWa21a0N5Y8792M2EK44aeHmV5K23tlKpUs0sx4iNPcNTT7UlKmoP8N+fQk9PXyZOXEDLlj1zP/AM7Nr1G3Pm3E9U1E7AAEzc3b3p0+cxQkJewGq15lssBcXmzauYNesu4uPPXXHUoHLlOrzyyq/4+pbPcoz4+Eu8++5o1q79FNO0OY/XrduWJ5/8BH//unkQefp27NjIG288wLFju/jvGpegX78nuOeeGfl2jW02G6Ghk1m69E0SEy87Y/H3b8gTT3xIgwY350scuSUu7iLvvPMo69Z9nuoa16vXjief/JQqVWq7MDopivKsuuC7777LuHHj6NWrFzExMdhsjhd06dKlmTNnzjUHLCIieagIFcbYunUNr78+HLsZACwBEoAYYA5xcYk8/HBDEhISMh3Dbrfz6KONiIo6BLwKnAESgaXEx1dm+vS+7N37V94+kWQHDvzDlCm3cvx4aWAtkAQcIzFxPN988zL/+98T+RJHQbJ3798891xv4uMrAN/huDZngdc5fvwIjz56I3a7PdMxTNNk1qwBhIUtxDRfTT4/EfiWffvO8PTTnTlz5lhePxUA9u3bzNSp3YmOLgesw3GNo0hMHMvXX7/Ihx8+mS9xALz//uMsXvwKiYkTgGPJsazl+PHSTJnSjQMH/sm3WK6X3W7nhRfuZP36bzDN13H8HkgAlrB370mefrozZ88ed22QUmzlOMl66623eP/995k8eXKqT11atWrFtm3bcjU4ERHJRcnl3oODLqQq9x4WVrgSrddeCwG8gI1AP8Ad8AMeAxZhs8Uzf/6oTMf4/vu3iI2NBr4ExgJlcKygDwZ+AUowd+7DefUUUvnii+dISgrAbv8ZCMLxp7kyMAN4heXL53L8+IF8iaWgeOedhzBNL2AD0AfHtSkNPA4sJDY2mqVL52Q6xj//rGHz5h+x279MPq908jh9sdvDOH/+cpZj5JYvvngOm606dvsqoBOOa1wFeB54ke+/f4sTJw7leRzHju3jhx/ewTRfAabjeJ1ZgCDs9lUkJQWwYMGMPI8jt2zd+jNbt/6E3f4VMAbH7wF3oB92exixsedZtuxN1wYpxVaOk6wDBw7QvHnatcyenp5cvHgxV4ISEZE8FBhI8FONnLNaQawtVLNaZ8+eBIbheJN6tV5APX75ZUGmY/z447tATRxJ2tUqAg+wb1/ef6J/8eI5wsOXYrePBtJbkv4QFksp1q37PM9jKUj27t0KjAAqpdMaDNTmxx/nZTpGWFgoFkuD5P5Xq4zdPpSff/70umPNyoULZ/nrr++x28cA3un0eATDKMH69V/meSzr1n2BxeILjEyn1Qe7fTS///4tly7F5nksuWHt2s+wWG4E0lva64/dfh8///xZfoclAlxDklWzZk22bNmS5viKFSto2LBhbsQkIiL5IXlWa6b/PIJOL0q1hLBgswENMmgzgMYkJma+XPDixRigYXL/9NQHEklKSrrGGLPnwoWzyfeRZPR8SmAY1Th37kSexlGQOJYBJuK4BukxgEZcunQug3aHmJgT2O31yewanz+f9z/X2NjTmKadjJ9PSQwjIF+u8blzJzCMaqSf0APUxzRtXLhwNs9jyQ2Oa1wPV19jkfTkuLrguHHjGDVqFHFxcZimSXh4OF9++SWzZ8/mf//7X17EKCIieSV5b62Z4eEsC9vn3FsrNLQgF8awAn9n0GYHNuHpmd6MwX98fSsQE7MZR8KWXsGBzRiGB25ueVuE19e3PFarJzbbZuDWdHrEYLfvp3z5oXkaR0FisVgwDE9Mc0sGPWzA31kWvihfvipW60/J946nf43LlKl2fcFmQ+nSFbFY3LHbtwBd0+lxBrv9EOXL530s5ctXwzT3A+dwLK272masVs9sFRUpCBzXeB02m5305w02U7Zs3v9cRdKT45msBx54gP/7v/9jypQpXLp0iXvuuYd3332XN954g0GDBuVFjKnMnTuXGjVq4OXlRZs2bQjP5tqWBQsWYBgG/fr1y9sARUQKo6sLY2z7p8AuIaxYsRrwORCRTuvnwGF69nwo0zHuvDPlpv+P02ndD3xMw4Ztri/QbPD2LkmHDndhsbwNnE6nx6sYRiJBQUWk5n42NWp0M/AJsDed1s+Ao9xxx/hMx7jlluHYbAeT+19tLxbL59x224jrDTVLJUr40r79ACyWN3EUWLnayxiGjc6d783zWIKCQjDNeBzFXq52GovlbTp1uhsvL588jyU3dOs2ApttH/BFOq27MYwF9OgxPL/DEgFymGQlJSXx6aef0q1bN/bs2cOFCxc4fvw4kZGR3H///XkVo9PChQsZN24c06ZN4++//6ZZs2b06NGDEycynwo+ePAg48ePp2PHjnkeo4hIoXVlYYxyPxbYwhiTJ3+LYzajHfA2cBjYDjwFDMPT04eQkFmZjtG16xCqVKmH496U8cC/yeO8A7TFYjEZM+aDPHsOV7r33umUKBGHxdKOlAQC/gLuB55n0KCplC2b3v1nRdfjj3+E1WrguMZz+e8aTwDup1Kl2nTtmvnsXv36bQgKGgI8kHze9uRx5mKxdKRixWr07j0mL5+G0733zsDb+wIWS3scHwQcBf7EcW/hi9xzz3OULl0xz+MoV86fQYOmAjNxvL7+So7lMyyWdpQoEc/gwc/leRy5pWHDdnTqdA+GMRx4GtgBHALewmLpRJUqNejVK/MiOCJ5Jcf7ZJUoUYKdO3dSvXr1vIopQ23atKF169a8/fbbgGPddrVq1RgzZgwTJ05M9xybzUanTp0YMWIEv/zyCzExMXz77bfZfkztkyUixVZoKMuiWhBOIGF0wd+fArOEcMeOjTz7bHcSEi7z3x5XVsqVq8I77+zE27tklmMkJCQwbdqtbN/+K44y1gAGZcoE8Nxzy6lZs2keRZ9WZORu3n13NNu2/ew85utbhUGDnuH220cV6k1ir9XBg//y3HM9OXPmKP9dYzcaNWrLjBk/4+HhkeUYNpuNBQums3TpW1y+HAOAYVi5+eY7eOSRufmS2KSIjNyVfI1XO4/5+fkzePAUevZ8ON+usWmaLF8+lwULZhEb+18J+6ZNb+WRR94mIKBevsSRW2y2JL74YhrLls0lLs5xn57F4kbbtnfy8MNv4+dXwcURSlGT3X2ycpxkBQUF8cQTT+T7sruEhARKlCjBokWLUj320KFDiYmJ4bvvvkv3vGnTpvHPP/+wZMkShg0blmWSFR8fT3x8vPP72NhYqlWrpiRLRIqn8HCIiGDqtruIKNeWKALw94eQArJ6bfPmVaxd+ykeHt7cddekbG1CfLXY2FOsXv0J8fEXadWqF3XqtMqDSLPn2LF9HD26Gy+vkjRo0BY3N3eXxVJQ7N37N3/99T0eHt506zb8mu4Xio+/xK5dv5GUlECNGs0oV84/DyLNnqiovURFReDtXYr69W922TVOSkpk167fiIu7QEBA/UK/aW9c3EV27/6dpKQEata8qdjN/kr+ybMk66uvvmLSpEmMHTuWli1b4uOTet1u06Z588lfVFQUAQEB/Prrr7Rt29Z5/KmnnmLdunX88ccfac7ZsGEDgwYNYsuWLZQvXz5bSdZzzz3H9OnT0xxXkiUixVp4OMvCSjoKY1AP/AtyYQwREZG8kd0kK8dlk1KKWzz22GPOY4ZhYJomhmEkV/FxvfPnz3Pffffx/vvvU7589j/1mjRpEuPGjXN+nzKTJSJSrAUGEkw4wRHzWBbVgtBtPQmLakpERMFZQigiIlJQ5DjJOnDANbvOly9fHqvVSnR0dKrj0dHRVK5cOU3/ffv2cfDgQYKD/9uE0LH3Bri5ubF7925q1047Ne7p6Ymnp2cuRy8iUgQkl3sPDg+HsB8J5zQRUfUIiwpwNouIiMg1JFmuKHgB4OHhQcuWLVm9erXzniy73c7q1asZPXp0mv4NGjRg27ZtqY5NmTKF8+fP88Ybb2h2SkTkWgUGEhwIwaHz/iuMEdZFs1oiIiLJcpxkffrpp5m2Dxky5JqDycq4ceMYOnQorVq1IjAwkDlz5nDx4kWGDx/ufOyAgABmz56Nl5cXN954Y6rzS5cuDZDmuIiIXIOQEILDHUsIp247TQRtCYsKICKi4BTGEBERcYUcJ1mPP/54qu8TExO5dOkSHh4elChRIk+TrLvvvpuTJ0/y7LPPcvz4cW666SZWrFhBpUqVADh8+DAWS473VxYRkWuVvIRwZng4y8L2OQpjRNUjNFSFMUREpPjKcXXB9OzZs4dHHnmECRMm0KNHj9yIq8DQPlkiItmUXO59WVQLQk/3JKpc0wK1t5aIiMj1yrPqgumpW7cuL774IiEhIezatSs3hhQRkcJGhTFERESAXEqywFGxLyoqKreGExGRwkqFMUREpJjLcZK1dOnSVN+bpsmxY8d4++23ad++fa4FJiIihZwKY4iISDGV43uyri4sYRgGFSpUoGvXrrz66qtUqVIlVwN0Nd2TJSKSC8LDWRZW0lEYg3rgr8IYIiJS+OTZPVkpG/qKiIhkW2AgwThmtZZFtSB0W0/CoppqCaGIiBRJOa53PmPGDC5dupTm+OXLl5kxY0auBCUiIkVQYKBjCWHQBULK/UgQayHqKGFhjsKEIiIiRUWOlwtarVaOHTtGxYoVUx0/ffo0FStWxGaz5WqArqblgiIieSQ09L/CGHRRuXcRESnwsrtcMMczWaZpYhhGmuNbt26lbNmyOR1ORESKq+RZrZn+8wg6vcg5qxUa6urARERErk+278kqU6YMhmFgGAb16tVLlWjZbDYuXLjAww8/nCdBiohIEZW8t9bM8HCWhe1zFMaIqkdoqApjiIhI4ZXtJGvOnDmYpsmIESOYPn06fn5+zjYPDw9q1KhB27Zt8yRIERG5fjuPHGHu8uWs2rID0zTp2qwho3r1okmNGq4OrVAXxoiLu8jatZ+xbvXHnIuJpnzFGtzS/QE6dBiIm5u7q8MTEREXyPE9WevWraNdu3a4uxePPxy6J0tEioIv163jvtfnYFCOJHt/wIKbdTE2ezQfjBnN8G7dXB3if64q9x5FAEFBBTPRiok5wbPPdOZw5G56GVDfNPnbYmGt3U6Txh159rkVeHrqb4eISFGR3XuycpxkXSkuLo6EhIRUxzJ7sMJISZaIFHa7IyNpPHoMNvu9wPuAR3JLIjAKw/iAzXNep1nNmq4LMj2FoDDGjGk9OLJ1DavtSTS+4vh6oKfFSuceD/LII++6KjwREclleVb44tKlS4wePZqKFSvi4+NDmTJlUn2JiEjB8s6PP2JQBniP/xIsAHfgHaxGZd76frlrgstMAS+MERm5m782/8QrVyVYAJ2ASXYba37+iAsXYlwQnYiIuFKOk6wJEyawZs0a3n33XTw9Pfnf//7H9OnT8ff359NPP82LGEVE5Dqs3rqDJHs/wDOdVjeS7ANYvXVHPkeVTcl7a83sv5UQQp17a4WGun5vrR07fgFgQAbtA4H4xHj27v0r32ISEZGCIduFL1IsW7aMTz/9lKCgIIYPH07Hjh2pU6cO1atX5/PPP+fee+/NizhFRCQPpbMzR8FSiAtjiIhI8ZPjmawzZ85Qq1YtwHH/1ZkzZwDo0KED69evz93oRETkut3SrBFWyxIgPp3WJNysi+jWrFF+h5VzybNawUEXCCn3o3NWKyzMNbNajRp1BODrDNoXAp7untSp0yrfYhIRkYIhx0lWrVq1OHDgAAANGjTgq6++AhwzXKVLl87V4ERE5Po92rMnEAM8SOpEKxF4BJv9OKNvv90VoV2bwECCn2rETP95ziWEKfdq5WeyVbVqfVo178F4ixv/XtW2DnjRsNC123BKliydf0GJiEiBkOMka/jw4WzduhWAiRMnMnfuXLy8vBg7diwTJkzI9QBFROT61K9aldBxY7FavsDNUg14BBiFm+UGLMaHfPjYGJoWtMqC2VEACmM8NvZTSgTUpRkGvQ2DJ4Egi5UgoE6jDowY8Wr+BSMiIgXGdZVwBzh06BCbNm2iTp06NG3aNLfiKjBUwl1EiopdkZHMXb6cnzZvxzRNbmnWkFG3386N1au7OrTrd9XeWvgH5Nu9WvHxl1i7NjR5M+LjyZsRP0j79gO0GbGISBGTb/tkeXl5XevphYKSLBGRQiI8HCIiHIUxTvckqlzTArm3loiIFF55tk+WzWZj5syZBAQEULJkSfbv3w/A1KlT+eCDD649YhERketRwApjiIhI8ZXjJOuFF17g448/5qWXXsLD479NLW+88Ub+97//5WpwIiIiOVZACmOIiEjxleMk69NPP+W9997j3nvvxWq1Oo83a9aMXbt25WpwIiIi16wAFMYQEZHiKcdJ1tGjR6lTp06a43a7ncTExFwJSkREJFckLyGc2X+rc1aLqKOa1RIRkTyV4ySrUaNG/PLLL2mOL1q0iObNm+dKUCIiIrkqMNA5qxVCKGz7R0sIRUQkz7jl9IRnn32WoUOHcvToUex2O4sXL2b37t18+umnfP/993kRo4iIyPULDHQkW+HhEPYj4ZwmIqoeYVEBzmYREZHccE0l3H/55RdmzJjB1q1buXDhAi1atODZZ5+le/fueRGjS6mEu4hIERUayrKoFoQTSBhdVO5dRESylOv7ZO3fv5+aNWtiGEauBVkYKMkSESnCkvfWmrrtLiLKtSWKAPz9ISTE1YGJiEhBlOv7ZNWtW5eTJ086v7/77ruJjo6+vihFRERcSYUxREQkD2Q7ybp6wuuHH37g4sWLuR6QiIhIvlNhDBERyUU5LnwhIiJSJKkwhoiI5JJsJ1mGYaS5H6u43Z8lIiLFQGAgwYEQHDrvv8IYYV2IiFBhDBERyZ5sJ1mmaTJs2DA8PT0BiIuL4+GHH8bHxydVv8WLF+duhCIiIq4QEkJweDjBEfOYuu00EbQlLCqAiAgVxhARkcxlO8kaOnRoqu9D9BdGRESKuuQlhDPDw1kWto9wAomIqkdoaIBmtUREJEPXtE9WcaIS7iIiAjjLvS+LakHo6Z5ElWuqvbVERIqZ7JZwV+ELEZFi5OyFC4RHRGCaJq3r1qVcJn8g8tq2gwc5dPIk5UuVIrBePSyWbBe8dY18KIwRFbWXo0d34+1dkgYN2uHm5n79g0qBEhW1h6NHI/D2LkWDBm11jUWKKCVZIiLFwKX4eMZ/+CEfr1rF5aQkADytVkK6dGHOgw9S0ts732L5dedOHp83j78OHHAeq12hArOHD+euDh3yLY5rlgeFMSIjdzP/nYfY+u8657GyvuUZMOhZbr99tApNFQFHjuzknXdGsX37WucxX98qDB48mV69HtU1FiliCvjHhiIicr2SbDaCp0/n05UrmZyUxF5gHzDDZuOrNWu47dlniU9MzJdYftu1i1smT8Z68CBLgShgPXDjyZMMfOklPlu7NosRCpCQEOfeWkGnF0HUUefeWjlx7Ng+Jk1oy+UdGwgFjgJ/AXfEnuK99x5jwYIZuR+75KuoqD1MmNCBnTuPA1/guMp/Eht7G/Pnj+brr2e5OEIRyW26JysLuidLRAq7hb/8wqCXX2YN0OWqtt+BtsBHjz/OsFtuyfNY2o8fT+Levfxit+N5xXETuA9Y6eND5Kef4uleyJZQhYezLKykozAG9cA/+4UxXns1hL2/LGCL3Ua5q9qmArMtVj748Ahly1bJi8glH7z88j1s3PgrdvtmoMxVrZOwWF7lo4+OUKZMJVeEJyI5kN17sjSTJSJSxH300090tFjSJFgANwM9DIMPV67M8zh2R0bya0QET1+VYAEYOBKKUxcv8v2ff+Z5LLkuMNA5qxVCKGz7xzmrFR6e8WmXL19g44aFjEknwQIYD3hgEhaWw+kxKTAuXYpl48ZF2O2PkTbBAngK07Sybt3n+R2aiOQh3ZMlIlLERZ48SVe7PcP25qbJwpMn8z6O06cBuCmD9vqAt2EQeepUnseSJ66hMEZs7CkSbUk0z2BIP6CGYeXUqSN5FrbkrZiYE9jtiWT8yi+DxVKD06cj8zEqEclrmskSESniKpYpw+5MbqrfZRhULF067+Pw8wNgdwbth4DLpunsV2gFBhL8VCPnrFYQazOc1SpVqixWw8KuDIa6BESadvz8KuZx0JJXfH3LYRgWMn7lX8A0j+gaixQxSrJERIq4+265hVWmyeZ02nYAy0yTIbfemudx3Fi9Os1uuIFXDANbOu0vA76envRp0ybPY8kX2SiMUaKEL4Ft+vCWxcrFdIaYB1yw2+nc+d58ClpyW8mSZWjVqjcWy1s40uarvYNpXqZz53vyOzQRyUNKskREirjBnTrRvEYNulssfIjjbd5l4FPgFouFBgEBDOmS3h1bucswDP5vxAjWAX0Ng79wFLzYCzwMzAWmh4Tg4+WV57Hkm8BACAlhZv+tzlktoo6mmtUaNHg6kW4e3GJYWAPYcVRdnApMwKDX7Y9SuXJN1z0HuW733jsdq/UQFsutQBj/XeXJwER6936MChVucGWIIpLLVF0wC6ouKCJFwenYWB54802+Cw/nyl/6vZo356OxY/NluWCKpX/8wZh33+XwmTPOY2W8vXkuJIQxvXsX3f2CwsMhIoJlUS0IPd2TqHJN8fd37K3l6/s7b88ZyuGoCGd3L3cvevcdy733zsRqtbowcMkNO3f+yhtvPEBU1E7nMQ8PH/r1e4J77plR8DfjFhEg+9UFlWRlQUmWiBQl+44dY/327ZimSYdGjagXEOCSOGw2Gz9v3cqhEyco7+tLz5Yt8fa8uuZgEZWcbE2NepgI6hFFAEFB0Lq1yc6dGzlyZCdeXiVp2bInJUuWdnW0kotM02T79l84enQ33t6laNmyJz4+hfweRJFiRklWLlGSJSIieSI0lGVRLQgnkDC6OGe1srO3loiIuIb2yRIRESnIslEYQ0RECiclWSIiIq6SjcIYIiJS+CjJEhERcbXAQOesVgihsO2fDPfWEhGRgk9JloiISEGQPKsVHHSBhU1ecM5qhYUp0RIRKWzcXB2AiIiIXCEwEAIDmRk677/CGGFdiIhQYQwRkcKi0M1kzZ07lxo1auDl5UWbNm0Iz+Tjvffff5+OHTtSpkwZypQpQ7du3TLtLyIiUmCoMIaISKFVqJKshQsXMm7cOKZNm8bff/9Ns2bN6NGjBydOnEi3f1hYGIMHD2bt2rX89ttvVKtWje7du3P06NF8jlxEROQaqDCGiEihVKj2yWrTpg2tW7fm7bffBsBut1OtWjXGjBnDxIkTszzfZrNRpkwZ3n77bYYMGZKtx9Q+WSIiUiAkb2K8LKoFoad7ElWuqfbWEhHJZ0Vun6yEhAQ2bdpEt27dnMcsFgvdunXjt99+y9YYly5dIjExkbJly2bYJz4+ntjY2FRfIiIiLqfCGCIihUahSbJOnTqFzWajUqVKqY5XqlSJ48ePZ2uMp59+Gn9//1SJ2tVmz56Nn5+f86tatWrXFbeIiEiuSllCmFzuPYi1KvcuIlLAFJok63q9+OKLLFiwgCVLluDl5ZVhv0mTJnHu3Dnn15EjR/IxShERkWxSYQwRkQKr0JRwL1++PFarlejo6FTHo6OjqVy5cqbnvvLKK7z44ov8/PPPNG3aNNO+np6eeHp6Xne8IiIieS6l3Ht4OMvC9hFOIBFR9QgNDdC9WiIiLlRoZrI8PDxo2bIlq1evdh6z2+2sXr2atm3bZnjeSy+9xMyZM1mxYgWtWrXKj1BFRETyV2Cgc1YrhFDY9o+WEIqIuFChSbIAxo0bx/vvv88nn3zCzp07eeSRR7h48SLDhw8HYMiQIUyaNOn/27vv8KiqrY/j3zkTkhBIkVATkY6AFEEMBkRAUZpcpCggcIGLIBb0ig0LoAKCBcSCggW5vkGqomBBEIgIIkGaKEqklxA6KQRS5pz3j4SYYDJpkzLJ7/M889zr2Wc268wOJCvrnLXTz3/llVcYP348c+fOpXbt2kRHRxMdHU18fHxxXYKIiEjhUGMMEZESw21uFwTo378/p06dYsKECURHR3P99dezcuXK9GYYhw8fxjD+zhvfe+89kpKS6NevX6Z5Jk6cyAsvvFCUoYuIiBSNy7cQhs1mRVQrIgghPLwTkZFq9y4iUlTcap+s4qB9skTKrtiEBMLCw/kqIoLEpCSur1eP+7t2pWFwcHGHli9zV6/m4TlzSExKAsCzXDlmjBjBA92753qOxORklmzYwJING4hLSKBhzZqM6tKFVvXq5XoOy7L48fffmfv99xyKjqZyQACDOnbkzhtvxMNuz/N1FcTR06d57MMP+WHXLkyHgzpBQUz797+57frrcz2Hw+Hg619+4f/WhXPifCy1q1ZmeOfb6NisGTabLdfz7Ni/n/e/+47fDx/Dz8ebfm1D6d++Pd6envm4sjRpe2uN33U3kYGhRBFMUBAMHpz/KUVEyrLc7pOlJCsHSrJEyqZdBw/Sdfx4TsTEcJvNRoBlscYwOGuavH3//TzUo0dxh5gnrR97jO379uEBdCX1XvGVQBLQqGZNfp81K8c5jp05wx3PPcfuqCja22wEWxYb7HaOOhw82bs3rwwblmNSkeJwMHzmTMJ++IEGhkFr02SvYbDFNGl37bV8/cIL+Feo4IIrztniDRsY/NprOCyLzoA/sAqIAQbecgufPvFEjnPEJSTQ/aUpbNi9C7vREofZCA9jKylmJPfc3J6wsY9RzsP5TSOWZfF8WBgvL1mCh1GDFLMDhi0K01pPvepXs3bKi1xTpUrBLjYighXhFVMbY9AQgtQYQ0QkP0rdZsQiIkXlYmIi3SdOpEpcHPuA7yyLRcAR02QM8PCcOazZubOYo8y9aUuWsH3fPm4HjgNfAsvS/v+dwJ9HjvDE3LlO57Asiz6TJxMXHc1OYL1lsQA44HDwOvDasmV8tHp1jrFMWrSIBT/8wCfAHtPkUyDCNPkB+P2vv/jPzJkFuNLcOx0by5DXXqOJZXEQ+A5YTOpn8jCwYP16Zn75ZY7z3PfOu2z68yDwPQ5zG/ApKeafwAKWbNzEhPnzc5zj/9at4+UlS4CppJiHgAWY1g/Abxw6aefOl16mwL8PVWMMEZEipSRLROQKizZs4Oi5cywxTWplOF4emAm0MgxmLFtWPMHlw4RPP6U8sASolOF4ALCQ1ArOzOXLnc6xYfduIvbt4yPTJONGGB7A40A/4PWlS50mAxcTE3ln+XIeAYYAGWtetwDTTZNlmzez7/jxXF9bfj0xdy7JlsXnQMYt58sDbwJNgVeXLnU6x6GTJ1mycQMO81XgtgwjNmAAljWWd77+jguXLmU7h2VZTFv6BTZbT2AcUC7D6HWkmPPYdWgfa3/9NU/XlyU1xhARKTJKskRErvDdtm2EGgYNshizAUNMk++2b8c0zaIOLX8cDvoBvlkMlQcGAPYcruW77dupbrfTOZvxfwN7oqM5dPJktnNs3bePswkJDMlmfCCp35RW79jhNBZX+H7nTtoCdbMYM4BhQHRMjNM1XrNzJ5ZlAtk94PRv4i/Fs3nPnmzniD53jj+OHsSyhmZzRgc87Fezctu2bOfIs7Rk63JVqyPrVNUSEXExJVkiIldIcTgo76Qi4wM4LKvgt3AVERupyVR2cvO0aYrDgTeZq08Zlc9wnrM5Mp57JU/AbrM5ncNVTNN0et3lASvtvOykxmkDvLM5I/VPSMlxjst/YlZs2PAunM8krao1KWg2Hc8sTa9qhYW5/o8SESlrlGSJiFwhpGFDNgKnsxlfZrPRuk4d7EXcCS+/koEvgJQsxkxgaTZjGYU0aMBBh4Psblr7Aqjm60utqlWznaNZrVp42e1k96TTSiDJsghp2DCHaAquee3a/ACczWb8c8DfywsPJ00rUuO0gBXZnLEMD8OD6+vUyXaOoEqVqBZQmdRPMCu7SXbspU1hfSaXq1p9d6ZXtYg6pqqWiEgBKckSEbnC8M6dsXt4cD+p3fcy+gRYaVk8/K9/FUNk+XNPu3ZEk/rET8bamwW8ABwCOrds6XSOniEh1LzqKkYbBjFXjK0FPrTZuL9HD6ed9AL9/BjUsSPTDIMr24YcBx43DELq1ePGBlndqOla00eMIAUYTWoSmtHHwBrg3ltvdTrH9XXrEnrtdXgYTwBHrxj9DbsxhXtubkfVgIBs57Db7Yy5syuGbR6p7TcyisMw7qeKfyB9QkNzvKYCUWMMERGXUgv3HKiFu0jZtHzzZu6eNo3qwGCHA3/ga8NgvWkyonNnPhgzJk97IBU3/wEDiE1IoBFwL6m/YVsI/Ab4eHpyIYcmDwARkZF0GT8ej8REhpgmQcB6m42vLIvbW7Rg+YQJeJUr53SO8/Hx3Pbss+w6dIi+lkVrYC8w3zDw9fXlh1deoX5QUEEvN1eenjeP1z7/nCBgKKkNQL4EfgIaBwfz26xZmTa4z8qB6GjaPf0cJ2MScJiDgIbANgzbUhrXvJr1UydRyTerp+H+lpSczF1TpvHttl8wbF0xrVuB49iNT/Aud5FVL02gbePGrrjk3Lm8t1bUaCJpSBTBdOyodu8iIqB9slxGSZZI2fXrgQO8uWIFK37+mcTkZFrWrcuDPXtyd7t2bpVgXdbhmWfY8Pvv6bcwmEDrBg3YPH16ruc4EB3NW199xZL164m9eJGGQUGM6taN4Z0757gf1GUXLl3i/e++46OVKzl06hSVfX0ZfNttPNyjB9WuuirvF1YAizds4LlPPuFQdDQW4Ofjw7Dbb+e14cNzTLAuOxUTwztff83c78M5ExtDcGAV7u96G/d36YJvLr9vJKek8Mnatcz6ZhV7jh2lgld5BtwSyqM9e1KvRo0CXGEBhIWxIqoVEYQQTieCgtDeWiJS5inJchElWSIiUmZdrmrtupvIwFCiCCYoCAZn11BRRKSU02bEIiIiUjBqjCEiki9KskRERMQ5NcYQEckTJVkiIiKSs7SqVs+O8SxqNiW9qhUerkRLRORKuXtKWURERARSk62QECaFzf67MUZ4JyIj1RhDROQyVbJEREQk79KqWpOCZtPxzNL0qlZYWHEHJiJS/JRkiYiISP6oMYaISJaUZImIiEjBqDGGiEgmSrJERESk4NQYQ0QknRpfiIiIiOuoMYaIiCpZIiIiUgjUGENEyjAlWSIiIlI41BhDRMooJVkiIiJSuNQYQ0TKGCVZIiIiUvjUGENEyhA1vhAREZGio8YYIlIGqJIlIiIiRU+NMUSkFFMlS0RcyrIs9kdHE5OQQO2qVank61vcIZUah06c4Kc//6SSry+3X389hlE8vyezLIt9x48Td/EitQqwxr8fPsyO/fupW706oY0a5WuOC5cu8VdUFJ4eHlwbHIzdbs/XPFJMLle1IiJYEb6PCEKIjGpIWFiwS6taDoeDY8f2kJKSRFBQA7y9K7hmYhGRbCjJEhGXWRERwQthYWw7eBCAcoZBv3btmDZsGNdUqVK8wbmxXw8coM/LL3PgxAnMtGMVPDwY2b07b9x3X5HG8sXPP/Pi/PnsOHQISF3ju2++mVeGDePqypVzNcdXW7Yw6q23iI6JwUo7FuDtzcRBg/hvr165miP+4kWeDwvj41WriE1MBKB2YCBP9OvHg927Y7PZ8nxtUoxCQuhJBD0jU28hDNvVjfCo5gW+hdCyLL799j2WLn2d06cPAODl5csddwxn0KDJ+Pjol0AiUjhslmVZOZ9WdsXGxuLv70/MwoX4+fgUdzgiJdb/1qxh2JtvcpvNxsOWxdXAj8B0wwA/PzZNn05NJVp59vvhw7R+5BEqmCZPAZ2AE8C7wLfA3e3asfjpp4sklrmrVzPi7be53WbjIcsiGFhP6hrb/f3ZNGMGwYGBTuf4cvNm+k2ZQk3gKeBGYC8wA9gCTBw4kIkDBzqd42JiIrc++yy/7dvHI6ZJT+ACMA8IA8b26sX0ESMKeLVSbCIiIDKS8VGjiaQhUQTTsWP+Eq2PP36KZcteAwYBwwBfYAWG8RZ16jRm2rR1eHnpe7uI5F5CQiwDBvgTExODn59ftucpycqBkiyRnMUlJBA8dCh9EhP5GMhYQzgOtDYMbrvlFj4ZO7aYInRfzceM4cihQ2wHamc4bgGPkJps/TZrFo1r1izUOGIuXCB46FAGJCXxAZnX+Bipa9ytUyfmPvqo03mqDBzIVRcuEAEEZDieAvwLWGOzEbNkCd6entnOMeOLLxj38cdstCxuvGLsDWAssOPNN2lRp06ur09KoLCwvxtj0ImgoLxVtQ4c+JVHH20BvAY8ccXoVmy2tgwbNoXeva8cExHJXm6TLDW+EJECW7RhAxcSE5lM5h++AWoAj5omi3/8kdiEhGKIzn3FJiSw+9AhHiJzggWpn/NEwA4888knhR7LgvXrSUxO5iX+ucbBwBjTZMEPPxDnZI3X//Ybpy9c4HkyJ1iQeu/6ZCDJspi2dKnTWD749lv6ZpFgATwMBBkGH3z3nfMLkpKvgI0xVq/+EMOoDmSV+N+AZd3NN9984MKARUT+piRLRAps7/Hj1LLbuTqb8XZAosPBsTNnijIst/fHkSM4SP38slIZaADsj44u9Fj2RUdTxzAIyma8HXApJYXj585lO8fmyMj0c7PSCvAEdqU975VtLCdOcHM2Y+WANqbJvuPHnc4hbiJtb61JfXcymLD0vbVys4nx8eP7MM02pH5VZKUdJ0/uc3XEIiKAkiwRcYGAChU4ZVlkV8O4/COzv265zZMalSoBcDib8WRSb8csiluZAypU4IRlcSmb8dyscY2rrgKyv54TQBIQmEO3wgAfH5ylYYcMg4CKFZ3OIW4mJCS9qjWYMNj1a3pVK7tkq2LFAAzD6VcK5csHFEKwIiJKskTEBe5u144LpsnHWYw5gHcMg/aNGhGUQ1MEyeyaKlWo6ufH26QmH1daAJwDHstlR76CuOfmm4k1Tf6XxVgKMMsw6HTddVRLS6SyMqB9e8obBjOBrB4GfpvUb0rP9OvnNJb+HTowzzA4n8XYBmCbaTKgfXunc4gbSqtq9ewYz6JmU9KrWuHhWSdaN9/cH9PcQWp7livFYBjz6NhxQOHGLCJllpIsESmwejVqMPy22xhrs/EmEJ92PBLoD2y2LCYOGlR8AbqxKUOGsBu4C9iddiwBmAOMAmpWqkTftm0LPY4GQUEM7dSJR2w23ia1mx/AHuAeYKtlMeHee53O4eHhwX3du7McuA84knb8HPAS8DIQ2rgxdapXdzrP2F69SPby4g7D4GdSE7ZkYAnQ2zAIqVePHjdm9cSWlAqXbyFMq2p1ZF2WVa3WrXvQoMFNGEYfYDGpXyUWsBnD6IKn5yXuukvNeESkcKi7YA7UXVAkd5KSk3l49mw++v57PIGrDIPjDgeBFSowZ8yYIkkESquXFi5k8qefkgxUAeKAS0DdqlXZMmMGlZx0N3KlxORkHnrvPeZ+/z3eNhsBaWtcuUIFPnj0Ue666aZczfPvGTP4NDwck9Tnys6RWvEMadiQDdOm4eGR8xaO2/bt456pU9l38iRV7XYuWhZxpskdzZvz6VNPEVhEn4kUs8vt3nfdTWRgKFEEExQEgwenDsfFneW11waxY8dKDMMXm608DsdJqlSpy7hxi2jQoHXxxi8ibkct3F1ESZZI3hw+dYrPfvqJ2IQEGgQF0Sc01Gk7bsmd+IQEJnz6Kdv376di+fI81qsXtzZvXiyxHDxxgmU//0xsQgINg4LonY81jjpzhufnz2f/8eNU8fdn4oABNK1dO09zOBwOVu3YwZa//sLTw4NuN9ygtu1lVUQEK8IrEkEIkTSEoOBM7d4PHPiVrVu/ISUlifr1W9OyZRfsdnvxxiwibklJlosoyRIREXEDaVWtFVGtCDvTjajA5nneW0tEJCfaJ0tERETKjjw2xhARKUw53/guIiIi4i5CQiAkhElhs1kR1YoIQggP70RkpKpaIlJ0VMkSERGR0ietqjUpaDYdzyxNr2qFhRV3YCJSFijJEhERkdLpcrv3vjvT270TdczpJsYiIq6gJEtERERKt5CQ9KrWYMJg169Z7q0lIuIqSrJERESk9FNjDBEpQmp8ISIiImWHGmOISBFQJUtERETKHjXGEJFCpCRLREREyiY1xhCRQqIkS0RERMo2NcYQERdTkiUiIiKixhgi4kJqfCEiIiJymRpjiIgLqJIlIiIiciU1xhCRAlCSJSIiIpIVNcYQkXxSkiUiIiLijBpjiEge6ZkskWK2Y/9+/m/dOqLPn+fqwECG3XYbjWvWLO6wilXYunWM++QTzsXHU97Tk/u7duWle+/Fbrfneo7Dp07x+EcfsW3fPux2O3e2bs3kwYPx8fbO9RyXkpJ4ccECPt+0iWSHg2a1ajFjxAjq1aiRp+uZHx7O9C++4Gx8PNUCApg4YADdW7fO0xzHz57l4++/Z/eRI1QsX56+oaHc1qIFhpH735VdTExk8YYNrNu1C8uyuOW66xjYoQM+Xl65nsOyLMJ37WLJxo3EJiRwbXAwwzt35urKlfN0PSJuJ+1ZrZ4REfSMnML4qNFERjUkPCo4fVhE5DKbZVlWcQeRF7NmzeK1114jOjqaFi1a8PbbbxPi5F+2JUuWMH78eA4ePEiDBg145ZVX6N69e67/vNjYWPz9/YlZuBA/Hx9XXIIIAMkpKfznzTcJ++EHatjtNLQsdgOnTJMHu3Xj7fvvz9MP0KWBw+Gg1ogRHDt7Fj+gObAfiAJ8PDyIfP99gnPxw/yLCxYwacECAFoD8cDvgLdh8MWECXRp1SrHOTb+8Qd3PPssCQ4HjYAA4BfABB7917+Ycd99Oc4Rn5BA0zFjOHTqFFWBBsBu4BzQvFYttr7xBh4eOf+ua/a33/LInDmUA24ATthsRDoc3FS/PiteeIHKfn45zrF17156vvgix2NiaG0YGMAW06RyxYp8MX48bRs3znGOc/Hx3DVpEuv/+IN6djvBlsU24KJl8dp//sNjvXrlOIdIqREW9ndjDDoRFKTGGCJlQUJCLAMG+BMTE4Ofk++/bvUT3KJFixg7diwTJ05k27ZttGjRgi5dunDy5Mksz//pp58YOHAgI0aMYPv27dx1113cdddd/Pbbb0Ucucg/PfXxxyxav565wGGHg3DT5Khp8hbw3rffMnnx4uIOscjdMHYsx86eZQoQDfwIHAYWAY6UFJo8+GCOcyzbtImXFiygG3AE+Bn4DdgJ1DRNer30EqdjY53OkXDpErc/+yyVHQ4igD+ATcAx4G5g5vLlfLR6dY6xtHv6aY6dOsW8tPduAI4DM4Fdhw7R/aWXcpzj6y1beOC99xhlmkSZJutNkz8dDtYA+/fvp8/kyeT0u7KT58/TZfx4asbF8RepydVm02Qf0Cghge4TJ3L09OkcYxnwyiv8tmcPK4G/HA5+SIvpUcti7EcfsXTjxhznECk11BhDRJxwqyRrxowZjBw5kuHDh9OkSRNmz56Nj48Pc+fOzfL8N998k65du/Lkk0/SuHFjJk2aRKtWrXjnnXeKOHKRzM7GxTH722+ZYFkM5+/7dj2BMcB/gZnLlnExMbG4Qixy8Rcv8vuBAwwFngXKpx23A/cArwNxly6xfPNmp/M8PW8e1YGlQMab+poDXwNJpslT8+Y5neP5sDAuOhx8AdyY4XhVIAyoD7z46adO59hz7Bi/HTrES8BQ/l5jL+BR4GEgfMcOzsfHO51n2uLF3GKz8Tbgn3bMBtwKzDNNfvzzT3764w+nc3ywahUJCQl8ZZrUz3C8DrDcNDGTkpi9cqXTObbu3cuqnTv5wDTpkhYDgC+pa9PFZuPlhQtzTPhEShU1xhCRbLhNkpWUlMTWrVvp3Llz+jHDMOjcuTObNm3K8j2bNm3KdD5Aly5dsj0fIDExkdjY2EwvEVdbtX07l1JSyO6Gs/uAcxcv8uPu3UUZVrF67fPPSQFGZjM+lNR/sCYtWuR0noPHj/MfUpOZKzUA2gPf/vKL0zmW/fwz1wMtsxjzIHV9jp45g2ma2c7x5vLlmGnnZuU+IBmcVsTOxMayYc8e7rOs9KQmoy7A1XY7X+aQeH7500/cZVlUyWIsALjHNPkyhyrU8ogIKtvtZHVDoA24z7LYfugQx86ccTqPSKmkxhgicgW3SbJOnz6Nw+GgWrVqmY5Xq1aN6OjoLN8THR2dp/MBpk6dir+/f/qrZhlvQCCF42JSEgCVshkPvHxeGapknb9wAfj72q9UEShHajMKZ0yy/1wBqgApKSlO50hKSck2DkiN0cphnguXLgFwlZM5AOIuXsx2jpy+Toy0+S/m8JlcTEx0+pkEkvPX2sXERPxJrSxmNwe5iEWk1EqravXsGM+iZlPSq1rh4Uq0RMoit0myisozzzxDTExM+uvIkSPFHZKUQi3q1AHgu2zGL9+41ax27aIIp0To264dNv6+9ittAC4BoY0aOZ2nopcX32YzdhH4HqhVvbrTOa4NDuYnILs69jekNuLw9PTMdo6OzZoBsCqb8cvXeXvLrOplqapfdRVVK1bM9uvkMPC7w0HzHL5OmterxyrDIKu6mwV8axg0r1fP+Ry1a7PP4eCvbMZXAgHly1NTXQalrLt8C2FaVasj61TVEimD3CbJqly5Mna7nRMnTmQ6fuLECapn8wNT9erV83Q+gJeXF35+fpleIq7Wql49QurV41nD4OwVY8eBFw2DLi1aUDeHZKA0ueW66/Dx9ORlUjsKZhQHjCW1kvXOqFFO57mnQwdWA59fcdwCJgAxwNQhQ5zO8erw4VwCnoR/JCbfAV8A3XNoITb01lvxLVeOp0jtJpjRMeAFoJqfH+2cdPXzsNsZ2b07HxkGW64YSwYeAyp6ezPwllucxvJA9+78ZZq8kcXYbGCXaTI6h66r/dq1o3KFCvzXZuPKmtdO4D3DYPgdd+DtJPEUKVPUGEOkTHObJMvT05MbbriBNWvWpB8zTZM1a9YQGhqa5XtCQ0MznQ+wevXqbM8XKUpzH3uM4+XL09QwmAgsBJ4BmhsGSX5+vPfQQ8UcYdFbPn4854EWwOOkfiZTgEbAduDpe+5xWj2C1CTsmsBA+gH9SG1UMQcIJbVBw11t2jitHgG0rl+fIZ068T6pLeDfBeYDA4EeQBU/P/733/86ncMwDD5+/HH2pMX/Ytr1jAOaAqdsNj577jmncwA8068fLerV4xabjZHAAuAN4HrDYLlh8MnYsVQsX97pHDc3acLTffvyBHCHzcZcYB7Q3WbjQeCRO+/k9uuvdzqHt6cnYU8+yRrDoIVhMD0tlgeAtoZBg2uu4YWBA3O8HpEyRY0xRMost9ona9GiRQwdOpQ5c+YQEhLCzJkzWbx4MX/++SfVqlXj3//+N8HBwUydOhVIbeHeoUMHpk2bRo8ePVi4cCEvv/wy27Zto2nTprn6M7VPlhSmA9HRvPL554StXcuFpCT8vb0ZevvtPN2nD0GBzp4KKr1+3rOH3i+/zOlz50gh9TdBFby9mT5iBCO7dMnVHElJSfx75kxWbNpEgsMBQKCPD2N69WJiHhKB1z7/nNc/+4yTcXEAlDcMutx4I/MffzzXmxqH79rFA++9x19Hj+IgtXFGs7p1mfvII1xft26u5khITOSNL79kztdfc+TcOew2G73atOGpvn1pc+21uZrDsiwWb9jAG8uWsXnvXgBuqFOHR++6i8EdO2KzZdVa45+27dvHK0uX8vmmTaSYJkH+/ozs1o3H77oLX/0bKZK9iAiIjGRFVCvCznQjKrC59tYScUO53SfLrZIsgHfeeSd9M+Lrr7+et956izZt2gDQsWNHateuzbwM7ZmXLFnC888/n74Z8auvvqrNiKXEcTgcXEhMpKK3d5nbgDg7SUlJHDx5kpqBgZTPoVKTHdM0OR0bi7enZ4H+/sYnJJCQlERlP798r09SUhKn4+Ko6u+fqw2Is2JZFvEXL+Lt6Um5fM4Bfze5KO+VVQ/G3ElxOLiYmEjF8uVznaCJCOnJ1vio0UTSkCiC6dhRiZaIuyi1SVZRU5IlIiIiLhcWxoqoVkQQQjidVNUScRO5TbL0K3MRERGRoqbGGCKlmpIsERERkeKgxhgipZaSLBEREZHiFBKSXtUaTBjs+lV7a4m4OSVZIiIiIsUtrarVs2M8i5pNSa9qhYcr0RJxR/lvTyUiIiIirhUSAiEhTAqb/XdjjPBOREaqMYaIO1ElS0RERKSkUWMMEbemJEtERESkJFJjDBG3pSRLREREpCRTYwwRt6MkS0RERKSkU2MMEbeixhciIiIi7iKrxhifNScyMlCNMURKEFWyRERERNxNxsYYGapaaowhUjIoyRIRERFxR2qMIVJiKckSERERcWdqjCFS4ijJEhEREXF3aowhUqIoyRIRl7tw6RInzp0jxeHI9xxJycmcOHeOi4mJLowsf2ITEjgVE4NpmsUaR4rDwcnz54m/eLFY43CVkrTGIqXG5VsI06paHVlH+GdnVNUSKWLqLigiLvPzn3/y8uLFfL11K6ZlUcnHh+F33MFz99zDVRUr5mqO6HPnmLxoEZ+sWUNcYiIehkHvm27i+f79aV6nTiFfQWZfb9nCK0uW8OOffwJw9VVXMbpHD57o3RuvcuWKLI64hASmLl3KhytXcio+HoAuLVrwTP/+dGjatMjicJWoM2eYvHgx/7dmDfFJSXgYBn3btuX5/v1pWqtWcYcnUjoMHkzPiAh6Rs5m/Jm7iYwKJTwqmMhIGDy4uIMTKf1slmVZxR1ESRYbG4u/vz8xCxfi5+NT3OGIlFhfbdlCnylTaATcb5pcDfwIfGgYBFevzvpXXyXQz8/pHEdPn+bmJ5/kwrlzjDZNbgT2Ae8ZBsfsdr6bNImbmzQp/IsB3vnqK8a8/z7tDYPhpkkA8A3wic3GLU2b8tULLxRJohWbkECnceOIPHyY/5gmtwLRwAeGwQ7LYv4TT9C/fftCj8NVDp86xc1PPMGlmBhGmyatgb2krvFxDw9WT55MaKNGxR2mSOkSEcGK8IpEEEIkDSEoWO3eRfIpISGWAQP8iYmJwc/JzzVKsnKgJEskZ5eSkrh66FDaJSSw1LLImHrsAdoaBv27dOHdBx5wOk+/qVPZvHkzm9KStMsSgK42G8cqV+avDz7AMAr3TufDp05R9777eNiyeAOwZRgLB2632XjtP//hv716FWocAE/Pm8e7X3zBBtOkRYbjDmAIsMLTk2OffOI2/z71njyZbb/8wibTJCjD8QtAF8PgZJUq/DlnTqGvsUiZExEBkZGsiGpF2JluRAU2JygIJVsieZTbJEvfxUSkwJZu3MiZCxeYfkWCBXAtMMY0+b81a7hw6VK2c0SfO8cXP//MuCsSLAAf4FXLYv+pU6zescO1wWfhw1WrqGCzMZnMCRZAR6CfZTH7668LPY7klBQ++u47Rl2RYAHYgdeBi0lJzA8PL/RYXOHYmTMs37KFZ69IsAAqANNMk79OnGDdrl3FEZ5I6abGGCJFSkmWiBTY74cPU9tup342452B+KQkjpw+ne0ckceO4bAsbstmvA1QwTDYfeRIAaPN2e+HD3OTZZHdU2SdgT3R0TgK0NgjN06cP8+ZCxey/UyCgOvs9iL5TFxhz9GjmE7WuB3gbbO5zfWIuCU1xhApEkqyRKTAKnh7c86ySMpm/GTa//p4eTmdI+O5V4oFLpmm0zlcpYK3NydtV9aw/nYS8PLwKPRb2i5fa3afiQmcxvnnWpLktMbngUTLwsfTs6hCEim70qpak4JmZ6pqhYUVd2AipYOSLBEpsN6hocSYJouzGLOAOTYbN9SpQ83KlbOd4/o6dagVGMicbMbnAths9LzxxoIHnIPeN93EDtMkq1/qJgFzDYM+oaHYnCRirlDJ15eOTZrwgWGQVfP4r4Aoh4M+oaGFGoer3FC/PjWvuirbNf4Q8DAMehTBGosIf1e1+u5Mr2oRdUxVLREXUJIlIgV23TXX0DskhAcNg6WkNmUAOAs8AqyyLJ4bMMBpUmK323m2f38+BZ4ntXIFkAx8DDxjs/Gfzp0JCgwsvAtJ0zMkhOY1a9LXMPiB1EQR4Ahwj83GYZuNJ/r0KfQ4AJ7p359Npsl9/F0BMklNsIYbBrc1bUpIw4ZFEktBedjtPNO/P58AE4G4tONJwEfA8zYb991xB9WvuqrYYhQpk0JC0qtagwmDXb+mV7WUbInkj7oL5kDdBUVyJ/7iRQa88gpfb9tGkN1OEPCbaWIaBm+MHMmD3bvnOIdlWUxZvJgXPv2U8jYbjWw2DgMnHQ7uveUW5j76aJHtTxV15gw9X3yRbQcPUtduxx/Y6XBQ0dub+U8+yZ1FWG3535o1jJ41C9PhoJlhcBI44nDQ6brr+Oy553K9B1lJYFkWLy1cyEsLF+KTtsaHgFMOB4M7dOCjRx7Bswj3IBORK6R1IRwfNZpIGhJFMB07qgOhyGVq4e4iSrJE8mbLX3+x6McfiU1IoEFQEENvvZWqAQF5muPo6dP8b+1aDp48SaCvL4M6dKBZ7dqFEq8zpmmyZudOVmzZQmJyMi3r1mVQhw74FsO/BWdiY/m/devYfeQIFcuXp29oKG0bNy70WxYLy5FTp/jf2rUcOnWKyr6+DOrYURsRi5QkYWGsiGpFBCGEn2lOULNAtXsXQUmWyyjJEhERkTLpclVr191EBoYSRTBBQTB4cHEHJlJ8tE+WiIiIiOSfGmOI5JuSLBERERHJnhpjiOSZkiwRERERcS6tqtWzYzyLmk3JtLeWEi2Rf/Io7gBERERExE2EhEBICJPCZv/dGOOz5kRGqjGGSEaqZImIiIhI3qRVtSYFzc5U1QoLK+7AREoGJVkiIiIikndqjCGSLSVZIiIiIpJ/aowh8g9KskRERESkYNQYQyQTNb4QEREREddQYwwRQJUsEREREXE1NcaQMk5JloiIiIi4nhpjSBmmJEtERERECo8aY0gZpCRLRERERAqXGmNIGaPGFyIiIiJSNNQYQ8oIVbJEREREpGipMYaUcqpklQEXExNZ+tNP/HboED5eXtx10020qFOnuMOSEsY0Tdb++ivrdu3CsizaNW5M11atsNvteZpnz9GjLP3pJ2IuXKBhcDD9b74ZXx+fQopaRETc1uWqVkQEK8L3EUEIkVENCQsLVlVL3J7NsiyruIMoyWJjY/H39ydm4UL83PAHxa+2bGHo9OmcTUigrt3OOcvinGnS84YbCHvySbe8JnG9/dHR3DVpEruOHKGG3Y4dOOpw0KBaNZaNH89111yT4xyXkpK47623mL9+PX6GQRWbjQMOBxW8vHjvoYcY1LFjoV+HiIi4qYgIiIxkRVQrws50IyqwOUFBKNmSEichIZYBA/yJiYnBz88v2/N0u2AptnnPHvpMmcLNFy/yF7DP4eCEafIp8MP27dwzdSrKsSU2IYHOzz7LpWPHCAeOORwcdjjYBJQ/dYrOzz7LyfPnc5xn5Ntv89mPP/I+cMI02etwcBDolZjIkBkzWLl1a2FehoiIuDM1xpBSRklWKfby4sVcCyy1LOqnHSsHDATmmSbf7dzJ5j17ii9AKRE+WbuWw6dP851p0gGwpb1uAlaZJrHx8cxZudLpHJHHjhH2ww+8ZVmMBLzTjtcE/ge0t9mYtGBBIV6FiIiUCpf31kpr996RdYR/dkbt3sXtKMkqpRISE/nql1+43zQpl8V4L+Bqu53FGzcWdWhSwixev54eQFZP6VUD7jZNFv/wg9M5lm7ciK9hMCSLMQN40LL4KTKSY2fOFDxgEREp/dQYQ9yckqxS6sKlS5iWRXA24wYQROqtYlK2xV64kO3XCcDV5Px1EnvxIpVttvQKVlZzkIt5RERE0l2uavXdmV7VIuqYqlriFpRklVKVKlYksEIFfsxm/Czwq2nSMCioKMOSEqhhzZr8aBhk93TeD4ZBw6uvzmY01bXBwRxyODiU3RyAt4cHVwcGFiRUEREpi0JC0qtagwmDXb+mV7WUbElJpSSrlLLb7Yzo0oUPDYPdV4xZwATANAyG3XZbMUQnJcmorl35zTT5XxZjXwIbTJP7u3d3Osc9N9+Mr7c34wDHFWOHgbcMg3s7dlQrdxERyR81xhA3oySrFHumXz9qBwfTzjB4ntRqwhLgDpuNWcAbI0dSNSCgWGOU4ndbixaM6NyZ/wBDgW+BVcAooJ/NRt+bbqL3TTc5naOCtzdzxoxhsc3GLYbBfGA9MBm40TDwqVSJKUOyemJLREQkD9QYQ9yE9snKgbvvk3UuPp4J8+fzv++/Jy4xEYDWdevybP/+9A4NLebopKQwTZO3VqzgzS++4GBac4rggAAe6tmTJ/v0wSOXGxKv3r6dSQsW8OOffwJQvlw5BnbowOTBg6lRqVKhxS8iImVQ2t5a43fdTWRgKFEEExQEgwcXd2BSmuV2nywlWTlw9yTrsoTERI6ePo2PlxdXV65c3OFICeVwODh48iSWZVG7WrVcJ1dXOn72LLEJCQQHBlKxfHkXRykiIpJBRAQrwisSQQiRNISgYG1iLIVGSZaLlJYkS0RERKTUSqtqrYhqRdiZbkQFNicoCCVb4nK5TbLc5pmss2fPMmjQIPz8/AgICGDEiBHEx8c7PX/MmDFce+21lC9fnmuuuYZHHnmEmJiYIoxaRERERAqdGmNICeNR3AHk1qBBgzh+/DirV68mOTmZ4cOHM2rUKD799NMsz4+KiiIqKorXX3+dJk2acOjQIUaPHk1UVBRLly4t4uhFREREpNCFhEBICJPCZrMiqhURhBD+WXMiIwNV1ZIi5Ra3C/7xxx80adKELVu20Lp1awBWrlxJ9+7dOXr0KEG53OtpyZIlDB48mAsXLuDhkbv8UrcLioiIiLihjLcQMliNMcQlStXtgps2bSIgICA9wQLo3LkzhmGwefPmXM9z+cNwlmAlJiYSGxub6SUiIiIibibDLYSX270TdUzt3qVIuEWSFR0dTdWqVTMd8/DwoFKlSkRHR+dqjtOnTzNp0iRGjRrl9LypU6fi7++f/qpZs2a+4xYRERGRYhYSQs+O8el7a7HrV8LDUbIlhapYk6xx48Zhs9mcvv5M22+nIGJjY+nRowdNmjThhRdecHruM888Q0xMTPrryJEjBf7zRURERKQYqTGGFLFibXzx+OOPM2zYMKfn1K1bl+rVq3Py5MlMx1NSUjh79izVq1d3+v64uDi6du2Kr68vy5Yto1y5ck7P9/LywsvLK1fxi4iIiIgbUWMMKSLFmmRVqVKFKlWq5HheaGgo58+fZ+vWrdxwww0ArF27FtM0adOmTbbvi42NpUuXLnh5ebF8+XK8vb1dFruIiIiIuKnBg+kZEUHPyNmMP3M3kVGhhEcFExmpxhjiGm7xTFbjxo3p2rUrI0eOJCIigo0bN/Lwww8zYMCA9M6Cx44do1GjRkSk1XxjY2O54447uHDhAh999BGxsbFER0cTHR2Nw+EozssRERERkeKWdgvhpL471RhDXM5t9smaP38+Dz/8MLfddhuGYdC3b1/eeuut9PHk5GT27NlDQkICANu2bUvvPFi/fv1Mcx04cIDatWsXWewiIiIiUkKFhNCT1KrWiqhWhO3qRnhUcyIj0S2Ekm9usU9WcdI+WSIiIiJlRNreWuOjRhNJQ6IIpmNHJVryt9zuk+U2lSwRERERkUKlxhjiIm7xTJaIiIiISJFJa/c+KWg2TwV+mN7uPSysuAMTd6EkS0RERETkShn21lJjDMkrJVkiIiIiItkJCUmvag0mDHb9ml7VUrIl2dEzWeJWos6c4T9vvcUPO3dyyTQpBzSpU4dZo0fTrnHjIo0lbN06ng8L4+ipU5hARU9P+rZvz5wHHsDT07PI4khOSeHDVauY/fXX/H70KBW8vOjTti2P9+5N01q1iiwOV4lNSOCdr77io5UrOXjmDIEVKnBvp048ftdd1MzFvnoAlmWxcP163lmxgi179+Jht9O1VSse792bdk2aFPIViIhIqZP2rFbq3lpTUhtjRDUkPCo4fVgkI3UXzIG6C5YcB6Kjaf7QQyQlJzMQaAMcAD4E4oAFTz1Fv5tvLpJYnpw7l+lffEEtYARwFfA1sBKoGRjIX3PmFEmilZScTK9Jk1i9cye9gNssi5PAPMPghGGwfPx4bm/ZstDjcJWzcXF0GjeOyKNHGWhZhAD7gI8NA8PHh7VTp+aYOFqWxehZs3h/1So622z8y7K4AIQZBrtNkw/HjOE/t99eFJcjIiKlVVjY340xzjQnqJkaY5QVue0uqCQrB0qySo5Go0dzPCqKDUCzDMfPAp2AvXY7cZ99hmEU7l2we44do8kDD9APCAPKZRj7HOgHDOzQgfmPP16ocQBMW7qUCf/3f3xjWXTOcPwS0Mdm4+fy5Tkybx4VvL0LPRZXGD5zJsvDw1lvmlyX4fgZ4FbDwAoKYuesWdhstmznWLxhA/1ffZWPgWEZjpvAA8BHNht733+f2tWqFcYliIhIWXG53fuuu4kMDCWKYIKCYPDg4g5MClNukyw9kyVu4dCJE/wVFcXTZE6wACoBbwIJDgczly8v9FjGfvQRdmAWmRMsgD5AT+DLjRsLPQ7TNHl3xQqGXJFgAXgDsyyL8wkJLFy/vtBjcYWzcXEs+OEHnroiwQIIBKabJruOHmXD7t1O55m1YgUdDSNTggWp/9jNACrabLz/3Xcui1tERMqotMYYk/ruVGMM+QclWeIWvtuxA5PUBCYrHQAfYM2vvxZ6LLsOHiQUqJzNeC/gQkoK8QkJhRrHqZgYjpw7l+1nUgdobrfzy969hRqHq/x++DCJDke213MbUN5my/F6tu7bR0/TzHKsAnCrafLLX38VKFYREZF0aowhWVCSJW7BJ+35prhsxhOBZMC73JW1JdcrZ7cT62T8coyeHoXbV8Yz7Vqz+0ystDHPIvhMXOHy55Xd9VwkdY1z+lw97fZs5wCIs9nwcpPPRERE3ESGdu+Lmk1Jr2qFhyvRKquUZIlb6BMaiqfNxrxsxheR+gP46K5dCz2WHjfeyA5gVxZjJvAxUNXPr9AbX1xVsSI31a/PPJuNrB6s3ADsdzjo0bp1ocbhKi3r1qWar2+2a7wAcFgWXVu1cjpP95AQ/s9uJyWLscPAWsuix403FixYERGRrFy+hTCtqtWRdYR/dkZVrTJISZa4BR9vb26/4QY+AN6B9B+gLeB7YAwQHBBQJJ30Xh48GG/DoA/wZ4bj8cBDwE7gqb59Cz0OgKfuvpu1lsUzpFZ6LtsODDYMrq9Vi84tWhRJLAXlWa4cj/XpwxzgXTKv8XfAWMOgb2go9WrUcDrPY716cdA0GQacz3D8ANDbMKjq58egDh1cHr+IiEi6tKrWpKDZPBX4YXpVKyysuAOToqIkS9zGF88+S7NatRgDXE3qs09NgdsBj/Ll+Wn69CKJo6KPD8snTuSIYdAYaAvcCVQD5gBDOnbk8d69iySW3qGhvDZ8OK8CwYbBv4A2hkEroGL16iyfMKHQuy260pO9ezO6WzceAurY7dwFNDMMugI3NG7MR48+muMcN9Svz/wnnmCJ3U6wzUYPoKPNRj3guK8vKydNwledQkVEpLBluIVQjTHKHrVwz4FauJc8C374galLlxJ97hy+5cszvHNnxvXti0chPwN1pbOxsYz75BO+2bqVlJQUGgQF8erw4YQ2alSkcQDsjYrig1Wr+P3wYSp4e9MnNJTeN93kNs9jXWnbvn18tHo1B0+cIDCt8nT79dfnKWE8fvYsH65axZa//qKchwddW7Xi3g4d3KadvYiIlCJp7d5XRLUi7Ew3ogKbExSE9tZyQ9ony0WUZImIiIiIS1zeWytqNJE0JIpgOnZUouVOcptkFe2v/kVEREREyqqQEAgJYVLYbFZEtSKCEMI/a05kZKCqWqWM+zysISIiIiJSGqgxRqmnJEtEREREpKipMUappiRLRERERKS4hISkV7UGEwa7fk2vainZcl9KskREREREilOGqtaiZlPSq1rh4Uq03JUaX4iIiIiIlARqjFFqqJIlIiIiIlKSqDGG21OSJSIiIiJS0qgxhltTkiUiIiIiUlKpMYZbUpIlIiIiIlKSqTGG21HjCxERERERd6DGGG5DlSwREREREXeixhglnpIsERERERF3o8YYJZqSLBERERERd6XGGCWSkiwREREREXemxhgljhpfiIiIiIiUBmqMUWKokiUiIiIiUpqoMUaxU5IlIiIiIlLaqDFGsVKSJSIiIiJSWqkxRrFQkiUiIiIiUpqpMUaRU+MLEREREZGyQI0xiowqWSIiIiIiZYkaYxQ6JVkiIiIiImWNGmMUKiVZIiIiIiJllRpjFAolWSIiIiIiZZkaY7icGl/kwLIsAGITEoo5EhERERGRQtS0KTRtypOL3ubb4y3YWqMn339fn99/h/79izu4kiEhIRb4O0fIjs3K6Ywy7ujRo9SsWbO4wxARERERkRLiyJEjXH311dmOK8nKgWmaREVF4evri81mc3pubGwsNWvW5MiRI/j5+RVRhJITrUvJpHUpmbQuJZPWpWTSupRMWpeSqbSsi2VZxMXFERQUhGFk/+SVbhfMgWEYTrPUrPj5+bn1F09ppXUpmbQuJZPWpWTSupRMWpeSSetSMpWGdfH398/xHDW+EBERERERcSElWSIiIiIiIi6kJMuFvLy8mDhxIl5eXsUdimSgdSmZtC4lk9alZNK6lExal5JJ61IylbV1UeMLERERERERF1IlS0RERERExIWUZImIiIiIiLiQkiwREREREREXUpIlIiIiIiLiQkqyCujs2bMMGjQIPz8/AgICGDFiBPHx8bl6r2VZdOvWDZvNxhdffFG4gZYxeV2Xs2fPMmbMGK699lrKly/PNddcwyOPPEJMTEwRRl36zJo1i9q1a+Pt7U2bNm2IiIhwev6SJUto1KgR3t7eNGvWjG+++aaIIi1b8rIuH3zwAe3bt+eqq67iqquuonPnzjmuo+RPXv++XLZw4UJsNht33XVX4QZYRuV1Xc6fP89DDz1EjRo18PLyomHDhvq3rBDkdV1mzpyZ/j2+Zs2aPPbYY1y6dKmIoi391q9fT8+ePQkKCsr1z7Xh4eG0atUKLy8v6tevz7x58wo9ziJlSYF07drVatGihfXzzz9bP/74o1W/fn1r4MCBuXrvjBkzrG7dulmAtWzZssINtIzJ67rs2rXL6tOnj7V8+XJr79691po1a6wGDRpYffv2LcKoS5eFCxdanp6e1ty5c63ff//dGjlypBUQEGCdOHEiy/M3btxo2e1269VXX7V2795tPf/881a5cuWsXbt2FXHkpVte1+Xee++1Zs2aZW3fvt36448/rGHDhln+/v7W0aNHizjy0i2v63LZgQMHrODgYKt9+/ZWr169iibYMiSv65KYmGi1bt3a6t69u7VhwwbrwIEDVnh4uLVjx44ijrx0y+u6zJ8/3/Ly8rLmz59vHThwwPruu++sGjVqWI899lgRR156ffPNN9Zzzz1nff7557n6uXb//v2Wj4+PNXbsWGv37t3W22+/bdntdmvlypVFE3ARUJJVALt377YAa8uWLenHvv32W8tms1nHjh1z+t7t27dbwcHB1vHjx5VkuVhB1iWjxYsXW56enlZycnJhhFnqhYSEWA899FD6fzscDisoKMiaOnVqluffc889Vo8ePTIda9OmjXX//fcXapxlTV7X5UopKSmWr6+v9b///a+wQiyT8rMuKSkpVtu2ba0PP/zQGjp0qJKsQpDXdXnvvfesunXrWklJSUUVYpmU13V56KGHrFtvvTXTsbFjx1rt2rUr1DjLqtz8XPvUU09Z1113XaZj/fv3t7p06VKIkRUt3S5YAJs2bSIgIIDWrVunH+vcuTOGYbB58+Zs35eQkMC9997LrFmzqF69elGEWqbkd12uFBMTg5+fHx4eHoURZqmWlJTE1q1b6dy5c/oxwzDo3LkzmzZtyvI9mzZtynQ+QJcuXbI9X/IuP+typYSEBJKTk6lUqVJhhVnm5HddXnrpJapWrcqIESOKIswyJz/rsnz5ckJDQ3nooYeoVq0aTZs25eWXX8bhcBRV2KVeftalbdu2bN26Nf2Wwv379/PNN9/QvXv3IolZ/qksfM/XT48FEB0dTdWqVTMd8/DwoFKlSkRHR2f7vscee4y2bdvSq1evwg6xTMrvumR0+vRpJk2axKhRowojxFLv9OnTOBwOqlWrlul4tWrV+PPPP7N8T3R0dJbn53bNJGf5WZcrPf300wQFBf3jm6PkX37WZcOGDXz00Ufs2LGjCCIsm/KzLvv372ft2rUMGjSIb775hr179/Lggw+SnJzMxIkTiyLsUi8/63Lvvfdy+vRpbr75ZizLIiUlhdGjR/Pss88WRciShey+58fGxnLx4kXKly9fTJG5jipZWRg3bhw2m83pK7c/kFxp+fLlrF27lpkzZ7o26DKgMNclo9jYWHr06EGTJk144YUXCh64SCkxbdo0Fi5cyLJly/D29i7ucMqsuLg4hgwZwgcffEDlypWLOxzJwDRNqlatyvvvv88NN9xA//79ee6555g9e3Zxh1amhYeH8/LLL/Puu++ybds2Pv/8c77++msmTZpU3KFJKaZKVhYef/xxhg0b5vScunXrUr16dU6ePJnpeEpKCmfPns32NsC1a9eyb98+AgICMh3v27cv7du3Jzw8vACRl26FuS6XxcXF0bVrV3x9fVm2bBnlypUraNhlUuXKlbHb7Zw4cSLT8RMnTmS7BtWrV8/T+ZJ3+VmXy15//XWmTZvG999/T/PmzQszzDInr+uyb98+Dh48SM+ePdOPmaYJpFbt9+zZQ7169Qo36DIgP39fatSoQbly5bDb7enHGjduTHR0NElJSXh6ehZqzGVBftZl/PjxDBkyhPvuuw+AZs2aceHCBUaNGsVzzz2HYajmUNSy+57v5+dXKqpYoEpWlqpUqUKjRo2cvjw9PQkNDeX8+fNs3bo1/b1r167FNE3atGmT5dzjxo3j119/ZceOHekvgDfeeIOPP/64KC7PbRXmukBqBeuOO+7A09OT5cuX6zf1BeDp6ckNN9zAmjVr0o+ZpsmaNWsIDQ3N8j2hoaGZzgdYvXp1tudL3uVnXQBeffVVJk2axMqVKzM96yiukdd1adSoEbt27cr0feRf//oXnTp1YseOHdSsWbMowy+18vP3pV27duzduzc96QWIjIykRo0aSrBcJD/rkpCQ8I9E6nIibFlW4QUr2SoT3/OLu/OGu+vatavVsmVLa/PmzdaGDRusBg0aZGoVfvToUevaa6+1Nm/enO0cqLugy+V1XWJiYqw2bdpYzZo1s/bu3WsdP348/ZWSklJcl+HWFi5caHl5eVnz5s2zdu/ebY0aNcoKCAiwoqOjLcuyrCFDhljjxo1LP3/jxo2Wh4eH9frrr1t//PGHNXHiRLVwLwR5XZdp06ZZnp6e1tKlSzP9vYiLiyuuSyiV8rouV1J3wcKR13U5fPiw5evraz388MPWnj17rK+++sqqWrWqNXny5OK6hFIpr+syceJEy9fX11qwYIG1f/9+a9WqVVa9evWse+65p7guodSJi4uztm/fbm3fvt0CrBkzZljbt2+3Dh06ZFmWZY0bN84aMmRI+vmXW7g/+eST1h9//GHNmjVLLdwlszNnzlgDBw60KlasaPn5+VnDhw/P9MPHgQMHLMBat25dtnMoyXK9vK7LunXrLCDL14EDB4rnIkqBt99+27rmmmssT09PKyQkxPr555/Txzp06GANHTo00/mLFy+2GjZsaHl6elrXXXed9fXXXxdxxGVDXtalVq1aWf69mDhxYtEHXsrl9e9LRkqyCk9e1+Wnn36y2rRpY3l5eVl169a1pkyZol/WFYK8rEtycrL1wgsvWPXq1bO8vb2tmjVrWg8++KB17ty5og+8lMru56jL6zB06FCrQ4cO/3jP9ddfb3l6elp169a1Pv744yKPuzDZLEt1UhEREREREVfRM1kiIiIiIiIupCRLRERERETEhZRkiYiIiIiIuJCSLBERERERERdSkiUiIiIiIuJCSrJERERERERcSEmWiIiIiIiICynJEhERERERcSElWSIi4haGDRuGzWb7x2vv3r0umX/evHkEBAS4ZK78Wr9+PT179iQoKAibzcYXX3xRrPGIiEj+KMkSERG30bVrV44fP57pVadOneIO6x+Sk5Pz9b4LFy7QokULZs2a5eKIRESkKCnJEhERt+Hl5UX16tUzvex2OwBffvklrVq1wtvbm7p16/Liiy+SkpKS/t4ZM2bQrFkzKlSoQM2aNXnwwQeJj48HIDw8nOHDhxMTE5NeIXvhhRcAsqwoBQQEMG/ePAAOHjyIzWZj0aJFdOjQAW9vb+bPnw/Ahx9+SOPGjfH29qZRo0a8++67Tq+vW7duTJ48md69e7vg0xIRkeLiUdwBiIiIFNSPP/7Iv//9b9566y3at2/Pvn37GDVqFAATJ04EwDAM3nrrLerUqcP+/ft58MEHeeqpp3j33Xdp27YtM2fOZMKECezZsweAihUr5imGcePGMX36dFq2bJmeaE2YMIF33nmHli1bsn37dkaOHEmFChUYOnSoaz8AEREpUZRkiYiI2/jqq68yJT/dunVjyZIlvPjii4wbNy49ealbty6TJk3iqaeeSk+y/vvf/6a/r3bt2kyePJnRo0fz7rvv4unpib+/PzabjerVq+crtv/+97/06dMn/b8nTpzI9OnT04/VqVOH3bt3M2fOHCVZIiKlnJIsERFxG506deK9995L/+8KFSoAsHPnTjZu3MiUKVPSxxwOB5cuXSIhIQEfHx++//57pk6dyp9//klsbCwpKSmZxguqdevW6f//woUL7Nu3jxEjRjBy5Mj04ykpKfj7+xf4zxIRkZJNSZaIiLiNChUqUL9+/X8cj4+P58UXX8xUSbrM29ubgwcPcuedd/LAAw8wZcoUKlWqxIYNGxgxYgRJSUlOkyybzYZlWZmOZdXY4nLCdzkegA8++IA2bdpkOu/yM2QiIlJ6KckSERG316pVK/bs2ZNlAgawdetWTNNk+vTpGEZqz6fFixdnOsfT0xOHw/GP91apUoXjx4+n//dff/1FQkKC03iqVatGUFAQ+/fvZ9CgQXm9HBERcXNKskRExO1NmDCBO++8k2uuuYZ+/fphGAY7d+7kt99+Y/LkydSvX5/k5GTefvttevbsycaNG5k9e3amOWrXrk18fDxr1qyhRYsW+Pj44OPjw6233so777xDaGgoDoeDp59+mnLlyuUY04svvsgjjzyCv78/Xbt2JTExkV9++YVz584xduzYLN8THx+fad+vAwcOsGPHDipVqsQ111xTsA9JRESKjFq4i4iI2+vSpQtfffUVq1at4sYbb+Smm27ijTfeoFatWgC0aNGCGTNm8Morr9C0aVPmz5/P1KlTM83Rtm1bRo8eTf/+/alSpQqvvvoqANOnT6dmzZq0b9+ee++9lyeeeCJXz3Ddd999fPjhh3z88cc0a9aMDh06MG/ePKf7ev3yyy+0bNmSli1bAjB27FhatmzJhAkT8vvRiIhIMbBZV95oLiIiIiIiIvmmSpaIiIiIiIgLKckSERERERFxISVZIiIiIiIiLqQkS0RERERExIWUZImIiIiIiLiQkiwREREREREXUpIlIiIiIiLiQkqyREREREREXEhJloiIiIiIiAspyRIREREREXEhJVkiIiIiIiIupCRLRERERETEhf4ftnEO2vjI/B0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADN1UlEQVR4nOzdd3gUVRfH8e/sphJI6CWhd0VABIIUISCCIAEURFCkqYiAjaIiRQEFX2xYULCXoKCICqIgAgHBEgsg0kKHEAg1CS1td94/NlkTsmmQnt/nefZR5t65ezazhD1775xrmKZpIiIiIiIiIrnCUtABiIiIiIiIFCdKskRERERERHKRkiwREREREZFcpCRLREREREQkFynJEhERERERyUVKskRERERERHKRkiwREREREZFcpCRLREREREQkFynJEhERERERyUVKskSkwBw8eBDDMPjoo49ydF5QUBBBQUF5ElNxV7t2bYYNG1bQYVyR8+fPc//991O1alUMw+Cxxx4r6JDyhGEYPPvss1d0bkFf3yNHjuDl5cWmTZsKLAYpGCtXrqR06dKcPHmyoEMRKRSUZImUYB999BGGYTgfXl5e+Pv70717d15//XXOnTtX0CEWKqGhoWl+XoZhUL58eW688UYWLlxY0OEVe7NmzeKjjz7ioYce4tNPP+Xee+/ll19+4dlnnyU6Ojrf4vj++++vOAkq7mbMmEGbNm1o3769y/YBAwZgGAZPPvlkPkdWPC1btowbbrgBLy8vatasyTPPPENSUlK2zt27dy/9+/enXLlylCpVig4dOrBu3bpMz0lMTOTaa6/FMAxeeumlNG233nor9evXZ/bs2Vf8ekSKE7eCDkBECt6MGTOoU6cOiYmJHD9+nNDQUB577DFeeeUVli1bRrNmzfLkeWvVqsWlS5dwd3fP0Xk//vhjnsSTXY888gitW7cG4PTp0yxevJjBgwcTHR3NmDFjCjS24mzt2rXceOONPPPMM85jL730EtOnT2fYsGGULVs2X+L4/vvvmTdvXp4lWpcuXcLN7cr+ed69ezcWS8F8f3ry5Ek+/vhjPv74Y5ftsbGxLF++nNq1a/P555/zwgsvYBhGPkdZfPzwww/07duXoKAg3njjDbZt28Zzzz3HiRMnePvttzM998iRI7Rt2xar1crEiRPx8fHhww8/pFu3bqxZs4aOHTu6PO+NN97g8OHDGY774IMPMmHCBKZPn06ZMmWu6vWJFHmmiJRYH374oQmYf/zxR7q2NWvWmN7e3matWrXMixcvFkB0hc+6detMwPzyyy/THI+PjzcDAgLMdu3aFVBk2VerVi1z6NChuTLWpUuXTJvNlitjZUedOnXM2267Lc2xF1980QTMAwcO5OpzXbhwIcO2MWPGmNn95zMxMdGMj4/PrbAKtVdeecX09vY2z50757L9gw8+MN3d3c21a9eagBkaGprPEWaP3W4vEr/zrr32WrN58+ZmYmKi89jkyZNNwzDMnTt3Znru6NGjTTc3N3PXrl3OYxcuXDBr1Khh3nDDDS7PiYqKMv38/MwZM2aYgPniiy+67GO1Ws3333//Cl+VSPGh5YIi4lKXLl2YOnUqhw4dIiQkJE3brl276N+/P+XLl8fLy4tWrVqxbNmydGNER0fz+OOPU7t2bTw9PalevTpDhgzh1KlTgOt7so4fP87w4cOpXr06np6eVKtWjT59+nDw4EFnH1f3ZJ04cYL77ruPKlWq4OXlRfPmzdN9o57yfC+99BLvvPMO9erVw9PTk9atW/PHH39c8c/Kw8ODcuXKpZt9SEpKYubMmc7nqV27Nk8//TTx8fFp+mV0D87l99ekLO/ctGkT48aNo1KlSvj4+HD77benuw/CNE2ee+45qlevTqlSpejcuTPbt29P9xxnzpxhwoQJNG3alNKlS+Pr60uPHj3YunVrmn4pSyUXLVrElClTCAgIoFSpUmzZsgXDMHj11VfTjf3LL79gGAaff/55hj+7hIQEpk2bRsuWLfHz88PHx4ebbropzbKllOc+cOAAK1ascC7VHDZsGBMnTgSgTp06zuOp3yshISG0bNkSb29vypcvz8CBAzly5EiaGIKCgrjuuuv466+/6NixI6VKleLpp592Ge+wYcOYN28eQJplo5D2/TV37lzndd+xY0e2XmeKy98Pzz77LIZhsHfvXueMnZ+fH8OHD+fixYtpzr2a94zdbufZZ5/F39/f+Z7ZsWNHtu/z+uabb2jTpg2lS5d22b5w4UJuueUWOnfuzDXXXJPhEttdu3YxYMAAKlWqhLe3N40aNWLy5Mlp+hw9epT77rsPf39/PD09qVOnDg899BAJCQlpfmaXS/l5pH6P1K5dm169erFq1SpatWqFt7c3CxYsAODDDz+kS5cuVK5cGU9PT6699toMZ4l++OEHOnXqRJkyZfD19aV169Z89tlnADzzzDO4u7u7vF9p5MiRlC1blri4OI4dO8auXbtITEx0+RwpduzYwY4dOxg5cmSa3zujR4/GNE2WLFmS6fk///wzLVq0oFGjRs5jpUqVonfv3vz999/s2bMn3TlPPfUUjRo1YvDgwRmOW7lyZZo1a8a3336b6fOLlARaLigiGbr33nt5+umn+fHHH3nggQcA2L59O+3btycgIICnnnoKHx8fvvjiC/r27ctXX33F7bffDjiKFNx0003s3LmTESNGcMMNN3Dq1CmWLVtGREQEFStWdPmc/fr1Y/v27Tz88MPUrl2bEydOsHr1ag4fPkzt2rVdnnPp0iWCgoLYu3cvY8eOpU6dOnz55ZcMGzaM6OhoHn300TT9P/vsM86dO8eDDz6IYRjMmTOHO+64g/3792dr6eK5c+ecieKZM2f47LPP+Pfff3n//ffT9Lv//vv5+OOP6d+/P+PHj+f3339n9uzZ7Ny5k6+//jrL58nIww8/TLly5XjmmWc4ePAgc+fOZezYsSxevNjZZ9q0aTz33HP07NmTnj178vfff9OtWzfnh9AU+/fv55tvvuHOO++kTp06REVFsWDBAjp16sSOHTvw9/dP03/mzJl4eHgwYcIE4uPjady4Me3bt2fhwoU8/vjjafouXLiQMmXK0KdPnwxfS2xsLO+99x6DBg3igQce4Ny5c7z//vt0796dsLAwrr/+eq655ho+/fRTHn/8capXr8748eMBaNq0KQkJCXz++ee8+uqrzvdUpUqVAHj++eeZOnUqAwYM4P777+fkyZO88cYbdOzYkc2bN6dZXnj69Gl69OjBwIEDGTx4MFWqVHEZ74MPPkhkZCSrV6/m008/ddnnww8/JC4ujpEjR+Lp6Un58uWz9TqzMmDAAOrUqcPs2bP5+++/ee+996hcuTL/+9//sjw3O++ZSZMmMWfOHIKDg+nevTtbt26le/fuxMXFZTl+YmIif/zxBw899JDL9sjISNatW+f84mPQoEG8+uqrvPnmm3h4eDj7/fPPP9x00024u7szcuRIateuzb59+1i+fDnPP/+8c6zAwECio6MZOXIkjRs35ujRoyxZsoSLFy+mGS+7du/ezaBBg3jwwQd54IEHnMnH22+/TZMmTejduzdubm4sX76c0aNHY7fb0ywN/uijjxgxYgRNmjRh0qRJlC1bls2bN7Ny5Uruvvtu7r33XmbMmMHixYsZO3as87yEhASWLFlCv3798PLyYtKkSXz88cccOHAgw993AJs3bwagVatWaY77+/tTvXp1Z3tG4uPjKVeuXLrjpUqVAuCvv/6iQYMGzuNhYWF8/PHHbNy4Mcslni1btuSbb77JtI9IiVDQU2kiUnAyWy6Yws/Pz2zRooXzzzfffLPZtGlTMy4uznnMbreb7dq1Mxs0aOA8Nm3aNBMwly5dmm5Mu91umqZpHjhwwATMDz/80DRN0zx79myGy1BS69Spk9mpUyfnn+fOnWsCZkhIiPNYQkKC2bZtW7N06dJmbGxsmuerUKGCeebMGWffb7/91gTM5cuXZ/q8KcsFL39YLBbz+eefT9N3y5YtJmDef//9aY5PmDDBBMy1a9c6jwHmM888k+75Ll/al3K9unbt6vwZmqZpPv7446bVajWjo6NN0zTNEydOmB4eHuZtt92Wpt/TTz9tAmnGjIuLS7fk78CBA6anp6c5Y8aMdK+9bt266ZZSLViwwATSLFFKSEgwK1asmOXSxKSkpHTL6c6ePWtWqVLFHDFiRLqfR3aXCx48eNC0Wq3prsu2bdtMNze3NMc7depkAub8+fMzjTVFRssFU95fvr6+5okTJ674dV7+fnjmmWdMIF2/22+/3axQoUKaY1f6njl+/Ljp5uZm9u3bN814zz77bLr3jCt79+41AfONN95w2f7SSy+Z3t7ezr+L4eHhJmB+/fXXafp17NjRLFOmjHno0KE0x1PHPmTIENNisbj8vZXSL+VndrmUn0fq90utWrVMwFy5cmW6/q6WDXbv3t2sW7eu88/R0dFmmTJlzDZt2piXLl3KMO62bduabdq0SdO+dOlSEzDXrVtnmqZpDh06NFvLX1Pe94cPH07X1rp1a/PGG2/M9Pzg4GCzbNmyzuuROkbAfOmll9K8hsDAQHPQoEGmaf73Ps/o9/SsWbNMwIyKiso0BpHiTssFRSRTpUuXdlYZPHPmDGvXrmXAgAHO2ZxTp05x+vRpunfvzp49ezh69CgAX331Fc2bN3fObKWW0Teh3t7eeHh4EBoaytmzZ7Md4/fff0/VqlUZNGiQ85i7uzuPPPII58+fZ/369Wn633XXXWm+xb3pppsAx6xOdkybNo3Vq1ezevVqFi9ezKBBg5g8eTKvvfZampgAxo0bl+bclFmYFStWZPv1XW7kyJFpfoY33XQTNpuNQ4cOAfDTTz+RkJDAww8/nKafq5Lnnp6ezkIJNpuN06dPU7p0aRo1asTff/+drv/QoUPx9vZOc2zAgAF4eXmlWf61atUqTp06lenSIgCr1eqcebDb7Zw5c4akpCRatWrl8vmza+nSpdjtdgYMGOB8n546dYqqVavSoEGDdMv0PD09GT58+BU/X2r9+vVzzqalyI3XOWrUqDR/vummmzh9+jSxsbFZnpvVe2bNmjUkJSUxevToNOc9/PDD2Yrt9OnTAC5nR8Axq3nbbbc5iyE0aNCAli1bpnnPnDx5kg0bNjBixAhq1qyZ5vyU2O12O9988w3BwcHpZnFS98upOnXq0L1793THU7/XY2JiOHXqFJ06dWL//v3ExMQAsHr1as6dO8dTTz2Fl5dXhvEMGTKE33//nX379jmPLVy4kBo1atCpUyfAMSNmmmams1jgmL0Hx/v2cl5eXs72jDz00ENER0dz1113sXnzZsLDw3nsscf4888/04yfEtO2bduyNWMK/70HUmb7RUoqJVkikqnz5887Pxjt3bsX0zSZOnUqlSpVSvNIqfh24sQJAPbt28d1112Xo+fy9PTkf//7Hz/88ANVqlShY8eOzJkzh+PHj2d63qFDh2jQoEG6qmrXXHONsz21yz/ApXwoyG5i17RpU7p27UrXrl0ZMGAAISEh9OrVi6eeesp5z8WhQ4ewWCzUr18/zblVq1albNmy6WLKiaziTxk79XIfcCyju/xDsN1u59VXX6VBgwZ4enpSsWJFKlWqxD///OP8EJlanTp10h0rW7YswcHBzvtPwPHhMSAggC5dumT5ej7++GOaNWuGl5cXFSpUoFKlSqxYscLl82fXnj17ME2TBg0apHuv7ty50/k+TREQEHBFy8xccfUzgqt/nVfzvs3ue+by92v58uUzTJxcMU0z3bGdO3eyefNm2rdvz969e52PoKAgvvvuO2eSmPIlR2a/N06ePElsbGyOf7dkJaNrtmnTJrp27YqPjw9ly5alUqVKzvv1Uq5bStKUVUx33XUXnp6ezsQyJiaG7777jnvuuSfHyWFK8nf5/Z0AcXFx6b4IuVyPHj1444032LBhAzfccAONGjVixYoVziWZKffVxcbGMmnSJCZOnEiNGjWyFVvKe0CVI6WkU5IlIhmKiIggJibG+cHLbrcDMGHCBOdMzuWPyz+k5dRjjz1GeHg4s2fPxsvLi6lTp3LNNddkeY9BTlitVpfHXX1AzK6bb76ZuLg4wsLC0hy/mg8aNpvN5fHcjH/WrFmMGzeOjh07EhISwqpVq1i9ejVNmjRxXu/UMvrwNmTIEPbv388vv/zCuXPnWLZsGYMGDcqynHhISAjDhg2jXr16vP/++6xcuZLVq1fTpUsXl8+fXXa7HcMwnONd/kgpbJDV67oSrsbKjdd5Ndc9L97zqVWoUAFwnfClFM55/PHHadCggfPx8ssvExcXx1dffZUrMaSW0d+7jP5Oubpm+/bt4+abb+bUqVO88sorrFixgtWrVzvvPczp+7NcuXL06tXLmWQtWbKE+Pj4LGd7XalWrRoAx44dS9d27NixdPdSujJ27FiioqL45Zdf+PPPP9m1axd+fn4ANGzYEHBskZCQkMBdd93FwYMHOXjwIBEREYDjWh88eDDdfZ4p74GM7rsVKSlU+EJEMpRyY3/KMpq6desCjqV4Xbt2zfTcevXq8e+//17R89arV4/x48czfvx49uzZw/XXX8/LL7+crsphilq1avHPP/9gt9vTfKjftWuXsz2vpWwAev78eedz2u129uzZ45xRA4iKiiI6OjpNTOXKlUu3mW5CQoLLD1DZkTL2nj17nNcMHLMAl38IXrJkCZ07d05XtCM6OjpHH5JuvfVWKlWqxMKFC2nTpg0XL17k3nvvzfK8JUuWULduXZYuXZrmg3HqvbAyk9GH6Xr16mGaJnXq1HF+YMwtV5I4X+3rzGsp75m9e/emmdU5ffp0tmfKvL29OXDgQJrjpmny2Wef0blz53RLEcFRSGXhwoUMHz7c+V7N7PdGpUqV8PX1zfJ3S8rsW3R0dJoCJzmZQV6+fDnx8fEsW7YszUzg5UtN69Wr54w7qy+ZhgwZQp8+ffjjjz9YuHAhLVq0oEmTJtmOKUVKoZQ///yTwMBA5/HIyEgiIiIYOXJktsbx8fGhbdu2zj//9NNPeHt7OzeTPnz4MGfPnnUZ46xZs5g1axabN29OU7jlwIEDzhlxkZJMM1ki4tLatWuZOXMmderU4Z577gEc5XmDgoJYsGCBywQgdXnifv36sXXrVpdV9DL69vzixYvpKpnVq1ePMmXKuFwWk6Jnz54cP348TaW0pKQk3njjDUqXLu283yEvfffddwA0b97cGRPA3Llz0/R75ZVXALjtttucx+rVq8eGDRvS9HvnnXcy/NY9K127dsXd3Z033ngjzc/68ljAMcNx+fX48ssvnffWZZebmxuDBg3iiy++4KOPPqJp06bZ2sQ6ZYYldQy///47v/76a7ae18fHByBdknrHHXdgtVqZPn16utdnmqbzHqIrkdFzZuZqX2deu/nmm3Fzc0tXnvzNN9/M1vnu7u60atXKeU9Pik2bNnHw4EGGDx9O//790z3uuusu1q1bR2RkJJUqVaJjx4588MEH6Ta8Tfm5WSwW+vbty/Lly9M9V+p+KYlP6r9XFy5cyHCjZFdcXbOYmBg+/PDDNP26detGmTJlmD17drrfX5e/93r06EHFihX53//+x/r169PNYmW3hHuTJk1o3Lhxut8Tb7/9NoZh0L9//zQx79q1K8tlqb/88gtLly7lvvvuc85oPfLII3z99ddpHimzwMOGDePrr79Ot9Tyr7/+SpO4iZRUmskSEX744Qd27dpFUlISUVFRrF27ltWrV1OrVi2WLVuW5mbuefPm0aFDB5o2bcoDDzxA3bp1iYqK4tdffyUiIsK5v9LEiRNZsmQJd955JyNGjKBly5acOXOGZcuWMX/+fGcyklp4eDg333wzAwYM4Nprr8XNzY2vv/6aqKgoBg4cmGH8I0eOZMGCBQwbNoy//vqL2rVrs2TJEjZt2sTcuXOd95Tllp9//tn5YSrlNa1fv56BAwfSuHFjwJFsDR06lHfeeYfo6Gg6derkLIPct29fOnfu7Bzv/vvvZ9SoUfTr149bbrmFrVu3smrVqiteblOpUiUmTJjA7Nmz6dWrFz179mTz5s388MMP6cbs1asXM2bMYPjw4bRr145t27axcOHCNDNg2TVkyBBef/111q1bl+2b5Hv16sXSpUu5/fbbue222zhw4ADz58/n2muvdc4KZqZly5YATJ48mYEDB+Lu7k5wcDD16tXjueeeY9KkSRw8eJC+fftSpkwZDhw4wNdff83IkSOZMGFCjl9j6ud85JFH6N69O1arNdP3Z268zrxWpUoVHn30UV5++WV69+7NrbfeytatW53vmezM3vXp04fJkycTGxuLr68v4Lg3z2q1pvlSIbXevXszefJkFi1axLhx43j99dfp0KEDN9xwAyNHjqROnTocPHiQFStWsGXLFsAxg/Ljjz/SqVMnRo4cyTXXXMOxY8f48ssv2bhxI2XLlqVbt27UrFmT++67j4kTJ2K1Wvnggw+oVKlSugQuI926dcPDw4Pg4GAefPBBzp8/z7vvvkvlypXTfMnk6+vLq6++yv3330/r1q25++67KVeuHFu3buXixYtpEjt3d3cGDhzIm2++idVqTVOsB8h2CXeAF198kd69e9OtWzcGDhzIv//+y5tvvsn999+fZvb866+/Zvjw4Xz44YfO/c4OHTrEgAED6N27N1WrVmX79u3Mnz+fZs2aMWvWLOe5N9xwAzfccEOa503ZY6xJkyb07ds3TduJEyf4559/0pS3Fymx8rOUoYgULinljFMeHh4eZtWqVc1bbrnFfO2119KV902xb98+c8iQIWbVqlVNd3d3MyAgwOzVq5e5ZMmSNP1Onz5tjh071gwICDA9PDzM6tWrm0OHDjVPnTplmmb6Eu6nTp0yx4wZYzZu3Nj08fEx/fz8zDZt2phffPFFmnEvL+FumqYZFRVlDh8+3KxYsaLp4eFhNm3a1DluisxKD5NBGfXUXJVw9/DwMBs3bmw+//zzZkJCQpr+iYmJ5vTp0806deqY7u7uZo0aNcxJkyalKX9vmqZps9nMJ5980qxYsaJZqlQps3v37ubevXszLMd9eenqlLhSykCnjDl9+nSzWrVqpre3txkUFGT++++/6caMi4szx48f7+zXvn1789dff033M055ji+//DLTn1GTJk1Mi8ViRkREZNovhd1uN2fNmmXWqlXL9PT0NFu0aGF+99135tChQ81atWql6euqhLtpmubMmTPNgIAA02KxpCt//dVXX5kdOnQwfXx8TB8fH7Nx48bmmDFjzN27dzv7dOrUyWzSpEm24jVNRzn2hx9+2KxUqZJpGIazVHhm76+cvM7L34sp5chPnjyZpl9G5civ9D2TlJRkTp061axatarp7e1tdunSxdy5c6dZoUIFc9SoUVn+XKKiokw3Nzfz008/NU3TUca/QoUK5k033ZTpeXXq1EmzTcS///5r3n777WbZsmVNLy8vs1GjRubUqVPTnHPo0CFzyJAhZqVKlUxPT0+zbt265pgxY9KUyf/rr7/MNm3amB4eHmbNmjXNV155JcOfmav3lWma5rJly8xmzZqZXl5eZu3atc3//e9/5gcffOCyzPqyZcvMdu3amd7e3qavr68ZGBhofv755+nGDAsLMwGzW7du6dqyW8I9xddff21ef/31pqenp1m9enVzypQp6X4Ppbzm1L8Pz5w5Y/bp08esWrWq6eHhYdapU8d88sknM/ydn1pm7/O3337bLFWqVLbGESnuDNPMpbteRUSkxGvRogXly5dnzZo1BR2K5ILo6GjKlSvHc889x+TJk7Psf9999xEeHs7PP/+cD9EVTVu3buX666/nk08+ydZ9i0VJixYtCAoK4tVXXy3oUEQKnO7JEhGRXPHnn3+yZcsWhgwZUtChyBVwtbdSyn18QUFB2RrjmWee4Y8//mDTpk25GFnx8u6771K6dGnuuOOOgg4lV61cuZI9e/YwadKkgg5FpFDQTJaIiFyVf//9l7/++ouXX36ZU6dOsX///nSbskrh99FHH/HRRx/Rs2dPSpcuzcaNG/n888/p1q0bq1atKujwirzly5ezY8cOpk6dytixY51FcESkeFLhCxERuSpLlixhxowZNGrUiM8//1wJVhHVrFkz3NzcmDNnDrGxsc5iGM8991xBh1YsPPzww0RFRdGzZ0+mT59e0OGISB7TTJaIiIiIiEgu0j1ZIiIiIiIiuUhJloiIiIiISC5SkiUiIiIiIpKLlGSJiIiIiIjkIiVZIiIiIiIiuUhJloiIiIiISC5SkiUiIiIiIpKLlGSJiIiIiIjkIiVZIiIiIiIiuUhJloiIiIiISC5SkiUiIiIiIpKLlGSJiIiIiIjkIiVZIiIiIiIiuUhJloiIiIiISC5SkiUiIiIiIpKLlGSJiIiIiIjkIiVZIiIiIiIiuUhJloiIiIiISC5SkiUiIiIiIpKLlGSJiIiIiIjkIiVZIiIiIiIiuUhJloiIiIiISC5SkiUiIiIiIpKL3Ao6gMLObrcTGRlJmTJlMAyjoMMREREREZECYpom586dw9/fH4sl4/kqJVlZiIyMpEaNGgUdhoiIiIiIFBJHjhyhevXqGbYrycpCmTJlAPjggyOUKuVbwNGIiIiIiEhBuXgxlhEjajhzhIwoycpCyhLBUqV8lWSJiIiIiEiWtxGp8IWIiIiIiEguUpIlIiIiIiKSi5RkiYiIiIiI5CLdkyUiIiIiUiiYWCxJGIYN7RyU/0wTTNOK3e4GXN0FUJIlIiIiIlLALJYEfH2P4e19UQlWATJNuHSpFLGx1bDbPa54HCVZIiIiIiIFyk7FigcoXdpKuXL+uLl5cLUzKXIlTJKSEjh79iQeHgc4caIBV3p3lZIsEREREZECZLUm4OZmp2LFGnh6lirocEo0Dw9vrFZ34uIOYbUmYLN5XdE4KnwhIiIiIlKAUpYHGkbufDQ3DLBY0LLDK5RyHa7m56eZLBERERGRIs4wwN0dPK2JWD3dncdt8YnE29xJTHTcbyT5Q0mWiIiIiEgR5uYGPl5Jjj98tRSWLIGzZ6FcOSz9++Pdrx/eHnAhzo2kpIKNtaRQkiUiIiIiUkS5uYFPKTus/BFjxAiIikrTbixZAlWqYH7wAT633sqFi5YCSbTKlTMICfma227rm/9PXgB0T5aIiIiISBFkGMkzWCtXYvTunS7BcoqKcrSvXImPV1Ku36sVFXWcJ554mOuvr0uVKp40aVKDgQODWb9+Te4+0RUyTZNZs6bRuHE1qlXzpm/fruzbtydPn1NJloiIiIhIEeSefOuVMWIE2GyZd7bZMO67L815ueHw4YN07tySn39ey4wZL7Jp0zaWLFnJTTd1ZuLEMbn3RFfhtdfmsGDB67zyynxWr/6dUqV86NevO3FxcXn2nEqyRERERESKIE9rInz1VcYzWJc7fhyWLnWcl0vGjx+NYRj89FMYvXv3o379hlxzTRPGjBnH6tW/ZXjeM888SatWDfH3L8X119fl+eenkpj4X1zbtm0lOLgzNWqUoWZNX4KCWrJ5858AHD58iIEDg6lduxwBAT60bduEH3/83uXzmKbJ/PlzmTBhCj179uG665rx9tufcPx4JCtWfJNrP4fL6Z4sEREREZFCqGzZrHq4O4pc5ICxZAnWAQMo6+m6PTo6+2OdPXuGNWtWMmXK8/j4+KRr9/Mrm+G5ZcqUYd68j6hWzZ/t27fx2GMPULp0GR599AkARo68h2bNWvDyy29jtVrZtm0Lbm6OKbiJE8eQmJjAihUb8PHxYdeuHfj4lHb5PIcOHSAq6jhBQV1TxeVHy5Zt+OOPX+nXb2D2X3AOKMkSERERESmqzp7N2/6Z2L9/L6Zp0rBh4xyfO2HCFOf/16xZm717J7B06SJnknX06GEeeWSic+x69Ro4+0dEHKZ37340adIUgNq162b4PFFRxwGoVKlKmuOVK1fhxInjOY47u5RkiYiIiIgUQpnNKhkG+PkB5crlbNDk/jExV79vlnkVAyxdupgFC17n4MF9XLhwnqSkJMqU8XW2jx49jkceuZ/Fiz+lU6eu9O17J3Xq1APgwQcfYfz4h1i79keCgroSHNyP665rdnUvJpfpniwRERERkSLGNB0bDZv9++fsvP79HeflwsbE9eo1wDAMwsN35ei8sLBfGTnyHm65pSeLFn3H+vWbGT9+MgkJCc4+Tz31LL/+up1u3W7j55/XcuON1/Ldd18DMGTI/WzevJ+77rqXHTu20aVLK9555w2Xz1WlSlUATp5Me9/aiRNRVK5cNUdx54SSLBERERGRIije5g79+kGVKll3BqhaFe64w3FeLihXrjxdunTn/ffnceHChXTtMTHRLs8LC/uFGjVqMWHCZFq0aEW9eg04cuRQun716zdk9OjHWbr0R3r1uoOFCz90tlWvXoMRI0bx6adLGTNmPB9//K7L56pVqw5VqlRNU04+NjaWv/76ndat2+bwFWefkiwRERERkSIopRif+cEHYLVm3tlqxXz//TTn5YaXXpqHzWaja9dAli37in379rB7904WLHidbt1cJzF16zYgIuIwX321iAMH9rFgwevOWSqAS5cuMXHiWDZuDOXw4UP89tsmNm/+g4YNrwFg0qTHWLNmFYcOHWDr1r/ZuHEdjRpd4/K5DMNg1KjHeOml5/j++2Vs376Nhx4aQtWq/nm6MbLuyRIRERERKYJMEy7EueFz662Yy5Y59sE67qKYQ9WqjgTr1lu5cNGSK0sFU9SuXZfQ0L95+eXnmTJlPFFRx6hYsRLNm7fk5ZffdnlOz569eeihx3niibEkJMRzyy23MXHiVF544VkArFYrZ86cZtSoIZw8GUWFChXp1esOJk2aDoDNZmPixDFERkZQpowvN998K7NmvZphjI8++gQXL17g8cdHEhMTzY03dmDJkpV4eXnl3g/iMoZ5NXeslQCxsbH4+fmxaFEMpUr5Zn2CiIiIiEgOuLnFUbnyAWrUqIOHR84/+Lu5gY9XkuMPS5diLFniqCJYrpzjnq077gAcCVlSUm5GXjwlJMRx5MgBTpyoQ1JS2utx8WIsAwf6ERMTg69vxrmBZrJERERERIqwpCSIveCGuzt49rkd64ABzjZ7fCLxCW6kqikh+UBJloiIiEgWTNPk4MF/iI09RaVKNfH3b5D1SYWYzWZj376/uHTpPAEBDalYsfoVjXP0aDinTh3B17cStWs3xTCMXI5Usss0ISEBEnDHiHOUeDdNMM3cKXIhOVOkkqwNGzbw4osv8tdff3Hs2DG+/vpr+vbtm+k5oaGhjBs3ju3bt1OjRg2mTJnCsGHD8iVeERERKfr++OM7PvxwEhER/zqPNWrUgZEjX6FBg9YFGNmVWbXqXT7//DnOnDmcfMSgZcvbePDB16haNeNNXVPbtes33ntvPOHhvziP1ajRjBEjXqBlyx55ELXkhCO5KugoSrYiVV3wwoULNG/enHnz5mWr/4EDB7jtttvo3LkzW7Zs4bHHHuP+++9n1apVeRypiIiIFAcbN37JzJm9OXrUH1gF7AO+ZM+eizz1VBDh4WEFHGHOLFnyAvPmjeTMmZuAjcBe4F02b97OhAntOXnycBYjwK5dv/L0053ZuzcBWILjZ/IDERGVmDGjF7/99k1evgSRIqHIFr4wDCPLmawnn3ySFStW8O+//33zNHDgQKKjo1m5cmW2nkeFL0REREqmpKREhg2rSWxse+AL0n43fQmL5SYaNPDmxRd/LqAIc+bs2eMMH14Tu30c8MJlrSewWFrQpcutPPLI+5mO8/jjbdi/H0xzPZC6KIANuINy5f7mgw8OYLUWqQVTBepqC19I7sqNwhdFaiYrp3799Ve6du2a5lj37t359ddfCygiERERKSr++usHYmOPA8+S/iOTN3b7U+zevZGIiN35H9wVCA0NwTTdgKdctFbGbh9DaOhnxMdfzHCMQ4f+Zd++MEzzadImWABW4BnOno1gy5bVuRe4SBFUrJOs48ePU+WyHbCrVKlCbGwsly5dcnlOfHw8sbGxaR4iIiJS8pw8eQjD8ASuy6BHK2e/ouDEiUNYLPWBshn0aEVSUhwxMSczHOO/5YStMujRAjA4caJo/EyKK8MAi8XxXykYxTrJuhKzZ8/Gz8/P+ahRo0ZBhyQiIiIFwNe3EqYZD2R0n9JeZ7+iwNe3IqZ5BIjLoMdeDMNC6dLlMh3DYU8GPQ4AZqp+kl8MAzw8wNsb/PzA19fxX29vx3ElXPmrWCdZVatWJSoqKs2xqKgofH198fb2dnnOpEmTiImJcT6OHDmSH6GKiIhIIdO6dS88PcsAL7totWMYL+Pvfy11616fz5FdmU6d7sZujwZc3XN1CYvlTVq37p3pPej167eiSpUGOH4mrm7rfwlv77K0atUzV2KW7HFzAx8fRzL1zTdw553Qtavjv9984zju4+PoJ/mjWCdZbdu2Zc2aNWmOrV69mrZt22Z4jqenJ76+vmkeIiIiUvJ4e5dm0KCpwOvAY0DKF687gIGY5kqGDZtVZPaG8vdvwC233I9hPAbMAk7jSJR+xTB6YLUeZNCgaZmOYbFYGD58NvAdcDewK7nlMDAWeJu7734GT89SefUy5DJublCqFPz4I1SvDgMHwpIlsGaN478DBzqO//ijo19BJVrlyhmsWPFNwTx5AShSSdb58+fZsmULW7ZsARwl2rds2cLhw45p/EmTJjFkyBBn/1GjRrF//36eeOIJdu3axVtvvcUXX3zB448/XhDhi4iISBFz++0TGDZsDp6eHwA1MQxvoAllymxgwoTPufHGPgUdYo6MHv02vXqNwWqdDlRKfj3tqFgxgunTV1KvXossx2jXrh/jxoVQuvQa4JrkMWrh6fkp9933Cr17P5rHr0JSGAZ4ecHKldC7N1y2gMspKsrRvnKlo39ufy8QFXWcJ554mOuvr0uVKp40aVKDgQODWb9+TdYn54Ply5dyxx3dqFu3AuXKGWzbtiXPn7NITRr++eefdO7c2fnncePGATB06FA++ugjjh075ky4AOrUqcOKFSt4/PHHee2116hevTrvvfce3bt3z/fYRUREpOgxDIM77pjIrbeO4o8/lhMTc5LKlWvRsmVP3N09Cjq8HLNa3XjggbkMGDCZP/74jkuXzlG9+jU0b34zFkv2v3sPCrqH9u378+ef33Py5GH8/CrTpk1vvLx88jB6uZy7u+O/I0aAzZZ5X5sN7rsPjhxxnJeQkDsxHD58kFtvbY+fX1lmzHiRa69tSmJiImvXrmLixDGEhe3KepA8duHCBW68sQN9+w7g0UcfyJfnLLL7ZOUX7ZMlIiIiInnpSvfJ8vZ23HM1cGD2n2vxYujTBzIotJ1jd97Zkx07/iEsbDc+PmmT7JiYaPz8ygKO5YIhIV9z2219AXjmmSdZseJrIiMjqFy5KnfeeQ9PPDEN9+TMcdu2rTz99GNs2fInhmFQt24DXn11AS1atOLw4UM88cRYfvttI4mJCdSsWZvp01+kW7fM7wU8fPggzZvXYcOGzTRten2G/XJjn6wiNZMlIiIiIlJSlC2bdZ8lS3I25pIlMGAAeHq6bo+Ozv5YZ8+eYc2alUyZ8ny6BAtwJliulClThnnzPqJaNX+2b9/GY489QOnSZXj00ScAGDnyHpo1a8HLL7+N1Wpl27YtuLk5ErCJE8eQmJjAihUb8PHxYdeuHfj4lM5+4PlASZaIiIiISBF19mze9s/M/v17MU2Thg0b5/jcCROmOP+/Zs3a7N07gaVLFzmTrKNHD/PIIxOdY9er18DZPyLiML1796NJk6YA1K5d92peRp5QkiUiIiIiUghlNqtkGI59sMplvK2ZSyn9Y2Lgam8aupq7jpYuXcyCBa9z8OA+Llw4T1JSEmXK/Lf8bvTocTzyyP0sXvwpnTp1pW/fO6lTpx4ADz74COPHP8TatT8SFNSV4OB+XHdds6t7MbmsSFUXFBERERERR4IUHw/9++fsvP79HeflRlWGevUaYBgG4eE5K24RFvYrI0fewy239GTRou9Yv34z48dPJiFVNY6nnnqWX3/dTrdut/Hzz2u58cZr+e67rwEYMuR+Nm/ez1133cuOHdvo0qUV77zzxtW/oFykJEtEREREpAiy2aBfP6hSJXv9q1aFO+7IuhJhdpUrV54uXbrz/vvzuHDhQrr2mJhol+eFhf1CjRq1mDBhMi1atKJevQYcOXIoXb/69RsyevTjLF36I7163cHChR8626pXr8GIEaP49NOljBkzno8/fjd3XlQuUZIlIiIiIlIEJSY6/vvBB2C1Zt7XaoX33097Xm546aV52Gw2unYNZNmyr9i3bw+7d+9kwYLX6datrctz6tZtQETEYb76ahEHDuxjwYLXnbNUAJcuXWLixLFs3BjK4cOH+O23TWze/AcNG14DwKRJj7FmzSoOHTrA1q1/s3HjOho1uibDGM+ePcO2bVvYtWsHAHv27Gbbti1ERR3PvR/EZZRkiYiIiIgUQaYJcXFw662wbJljpsqVqlUd7bfe6uifmxs41a5dl9DQv+nQoTNTpoynXbvruOOOW1i/fg0vv/y2y3N69uzNQw89zhNPjKVjx+v5/fdfmDhxqrPdarVy5sxpRo0aQuvWDRkxYgBdu/Zg0qTpANhsNiZOHEObNtfQv/+t1KvXkJdeeivDGH/4YRkdO7bgrrtuA+C++wbSsWMLPvxwfu79IC6jfbKyoH2yRERERCQvXek+Wf+dD17Jpy1d6ijTfvaso8hF//6OJYLgSLCSknIx8GJK+2SJiIiIiJRwSUlw4QK4uzs2Gh4w4L+2+HhISHA8JP8oyRIRERERKeJM879EKi7OUeLdNHN3aaBkn5IsEREREZFiRMlVwVPhCxERERERkVykJEtEREREpAClzDqpHl3hkHIdruZyKMkSERERESlAdrs7djskJFws6FAEx3Ww2x3X5UrpniwRERERkQJkmlbOny/LqVMnAPDwKIVhGAUcVcljmiYJCRc5deoE58+XxTSz2OE5E0qyRERECoGIiF2sWvUuERG78PYuTbt2/bjxxttxc7vyb1IFoqNP8OGHE9myZTV2u43q1RszfPhLNGzYuqBDE0nj/HnHTsJJSSewaK1ZgbHb4fz5ss7rcaWUZImIiBSwxYufY+HCqVgsFbHb22OxHGTjxruoUaMpM2aspEIF/4IOsUj69deveeGFgZhmItAB8CUmZi0TJrShe/eRjBkzv6BDFEnF4Pz5aly4UBmLJRFNZOU/03QsEbyaGawUSrJEREQK0Pr1n7Nw4VRgGnb704AndjvAXxw92oeZM/vy6qu/a+lQDkVHn0hOsBoA3wL1kltigUdZteod6te/ge7dRxZckCIumKYVm+3qP+RLwdJkpIiISAExTZMlS+ZgGD2A6YBnqtaW2O0fsX//H/z77/oCirDo+vDDickzWKkTLABf4D2gPp9/PrNAYhOR4k9JloiISAGJjo7i0KEtmOawDHrcjNUawJ9/fp+fYRULW7f+BLQnbYKVwgoM58yZyPwNSkRKDCVZIiIiBSQpKSH5/8pk0MMASqfqJ9lls9lwzFplpDSgPYlEJG8oyRIRESkg5cv74+tbFVieQY/d2Gy7qV+/VX6GVSxUr94YWIfjHixXvsXTM7MkTETkyinJEhERKSBWqxs9ez6IYXwAhF7WehHDGEOZMpVp375/AURXtN1330tAHPAwYLusNQRYQ5cud+d7XCJSMqi6oIiISAG6885JbN++iX//7Ypp9gU6A8ewWD7CzS2ap576Dg8PrwKOsuipX78VPXqM4ocf5gObgOE4lmV+C6ylatUGPPjgmwUao4gUX4ZpmlqQnInY2Fj8/PxYtCiGUqW0rEBERHJfYmICP/74LitWLCAycieenqW56ab+9O07PnnZm1yp1avf57PPpnP6dCRgx9PTly5d7ubBB9/Eoh1fRSSHLl6MZeBAP2JiYvD1zTg3UJKVBSVZIiIiIiIC2U+y9BWOiIiIiIhILlKSJSIiIiIikouUZImIiIiIiOQiJVkiIiIiIiK5SEmWiIiIiIhILlKSJSIiIiIikouUZImIiIiIiOQiJVkiIiIiIiK5SEmWiIiIiIhILlKSJSIiIiIikouUZImIiIiIiOQiJVkiIiIiIiK5SEmWiIiIiIhILlKSJSIiIiIikouUZImIiIiIiOQit4IOQERERBwuXTrP6dMReHmVpmLF6lc0hs1mIyrqAGBSpUodrNYr+6f+9OmjXLp0jgoVquPtXfqKxjh//ixnzx6nTJkKlC1b+YrGKEyio09w7txpypWrRunSZQssDpstKfkaG8nX2FpgsRS3ayx5IyEhjhMnDuHu7knlyrUwDKOgQ8pzSrJEREQKWEzMSUJCprB2bQiJiRcBqF+/DYMGTaV169uyNYbNZuPbb1/h22/f4OzZIwCUK1ed3r0fpm/f8dn+IP7nn9/z2Wcz2bv3NwDc3UvRufM9DB78XLY/REdG7uHTT6fw669LsduTAGjevDuDB0+nUaM22RqjMNm9+3dCQqaxdeuPAFgsbrRr14/Bg5/D379+vsVhsyXxzTcv8+23bxAdfRSA8uVr0qfPw/Tu/Xi+JltHj4bzySeT+e23rzFNGwDXX38r9947kwYNWuVbHFK4Xbp0ns8/f5ZVq97n0qVoAKpXv44BA54iKOiegg0ujxmmaZoFHURhFhsbi5+fH4sWxVCqlG9BhyMiIsVMbOwpxo9vx8mTZ7DbHwGCgOMYxtuYZiiPPPIBXbsOz3QM0zR5+eV72bDhc2AYcFdyyxcYxke0b38nEyYsxGLJ/C6BtWs/Ye7cYRhGR0zzIcAfCMVieZ2KFcvy0kubsky0IiJ2MXFiBy5dKoPd/hhwA7AHi+V1DGMX06f/QLNmnbP8uRQWW7eu5dlne2KajbHbHwXqA39jsczF2/scL764kerVG+d5HHa7nZdeuodNm77ENIcDAwATWAx8RKdOdzNu3Cf5MkNw+PAOnnjiJuLi/JKvcQsgHIvlNSyWPcyYsYrrruuY53FI4RYXd4Gnn76Z/fu3Y7ePBnoAMRjGB5jmMgYPfp4BA54u6DBz7OLFWAYO9CMmJgZf34xzAyVZWUhJsiZOjMHT878fZGBgAQYlIiLFxvz5Y1m58nPs9jCgXqoWE7gfd/dFfPzx0UyXp/3xxwpmzuwFfA4MvKz1S2AAkyd/S5s2vTMc48KFGIYODSAhoT/wAWlv296PxRJIt253Mnr025m+nilTuvHvv4ex238FyqVqiccwelCx4iHefXdPlglfYWCz2XjggQacPl0H0/we8EzVegaLpS1Nm9Zm5sxVeR7Lb799y6xZfXFcz/6XtX4O3M20aSto1apnnscyaVIXdu48jt3+C1A2VUschtGdypWPsWDBriJxjSXvfPnlbEJCpmOam4CWl7VOBZ5nwYI9VKtWz8XZhVd2kyy9+7Np714ID//vMWcOhIUVdFQiIlKUJSTEsWbNJ8nf8l7+QcMAnicpKYH16xdmOs7Kle9gsbQifYIFcCcWSyArV76b6Rjr139GYmI8MIv0Hw/qYrePYe3aEOLjL2Y4xvHjB/jnn9XY7VNIm2ABeGKaszh5cj9bt67JNJbC4p9/1nDq1AFMczZpEyyA8tjtk9m69Ueiog7meSw//PAOFksb0idYAAOxWG7ghx/eyfM4IiP3sH37Ouz2qaRNsAC8MM3niYraw7//rs/zWKRw+/77dzDNu0mfYAFMwmIpy+rV7+d3WPlGSVY23cViBhPifASxjtBQCAlRsiUiIlfm7NnjxMefA27KoEdVrNZGREaGZzrO4cO7sdszGgPs9o4cOZL5GJGR4Vgs9XEsEXSlIwkJ5zl79niGYxw7tif5/zKKpQ2G4Z7l6yksjh4NxzA8gNYZ9HAsiYuM3JNBe+6JiAjP5Bob2O0diYjI+5/rf681o1jaA0aRucaSN5KSEjl9+iAZv09KYZqti/X7RIUvsqlH/T34ev73LVYwy5kaCeGRDQmNDAC0hFBERHLmv3t9j2bQIxG7/Tje3pnfE1y6tB9RURmNARCBj0/mY5Qq5YdpngASAA+XYwB4e5fJdAyHo0AtFz1OYJqJReYe51KlfDHNBOAk4OpetAhnv7zm4+PHyZOZX+P8iCPtNXZVAfMYYGb5npXizWp1w93dm8TEjN6zJhZLBN7eRa8QTnZpJiu7WrZ0ZFEpj8GDmek//79Zra9Oa1ZLRERypEyZ8jRtejMWy1tAkosei7HbT9Ohw4BMx+nYcQCG8Q1wxEVrBIbxNZ06ZT5G+/b9sdvP4Li/53I2LJa3aNKkM35+lTIco379VlSoUAt4I4Me83B396Z1616ZxlJYtG7dCzc3L2BeBj3epGLFOtSvn/fV9Dp1uhPDWIrrhPwwhvFtltc4NzRq1IZy5aqT8TV+E3f3Uvlyb5gUXoZh0KHDnVgs7wGulhiHYrPtyPJ3W1GmJOtqDB5McNB5ZvrP54kK70HkUecSQhERkewYNGgqprkZGAQcSD4aD3yExfIgN97Yj9q1m2Y6xi23jKBs2SpYLLcAP+MommECG7FYulG2bCVuueW+TMeoVes62ra9E4tlNI7CF/HJLQeAuzHNPxk0aGqmY1itVu655xlgEfAYcCK5JRb4H/A8ffo8RunSl9+vVTiVKVOePn0eBZ4D5gDnkltOAI8Ci7nnnmn5Ujr9llvux8+vIhZLN2AT/13jDVgs3ShXrhpdu47I8zisVjfuvnsasBAYh2OWDxzXeBbwAnfcMR4fH7+MhpASol+/J7BaT2IYwcD25KNJwFIslgE0aNCWFi26FWCEeUvVBbOQUl0wZtEifEuVyrhjWBjLQ0sTRiDhNCSSAIKCtIRQRESy9ssvX/Haa/dz6VIMVmsdTPM0dnsM7doN4PHHP8TTM5N/f5JFRu5h5szbOXp0O1ZrNcDAZovE3/9apk79moCAhlmOER9/iblzh7Np02IsFl8MoyI22wG8vHx59NH3aN/eVdGF9L799lU+/vhpbDYbVmtN7PZjmGYcwcGPMnz4iwW6eW5O2Ww2PvhgAt999zqG4YXFUg2b7TBWq5WhQ2fTp89j+RZLRMRunnvudiIjd2K1+gMmNtsxqle/jilTluLv3yDfYvn665f59NPJ2GwmVmsNbLZIIIG+fR9n6ND/qbKgAPDvv+t54YWBxMYex2qtjWmew24/TdOmXXnyyUX4+lYo6BBzTCXcc0m2kyxwrBUMD2d55A2EEUgonfH3h4YNlWyJiEjm4uIusGnTl0RE7MLLqzTt2vWjRo1rcjSG3W5n69Y1bN/uqOzWpElHmjfvmuMPvBERu/jll6+4dOkc1as3pn37O/Hy8snRGOfOnWHDhs85efIwfn6VuOmmgVSs6OoenqLh5MkjbNy4mJiYk1SqVJOOHQdRpkz5fI/DcY1/4t9/12MYBtddF0SzZl0KJKmJjT3Nhg2fc+rUEfz8KtOx40AqVAjI9zikcEtMTOD3379h377NeHh40bp1L+rXd1VxsGhQkpVLcpRkpUhOtqZGjtKsloiIiIhIMVFs98maN28etWvXxsvLizZt2hCWRaWJuXPn0qhRI7y9valRowaPP/44cXFxeRukCmOIiIiIiJRYRaqE++LFixk3bhzz58+nTZs2zJ07l+7du7N7924qV05fWvWzzz7jqaee4oMPPqBdu3aEh4czbNgwDMPglVdeyfuABw8mOCyM4PD5LOcGQiIHExoZQHgGWwJoWaGIiIiISNFXpJYLtmnThtatW/Pmm28CjnXJNWrU4OGHH+app55K13/s2LHs3LmTNWv+21l+/Pjx/P7772zcuDFbz3lFywVdSVUYA//065XDI320rFBEREREpBDL7nLBIjOTlZCQwF9//cWkSZOcxywWC127duXXX391eU67du0ICQkhLCyMwMBA9u/fz/fff8+9996b4fPEx8cTHx/v/HNsbGzuvIDAQIJxzGq5spzkYhmhnQkP16yWiIiIiEhRVWSSrFOnTmGz2ahSpUqa41WqVGHXrl0uz7n77rs5deoUHTp0wDRNkpKSGDVqFE8//XSGzzN79mymT5+eq7E7pWxk7ELKssKp204TTlvnssLBg/MmFBERERERyRtFrvBFToSGhjJr1izeeust/v77b5YuXcqKFSuYOXNmhudMmjSJmJgY5+PIkSP5E2xKsYx+W53FMog8qmIZIiIiIiJFTJGZyapYsSJWq5WoqKg0x6OioqhatarLc6ZOncq9997L/fffD0DTpk25cOECI0eOZPLkyS73lPD09MTT0zP3X0B2pVpWuDwybbEMLSEUERERESn8isxMloeHBy1btkxTxMJut7NmzRratm3r8pyLFy+mS6RSdpkv1PU+kme1goPOp5nVCg3VrJaIiIiISGFXZGayAMaNG8fQoUNp1aoVgYGBzJ07lwsXLjB8+HAAhgwZQkBAALNnzwYgODiYV155hRYtWtCmTRv27t3L1KlTCQ4OdiZbhVpgIMGBEBzimNVSYQwRERERkcKvSCVZd911FydPnmTatGkcP36c66+/npUrVzqLYRw+fDjNzNWUKVMwDIMpU6Zw9OhRKlWqRHBwMM8//3xBvYQrk2q/LRXGEBEREREp3IrUPlkFIdf2ycotqfbbCqch+AdoVktEREREJB9kd5+sInNPliQLDCQ46Dwz/eczmBDnvVqqQigiIiIiUjgUqeWCkix5v63gsDAIDXHMakU2JDQywNksIiIiIiIFQ0lWUabCGCIiIiIihY6SrOIgk8IYGXQXEREREZE8oiSruEheQjgzLIzlofsIIxAISNctPNKHOXMCCArSTJeIiBR/drudv/9eyZ9/fk9SUgL167ekU6d78PYune+xxMScZO3ajzl6dDfe3mVo164/jRu3xTCMfI9FijfTNNmxYyO//PIV8fEXqFHjWjp3HoKvb4WCDq3EUHXBLBS66oLZERZGRtNYzmWFdMbfX8sKRUSk+Dp58jDPPhvMkSP/YLU2AMpgs23B29uXJ574nJYtb823WFaufId33nkEm83AYmkKHMNmi6BZs1uYNOlLfHz88i0WKd7OnTvDc8/dwc6d67FaawKVsdv/wWq1MGbMfG6+eWhBh1ikZbe6oJKsLBTJJCszyQnY1MhRhNOQSDSrJSIixU9iYjxjx15PVFQcdvtCoC1gAIcxjNFYrWt45ZUwatdumuexhIUt57nnegOjgOeACoAdWI7FMpTmzdszffqKPI9Dij/TNHn66ZvZufMf7PZPgFtxFBM/CTwFfMj06ato0eKWAo2zKFMJd3EtMBAGD3aWgA9iHaFfnVYJeBERKVZ++WUpx47twm7/BmiHI8ECqIlpfoXdXoVvvnklX2JZtGgWhhEEvIUjwQLHR7A+2O3vsHnz9+zbtzlfYpHibdeuX9m+fR12+0dAT/77qF8JeBeL5Ua++GJ2gcVXkijJKqkGD3but/VEhffS7LclIiJS1P3++zcYxo1Acxetntjtw9i0aWmex3H27HH27v0N03yQ/xK91O7AYqnIb799neexSPH322/fYLX640iwLmfBbn+A7dvXcf782fwOrcRRklWSJc9qBQedd85qEXmUOXM0qyUiIkVbXNwFTLNSJj0qk5h4MV/icMgoFjcMozzx8XkfixR/8fEXgIpk/BG/cnK/S/kVUomlJEsc+20lz2o5lxCGoiWEIiJSZNWs2QSLZSPg+sOkYaymevUmeR5HhQoBeHn5AT9l0OMANtseatbM+1ik+KtZswk223YgMoMeq/HxqYifX2ZfQEhuUJIlDqlmtWb6z3fOaoWGKtESEZGip3v3kdjt0cAzwOU1vn7ENJdx222j8jwODw8vunUbjsXyNrD9stZEDGMC3t5+dOgwIM9jkeKvU6d78PDwAiYAtstat2CxvMett96Pm5t7AURXsmifLEkrZb+tkPn/lXv/qhnh4RVo2DDjU0RERAqTatXqMWLES3zwwXgMIwzTHAaUAZZjGJ/RokUPbrnlvnyJZeDAZ9i8eS1Hj7bFbh8BBAGRWCwLgB08/viXeHn55EssUrz5+Pjx2GMf8OKLd2MYu7HbHwCqAj9hsXxE7drXcOedTxd0mCWCSrhnodiVcM+J5HLvyyNvIITB4J9+c+PISLTfloiIFFq//76MJUteZPfujQBUqFCbXr0eok+fx/P12/wLF2JYsuQFVq58jwsXTgEGLVvexoABk7jmmnb5FoeUDP/+u4EvvpjNli2rAJMyZSrTo8cD3HHHk5QqVaagwyvStE9WLinRSVaKsDCWh5Z2mWSFRQZovy0RESn0Ll6MJSkpgdKly2OxFNzdEjabjfPnz+Dl5YOnZwn9XCH5Ji7uAvHxFyldujxWq7WgwykWsptkabmgZC0wkGDCgN3pmoJZ/t+ywtDOhIdrVktERAqfUqUy/jCUn6xWq4oOSL7x8vLRUtQCoiRLsiejrCkwkOCwMILD5zN122nCaUtoZADh4TB4cP6GKCIiIiJSGKi6oFy95MqEM/ttTbPflkrAi4iIiEhJpCRLcs9l+22x7R/ttyUiIiIiJY6WC0ruSi4BHxwWBqE/EMZpwiMbEhoZ4GwWERERESnOlGRJ3ggMJDgQglPvt6XCGCIiIiJSAmi5oOStwYOdSwiDTi+ByKPOJYQiIiIiIsWRkizJeyqMISIiIiIliJIsyT+XF8ZINaulZEtEREREigvdkyX5K01hjBDCCFRhDBEREREpVpRkScHIpDCGKyqWISIiIiJFhZIsKViDBxMcFkZw+HymbjsN/s3SdQmP9CE0MoDwcBg8uABiFBERERHJASVZUvCSlxDODAuD8C/TNS/nBueywjlzAggK0qyWiIiIiBReSrKk8EhOti6XMtOl/bZEREREpChQkiWFX6piGcHh85kaiYpliIiIiEihpRLuUnSk7LeVXAI+iHWEfnVaJeBFRAopu93OhQsx2GxJVzyGaZpcvHiOhIS4q4olISGOixfPYZrmFY9hsyVx4UIMdrv9qmLJDfHxF4mPv1jQYUge0jUu2jSTJUVPqmIZy7mBkMjBKowhIlKInD0bxVdfvcDq1R9z6dJZ3N296dhxIHfeOQl//wbZGsNmS+L7799i2bJ5REU5Ss82bXoz/fpN5IYbumc7lr//XsVXX73Itm1rAKhSpSG9e4+hZ8/RWK3Z+xh09Gg4S5a8wIYNi0hMvIS3dzm6dRvGHXc8SblyVbIdy9UyTZPQ0BC++eY1Dhz4C4C6dVtz++2P0bHjIAzDyLdYJG+YpsnatZ/wzTevcejQZgDq1Qvk9tsf56ab7tI1LkIM82q+0ikBYmNj8fPzI2bRInxLlSrocORyYWEsDy3tKIxBQyJRYQwRkYJ06lQEEyd24OzZc9jt9wM3AHuwWBbg6XmeWbPWUq9ei0zHsNmSmD37Tv74YzmmOQDoBZzDYvkIu/03Ro2aR8+eo7OMZcWKeSxYMBaL5Ubs9mFAGWA5hvElgYG9eeqpL7JMtPbt+5tJk7qQkOCL3f4gUB/4G4vlPcqV8+XFF3+mYsXq2fnRXBXTNHnvvcdZvvw1DKNn8s/FxDAWY5oruf32CQwf/mKexyF5xzRNFix4mO+/n4dh3IZp3gnYMYxFmOaP9Ov3FEOHzi7oMEu8ixdjGTjQj5iYGHx9fTPspyQrC0qyioCwMAgP/68wBp3x91dhDBGRgvD883fwxx9/YLf/AtRI1RKDxXIz/v7xzJv3T6bfyK9c+Q5vvfUQsAy4LVWLCTyGYbzJO+/so0qV2hmOcfz4AR58sD6m+TDwKpD6+b4DejN27Dt063Z/hmOYpsno0U05dswbu30NkPoD1WEslvYEBgby9NNfZThGbtm6dQ1Tp3YF5gGXJ5ivAY8xa9Z6rruuY57HInnj779X8eyztwLzgQcva30ZmMALL2zk2mvb539w4pTdJEv3ZEnRl3yvVnDQeWb6zyeIdRB5lNBQ3aslIpKfTp8+SljYt9jtU0ibYAH4Ybf/j4iIf9mxY2Om43z33dsYRjBpEyxwJEqzMIwy/Pjju5mO8eOP72IYZYBZpE2wAHphGL1YvvytTMfYsWMjR49ux26fQ9oEC6AmdvvT/P77t5w+HZnpOLlhxYq3sViuAx5y0foIFksjvv8+89cjhZvjGl8PjHTR+jhWa32+//7tfI5KrpTuyZLiI2W/rZBU5d6/akZ4eAWX3TXTJSKSuw4f3oFp2oFuGfToArhx6NA2mjS5yWUP0zQ5cuQfTPOBDMbwwW6/iYMHt2Uay8GD/2C3dwRcr0Ixze4cOfJYlmMYhjumGZRBj+6Ypo0jR3ZQoYJ/pmNdrf37/8Fu7036hBHAwG7vzr59P+VpDJK3HNf4TlxfYws2W3f27/85v8OSK6QkS4qfywpjhEWmz6TCaegslqFkS0Qkd3h6eif/3xmgjoseMUASHh7eLtocDMPA3d2bhIQzmfQ5hadnzUxj8fDwxmKJJONCgKdxd884jpQxTDMpOe6yLsdI6ZfXHD/b05n0OJ3q5y9FkeP6Zfy+h1O6xkWIlgtK8ZR6CWHQ2nSPlBLwWlYoIpJ7GjQIpEyZKkBGS/nex2Jxp2XLHpmOc+ONfbBaPwISXLT+i2n+Rps2fTIdo02bPsn3hW130ZqAxfIxN96Y+RgtW/bAYrECH2TQ4z18favSsGHef1PXrl0fLJYlwFkXraewWL6mXbvMX48Ubo5r/AWOpP5yJzCMb3WNixAlWVK8JS8hvPwR/MS1affbCkX7bYmIXCV3dw/6958ILABeBFL2tkoCQjCMyXTtOoJy5apmOs7tt0/ANA8Dg4DjqVr+wmK5nSpVGtCuXb9Mx2jfvj+VK9fHYukL/J2q5RiGMQjDiOD228dnOkb58tXo2nUEhvE0sBCwJbfEAXOAd+jffyJubu6ZjpMbbr11FJ6e7lgswcD+VC17sVh64e3tTffuru7lkaKiZ8/ReHgYydf4QKqWcCyWXpQqVTrTQi1SuCjJkpIrdbGM00ucs1ohIQUdmIhI0dW37zj69h0PPIHFEoDF0hGrtTZwL23b9uHBB1/Lcox69Vrw1FNf4uGxCsOogcXSDqu1KdCKKlXcmDlzFe7unpmO4eHhxXPPraJKFTegJVZrUyyWdhhGTdzdf+Spp76kbt3rs4zlwQdfp23b3sBgrNZaWCwdsVgCgCe5/fYJ9OnzeJZj5IYKFfyZMeMHfHz2APWxWFpjtbYCGlC69CFmzFiZr3t2Se6rWLE6M2b8QKlSu4B6WCyByde4EWXKHOW551bh51epoMOUbFIJ9yyohHsJcdl+W/gH6F4tEZGrEBm5hzVrPuLEiUP4+VUiKGgw9eu3zNEY589Hs27dJ+zd+yfu7p60anUbrVv3yvYmwuDYc+uPP77jzz9XkJgYT/36rejceQilS5fNUSx79/5FaGgIMTEnqVy5FjffPBx///o5GiM3xMdfYuPGxWzbFophGFx3XRAdOgzQvTrFSHz8RTZsWMT27RswDINmzbrQvv2deHh4FXRogvbJyjVKskqQVPtthZzuQWSFZtpvS0REREScsptkqbqgSIqU+7XCwiD0B8I4TXikowphSrOIiIiISFaUZIlcLjCQ4EAITr3fVmhnlXsXERERkWxRkiWSkVT7bU3ddppw2qbZW+tySr5EREREBJRkiWQueQnhzLAwlofucxTGiGxIOAHpuoaGQlCQki0RERGRkk5Jlkh2BAYSjGNWa3nkDRB5Wbt/AGEEaFmhiIiIiCjJEsm2lMIYrtrCwghmOVMjUbEMERERkRJOSZZIbkhZVpi6WMZXzQgPr6BZLREREZESxlLQAYgUK4MHExx0npn+83miwnsQeZTQUAgJKejARERERCS/KMkSyW2Bgc5kazAhBLEOIo8yZ45jv2MRERERKd60XFAkr1xWLEP7bYmIiIiUDEqyRPJSSrGMlP22VBhDREREpNgrcssF582bR+3atfHy8qJNmzaEZbH+Kjo6mjFjxlCtWjU8PT1p2LAh33//fT5FK5IseQnhTP/5ziWEoV+dJiRESwhFREREipsilWQtXryYcePG8cwzz/D333/TvHlzunfvzokTJ1z2T0hI4JZbbuHgwYMsWbKE3bt38+677xIQkH4jWZF8ocIYIiIiIsWeYZqmWdBBZFebNm1o3bo1b775JgB2u50aNWrw8MMP89RTT6XrP3/+fF588UV27dqFu7v7FT1nbGwsfn5+xCxahG+pUlcVv0gaYWEsDy1NGIGE05BIAggK0hJCERERkcLq4sVYBg70IyYmBl9f3wz7FZmZrISEBP766y+6du3qPGaxWOjatSu//vqry3OWLVtG27ZtGTNmDFWqVOG6665j1qxZ2Gy2DJ8nPj6e2NjYNA+RPBEY6JzVci4hDEVLCEVERESKuCJT+OLUqVPYbDaqVKmS5niVKlXYtWuXy3P279/P2rVrueeee/j+++/Zu3cvo0ePJjExkWeeecblObNnz2b69Om5Hr+IS5kUxggPd33K4MH5G6JIcXfgwD/8+ecKkpISqFfvBlq27InVas3RGGfPRrFp05fExp6kYsUatG9/Jz4+fjkaIyEhjt9++4aIiF14e5fmxhtvp1q1ejkawzRNtm//me3bN2CaJtdd15EmTTpiGEaOxhEpic6cOcYvvywhNvYUlSrVon37OylVqkxBh3XFIiP38ttvXxMXd4GaNa+lTZs+uLt7FnRYJUaRWS4YGRlJQEAAv/zyC23btnUef+KJJ1i/fj2///57unMaNmxIXFwcBw4ccP6D+corr/Diiy9y7Ngxl88THx9PfHy888+xsbHUqFFDywUlf4SEOMu945/+3sHwSB/wD1AJeJFccP78WebMuZstW1ZisfhiGN7YbFFUqFCLJ59cROPGN2Y5ht1u57PPprFkyRxM08BiqYTNdhwPDy+GD/8ft902JluxhIUt59VXR3DhwimsVn9MMxq7/RKdOg3m4YffwcPDK8sxjh8/wKxZ/Tl48G8slvKAgd1+mlq1WjB58hKqVq2brVhEShq73c7HHz/Ft9++imlasVgqYrMdw8OjFA888Arduz9Q0CHmSHz8JV5//X5+/vkzLBYfDMMPmy2SMmUqM27cR7Rs2aOgQyzSit1ywYoVK2K1WomKikpzPCoqiqpVq7o8p1q1ajRs2DDNN5LXXHMNx48fJyEhweU5np6e+Pr6pnmI5JtUhTFmMjXdYzAhsO0fLSsUuUo2m41nn+3FP//8ASzCbj+FzXYc+IOzZwOYNq07kZF7shzniy+e44svnsdufxrTPIbNFgEcIiFhCAsWjGXNmo+zHGPHjo3MmnUHFy+2BXZisx3Fbj8JvMWGDV8yd+7wLMe4cCGGSZO6cPhwDPAjdvvJ5DFWc+TIeSZN6sL589FZjiNSEoWETOHrr1/Cbn8G0zye/Pf4IAkJA5k3byQbNiwq6BBz5OWX72XTpm+Ad7DbT2KzHQW2c/58K2bO7MOuXb8VcIQlQ5FJsjw8PGjZsiVr1qxxHrPb7axZsybNzFZq7du3Z+/evdjtduex8PBwqlWrhoeHR57HLHJFksu9u3oEB51ncIUfCGKdszKhEi2RnNu8eRXh4b9gt38J3AWkFEdqhd2+koSE0nzzzcuZjnHxYixLlswBJgLPAuWTWwKAecCdhIQ8m+l9wACffz4TaIppfgU0Tj5aChiFab7Fxo2LOHx4R6Zj/PTTh5w5cxS7fTVwC45/3g2gK3b7as6cieSnnz7IdAyRkig29jTffPMqMBmYApRNbqkBvAP05tNPn6GILPxi//4t/PbbV9jtC4AHAO/klmsxza+Bxixe/HzBBViCFJkkC2DcuHG8++67fPzxx+zcuZOHHnqICxcuMHy441u+IUOGMGnSJGf/hx56iDNnzvDoo48SHh7OihUrmDVrFmPGZG/5hkihExhI8BPXqliGyFX6+efFWCxNgSAXrWWw24cTGpr5t9d//LGChIQLwKMuWg3gEU6fPsiePX9kOMb582fZuvVH7PbR/JfopXYPFkt5Nm5cnGks69cvxjR7A3VctNbCNPuyfn3mY4iURH/8sZykpHjgYRetjr/HUVHh7N+/JX8Du0IbN36BxVIJx5dHl/PAbn+Iv/5awcWLKuyW14pM4QuAu+66i5MnTzJt2jSOHz/O9ddfz8qVK53FMA4fPozF8l/eWKNGDVatWsXjjz9Os2bNCAgI4NFHH+XJJ58sqJcgkjsGD/6vWMa204TT1lksQ4UxRLJ24UI0dntNHB+iXKlFXFwMdrs9zb8rl4/h+K7SP8Mx/uuXURwxafqm54FhVMt0DIBz584Crld1pIx/7tzWTMcQKYnOn4/GMLwxzcoZ9Mj673FhcuFCNIYRgOsvbcDxekwuXTpHqVK6JSYvFakkC2Ds2LGMHTvWZVtoaGi6Y23btuW337T2VIqh5MqEM8PCWB66z7HfVmRDQkJUGEMkK9Wq1cdiCcFuTwBcLR/fRKVK9TJMsFLGADvwO+CqSMam5H4ZVwgsW7YKHh4+JCRsxLHM73InsNvDqVp1ZIZjAFSv3oCTJzeRanV8GhbLJgICclapUKQk8Pevj2leBDYDLVz0cPw9LiqFY6pVq4/d/gFwGqjgoscmPD198fWtmM+RlTxFarmgiLhw2X5bKowhkrVu3e7Hbj8BvOqidTOGsYiePTOvKNasWRcqVqyDYUwFLi+mFIvF8jzXXtsJf/8GGY7h6elNly73YrG8BRy6rNUEnsFqtRIUlPkU9a23PoDdHgYsddH6LXb7r9x6a9GqkCaSH2644VbKlg3AMCYDiZe1RmOxzKZ58+5UrpzRbHPh0rnzvVgsJjAdx++Q1A5gscznlluGqpR7PlCSJVIcJBfLUGEMkeypUeMa+vefBDwFDAJWAb8BU7BYgqhTpym33eZ61UQKq9XKI4+8g2Gsx2JpBywE/gAWYLG0xsPjCA8++HqWsQwa9Czly5fBYmkD/A8IA77FMHoA8xk5ci5lypTPdIzWrXvRtm1/DOMuYAywHtgAjMUw+tOmzR20adMny1hEShqr1S357/FqDOMm4HMcf4/fxmJphZfXCUaOdPVlTOHk51eJ++9/BXgDw+gFLMfxO2U2FsuNVKxYnrvumlqwQZYQRWafrIISGxuLn5+f9smSoiXVfluhdMbfHxo2dN1VywqlpDJNk1Wr3mXJkjmcOLEPAE/PMtxyyzAGD34u2/cr7NixiU8/ncr27esAMAwLrVr1YujQWdSs2SRbY5w5c4yPP57Ehg2LsNkcezXWrNmcu++eRrt2d2RrDJstiS+/nM3y5fM4d86x3UmZMlUIDh5N//6TcHPL6B4NEfn33/V8+uk0du7cADj+HgcG9mHo0NlUr96ogKPLuY0bv+Tzz2dy5Mg2ANzcvOjUaRBDhsymXLkqBRxd0ZbdfbKUZGVBSZYUWWFhEB7O1G13El6hrcvNjSMjwd9fxTKkZLPb7URGhpOYGE+1avXx8vK5onFOnYogJuYk5cv7X/GHmPPnozlx4iBeXqWpVq0ehpFRYY6MJSYmEBkZDoC/f0Pc3bVliUh2nTx5hNjYU1SoEEDZshkVwygaTNPk2LF9xMWdp0qVOvj4+BV0SMWCkqxcoiRLirywMJaHlnaZZIVFBhBOQyIJIChIs1oiIiIimcluklXkqguKSA4FBhJMGLA7XVMwy/9bVhjamfBwVJlQRERE5CopyRIpCTLKmgID/9tvKxLCIxsSGhmQ6SkiIiIikjklWSIlXcp+WyHz/5vV+qoZ4eEVNKslIiIicgVUwl1EHJJLwM/0n88TFd5zloAPCSnowERERESKFiVZIvKf1PttEeLcb2vOHO23JSIiIpJdWi4oIuklF8sIDp+vwhgiIiIiOaSZLBFxLdWs1kz/+c5ZLS0hFBEREcmckiwRyVxysjXTf75zCWHkttOEhGgJoYiIiIgrSrJEJHtUGENEREQkW5RkiUj2qTCGiIiISJZU+EJEci6LwhgZnCIiIiJSIijJEpErk7yJcXCYI9maGgnhkQ0JJyBd18hICA+HwYMLIE4RERGRfKYkS0SuTnKyNTPEMauFiyQrjADCIxsSEhKgEvAiIiJS7CnJEpHcMXgwwWFhwO50TcEsZ3nkDYRs60FoZDPttyUiIiLFmpIsEck9GWVNycsKCf2BME4THtmQ0MiATE8RERERKaqUZIlI/ggMJDgQgkNcF8tQsiVFVXT0Cb777g3WrAnh3LmTVKhQg27dhtOjx0OUKlUmW2PExV3krbdG8csv35CQcBHDsFKzZiPuu+9Vrr/+5jx+BWkdP76fZcvmsmHDEuLizhEQ0IgePUbStetw3Nzc8zUWKbwuXjzHDz+8zY8/fsjp00coU6YSXbveS69eD+PnV6mgwxMpcIZpmmZBB1GYxcbG4ufnR8yiRfiWKlXQ4YgUD2FhEB7O1G13El6hLZEE4O+vwhhS9Bw/vp8nnwwiJuYsdvs9QENgM4bxBdWrN+aFF9ZRpkz5TMe4ePE8I0fWJzb2BNAD6AIcBz4AYhg16g169nwor18KALt2/cq0abeSkOCJ3T4E8McwQjHN77j++u5Mnfot7u4e+RKLFF6xsaeZNKkzERHhmOYA4HogHItlIWXLlueFF0KpWrVOAUcpkjcuXoxl4EA/YmJi8PX1zbCfkqwsKMkSyUNhYSwPLU0YgYTTEPxVGEOKlokTO7BnTxR2eyhpi75sx2LpRIcOtzJhQuY7dk+degtbt64Dvge6pWo5B/TEMML4/POTlCqV8T/muSExMYERI+pw7lxd7PbvgdSzcD9hGLcxaNBkBg6clqdxSOH30kv3sHHjj8nv+yapWiKwWIJo0KAaL774cwFFJ5K3sptkaTNiESk4gYEEB51npv98BhMC2/4hNBRCQrS5sRR++/ZtZvfuTdjtL5K+qmYT7PbJbNz4BdHRJzIcIyEhjn/+2QDcR9oECxxJzjuYZgKffDI5V2N35fffvyEmJhK7fT5pEyyArpjmCL77bj42W1KexyKF19mzUWzc+AV2+xTSJlgA1bHb57B790YOHNhaEOGJFBpKskSkYAUGOioTBp1ncIUfCGIdRB4lNFSJlhRue/b8ARhArwx69MVuT+TAgS0ZjnHgwFZMMwHok0GPa4A67Nq16WpCzZbw8DCs1nqk/+Ccoi+xscc4dSoiz2ORwuvAgS3Y7Ulk/J4NBgzCw/ULXEo2Fb4QkcIhk8IYrmhZoRQ0q9UNMIE4oLSLHhcBsFgy/qfW3d0zTd/0HONbLNYrjjO7HK8nLvk5DRc9LqbqJyXVf9c/o/es4z2k94mUdJrJEpHCJXlWa6b/fIJOL6Eh4ekeKTNdIZnf6iKSp66/viuGYQE+zaDHJ3h5+dGoUZsMx6hduxlubj7ARxn0WA8co0OHAVcVa3a0aNEdm+0osNZlu2F8QkBAEypUSL/huJQcDRu2wdPTF/gkgx6fYhgWmjfvmp9hiRQ6+ppBRAqfwEAIDGRmWBiEf5mueTmOma7wyIbMmRNAUJBmtST/VapUkw4d7mLTpiex2xsAKR8qTeBzDOMVevWaiJeXT4ZjWCwWbr55MKtWLQBmAROBlDLp/wL34u5emr59x+fhK3Fo2jSIOnVacujQCOz25UCz5JZE4BVM8xv69/8Qw3A1yyUlhbd3aXr1Gs3SpS9hms2BgThmPk3gJyyWp2jffiCVKtUo2EBFCpiqC2ZB1QVFCqHkEvDOZYV0xt9fSwgl/128eI6ZM3uzfXsoFksL7PZGWCx/Y7eH06HDQMaP/zTLZVN2u51Jkzqxc+dGoBKOEu4RwCasVm9eeGFdprNhuenUqQimTOlGZORODOMmTNMfi+Vn7PZI7rzzaQYPfk5JlpCUlMgrr9zLxo2LsVgaYbe3wGLZjd2+mSZNOjNt2jK8vV0toRUp+lTCPZcoyRIpxFL224ocRTgNiUSzWpL/bDYbf//9A2vXfkp09EkqV67BLbeMoEmTjjlKSDZu/IJFi2Zy6tQxPDzcadOmD0OHvkDp0mXzLngXEhPj2bRpCRs3fsnFi+eoUaMR3buPpG7d6/M1DincTNNk+/YNrF79ASdOHKFcucp07nwvN9xwK1Zr3t9DKFJQlGTlEiVZIkVASMh/s1qnm+HftIJmtURERCTXaZ8sESk5UhXLeKLCeyqMISIiIgVKSZaIFA+p99sixLnf1pw52m9LRERE8peqC4pI8RIYSDBhBIen329LSwhFREQkP+RoJuvSpUts3LiRHTt2pGuLi4vjk08y2jNBRCQfpZrVmuk/3zmrpSWEIiIikh+ynWSFh4dzzTXX0LFjR5o2bUqnTp04duyYsz0mJobhw4fnSZAiIlckOdma6T/fuYQwcttpQkK0hFBERETyTraTrCeffJLrrruOEydOsHv3bsqUKUP79u05fPhwXsYnInL1VBhDRERE8lG2S7hXqVKFn376iaZNmwKO/RFGjx7N999/z7p16/Dx8cHf3x+bzZanAec3lXAXKWbCwlgeWpowAtPsreWK7t8SERGR1LJbwj3bhS8uXbqEm9t/3Q3D4O2332bs2LF06tSJzz777OoiFhHJDy4KY4SHd07XLTISFcsQERGRK5LtJKtx48b8+eefXHPNNWmOv/nmmwD07t07dyMTEckrgYGOZCssOdniaLouYQQQHtmQ0MgAwsNh8OACiFNERESKpGwvF5w9ezY///wz33//vcv20aNHM3/+fOx2e64GWNC0XFCkBMigCkbqZYX4B2hWS0REpITL7nLBbCdZJZWSLJESLCwMwsNZHnkDIad7EFmhGf7+WkIoIiJSUuX6PVkiIiVOqmWFhP5AGKedSwhTmkVEREQupyRLRCQrgYEEB0JwyH/FMkJDO6swhoiIiLiU7X2yRERKvFT7bQWdXqL9tkRERMQlJVkiIjkRGAiDBzOz31YGE0IQ6yDyKCEhGdbPEBERkRJGywVFRK7EZftthWzrQWhkMy0hzGdffDGbsLBluLt70K/fk7Rq1TPHY+zfv4UVK+aRmBhPixbd6Ny5YOr1m6bJ9u0/ExGxC2/v0rRs2YPSpcsVSCyFSWjoQv7+exXu7p706PEQ9evfkOMxTp+OZMuW1SQlJVC/fivq1WuRB5FmzXGNNxARsRtv7zLJ17hsgcRy/vxZ/vrrBy5dOk/16o1p0uQmDMMokFhyw+nTR9my5SeSkhJo0KA1deteX9AhSQl3RdUFP/30U+bPn8+BAwf49ddfqVWrFnPnzqVOnTr06dMnL+IsMKouKCJZCgtLU+49kgD8/dN3U/KVe9atC2Hu3PswzYRURw28vMrwxhtbqFKlTpZjxMae4Ykn2hIZuQf4759CT09fnnpqES1b9sj9wDOwa9evzJ17H5GROwEDMHF396Z370cYPPh5rFZrvsVSWGzevJpZs+4kPj4m1VGDqlXr89JLv+DrWzHLMeLjL/L222NZt+4TTNPmPN6gQVvGj/8Yf/8GeRC5azt2bOK11+7n2LFd/HeNS9G372PcffeMfLvGNpuNkJDJLFv2OomJl5yx+Ptfw2OPfUDjxjfmSxy5JS7uAm+9NZr16xemucYNG7Zj/PhPqFatXgFGJ8VRdqsL5ni54Ntvv824cePo2bMn0dHR2GyON3TZsmWZO3fuFQcsIlJkBQYS/MS1zPSf71xC2JDwdI/Qr05rWWEu2Lp1La++OhzTrA58DSQA0cBc4uISGDXqGhISEjIdw263M3r0tURGHgJeBs4AicAy4uOrMn16H/bu/TNvX0iyAwf+YcqUWzh+vCywDkgCjpGYOIGvvnqR9957LF/iKEz27v2bZ5/tRXx8JeBbHNfmLPAqx48fYfTo67Lcl9M0TWbN6k9o6GJM8+Xk8xOBb9i37wxPPtmJM2eO5fVLAWDfvs1MndqNqKgKwHoc1ziSxMTH+fLLF/jgg/H5EgfAu+8+ytKlL5GYOBE4lhzLOo4fL8uUKV05cOCffIvlatntdp5//g42bPgK03wVx++BBOBr9u49yZNPduLs2eMFG6SUWDlOst544w3effddJk+enOZbl1atWrFt27ZcDU5EpEhJVRhjJlPTPZ6o8J6KZeSCV14ZDHgBG4G+gDvgBzwCLMFmi2fBgjGZjvHdd28QGxsFfA48DpTDsYI+GPgZKMW8eaPy6iWk8dlnz5KUFIDd/hMQhOOf5qrADOAlVqyYx/HjB/IllsLirbcexDRTrnFvHNemLPAosJjY2CiWLZub6Rj//LOWzZt/wG7/PPm8ssnj9MFuD+XcuUtZjpFbPvvsWWy2Wtjtq4GOOK5xNeA54AW+++4NTpw4lOdxHDu2j++/fwvTfAmYjuN9ZgGCsNtXk5QUwKJFM/I8jtyydetPbN36I3b7F8DDOH4PuAN9sdtDiY09x/LlrxdskFJi5TjJOnDgAC1apF/L7OnpyYULF3IlKBGRIiu5MIarR3DQ+TTFMubM0azWlTh79hQwDMeH1Mv1BBrx88+LMh3jhx/eBurgSNIuVxm4n3378v4b/QsXYggLW4bdPhZwtST9QSyWMqxfvzDPYylM9u7dCowAqrhoDQbq8cMP8zMdIzQ0BIulcXL/y1XFbh/KTz99ctWxZuX8+bP8+ed32O0PA94uejyEYZRiw4bP8zyW9es/w2LxBUa6aPXBbh/Lb799w8WLsXkeS25Yt+5TLJbrAFdLe/2x2+/lp58+ze+wRIArSLLq1KnDli1b0h1fuXIl11xzTW7EJCJSPAUGOme6UpKtlFktJVs5kQQ0zqDNAK4lMTHz5YIXLkQD1yT3d6URkEhSUtIVxpg958+fTb6PJKPXUwrDqEFMzIk8jaMwcSwDTMRxDVxxXOOLF2MyaHeIjj6B3d6IzK7xuXN5/3ONjT2NadrJ+PWUxjAC8uUax8ScwDBq4DqhB2iEado4f/5snseSGxzXuCEFfY1FXMlxdcFx48YxZswY4uLiME2TsLAwPv/8c2bPns17772XFzGKiBQfgYGOZCvMUZlwaiSERzYkNDKA8HDHpJdkxQ34O4M2O/AXnp6uZgz+4+tbiejozYANcFVwYDOG4YGbW94W4fX1rYjV6onNthm4xUWPaOz2/VSsODRP4yhMLBYLhuGJaW7JoIcN+DvLwhcVK1bHav0x+d5x19e4XLkaVxdsNpQtWxmLxR27fQvQxUWPM9jth6hYMe9jqVixBqa5H4jBsbTucpuxWj2zVVSkMHBc4/XYbHZczxtspnz5vP+5iriS45ms+++/n//9739MmTKFixcvcvfdd/P222/z2muvMXDgwLyIMY158+ZRu3ZtvLy8aNOmDWHZ/Pp30aJFGIZB37598zZAEZHsSNlvK9WsVuQ2FcbIjsqVqwMLgXAXrQuBw/To8WCmY9xxR8pN/x+5aN0PfMQ117S5ukCzwdu7NB063InF8iZw2kWPlzGMRIKCSlb2fe21NwIfA3tdtH4KHOX22ydkOsbNNw/HZjuY3P9ye7FYFnLrrSOuNtQslSrlS/v2/bFYXsdRYOVyL2IYNjp1uifPYwkKGoxpxuMo9nK501gsb9Kx4114efnkeSy5oWvXEdhs+4DPXLTuxjAW0b378PwOSwTIYZKVlJTEJ598QteuXdmzZw/nz5/n+PHjREREcN999+VVjE6LFy9m3LhxPPPMM/z99980b96c7t27c+JE5lPBBw8eZMKECdx00015HqOISI6kKpahwhjZM3nyNzhmrNoBbwKHge3AE8AwPD1LM3jwrEzH6NJlCNWqNcRxb8oE4N/kcd4C2mKxmDz88Pt59hpSu+ee6ZQqFYfF0o6UBAL+BO4DnmPgwKmUL+/q/rPi69FHP8RqNXBc43n8d40nAvdRpUo9unTJfHavUaM2BAUNAe5PPm978jjzsFhuonLlGvTq9XBevgyne+6Zgbf3eSyW9ji+CDgK/IHj3sIXuPvuZylbtnKex1Ghgj8DB04FZuJ4f/2ZHMunWCztKFUqnkGDns3zOHLLNde0o2PHuzGM4cCTwA7gEPAGFktHqlWrTc+emRfBEckrOd4nq1SpUuzcuZNatWrlVUwZatOmDa1bt+bNN98EHOu2a9SowcMPP8xTTz3l8hybzUbHjh0ZMWIEP//8M9HR0XzzzTfZfk7tkyUi+cbFfltBQdpby5UdOzYxbVo3EhIu8d8eV1YqVKjGW2/txNu7dJZjJCQk8Mwzt7B9+y847vMCMChXLoBnn11BnTrN8ij69CIidvP222PZtu0n5zFf32oMHPg0t902pkhvEnulDh78l2ef7cGZM0f57xq7ce21bZkx4yc8PDyyHMNms7Fo0XSWLXuDS5eiATAMKzfeeDsPPTQvXxKbFBERu5Kv8RrnMT8/fwYNmkKPHqPy7RqbpsmKFfNYtGgWsbH/lbBv1uwWHnroTQICGuZLHLnFZkvis8+eYfnyecTFOe7Ts1jcaNv2DkaNehM/v0oFHKEUN9ndJyvHSVZQUBCPPfZYvi+7S0hIoFSpUixZsiTNcw8dOpTo6Gi+/fZbl+c988wz/PPPP3z99dcMGzYsyyQrPj6e+Ph4559jY2OpUaOGkiwRyR9hYRAezvLIGwgjkFA64++vjYwzsnnzatat+wQPD2/uvHNStjYhvlxs7CnWrPmY+PgLtGrVk/r1W+VBpNlz7Ng+jh7djZdXaRo3boubm3uBxVJY7N37N3/++R0eHt507Tr8iu4Xio+/yK5dv5KUlEDt2s2pUMHFbuH5JDJyL5GR4Xh7l6FRoxsL7BonJSWya9evxMWdJyCgUZHftDcu7gK7d/9GUlICdepcX+JmfyX/ZDfJyvEdvaNHj2b8+PFERETQsmVLfHzSrttt1ixvvvk7deoUNpuNKlXSlnOtUqUKu3btcnnOxo0bef/9911WQ8zI7NmzmT59+tWEKiJy5bIojOFKSS6W0aLFLbRo4apgRPb5+lbk9tvzbzPYzFSrVq/If9jNbfXr30D9+jdc1RienqVo3vzmXIro6vj718ffv35Bh4GbmzvXXdexoMPINV5ePoXmGovAFSRZKcUtHnnkEecxwzAwTRPDMJKr+BS8c+fOce+99/Luu+9SsWL2v/WaNGkS48aNc/45ZSZLRCRfJSdbM0PmO2e1iEzfLZyGhIQEaKZLRESkEMlxknXgQMHsOl+xYkWsVitRUVFpjkdFRVG1atV0/fft28fBgwcJDv5vE0LH3hvg5ubG7t27qVcv/beFnp6eeHp65nL0IiJXaPBgx6wWa9O3JS8rDNnWg9DIZoSHa1mhiIhIYZDjJKsgCl4AeHh40LJlS9asWeO8J8tut7NmzRrGjh2brn/jxo3Ztm1bmmNTpkzh3LlzvPbaa5qdEpGiI6OsKXlZIaE/EMZp57LCzE4RERGRvJfjJOuTTz7JtH3IkCFXHExWxo0bx9ChQ2nVqhWBgYHMnTuXCxcuMHz4cOdzBwQEMHv2bLy8vLjuuuvSnF+2bFmAdMdFRIqswECCAyE41bLC0NDOmtUSEREpQDlOsh599NE0f05MTOTixYt4eHhQqlSpPE2y7rrrLk6ePMm0adM4fvw4119/PStXrnQWwzh8+DAWS473VxYRKfpSlhWGz2fqttOE09ZZLKMkF8YQEREpCDku4e7Knj17eOihh5g4cSLdu3fPjbgKDe2TJSJFzmX7beGvwhgiIiK5Ibsl3HNl2qdBgwa88MIL6Wa5RESkAAQGEhx0npn+8xlMCGz7h9BQCAlxbMMlIiIieSvHywUzHMjNjchIF/WFRUQk/6Xab0uFMURERPJXjpOsZcuWpfmzaZocO3aMN998k/bt2+daYCIikgtUGENERCTf5TjJSimfnsIwDCpVqkSXLl14+eWXcysuERHJTSqMISIikm9ynGSlbOgrIiJFTPISwplhYSwP3ecojBHZkJAQFcYQERHJTTkufDFjxgwuXryY7vilS5eYMWNGrgQlIiJ5KIvCGK4eIiIikn05LuFutVo5duwYlStXTnP89OnTVK5cGZvNlqsBFjSVcBeRYi0sDMLDmRo5ylnu/XKRkeDvr2WFIiIi2S3hnuPlgqZpYhhGuuNbt26lfPnyOR1OREQKUsoSwuTCGJA+yQojgNBtzQgJqaBlhSIiItmQ7SSrXLlyGIaBYRg0bNgwTaJls9k4f/48o0aNypMgRUQkjyUXxoDd6ZqCWc5ybiAkcrCKZYiIiGRDtpcLfvzxx5imyYgRI5g7dy5+fn7ONg8PD2rXrk3btm3zLNCCouWCIlJc7DxyhHkrVrB6yw5M06RL82sY07MnTWvXzvrksDCWh5Z2FMugIZEEEBSkWS2AuLgLrFv3KevXfERMdBQVK9fm5m7306HDANzc3As6PBERyUXZXS6Y43uy1q9fT7t27XB3Lxn/cCjJEpHi4PP167n31bkYVCDJ3g+w4GZdis0exfsPj2V4165ZD5J8/5Zzvy064+9fsvfbio4+wbSnO3E4Yjc9DWhkmvxtsbDObqdpk5uY9uxKPD31b4eISHGRZ0lWanFxcSQkJKQ5ltmTFUVKskSkqNsdEUGTsQ9js98DvAt4JLckAmMwjPfZPPdVmtepk70BLyuWEUlAiS2MMeOZ7hzZupY19iSapDq+AehhsdKp+wM89NDbBRWeiIjksuwmWTku4X7x4kXGjh1L5cqV8fHxoVy5cmkeIiJSuLz1ww8YlAPe4b8EC8AdeAurUZU3vluR/QEDA2HwYGcJ+CDWEbnttLMEfEkREbGbPzf/yEuXJVgAHYFJdhtrf/qQ8+ejCyA6EREpSDlOsiZOnMjatWt5++238fT05L333mP69On4+/vzySef5EWMIiJyFdZs3UGSvS/g6aLVjSR7f9Zs3ZHzgQcPdu639USF9yDyqHO/rZJgx46fAeifQfsAID4xnr17/8y3mEREpHDIcZK1fPly3nrrLfr164ebmxs33XQTU6ZMYdasWSxcuDAvYhQRkTzmYmeO7Eme1QoOOu+c1SLyKHPmlKxZLRERkdRyvE/WmTNnqFu3LuC4/+rMmTMAdOjQgYceeih3oxMRkat2c/Nr2RXxNTb7m6SfzUrCzbqErs2vu7onCQwkmDCCw+f/VxgjtDPh4a67F4diGddeexMAXwL3umhfDHi6e1K/fqv8DEtERAqBHM9k1a1blwMHDgDQuHFjvvjiC8Axw1W2bNlcDU5ERK7e6B49gGjgASA+VUsi8BA2+3HG3nbb1T9Rqlmtmf7zCWIdDQlP9yguywqrV29EqxbdmWBx49/L2tYDLxgWunQdTunSZQsgOhERKUg5ri746quvYrVaeeSRR/jpp58IDg7GNE0SExN55ZVXePTRR/Mq1gKh6oIiUhws2rCBwa+8ikH5/0q4W5ZiN0/w/iMPM+zmm3P/STPIolJmusJpCP4BRXpWKzr6BNMmB3H4yC56JJdw/8tiZb3dRrMmHZn67A8q4S4iUozkSwl3gEOHDvHXX39Rv359mjVrdjVDFUpKskSkuNgVEcG8FSv4cfN2TNPk5ubXMOa227iuVq38DSTVflshp3sQWaFZkd5vKz7+IuvWhSRvRnw8eTPiB2jfvr82IxYRKWbybZ8sLy+vKz29SFCSJSKSR8LCWB5a2jmrFUkAQUFFM9ESEZGSIc/2ybLZbMycOZOAgABKly7N/v37AZg6dSrvv//+lUcsIiIlS2AgwU9cm2a/rZR7tVSZUEREirIcJ1nPP/88H330EXPmzMHD479NLa+77jree++9XA1ORERKgNTFMk4vKTaFMUREpOTKcZL1ySef8M4773DPPfdgtVqdx5s3b86uXbtyNTgRESkhkisTzuy3Nc1+W5rVEhGRoijHSdbRo0epX79+uuN2u53ExMRcCUpEREqowEDnrNZgQmDbP1pCKCIiRU6Ok6xrr72Wn3/+Od3xJUuW0KJFi1wJSkRESrBU+20tbvq8c1YrNFSJloiIFA1uOT1h2rRpDB06lKNHj2K321m6dCm7d+/mk08+4bvvvsuLGEVEpCQKDITAQGaGzHfurRUa2pnw8KJb7l1EREqGHM9k9enTh+XLl/PTTz/h4+PDtGnT2LlzJ8uXL+eWW27JixhFRKQkU2EMEREpYrK9T9b+/fupU6cOhmHkdUyFivbJEhEpRC7bWwv/AM1qiYhIvsnuPlnZXi7YoEEDjh07RuXKlQG46667eP3116lSpcrVRysiIpIdgYEEE0ZwuGMJYci2HoRGNiM83HV3JWAiIlIQsr1c8PIJr++//54LFy7kekAiIiKZclEYoyHh6R5aVigiIgUlx4UvRERECoVUhTFcWU5ysYxtzQgJqaBZLRERyTfZTrIMw0h3P1ZJuz9LREQKocGDXR4ODkteVsgNhEQOJjQygPDwDLuLiIjkmmwnWaZpMmzYMDw9PQGIi4tj1KhR+Pj4pOm3dOnS3I1QRETkSiTPdAWHhUFoiKNYRmRD5swJIChIs1oiIpJ3sp1kDR06NM2fB+urQBERKQouK5ah/bZERCSvZbuEe0mlEu4iIsVIWBiEhzM1chThNCSSAPz9tYRQRESyJ9dLuIuISNF39vx5wsLDMU2T1g0aUCGTfyDy2raDBzl08iQVy5QhsGFDLJZsF7y9cqmKZThntQpRYYzIyL0cPbobb+/SNG7cDjc394INSHJdZOQejh4Nx9u7DI0bt9U1FimmlGSJiJQAF+PjmfDBB3y0ejWXkpIA8LRaGdy5M3MfeIDS3t75FssvO3fy6Pz5/HnggPNYvUqVmD18OHd26JA/QQweXKgKY0RE7GbBWw+y9d/1zmPlfSvSf+A0brttrApNFQNHjuzkrbfGsH37OucxX99qDBo0mZ49R+saixQzSrJERIq5JJuN4OnT+X3HDibb7QwEDGCJzcZza9ey68gR1syahad73n+j/uuuXdw8eTLNbTaWAa2AvcDLJ08yYM4cPklM5N7OnfM8DiDLwhgZnZLbjh3bx6SJbalyKZYQoDNwDHg79hTvvPMI586dYdCgZ3L/iSXfREbuYeLEDsTFVQE+AzoBkcTGvsWCBWO5cCGaAQMmF3CUIpKbdE9WFnRPlogUdYt//pmBL77IWhwf4FP7DWgLfPjoowy7+eY8j6X9hAkk7t3Lz3Y7nqmOm8C9wCofHyI++SRfEr40ku/VSllCGO6fPtGLjAR//9wvlvHKy4PZ+/MitthtVLisbSow22Ll/Q+OUL58tdx7UslXL754N5s2/YLdvhkod1nrJCyWl/nwwyOUK1elIMITkRzI7j1Z+bAAXkRECtKHP/7ITRZLugQL4Eagu2HwwapVeR7H7ogIfgkP58nLEixwzKxNBU5duMB3f/yR57GkExjoWEIYdJ6Z/vMZTEi6RxDrIPIooaEQEpI7T3vp0nk2bVzMwy4SLIAJgAcmoaG59ISS7y5ejGXTpiXY7Y+QPsECeALTtLJ+/cL8Dk1E8pCWC4qIFHMRJ0/SxW7PsL2FabL45Mm8j+P0aQCuz6C9EeBtGEScOpXnsWQo9RLCywQ33M3y0DDnssKQkICrntWKjT1Foi2JFhm0+wG1DSunTh258ieRAhUdfQK7PZGM3/nlsFhqc/p0RD5GJSJ5TUmWiEgxV7lcOXYfOwYZrA7fZRhULls27+Pw8wNgN1DPRfsh4JJpOvsVqAwyp9T7bYVs60FoZLOr2m+rTJnyWA0Lu0w7t7hovwhEmHZu8Kuc88GlUPD1rYBhWDDN3UAXFz3OY5pH8NM1FilWtFxQRKSYu/fmm1ltmmx20bYDWG6aDLnF1Uf83HVdrVo0r1mTlwwDm4v2FwFfT096t2mT57FcsVTLChc3fT7NEkIXk19ZKlXKl8A2vXnDYuWCi/b5wHm7nU6d7rnKwKWglC5djlatemGxvIEjbb7cW5jmJTp1uju/QxORPKQkS0SkmBvUsSMtatemm8XCBzg+5l0CPgFutlhoHBDAkHyo6GcYBv8bMYL1QB/D4E8cBS/2AqOAecD0wYPx8fLK81iuWnKylXL/VhDrnPdq5TTZGjhoOhFuHtxsWFgL2IFIHPeoTcSg522jqVq1Tq6/BMk/99wzHav1EBbLLUAo/13lycBT9Or1CJUq1SzIEEUkl6m6YBZUXVBEioPTsbHc//rrfBsWRupf+j1btODDxx/Pl+WCKZb9/jsPv/02h8+ccR4r5+3Ns4MH83CvXkVvv6DkyoRTt91JeIW2RBKAv3/O9tvates33pw7lMOR4c5jXu5e9OrzOPfcMxOr1ZoHgUt+2rnzF1577X4iI3c6j3l4+NC372PcffeM/NmMW0SuWnarCyrJyoKSLBEpTvYdO8aG7dsxTZMO115Lw4CAAonDZrPx09atHDpxgoq+vvRo2RJvz8trDhYxYWEsDy3tKIxBQ/DPWWEM0zTZuXMTR47sxMurNC1b9qB06bJ5GrLkL9M02b79Z44e3Y23dxlatuyBj08huAdRRLJNSVYuUZIlIiLZlmq/rZDTPYis0CxP9tYSEZGCoX2yRERE8lsuF8YQEZGiSSXcRUREclvyflszQxzl3sMIJDS081WVexcRkaJDM1kiIiJ5JXlWa6b/fIJOL3HOaoWEFHRgIiKSlzSTJSIikpdSZrXCwlgeus9RGCOyISEhrouOaKZLRKToU5IlIiKSHwIDCSaM4PDkJYSRgeCfPtEKDW2oZYUiIkVckUuy5s2bx4svvsjx48dp3rw5b7zxBoEZ/Cv07rvv8sknn/Dvv/8C0LJlS2bNmpVhfxERkTyVPKsVHOZItlyZyijCIxsSGhlAeHjO9tsSEZHCoUglWYsXL2bcuHH8v737Do+qTPs4/p0zIQktCR0SUZoRUECKwYBIUJS2WaoCEgQWCxbcFRsWQAQEURAVFKysb5C6omBBFIgIIkGaKEqklyF0E0IgZc55/0gxCZkUkkza73Ndc+16ysN95gkkd+5n7mfu3Lm0b9+eWbNm0a1bN/bs2UPt2rUvuz4iIoLBgwfToUMHvL29eeWVV7jzzjv57bffCCimvWFERETSkq3sZGyWkbasUFUtEZHSpVTtk9W+fXtuuukmZs+eDYBpmtSvX5/Ro0czduzYXO93Op1Uq1aN2bNnc++99+bpz9Q+WSIi4nYZ99siDAcB+PurqiUiUtzK3D5ZiYmJbN26la5du6YfMwyDrl27smnTpjyNER8fT1JSEtWrV3d5TUJCArGxsZleIiIibpVhv60wwtP325o+XfttiYiUBqUmyTp9+jROp5M6depkOl6nTh2io6PzNMYzzzyDv79/pkQtq6lTp+Lr65v+ql+/foHiFhERuWJBQekt4NOSrbQW8Eq2RERKrlKTZBXUtGnTWLRoEcuXL8fb29vldc8++ywxMTHpryNHjrgxShERkSwyVLUm+c9Nr2ppvy0RkZKr1DS+qFmzJna7nRMnTmQ6fuLECerWrZvjva+99hrTpk3ju+++o2XLljle6+XlhZeXV4HjFRERKVRp+21laIwRsasl4eE11BhDRKSEKTVJlqenJ23btmXNmjX06dMHSGl8sWbNGh599FGX902fPp0pU6bwzTff0K5dOzdFKyIiUkTCwtJbwK+kDeGOsPR274GBl1+u5EtExP1KTZIFMGbMGIYNG0a7du0ICgpi1qxZXLhwgREjRgBw7733EhAQwNSpUwF45ZVXGD9+PJ988gkNGjRI/+xWlSpVqFKlSrE9h4iISIFk2G+LiPD0du9RZLe5MYSEKNkSEXGnUpVkDRw4kFOnTjF+/Hiio6O58cYbWbVqVXozjMOHD2MYf3/M7J133iExMZEBAwZkGmfChAm8+OKL7gxdRESk8AUFEUpqVcvRBrJJsiIJICKiS3qlS8mWiEjRK1X7ZBUH7ZMlUn7FxscTHhHBF5GRJCQmcmPjxjzYvTuBpXQz8w+//ZZH580jITERAM8KFZg5ciQP9eyZ5zESkpJYumEDSzds4Hx8PIH16/NAt260adw4z2NYlsUPv/3Gh999x6HoaGr6+TEkJIR/3HQTHnZ7vp+rII6ePs3j77/P97t2YTqdNPT3Z9q993L7jTfmeQyn08mXP//M/62L4MRfsTSoXZMRXW8npEULbDZbnsfZsX8/737zDb8dPoZPJW8GdAhmYKdOeHt65m0AV+0Go6IYt+suomoEa78tEZECyus+WUqycqEkS6R82nXwIN3HjeNETAy322z4WRZrDIOzpslbDz7II716FXeI+dLu8cfZvm8fHkB3UlrLrgISgab16/PbnDm5jnHszBnufP55djscdLLZCLAsNtjtHHU6eapvX14ZPjzXpCLZ6WTErFmEf/891xoG7UyTvYbBFtOk43XX8eWLL+JbuXIhPHHulmzYQNirr+K0LLoCvsBqIAYYfOutfPLkk7mOcT4+np4vTWHD7l3YjdY4zaZ4GFtJNqO4+5ZOhI95nAoeOS8asSyLF8LDeXnpUjyMeiSbnTFsDkxrPY3rXsXaKRO5ulatgj1sZCQrI6qkLCskEPwDVNUSEbkCZW4zYhERd7mYkEDPCROodf48+4BvLIvFwBHTZDTw6Lx5rNm5s5ijzLtpS5eyfd8+7gCOA58Dy1P//z+AP44c4ckPP8xxDMuy6Dd5Muejo9kJrLcsFgIHnE5eA15dvpwPvv0211gmLV7Mwu+/52Ngj2nyCRBpmnwP/Pbnn/xr1qwCPGnenY6NZeirr9LcsjgIfAMsIeU9eRRYuH49sz7/PNdx7pv9Npv+OAh8h9PcBnxCsvkHsJClGzcxfsGCXMf4v3XreHnpUmAqyeYhYCGm9T3wK4dO2vnHSy9T4N+HZtlvi12/aL8tEZEipCRLRCSLxRs2cPTcOZaaJtdkOF4RmAW0MQxmLl9ePMFdgfGffEJFYClQPcNxP2ARKRWcWStW5DjGht27idy3jw9Mk4wbYXgATwADgNeWLcsxGbiYkMDsFSt4DBgKZKx53QrMME2Wb97MvuPH8/xsV+rJDz8kybL4FMi45XxF4A3gBmD6smU5jnHo5EmWbtyA05wO3J7hjA0YhGWNYfaX33Dh0iWXY1iWxbRln2GzhQJjgQoZzl5PsjmfXYf2sfaXX/L1fNnKsN/W4hZTMu23pURLRKRwKckSEcnim23bCDYMrs3mnA0Yapp8s307pmm6O7Qr43QyAKiazamKwCDAnsuzfLN9O3Xtdrq6OH8vsCc6mkMnT7ocY+u+fZyNj2eoi/ODSfmm9O2OHTnGUhi+27mTDkCjbM4ZwHAgOiYmxzles3MnlmUCrj7gdC9xl+LYvGePyzGiz53j96MHsaxhLq7ojIf9KlZt2+ZyjHxLTbbSqlohrFNVS0SkkCnJEhHJItnppGIOFZlKgNOyCr6Ey01spCRTruTl06bJTifeZK4+ZVQxw3U5jZHx2qw8AbvNluMYhcU0zRyfuyJgpV7nSkqcNsDbxRUpf0JyrmOk/YnZsWHDu2jek9Sq1iT/uYScWZZe1QoPL/w/SkSkvFGSJSKSRVBgIBuB0y7OL7fZaNewIXY3d8K7UknAZ0ByNudMYJmLcxkFXXstB51OXC1a+wyoU7Uq19Su7XKMFtdcg5fdjqtPOq0CEi2LoOx21C1kLRs04HvgrIvznwK+Xl545NC0IiVOC1jp4orleBge3Niwocsx/KtXp45fTVLewezsJsm5l/ZF9Z6kVbX670yvauE4pqqWiEgBKckSEcliRNeu2D08eJCU7nsZfQyssiwe/ec/iyGyK3N3x45Ek/KJn4y1Nwt4ETgEdG3dOscxQoOCqF+tGqMMg5gs59YC79tsPNirV46d9Gr4+DAkJIRphkHWtiHHgScMg6DGjbnp2uwWahauGSNHkgyMIiUJzegjYA1wz2235TjGjY0aEXzd9XgYTwJHs5z9Fbsxhbtv6UhtPz+XY9jtdkb/ozuGbT4p7TcyOo9hPEgt3xr0Cw7O9ZkKJJfGGNm9RETENbVwz4VauIuUTys2b+auadOoC4Q5nfgCXxoG602TkV278t7o0fnaA6m4+Q4aRGx8PE2Be0j5Ddsi4FegkqcnF3Jp8gAQGRVFt3Hj8EhIYKhp4g+st9n4wrK4o1UrVowfj1eFCjmO8VdcHLc/9xy7Dh2iv2XRDtgLLDAMqlatyvevvEITf/+CPm6ePDN/Pq9++in+wDBSGoB8DvwINAsI4Nc5czJtcJ+dA9HRdHzmeU7GxOM0hwCBwDYM2zKa1b+K9VMnUb1qdp+G+1tiUhJ9pkzj620/Y9i6Y1q3AcexGx/jXeEiq18aT4dmzQrjkfMmMjJlby3HqJR279nQflsiUl5pn6xCoiRLpPz65cAB3li5kpU//URCUhKtGzXi4dBQ7urYsVQlWGk6P/ssG377LX0Jgwm0u/ZaNs+YkecxDkRH8+YXX7B0/XpiL14k0N+fB3r0YETXrrnuB5XmwqVLvPvNN3ywahWHTp2iZtWqhN1+O4/26kWdatXy/2AFsGTDBp7/+GMORUdjAT6VKjH8jjt4dcSIXBOsNKdiYpj95Zd8+F0EZ2JjCKhRiwe7386D3bpRNY/fN5KSk/l47VrmfLWaPceOUtmrIoNuDebfoaE0rlevAE9YAC4+nLXS0Ub7bYlIuaUkq5AoyRIREckgtdK10tGGcMJU1RKRckWbEYuIiEjhy7DfVsZmGdOn67NaIiJp8ra2Q0RERCSjoCBCiSQ0am76EsKIiC5ERaElhCJS7qmSJSIiIlcmQ1Vrkv/c9KqW9tsSkfJOSZaIiIgUTNp+W6kt4ENYh2PXGe23JSLllpIsERERKRwZqlpP13hfVS0RKbeUZImIiEjhUWMMERE1vhAREZEioMYYIlKOqZIlIiIiRUONMUSknFKSJSIiIkUrm8YYOI6pMYaIlFlaLigiIiLuERZGaOTfSwjDHWFEOAKIisr+ci0rFJHSSkmWiIiIuE9QUMrntSIjISKcSIKAgMsui3JUJsIRkH6LiEhpoiRLRERE3C9DY4zsrETNMkSk9FKSJSIiIsUjtaqVnbRlheN2nSGK4PRlhWFhbo5RROQKqPGFiIiIlDxpzTL671SzDBEpdZRkiYiISMkVFJTeAj6McNj1S3oLeCVbIlJSabmgiBQqy7LYHx1NTHw8DWrXpnrVqsUdUplx6MQJfvzjD6pXrcodN96IYRTP78ksy2Lf8eOcv3iRawowx78dPsyO/ftpVLcuwU2bXtEYFy5d4k+HA08PD64LCMBut1/ROFLCZWiWERo1hXGOUUQ5AvPcGMPpdHLs2B6SkxPx978Wb+/KbghaRMozJVkiUmhWRkbyYng42w4eBKCCYTCgY0emDR/O1bVqFW9wpdgvBw7Q7+WXOXDiBGbqscoeHtzfsyev33efW2P57KefmLhgATsOHQJS5viuW27hleHDuapmzTyN8cWWLTzw5ptEx8RgpR7z8/ZmwpAh/Kd37zyNEXfxIi+Eh/PR6tXEJiQA0KBGDZ4cMICHe/bEZrPl+9mkFEhNtiaFp7SAz60xhmVZfP31Oyxb9hqnTx8AwMurKnfeOYIhQyZTqZJ+CSQiRcNmWZaV+2XlV2xsLL6+vsQsWoRPpUrFHY5IifXfNWsY/sYb3G6z8ahlcRXwAzDDMMDHh00zZlBfiVa+/Xb4MO0ee4zKpsnTQBfgBPA28DVwV8eOLHnmGbfE8uG33zLyrbe4w2bjEcsiAFhPyhzbfX3ZNHMmATVq5DjG55s3M2DKFOoDTwM3AXuBmcAWYMLgwUwYPDjHMS4mJHDbc8/x6759PGaahAIXgPlAODCmd29mjBxZwKeVEi8yEqKiGLfrLqJqBOMgAH//zI0xPvroaZYvfxUYAgwHqgIrMYw3adiwGdOmrcPLS9/bRSTv4uNjGTTIl5iYGHx8fFxepyQrF0qyRHJ3Pj6egGHD6JeQwEdAxhrCcaCdYXD7rbfy8ZgxxRRh6dVy9GiOHDrEdqBBhuMW8Bgpydavc+bQrH79Io0j5sIFAoYNY1BiIu+ReY6PkTLHPbp04cN//zvHcWoNHky1CxeIBPwyHE8G/gmssdmIWboUb09Pl2PM/Owzxn70ERsti5uynHsdGAPseOMNWjVsmOfnk1IsMpKVEVWIJIgoAsE/gMBAOHHiF957rxXwKvBklpu2YrN1YPjwKfTtm/WciIhreU2y1PhCRAps8YYNXEhIYDKZf/gGqAf82zRZ8sMPxMbHF0N0pVdsfDy7Dx3iETInWJDyPk8A7MCzH39c5LEsXL+ehKQkXuLyOQ4ARpsmC7//nvM5zPH6X3/l9IULvEDmBAtS1q5PBhIti2nLluUYy3tff03/bBIsgEcBf8PgvW++yfmBpOzIpjFGVBSsW/c+NltdILvEvy2WdRdfffWeu6MVkXJCSZaIFNje48e5xm7nKhfnOwIJTifHzpxxZ1il3u9HjuAk5f3LTk3gWmB/dHSRx7IvOpqGhoG/i/MdgUvJyRw/d87lGJujotKvzU4bwBPYlfp5L5exnDjBLS7OVQDamyb7jh/PcQwpY1LbvYeGxLG4xRTCCMc3bj2W1Z6Ur4rsdOTkyX3ujFJEyhElWSJSYH6VK3PKsnBVw0j7kdlXS27zpV716gAcdnE+iZTlmO5YyuxXuTInLItLLs7nZY7rVasGuH6eE0AiUCOXboV+lSqRUxp2yDDwq1IlxzGkjEpLtgL3cF2NZOy2AzlcfAhPTz93RSYi5YySLBEpsLs6duSCafJRNuecwGzDoFPTpvjn0hRBMru6Vi1q+/jwFinJR1YLgXPA43nsyFcQd99yC7GmyX+zOZcMzDEMulx/PXVSE6nsDOrUiYqGwSwguw8Dv0XKN6VnBwzIMZaBnTsz3zD4K5tzG4BtpsmgTp1yHEPKuKAgBvbpg9P6hZT2LFnFYGM+1asPIjzc3cGJSHmgJEtECqxxvXqMuP12xthsvAHEpR6PAgYCmy2LCUOGFF+ApdiUoUPZDfQBdqceiwfmAQ8A9atXp3+HDkUex7X+/gzr0oXHbDbeIqWbH8Ae4G5gq2Ux/p57chzDw8OD+3r2ZAVwH3Ak9fg54CXgZSC4WTMa1q2b4zhjevcmycuLOw2Dn0hJ2JKApUBfwyCocWN63ZTdJ7akPOnVrh03XdsUu9EXWELKV4kFbMZuuwMv4zz9AoLBcYzp07WxsYgULnUXzIW6C4rkTWJSEo/OncsH332HJ1DNMDjudFKjcmXmjR7tlkSgrHpp0SImf/IJSUAt4DxwCWhUuzZbZs6keg7djQpTQlISj7zzDh9+9x3eNht+qXNcs3Jl3vv3v+lz8815GufemTP5JCICk5TPlZ0jpeIZFBjIhmnT8PDIfQvHbfv2cffUqew7eZLadjsXLYvzpsmdLVvyydNPU8NN74mUbGfPn2fQqzP5dsdW7EYVbLaKJDtPcXWtevwvtAft4uL+3m+LLvj7Z7/flohIGrVwLyRKskTy5/CpU/zvxx+JjY/nWn9/+gUH59iOW/ImLj6e8Z98wvb9+6lSsSKP9+7NbS1bFkssB0+cYPlPPxEbH0+gvz99r2COHWfO8MKCBew/fpxavr5MGDSIGxo0yNcYTqeT1Tt2sOXPP/H08KBH27Zq2y7Z+uXAAb7aupXE5GTaNWlCt9atsdvtKSfT9ttyjCKKwGz32xIRSaMkq5AoyRIRESkHwsPTq1oZ99tSVUtEMtI+WSIiIiJ5ldoCPn2/LccxIiJQYwwRuSJKskREREQg035bYYQTwjo1xhCRK5L7p4tFREREypOgIEKJJDRq7t+NMSK6EBWlxhgikjeqZImIiIhklaGqNcl/bnpVS0sIRSQvVMkSERERcSUoCIKCmBT+d1UryhFIeHhKYwxXt4hI+aYkS0RERCQ3YWGERv69hDDcEUYUAZdd5nCgZYUioiRLREREJE9Sq1qhkZEQEQ6Oyy9Jq3RFOALSbxGR8kdJloiIiEh+BAUR6iJ5Cg1XswwRUeMLERERkcKTsVnGmWVqliFSTinJEhERESlMqZ0JJ/XfmWm/rfBw7bclUl4oyRIREREpCkFB6VWtMMJh1y/pVS0lWyJlm5IsERERkaKSYb+txS2mZNpvS4mWSNmlxhciIiIiRS2b/bbUGEOk7FIlS0RERMRd1BhDpFxQJUtERETEndKqWpGRrIzYl763Vnj45ZsbgypdIqWRkiyRYrZj/37+b906ov/6i6tq1GD47bfTrH794g6rWIWvW8fYjz/mXFwcFT09ebB7d1665x7sdnuexzh86hRPfPAB2/btw26384927ZgcFkYlb+88j3EpMZGJCxfy6aZNJDmdtLjmGmaOHEnjevXy9TwLIiKY8dlnnI2Lo46fHxMGDaJnu3b5GuP42bN89N137D5yhCoVK9I/OJjbW7XCMPK+IOFiQgJLNmxg3a5dWJbFrddfz+DOnank5ZXnMSzLImLXLpZu3EhsfDzXBQQwomtXrqpZM1/PIyKkNMYgktCo1CWEjiDwvzzRiogI1LJCkVLGZlmWVdxB5MecOXN49dVXiY6OplWrVrz11lsE5fAvztKlSxk3bhwHDx7k2muv5ZVXXqFnz555/vNiY2Px9fUlZtEifCpVKoxHEAEgKTmZf73xBuHff089u51Ay2I3cMo0ebhHD9568MF8/QBdFjidTq4ZOZJjZ8/iA7QE9gMOoJKHB1HvvktAHn6Yn7hwIZMWLgSgHRAH/AZ4GwafjR9PtzZtch1j4++/c+dzzxHvdNIU8AN+Bkzg3//8JzPvuy/XMeLi47lh9GgOnTpFbeBaYDdwDmh5zTVsff11PDxy/13X3K+/5rF586gAtAVO2GxEOZ3c3KQJK198kZo+PrmOsXXvXkInTuR4TAztDAMD2GKa1KxShc/GjaNDs2a5jnEuLo4+kyax/vffaWy3E2BZbAMuWhav/utfPN67d65jiIgLkZEQFZXtqXGOUUQRiIMA/P0hLMzNsYlIuvj4WAYN8iUmJgafHL7/lqqf4BYvXsyYMWOYMGEC27Zto1WrVnTr1o2TJ09me/2PP/7I4MGDGTlyJNu3b6dPnz706dOHX3/91c2Ri1zu6Y8+YvH69XwIHHY6iTBNjpombwLvfP01k5csKe4Q3a7tmDEcO3uWKUA08ANwGFgMOJOTaf7ww7mOsXzTJl5auJAewBHgJ+BXYCdQ3zTp/dJLnI6NzXGM+EuXuOO556jpdBIJ/A5sAo4BdwGzVqzgg2+/zTWWjs88w7FTp5ifeu8G4DgwC9h16BA9X3op1zG+3LKFh955hwdME4dpst40+cPpZA2wf/9++k2eTG6/Kzv51190GzeO+ufP8ycpydVm02Qf0DQ+np4TJnD09OlcYxn0yiv8umcPq4A/nU6+T43p35bFmA8+YNnGjbmOISIupHYhzO6V1gJe+22JlB6lKsmaOXMm999/PyNGjKB58+bMnTuXSpUq8eGHH2Z7/RtvvEH37t156qmnaNasGZMmTaJNmzbMnj3bzZGLZHb2/Hnmfv014y2LEfy9btcTGA38B5i1fDkXExKKK0S3i7t4kd8OHGAY8BxQMfW4HbgbeA04f+kSKzZvznGcZ+bPpy6wDMi4qK8l8CWQaJo8PX9+jmO8EB7ORaeTz4CbMhyvDYQDTYCJn3yS4xh7jh3j10OHeAkYxt9z7AX8G3gUiNixg7/i4nIcZ9qSJdxqs/EW4Jt6zAbcBsw3TX744w9+/P33HMd4b/Vq4uPj+cI0aZLheENghWliJiYyd9WqHMfYuncvq3fu5D3TpFtqDABVSZmbbjYbLy9alGvCJyJXIEOzjDDC1SxDpBQoNUlWYmIiW7dupWvXrunHDMOga9eubNq0Kdt7Nm3alOl6gG7durm8HiAhIYHY2NhML5HCtnr7di4lJ+Nqwdl9wLmLF/lh9253hlWsXv30U5KB+12cH0bKP1iTFi/OcZyDx4/zL1KSmayuBToBX//8c45jLP/pJ24EWmdzzoOU+Tl65gymaboc440VKzBTr83OfUAS5FgROxMby4Y9e7jPstKTmoy6AVfZ7XyeS+L5+Y8/0seyqJXNOT/gbtPk81yqUCsiI6lpt5PdgkAbcJ9lsf3QIY6dOZPjOCJyhTLst5WxqjV9uqpaIiVRqUmyTp8+jdPppE6dOpmO16lTh+jo6GzviY6Oztf1AFOnTsXX1zf9Vb+cNyCQonExMRGA6i7O10i7rhxVsv66cAH4+9mzqgJUIKUZRU5MXL+vALWA5OTkHMdITE52GQekxGjlMs6FS5cAqJbDGADnL150OUZuXydG6vgXc3lPLiYk5Pie1CD3r7WLCQn4klJZdDUGeYhFRAooKChTVSuEdelVLSVbIiVHqUmy3OXZZ58lJiYm/XXkyJHiDknKoFYNGwLwjYvzaQu3WjRo4I5wSoT+HTti4+9nz2oDcAkIbto0x3GqeHnxtYtzF4HvgGvq1s1xjOsCAvgRcFXH/oqURhyenp4uxwhp0QKA1S7Opz3nHa2zq5elqFutGrWrVHH5dXIY+M3ppGUuXyctGzdmtWGQXd3NAr42DFo2bpzzGA0asM/p5E8X51cBfhUrUl9dBkWKXoaq1iT/uelVLS0hFCk5Sk2SVbNmTex2OydOnMh0/MSJE9R18QNT3bp183U9gJeXFz4+PpleIoWtTePGBDVuzHOGwdks544DEw2Dbq1a0SiXZKAsufX666nk6cnLpHQUzOg8MIaUStbsBx7IcZy7O3fmW+DTLMctYDwQA0wdOjTHMaaPGMEl4Cm4LDH5BvgM6JlLH+Vht91G1QoVeJqUboIZHQNeBOr4+NAxh65+HnY79/fsyQeGwZYs55KAx4Eq3t4MvvXWHGN5qGdP/jRNXs/m3Fxgl2kyKpeuqwM6dqRm5cr8x2Yja81rJ/COYTDizjvxziHxFJFClppsqTGGSMlTapIsT09P2rZty5o1a9KPmabJmjVrCA4Ozvae4ODgTNcDfPvtty6vF3GnDx9/nOMVK3KDYTABWAQ8C7Q0DBJ9fHjnkUeKOUL3WzFuHH8BrYAnSHlPpgBNge3AM3ffnWP1CFKSsKtr1GAAMICURhXzgGBSGjT0ad8+x+oRQLsmTRjapQvvktIC/m1gATAY6AXU8vHhv//5T45jGIbBR088wZ7U+CemPs9Y4AbglM3G/55/PscxAJ4dMIBWjRtzq83G/cBC4HXgRsNghWHw8ZgxVKlYMccxbmnenGf69+dJ4E6bjQ+B+UBPm42Hgcf+8Q/uuPHGHMfw9vQk/KmnWGMYtDIMZqTG8hDQwTC49uqreXHw4FyfR0SKgBpjiJQ4pWqfrMWLFzNs2DDmzZtHUFAQs2bNYsmSJfzxxx/UqVOHe++9l4CAAKZOnQqktHDv3Lkz06ZNo1evXixatIiXX36Zbdu2ccMNN+Tpz9Q+WVKUDkRH88qnnxK+di0XEhPx9fZm2B138Ey/fvjXyOlTQWXXT3v20Pfllzl97hzJpPwmqLK3NzNGjuT+bt3yNEZiYiL3zprFyk2biHc6AahRqRKje/dmQj4SgVc//ZTX/vc/Tp4/D0BFw6DbTTex4Ikn8rypccSuXTz0zjv8efQoTlIaZ7Ro1IgPH3uMGxs1ytMY8QkJvP7558z78kuOnDuH3Wajd/v2PN2/P+2vuy5PY1iWxZING3h9+XI2790LQNuGDfl3nz6EhYRgs2XXWuNy2/bt45Vly/h00yaSTRN/X1/u79GDJ/r0oar+jRQpfpGRrIyoQiRB6XtrhYRoE2ORwpLXfbJKVZIFMHv27PTNiG+88UbefPNN2rdvD0BISAgNGjRgfob2zEuXLuWFF15I34x4+vTp2oxYShyn08mFhASqeHuXuw2IXUlMTOTgyZPUr1GDirlUalwxTZPTsbF4e3oW6O9vXHw88YmJ1PTxueL5SUxM5PT589T29c3TBsTZsSyLuIsX8fb0pMIVjgF/N7mo6JVdD8a8SXY6uZiQQJWKFfOcoImIm6RubLzS0YZIgoigC/7+EBioZEukoMpskuVuSrJERESkVEpNtsY5RqVXtdKSrayUfInkTV6TrCv/VaiIiIiIlFxBQRAUxKTwuelVrShHIFEEXHZpVJQqXSKFSUmWiIiISFkWFkZoZCShUSnJFtkkWeG7WhLhaKlkS6SQKMkSERERKetSq1qhkZHAnstOh7IyZVmhI5AIR0D6LSJyZZRkiYiIiJQXrjKnLMsKIyK6qKolUgBqYyYiIiIimfbbCjmzTPttiRSAkiwRERERSREUBGFhTOq/kzDCCWEdOI4RHp7SrFBE8kZJloiIiIhkFhSUXtUKIxx2/ZJe1VKyJZI7JVkiIiIicrnUqlZoSByLW0xJr2pFRCjREsmNGl+IiIiIiGvZ7LelxhgiOVOSJSIiIiK5y7Df1rhdZ4gimAhHAFFRLi8XKbeUZImIiIhI3qRVtSIjWRmxj0iCyG5z4yhHZaZPDyAkRJUuKZ+UZImIiIhI/gQFEUpKVSs7K9GyQinflGSJiIiISP6lVrWyk76s0AFRjsD0ZYVaQijlhboLioiIiEjhSttvK7UFvPbbkvJGSZaIFLoLly5x4tw5kp3OKx4jMSmJE+fOcTEhoRAjuzKx8fGcionBNM1ijSPZ6eTkX38Rd/FiscZRWErSHItIEUltAZ++31ZqC/jw8OIOTKRoabmgiBSan/74g5eXLOHLrVsxLYvqlSox4s47ef7uu6lWpUqexog+d47Jixfz8Zo1nE9IwMMw6HvzzbwwcCAtGzYs4ifI7MstW3hl6VJ++OMPAK6qVo1RvXrxZN++eFWo4LY4zsfHM3XZMt5ftYpTcXEAdGvVimcHDqTzDTe4LY7C4jhzhslLlvB/a9YQl5iIh2HQv0MHXhg4kBuuuaa4wxORwpa6rDA0MhIiwokkiChHoBpjSJlmsyzLKu4gSrLY2Fh8fX2JWbQIn0qVijsckRLriy1b6DdlCk2BB02Tq4AfgPcNg4C6dVk/fTo1fHxyHOPo6dPc8tRTXDh3jlGmyU3APuAdw+CY3c43kyZxS/PmRf8wwOwvvmD0u+/SyTAYYZr4AV8BH9ts3HrDDXzx4otuSbRi4+PpMnYsUYcP8y/T5DYgGnjPMNhhWSx48kkGdupU5HEUlsOnTnHLk09yKSaGUaZJO2AvKXN83MODbydPJrhp0+IOU0SKSmQkREX9vd8WXfD3V2MMKT3i42MZNMiXmJgYfHL4uUZJVi6UZInk7lJiIlcNG0bH+HiWWRYZU489QAfDYGC3brz90EM5jjNg6lQ2b97MptQkLU080N1m41jNmvz53nsYRtGudD586hSN7ruPRy2L1wFbhnMRwB02G6/+61/8p3fvIo0D4Jn583n7s8/YYJq0ynDcCQwFVnp6cuzjj0vNv099J09m288/s8k08c9w/ALQzTA4WasWf8ybV+RzLCLFLDXZGucYRRSBOAjA31+NMaTky2uSpe9iIlJgyzZu5MyFC8zIkmABXAeMNk3+b80aLly65HKM6HPn+OynnxibJcECqARMtyz2nzrFtzt2FG7w2Xh/9Woq22xMJnOCBRACDLAs5n75ZZHHkZSczAfffMMDWRIsADvwGnAxMZEFERFFHkthOHbmDCu2bOG5LAkWQGVgmmny54kTrNu1qzjCExF3UmMMKeP0mSwRKbDfDh+mgd1OExeNLroCExMTOXL6NE2vyppCpYg6dgynZXG7iz+jPVDZMNh95Ajd2rQplLhd+e3wYW62LFx9iqwrsCg6GqfTid1uL7I4Tvz1F2cuXHD5nvgD19vt7D5ypMhiKEx7jh7FzGGOOwLeNhu7jxzh9lZZ00oRKZPCwtLbva90tCHcEUaEI4DsfnekZYVSmijJEpECq+ztzTnLIhHwzOb8ydT/reTlleMYaddm94mcWOCSaeY4RmGp7O3NfpsNXKymPgl4eXgU+ZK2tGc96eK8CZwm5/e1JMk4x02yOf8XkGBZVPLM7qtIRMqsLI0x8A+47JJIR0D6fltpt4iUZFouKCIF1jc4mBjTZEk25yxgns1G24YNqV+zpssxbmzYkGtq1GCei/MfAthshN50U8EDzkXfm29mh2mS3YqVROBDw6BfcDA2W9bFhIWretWqhDRvznuGQXbN478AHE4n/YKDizSOwtK2SRPqV6vmco7fBzwMg15umGMRKYGCgggNiSM0cM9lr4zLCtNawGtZoZRkSrJEpMCuv/pq+gYF8bBhsIyUpgwAZ4HHgNWWxfODBuWYlNjtdp4bOJBPgBdIqVwBJAEfAc/abPyra1f8a9QougdJFRoURMv69elvGHxPSqIIcAS422bjsM3Gk/36FXkcAM8OHMgm0+Q+/q5omaQkWCMMg9tvuIGgwEC3xFJQHnY7zw4cyMfABOB86vFE4APgBZuN++68k7rVqhVbjCJSzFKrWpe9Muy3FXJmmfbbkhJP3QVzoe6CInkTd/Eig155hS+3bcPfbscf+NU0MQ2D1++/n4d79sx1DMuymLJkCS9+8gkVbTaa2mwcBk46ndxz6618+O9/u21/KseZM4ROnMi2gwdpZLfjC+x0Oqni7c2Cp57iH26stvx3zRpGzZmD6XTSwjA4CRxxOuly/fX87/nn87wHWUlgWRYvLVrES4sWUSl1jg8Bp5xOwjp35oPHHsPTjXuQiUgpFBnJyogqKfttEQj+AfqslriNWrgXEiVZIvmz5c8/WfzDD8TGx3Otvz/DbruN2n5++Rrj6OnT/HftWg6ePEmNqlUZ0rkzLRo0KJJ4c2KaJmt27mTlli0kJCXRulEjhnTuTNVi+LfgTGws/7duHbuPHKFKxYr0Dw6mQ7NmRb5ksagcOXWK/65dy6FTp6hZtSpDQkK0EbGI5F2G/bbCz/TAUaOlGmOIWyjJKiRKskRERERKqGz22woJUaIlRSevSZa6C4qIiIhI6ZT6ma1J4Skt4CMJIiKiC1FRqmpJ8VLjCxEREREp3dQYQ0oYJVkiIiIiUvqldiGc1H9nert3HMfU7l2KhZIsERERESk7UvfbSttbi12/aG8tcTslWSIiIiJStmTYW2txiynpVa2ICCVa4h5qfCEiIiIiZVMujTFc3SJSUEqyRERERKRsCwsjNDKS0Ki5jNt1hiiCiSLgssscDoiKgrCwYohRyhQlWSIiIiJS9qVVtSIjWRmxD7JJsiIJIMoRyPTp2m9LCkZJloiIiIiUH0FBhBIJ7LnsVCgrtd+WFAolWSIiIiJSvrjKmoKC/l5W6IAoRyARjgAtIZR8U3dBEREREZE0afttpbaA135bciWUZImIiIiIZJXaAj59v63UFvDh4cUdmJQGSrJERERERLKTYb+tjFWt6dNV1ZKc6TNZIiIiIiI5SW2WERqV/X5baowhWamSJSIiIiKSmwxVrUn+c9OrWlpCKNlRJascuJiQwLIff+TXQ4eo5OVFn5tvplXDhsUdlpQwpmmy9pdfWLdrF5Zl0bFZM7q3aYPdbs/XOHuOHmXZjz8Sc+ECgQEBDLzlFqpWqlREUYuIiLhZ2n5b4X9XtaIcgYSHX77vFqjSVV7ZLMuyijuIkiw2NhZfX19iFi3CpxT+oPjFli0MmzGDs/HxNLLbOWdZnDNNQtu2Jfypp0rlM0nh2x8dTZ9Jk9h15Aj17HbswFGnk2vr1GH5uHFcf/XVuY5xKTGR+958kwXr1+NjGNSy2TjgdFLZy4t3HnmEISEhRf4cIiIibhUZCVFRKcmWf9/LTkc5KuMgAH9/JVtlRXx8LIMG+RITE4OPj4/L65Rk5aI0J1mb9+yh0zPP0MOymGFZNAGSgGXAKMMguEULvn7pJWw2WzFHKsUpNj6eGx99FI+zZ3nPNLk19fhm4EHD4GSVKuycPZvafn45jjN0xgyWrV/Pm5bFUMAbOAI8BywAvpowge5t2xbhk4iIiBST1GQrO+Mco4giEAcBhIQo0Srt8ppkablgGfbykiVcByyzLCqkHqsADAa8TZN+O3eyec8ebm7atPiClGL38dq1HD59mj+BjItIbwZWmyaN4uKYt2oV4wYNcjlG1LFjhH//Pe8C92c4Xh/4L3DYZmPSwoVKskREpGxKXUKYnYzLCtUso/xQ44syKj4hgS9+/pkHTTM9wcqoN3CV3c6SjRvdHZqUMEvWr6cXmROsNHWAu0yTJd9/n+MYyzZupKphMDSbcwbwsGXxY1QUx86cKXjAIiIipUnGZhlnlqlZRjmhJKuMunDpEqZlkf1HMFMm3p+UpWJSvsVeuODy6wTgKnL/Oom9eJGaNhveOYxBHsYREREpk1I7E07qvzPTflvh4dpvq6xSklVGVa9ShRqVK/ODi/NngV9Mk0B/f3eGJSVQYP36/GAYuPpw5veGQeBVV7k4m+K6gAAOOZ0ccjUG4O3hwVU1ahQkVBERkdItKCi9qhVGOOz6Jb2qpWSrbFGSVUbZ7XZGduvG+4bB7iznLGA8YBoGw2+/vRiik5Lkge7d+dU0+W825z4HNpgmD/bsmeMYd99yC1W9vRkLOLOcOwy8aRjcExKiVu4iIiIZ9tta3GJKpv22lGiVHUqyyrBnBwygQUAAHQ2DF0ipJiwF7rTZmAO8fv/9uXaMk7Lv9latGNm1K/8ChgFfA6uBB4ABNhv9b76ZvjffnOMYlb29mTd6NEtsNm41DBYA64HJwE2GQaXq1ZkyNLtPbImIiJRTaUsIU6taIaxTVasMUQv3XJTmFu4A5+LiGL9gAf/97jvOJyQA0K5RI54bOJC+wcHFHJ2UFKZp8ubKlbzx2WccTG1OEeDnxyOhoTzVrx8eedyQ+Nvt25m0cCE//PEHABUrVGBw585MDgujXvXqRRa/iIhIqZbaAn7crruIqhGcvrdWWFhxByZZaZ+sQlLak6w08QkJHD19mkpeXlxVs2ZxhyMllNPp5ODJk1iWRYM6dfKcXGV1/OxZYuPjCahRgyoVKxZylCIiImVUZCQrI6oQSRBRBIJ/gNq9lzBKsgpJWUmyRERERKQUSK1qrXS0IfxMDxw1WuLvr721Soq8Jlml5jNZZ8+eZciQIfj4+ODn58fIkSOJi4vL8frRo0dz3XXXUbFiRa6++moee+wxYmJi3Bi1iIiIiEg+qDFGmeBR3AHk1ZAhQzh+/DjffvstSUlJjBgxggceeIBPPvkk2+sdDgcOh4PXXnuN5s2bc+jQIUaNGoXD4WDZsmVujl5EREREJB+CgiAoiEnhc1npaEMkQUREdCEqKvvLVekqWUrFcsHff/+d5s2bs2XLFtq1awfAqlWr6NmzJ0ePHsU/j3s9LV26lLCwMC5cuICHR97ySy0XFBEREZFilWEJYSSXZ1JRBKpZhpvkdblgqahkbdq0CT8/v/QEC6Br164YhsHmzZvp27dvnsZJezNySrASEhJISO3CBylJloiIiIhIsUmtaoVGRhLK2stOr4yITGmW4Qhk+vQAQkJU1SpupSLJio6Opnbt2pmOeXh4UL16daKjo/M0xunTp5k0aRIPPPBAjtdNnTqViRMnXnGsIiIiIiJFwkXmFEokoVGXLyvUEsLiU6yNL8aOHYvNZsvx9UfqfjsFERsbS69evWjevDkvvvhijtc+++yzxMTEpL+OHDlS4D9fRERERKTIZGiWMcl/bqZmGeHhxR1c+VSslawnnniC4cOH53hNo0aNqFu3LidPnsx0PDk5mbNnz1K3bt0c7z9//jzdu3enatWqLF++nAoVKuR4vZeXF15eXnmKX0RERESkxMimWUaUI5DwcO235W7FmmTVqlWLWrVq5XpdcHAwf/31F1u3bqVt27YArF27FtM0ad++vcv7YmNj6datG15eXqxYsQJvb+9Ci11EREREpEQKC0v5/FbqEsJwRxgRjgCiotQYw11KxT5ZzZo1o3v37tx///1ERkayceNGHn30UQYNGpTeWfDYsWM0bdqUyNQNBGJjY7nzzju5cOECH3zwAbGxsURHRxMdHY3T6SzOxxERERERKVoZlhCGEZ6+hHD6dO235Q6lovEFwIIFC3j00Ue5/fbbMQyD/v378+abb6afT0pKYs+ePcTHxwOwbds2Nm/eDECTJk0yjXXgwAEaNGjgtthFRERERIpFUJAaYxSDUrFPVnHSPlkiIiIiUiak7rc1zjEq095agYGXX6rkK3tlap8sEREREREpIBeNMaIIuOxSVboKRkmWiIiIiEh5kqUxBtkkWeG7WhLhaKlk6wopyRIRERERKW9Sq1qhkZHAnstOh7IyZVmhI5AIR0D6LZI3SrJERERERMorV5lTlmWFEf9rSVRUDVW18khJlpQqjjNn+Nebb/L9zp1cMk0qAM0bNmTOqFF0bNbMrbGEr1vHC+HhHD11ChOo4ulJ/06dmPfQQ3h6erotjqTkZN5fvZq5X37Jb0ePUtnLi34dOvBE377ccM01boujsMTGxzP7iy/4YNUqDp45Q43KlbmnSxee6NOH+nnYVw/AsiwWrV/P7JUr2bJ3Lx52O93btOGJvn3p2Lx5ET+BiIhIGZFhWeG4M3cR5QjWflt5pO6CuVB3wZLjQHQ0LR95hMSkJAYD7YEDwPvAeWDh008z4JZb3BLLUx9+yIzPPuMaYCRQDfgSWAXUr1GDP+fNc0uilZiURO9Jk/h25056A7dbFieB+YbBCcNgxbhx3NG6dZHHUVjOnj9Pl7FjiTp6lMGWRRCwD/jIMDAqVWLt1Km5Jo6WZTFqzhzeXb2arjYb/7QsLgDhhsFu0+T90aP51x13uONxREREyo7ISFZGVElplkEg+AeUy6pWXrsLKsnKhZKskqPpqFEcdzjYALTIcPws0AXYa7dz/n//wzCKdo/tPceO0fyhhxgAhAMVMpz7FBgADO7cmQVPPFGkcQBMW7aM8f/3f3xlWXTNcPwS0M9m46eKFTkyfz6Vvb2LPJbCMGLWLFZERLDeNLk+w/EzwG2GgeXvz845c7DZbC7HWLJhAwOnT+cjYHiG4ybwEPCBzcbed9+lQZ06RfEIIiIiZVdqC/iVjjaEn+mBo0bL9Bbw5SXZymuSVbQ/jYoUkkMnTvCnw8EzZE6wAKoDbwDxTiezVqwo8ljGfPABdmAOmRMsgH5AKPD5xo1FHodpmry9ciVDsyRYAN7AHMvir/h4Fq1fX+SxFIaz58+z8PvveTpLggVQA5hhmuw6epQNu3fnOM6clSsJMYxMCRak/GM3E6his/HuN98UWtwiIiLlRlBQyhLCkDgWt5hCCOvAcYyIiJT8S/6mJEtKhW927MAkJYHJTmegErDml1+KPJZdBw8SDNR0cb43cCE5mbj4+CKN41RMDEfOnXP5njQEWtrt/Lx3b5HGUVh+O3yYBKfT5fPcDlS02XJ9nq379hFqmtmeqwzcZpr8/OefBYpVRESkXEtNtib5zyWMcEJYR0QEhIcr2UqjJEtKhUqpn2867+J8ApAEeFfIWlsqfBXsdmJzOJ8Wo6dH0faV8Ux9VlfviZV6ztMN70lhSHu/XD3PRVLmOLf31dNudzkGwHmbDa9S8p6IiIiUaKlVrUn+cwk5syy9qhUeXtyBFT8lWVIq9AsOxtNmY76L84tJ+QF8VPfuRR5Lr5tuYgewK5tzJvARUNvHp8gbX1SrUoWbmzRhvs1Gdh+s3ADsdzrp1a5dkcZRWFo3akSdqlVdzvFCwGlZdG/TJsdxegYF8X92O8nZnDsMrLUset10U8GCFRERkRRpVa3+O9OrWjiOlfuqlpIsKRUqeXtzR9u2vAfMhvQfoC3gO2A0EODn55ZOei+HheFtGPQD/shwPA54BNgJPN2/f5HHAfD0XXex1rJ4lpRKT5rtQJhhcOM119C1VSu3xFJQnhUq8Hi/fswD3ibzHH8DjDEM+gcH07hevRzHebx3bw6aJsOBvzIcPwD0NQxq+/gwpHPnQo9fRESkXAsKSq9qhREOu34p10sI1V0wF+ouWHIkJyfT5vHH2XXoEHVIaeG+F9gNVKtYkR2zZ3N1HvdRKqhvt28ndOJEEkyTYFKab6wjJdEJCwnh4zFj3BIHwGvLl/P0Rx/hZxjcYpqcMAwiTZPm/v6smjQpz3tLlQSmafLovHm88/XXXGW309bpZK9h8Jtp0uX66/ls3Lg8/T1c/MMP3DtzJh6mSYhlccFmY71lUdfXl69feolWDRu64WlERETKqdQuhOMco4giEAcB+Ptnf2lp229LLdwLiZKskmfh998zddkyos+do2rFiozo2pWx/fvjUcSfgcrqbGwsYz/+mK+2biU5OZlr/f2ZPmIEwU2bujUOgL0OB++tXs1vhw9T2dubfsHB9L355lLzeaystu3bxwfffsvBEyeokVp5uuPGG/PVnv/42bO8v3o1W/78kwoeHnRv04Z7OncuNe3sRURESr3wcFY62hBJEPgHXHY6ylG51O23pSSrkCjJEhERERG5QqlVreysdLQhnLD0SldpqGrlNcly76/+RURERESk/AgKclmmCo2MhIhwIgkiyhHI9OkBhISUnqpWTpRkiYiIiIiI+wUFEUokoVFz05cVRkR0ISqKUrWEMDvqLigiIiIiIsUjtQV8+n5bqS3gS/t+W0qyRERERESkeKXtt5XaAr6077elJEtEREREREqGDFWtMMJLbVVLSZaIiIiIiJQcGZYQZqxqTZ9eeqpaanwhIiIiIiIlTy6NMVzcUiIoyRIRERERkZIptQV8aGRKsjXOAVGOQKK4fHNjhyNlS66SsN+WkiwRERERESnZUpOtSeEpVS2ySbIiCSDKEUh4eECxt4BXkiUiIiIiIqVDWFjKJsbsuexUKCtZ6WhD+K4eRDhaFut+W0qyRERERESk9HCVNaUvK5zCOMcoohyBRDgCcrylqCjJEhERERGRsiHLssJIgoj4X0uiomq4taqlFu4iIiIiIlK2ZNhvK60FvDv321KSJSIiIiIiZU/qfluT+u/MtN9WeHjR77elJEtERERERMquoKD0qlYY4bDrl/SqVlElW0qyRERERESkbEutaoWGxLG4xZRMSwiLItFS4wsRERERESkfcmiMkZ0rbZahJEtERERERMqX1P22QqPmMu7MXUDLyy6JclQmwhFAVBSEheVveCVZIiIiIiJS/qRVtSIjIWrpZadXklLpinIEMn16ACEhcMMNeRtaSZaIiIiIiJRfqclWVmmVrvRlhRFd+O23vA2pJEtERERERCSr1OQrfVmhA347Xi9Pt6q7oIiIiIiIiCtp+235z2Ugi/N0iypZIiIiIiIiuQkLo0d8PAzK/VJVskRERERERAqRkiwREREREZFCpOWCubAsC4DY+PhijkRERERERIpTWk6QliO4YrNyu6KcO3r0KPXr1y/uMEREREREpIQ4cuQIV111lcvzSrJyYZomDoeDqlWrYrPZcrw2NjaW+vXrc+TIEXx8fNwUoeRG81IyaV5KJs1LyaR5KZk0LyWT5qVkKivzYlkW58+fx9/fH8Nw/ckrLRfMhWEYOWap2fHx8SnVXzxllealZNK8lEyal5JJ81IyaV5KJs1LyVQW5sXX1zfXa9T4QkREREREpBApyRIRERERESlESrIKkZeXFxMmTMDLy6u4Q5EMNC8lk+alZNK8lEyal5JJ81IyaV5KpvI2L2p8ISIiIiIiUohUyRIRERERESlESrJEREREREQKkZIsERERERGRQqQkS0REREREpBApySqgs2fPMmTIEHx8fPDz82PkyJHExcXl6V7LsujRowc2m43PPvusaAMtZ/I7L2fPnmX06NFcd911VKxYkauvvprHHnuMmJgYN0Zd9syZM4cGDRrg7e1N+/btiYyMzPH6pUuX0rRpU7y9vWnRogVfffWVmyItX/IzL++99x6dOnWiWrVqVKtWja5du+Y6j3Jl8vv3Jc2iRYuw2Wz06dOnaAMsp/I7L3/99RePPPII9erVw8vLi8DAQP1bVgTyOy+zZs1K/x5fv359Hn/8cS5duuSmaMu+9evXExoair+/f55/ro2IiKBNmzZ4eXnRpEkT5s+fX+RxupUlBdK9e3erVatW1k8//WT98MMPVpMmTazBgwfn6d6ZM2daPXr0sABr+fLlRRtoOZPfedm1a5fVr18/a8WKFdbevXutNWvWWNdee63Vv39/N0ZdtixatMjy9PS0PvzwQ+u3336z7r//fsvPz886ceJEttdv3LjRstvt1vTp063du3dbL7zwglWhQgVr165dbo68bMvvvNxzzz3WnDlzrO3bt1u///67NXz4cMvX19c6evSomyMv2/I7L2kOHDhgBQQEWJ06dbJ69+7tnmDLkfzOS0JCgtWuXTurZ8+e1oYNG6wDBw5YERER1o4dO9wcedmW33lZsGCB5eXlZS1YsMA6cOCA9c0331j16tWzHn/8cTdHXnZ99dVX1vPPP299+umnefq5dv/+/ValSpWsMWPGWLt377beeusty263W6tWrXJPwG6gJKsAdu/ebQHWli1b0o99/fXXls1ms44dO5bjvdu3b7cCAgKs48ePK8kqZAWZl4yWLFlieXp6WklJSUURZpkXFBRkPfLII+n/7XQ6LX9/f2vq1KnZXn/33XdbvXr1ynSsffv21oMPPlikcZY3+Z2XrJKTk62qVata//3vf4sqxHLpSuYlOTnZ6tChg/X+++9bw4YNU5JVBPI7L++8847VqFEjKzEx0V0hlkv5nZdHHnnEuu222zIdGzNmjNWxY8cijbO8ysvPtU8//bR1/fXXZzo2cOBAq1u3bkUYmXtpuWABbNq0CT8/P9q1a5d+rGvXrhiGwebNm13eFx8fzz333MOcOXOoW7euO0ItV650XrKKiYnBx8cHDw+PogizTEtMTGTr1q107do1/ZhhGHTt2pVNmzZle8+mTZsyXQ/QrVs3l9dL/l3JvGQVHx9PUlIS1atXL6owy50rnZeXXnqJ2rVrM3LkSHeEWe5cybysWLGC4OBgHnnkEerUqcMNN9zAyy+/jNPpdFfYZd6VzEuHDh3YunVr+pLC/fv389VXX9GzZ0+3xCyXKw/f8/XTYwFER0dTu3btTMc8PDyoXr060dHRLu97/PHH6dChA7179y7qEMulK52XjE6fPs2kSZN44IEHiiLEMu/06dM4nU7q1KmT6XidOnX4448/sr0nOjo62+vzOmeSuyuZl6yeeeYZ/P39L/vmKFfuSuZlw4YNfPDBB+zYscMNEZZPVzIv+/fvZ+3atQwZMoSvvvqKvXv38vDDD5OUlMSECRPcEXaZdyXzcs8993D69GluueUWLMsiOTmZUaNG8dxzz7kjZMmGq+/5sbGxXLx4kYoVKxZTZIVHlaxsjB07FpvNluMrrz+QZLVixQrWrl3LrFmzCjfocqAo5yWj2NhYevXqRfPmzXnxxRcLHrhIGTFt2jQWLVrE8uXL8fb2Lu5wyq3z588zdOhQ3nvvPWrWrFnc4UgGpmlSu3Zt3n33Xdq2bcvAgQN5/vnnmTt3bnGHVq5FRETw8ssv8/bbb7Nt2zY+/fRTvvzySyZNmlTcoUkZpkpWNp544gmGDx+e4zWNGjWibt26nDx5MtPx5ORkzp4963IZ4Nq1a9m3bx9+fn6Zjvfv359OnToRERFRgMjLtqKclzTnz5+ne/fuVK1aleXLl1OhQoWChl0u1axZE7vdzokTJzIdP3HihMs5qFu3br6ul/y7knlJ89prrzFt2jS+++47WrZsWZRhljv5nZd9+/Zx8OBBQkND04+ZpgmkVO337NlD48aNizbocuBK/r7Uq1ePChUqYLfb0481a9aM6OhoEhMT8fT0LNKYy4MrmZdx48YxdOhQ7rvvPgBatGjBhQsXeOCBB3j++ecxDNUc3M3V93wfH58yUcUCVbKyVatWLZo2bZrjy9PTk+DgYP766y+2bt2afu/atWsxTZP27dtnO/bYsWP55Zdf2LFjR/oL4PXXX+ejjz5yx+OVWkU5L5BSwbrzzjvx9PRkxYoV+k19AXh6etK2bVvWrFmTfsw0TdasWUNwcHC29wQHB2e6HuDbb791eb3k35XMC8D06dOZNGkSq1atyvRZRykc+Z2Xpk2bsmvXrkzfR/75z3/SpUsXduzYQf369d0Zfpl1JX9fOnbsyN69e9OTXoCoqCjq1aunBKuQXMm8xMfHX5ZIpSXClmUVXbDiUrn4nl/cnTdKu+7du1utW7e2Nm/ebG3YsMG69tprM7UKP3r0qHXddddZmzdvdjkG6i5Y6PI7LzExMVb79u2tFi1aWHv37rWOHz+e/kpOTi6uxyjVFi1aZHl5eVnz58+3du/ebT3wwAOWn5+fFR0dbVmWZQ0dOtQaO3Zs+vUbN260PDw8rNdee836/fffrQkTJqiFexHI77xMmzbN8vT0tJYtW5bp78X58+eL6xHKpPzOS1bqLlg08jsvhw8ftqpWrWo9+uij1p49e6wvvvjCql27tjV58uTieoQyKb/zMmHCBKtq1arWwoULrf3791urV6+2GjdubN19993F9Qhlzvnz563t27db27dvtwBr5syZ1vbt261Dhw5ZlmVZY8eOtYYOHZp+fVoL96eeesr6/fffrTlz5qiFu2R25swZa/DgwVaVKlUsHx8fa8SIEZl++Dhw4IAFWOvWrXM5hpKswpffeVm3bp0FZPs6cOBA8TxEGfDWW29ZV199teXp6WkFBQVZP/30U/q5zp07W8OGDct0/ZIlS6zAwEDL09PTuv76660vv/zSzRGXD/mZl2uuuSbbvxcTJkxwf+BlXH7/vmSkJKvo5HdefvzxR6t9+/aWl5eX1ahRI2vKlCn6ZV0RyM+8JCUlWS+++KLVuHFjy9vb26pfv7718MMPW+fOnXN/4GWUq5+j0uZh2LBhVufOnS+758Ybb7Q8PT2tRo0aWR999JHb4y5KNstSnVRERERERKSw6DNZIiIiIiIihUhJloiIiIiISCFSkiUiIiIiIlKIlGSJiIiIiIgUIiVZIiIiIiIihUhJloiIiIiISCFSkiUiIiIiIlKIlGSJiIiIiIgUIiVZIiJSKgwfPhybzXbZa+/evYUy/vz58/Hz8yuUsa7U+vXrCQ0Nxd/fH5vNxmeffVas8YiIyJVRkiUiIqVG9+7dOX78eKZXw4YNizusyyQlJV3RfRcuXKBVq1bMmTOnkCMSERF3UpIlIiKlhpeXF3Xr1s30stvtAHz++ee0adMGb29vGjVqxMSJE0lOTk6/d+bMmbRo0YLKlStTv359Hn74YeLi4gCIiIhgxIgRxMTEpFfIXnzxRYBsK0p+fn7Mnz8fgIMHD2Kz2Vi8eDGdO3fG29ubBQsWAPD+++/TrFkzvL29adq0KW+//XaOz9ejRw8mT55M3759C+HdEhGR4uJR3AGIiIgU1A8//MC9997Lm2++SadOndi3bx8PPPAAABMmTADAMAzefPNNGjZsyP79+3n44Yd5+umnefvtt+nQoQOzZs1i/Pjx7NmzB4AqVarkK4axY8cyY8YMWrdunZ5ojR8/ntmzZ9O6dWu2b9/O/fffT+XKlRk2bFjhvgEiIlKiKMkSEZFS44svvsiU/PTo0YOlS5cyceJExo4dm568NGrUiEmTJvH000+nJ1n/+c9/0u9r0KABkydPZtSoUbz99tt4enri6+uLzWajbt26VxTbf/7zH/r165f+3xMmTGDGjBnpxxo2bMju3buZN2+ekiwRkTJOSZaIiJQaXbp04Z133kn/78qVKwOwc+dONm7cyJQpU9LPOZ1OLl26RHx8PJUqVeK7775j6tSp/PHHH8TGxpKcnJzpfEG1a9cu/f9fuHCBffv2MXLkSO6///7048nJyfj6+hb4zxIRkZJNSZaIiJQalStXpkmTJpcdj4uLY+LEiZkqSWm8vb05ePAg//jHP3jooYeYMmUK1atXZ8OGDYwcOZLExMQckyybzYZlWZmOZdfYIi3hS4sH4L333qN9+/aZrkv7DJmIiJRdSrJERKTUa9OmDXv27Mk2AQPYunUrpmkyY8YMDCOl59OSJUsyXePp6YnT6bzs3lq1anH8+PH0//7zzz+Jj4/PMZ46derg7+/P/v37GTJkSH4fR0RESjklWSIiUuqNHz+ef/zjH1x99dUMGDAAwzDYuXMnv/76K5MnT6ZJkyYkJSXx1ltvERoaysaNG5k7d26mMRo0aEBcXBxr1qyhVatWVKpUiUqVKnHbbbcxe/ZsgoODcTqdPPPMM1SoUCHXmCZOnMhjjz2Gr68v3bt3JyEhgZ9//plz584xZsyYbO+Ji4vLtO/XgQMH2LFjB9WrV+fqq68u2JskIiJuoxbuIiJS6nXr1o0vvviC1atXc9NNN3HzzTfz+uuvc8011wDQqlUrZs6cySuvvMINN9zAggULmDp1aqYxOnTowKhRoxg4cCC1atVi+vTpAMyYMYP69evTqVMn7rnnHp588sk8fYbrvvvu4/333+ejjz6iRYsWdO7cmfnz5+e4r9fPP/9M69atad26NQBjxoyhdevWjB8//krfGhERKQY2K+tCcxEREREREbliqmSJiIiIiIgUIiVZIiIiIiIihUhJloiIiIiISCFSkiUiIiIiIlKIlGSJiIiIiIgUIiVZIiIiIiIihUhJloiIiIiISCFSkiUiIiIiIlKIlGSJiIiIiIgUIiVZIiIiIiIihUhJloiIiIiISCFSkiUiIiIiIlKI/h/PJX8VE3VICQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -563,16 +633,16 @@ "source": [ "batch_size = sgd_clf_binary_fhe.batch_size\n", "\n", - "# Initialize the weight and bias randomly\n", - "# They are going to be updated using FHE training.\n", - "weights = np.random.rand(1, 2, 1)\n", - "bias = np.random.rand(1, 1, 1)\n", - "\n", "# Shuffle X_binary and y_binary\n", "perm = np.random.permutation(X_binary.shape[0])\n", "X_binary = X_binary[perm, ::]\n", "y_binary = y_binary[perm]\n", "\n", + "# Initialize the weight and bias randomly\n", + "# They are going to be updated using FHE training.\n", + "weights = np.random.rand(1, X_binary.shape[1], 1)\n", + "bias = np.random.rand(1, 1, 1)\n", + "\n", "# Plot the decision boundaries before starting\n", "plot_decision_boundary(\n", " X_binary,\n", @@ -584,13 +654,63 @@ ")\n", "\n", "\n", + "def quantize_encrypt_serialize_batches(fhe_client, x, y, weights, bias, batch_size):\n", + " x_batches_enc, y_batches_enc = [], []\n", + "\n", + " for i in range(0, x.shape[0], batch_size):\n", + "\n", + " # Avoid the last batch if it's not a multiple of 'batch_size'\n", + " if i + batch_size < x.shape[0]:\n", + " batch_range = range(i, i + batch_size)\n", + " else:\n", + " break\n", + "\n", + " # Make the data X (1, batch_size, n_features) and y (1, batch_size, n_targets=1)\n", + " x_batch = np.expand_dims(x[batch_range, :], 0)\n", + " y_batch = np.expand_dims(y[batch_range], (0, 2))\n", + "\n", + " # Encrypt the batch\n", + " x_batch_enc, y_batch_enc, _, _ = fhe_client.quantize_encrypt_serialize(\n", + " x_batch, y_batch, None, None\n", + " )\n", + "\n", + " x_batches_enc.append(x_batch_enc)\n", + " y_batches_enc.append(y_batch_enc)\n", + "\n", + " _, _, weights_enc, bias_enc = fhe_client.quantize_encrypt_serialize(None, None, weights, bias)\n", + "\n", + " return x_batches_enc, y_batches_enc, weights_enc, bias_enc\n", + "\n", + "\n", + "def server_run(fhe_server, x_batches_enc, y_batches_enc, weights_enc, bias_enc, evaluation_keys):\n", + "\n", + " weights_enc = fhe.Value.deserialize(weights_enc)\n", + " bias_enc = fhe.Value.deserialize(bias_enc)\n", + "\n", + " evaluation_keys = fhe.EvaluationKeys.deserialize(evaluation_keys)\n", + "\n", + " # Run the circuit on the server n times, n being the number of batches sent by the user\n", + " for x_batch, y_batch in zip(x_batches_enc, y_batches_enc):\n", + " x_batch = fhe.Value.deserialize(x_batch)\n", + " y_batch = fhe.Value.deserialize(y_batch)\n", + "\n", + " weights_enc, bias_enc = fhe_server.run(\n", + " (x_batch, y_batch, weights_enc, bias_enc), evaluation_keys\n", + " )\n", + "\n", + " weights_enc = weights_enc.serialize()\n", + " bias_enc = bias_enc.serialize()\n", + "\n", + " return weights_enc, bias_enc\n", + "\n", + "\n", "def train_fhe_client_server(\n", - " X_binary,\n", - " y_binary,\n", + " x,\n", + " y,\n", " batch_size,\n", " fhe_client,\n", " fhe_server,\n", - " serialized_evaluation_key,\n", + " serialized_evaluation_keys,\n", " weights,\n", " bias,\n", " n_epochs=1,\n", @@ -598,31 +718,34 @@ " acc_history = []\n", "\n", " for epoch in range(n_epochs):\n", - " # Shuffle X_binary and y_binary\n", - " perm = np.random.permutation(X_binary.shape[0])\n", - " X_binary = X_binary[perm, ::]\n", - " y_binary = y_binary[perm]\n", - "\n", - " for idx in range(X_binary.shape[0] // batch_size):\n", - " batch_range = range(idx * batch_size, (idx + 1) * batch_size)\n", - "\n", - " # Make the data X (1, batch_size, n_features)\n", - " # and y (1, batch_size, n_targets)\n", - " x_batch = X_binary[batch_range, :].reshape(1, -1, 2)\n", - " y_batch = y_binary[batch_range].reshape(1, -1, 1)\n", - "\n", - " # Encrypt the batch\n", - " x_batch_enc = fhe_client.quantize_encrypt_serialize((x_batch, y_batch, weights, bias))\n", + " # Shuffle x and y\n", + " perm = np.random.permutation(x.shape[0])\n", + " x = x[perm, ::]\n", + " y = y[perm]\n", + "\n", + " # Quantize, encrypt and serialize the batched inputs as well as the weight and bias values\n", + " x_batches_enc, y_batches_enc, weights_enc, bias_enc = quantize_encrypt_serialize_batches(\n", + " fhe_client, x, y, weights, bias, batch_size\n", + " )\n", "\n", - " # Run the circuit on the server\n", - " results = fhe_server.run(x_batch_enc, serialized_evaluation_key)\n", + " # Iterate the circuit over the batches on the server\n", + " fitted_weights_enc, fitted_bias_enc = server_run(\n", + " fhe_server,\n", + " x_batches_enc,\n", + " y_batches_enc,\n", + " weights_enc,\n", + " bias_enc,\n", + " serialized_evaluation_keys,\n", + " )\n", "\n", - " # Back on the client, we deserialize the result\n", - " weights, bias = fhe_client.deserialize_decrypt_dequantize(results)\n", + " # Back on the client, deserialize, decrypt and de-quantize the fitted weight and bias values\n", + " weights, bias = fhe_client.deserialize_decrypt_dequantize(\n", + " fitted_weights_enc, fitted_bias_enc\n", + " )\n", "\n", - " # Compute and store accuracy\n", - " acc = compute_model_accuracy(weights, bias, X_binary, y_binary)\n", - " acc_history.append(acc)\n", + " # Compute, store and print the epoch's accuracy\n", + " accuracy_score = compute_model_accuracy(weights, bias, x, y)\n", + " acc_history.append(accuracy_score)\n", "\n", " print(f\"Epoch {epoch + 1}/{n_epochs} completed. Accuracy: {acc_history[-1]}\")\n", "\n", @@ -630,7 +753,14 @@ "\n", "\n", "weights, bias, acc_history = train_fhe_client_server(\n", - " X_binary, y_binary, batch_size, fhe_client, fhe_server, serialized_evaluation_key, weights, bias\n", + " X_binary,\n", + " y_binary,\n", + " batch_size,\n", + " fhe_client,\n", + " fhe_server,\n", + " serialized_evaluation_keys,\n", + " weights,\n", + " bias,\n", ")\n", "\n", "# Plot the decision final model boundary\n", @@ -655,12 +785,12 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAHElEQVR4nOzde3zO5R/H8dd93zthzMxxzDHn86GJqDlFGIrCjyilE0mUqBSJSimSKKlkRCGnyiFMJ1lFyGlOOc1xDmOz0/39/v6YrW22Gea+723v5+Oxh/a9ru99f3ZvcX92XdfnYzFN00RERERERERyhNXZAYiIiIiIiOQlSrJERERERERykJIsERERERGRHKQkS0REREREJAcpyRIREREREclBSrJERERERERykJIsERERERGRHKQkS0REREREJAcpyRIREREREclBSrJERHLIww8/TMWKFZ0dxg354osvsFgs/Pvvv84OJVcLCwvDw8ODQ4cOOTsUyQEJCQkEBATw0UcfOTsUEclllGSJiFxDcgKS/OHl5UW1atUYPHgwJ0+edFgcMTExjBkzhtDQUIc9Z3pjxoxJ81oULFiQ8uXLExwczOeff05cXNwNP/b333/PmDFjci7YmzRhwgSWLFlyXfe8/PLL9O7dmwoVKmQ4HhgYiMViYfr06TkQocyaNYuaNWvi5eVF1apVmTp1arbuCw0NTfNznPrj999/T5nn7u7OsGHDGD9+PLGxsbfqyxCRPMjN2QGIiOQWr7/+OpUqVSI2NpZffvmF6dOn8/333/PPP/9QsGBBZs6ciWEYt+z5Y2JiGDt2LABBQUG37HmyY/r06Xh7exMXF8exY8dYtWoVAwYMYPLkyaxYsYKAgIDrfszvv/+eadOmuUyiNWHCBHr06EG3bt2yNf/vv//mxx9/5LfffstwfO/evfzxxx9UrFiRuXPn8tRTT+VgtPnPxx9/zJNPPkn37t0ZNmwYP//8M0OGDCEmJoYXX3wxW48xZMgQbr/99jTXbrvttjSfP/LII4wcOZJ58+YxYMCAHItfRPI2JVkiItl077330qRJEwAee+wx/Pz8eO+991i6dCm9e/fG3d3dyRE6To8ePShevHjK56+++ipz586lX79+PPDAA2lWA/KLzz//nPLly3PHHXdkOB4SEkLJkiWZNGkSPXr04N9//3XJ7aWGYRAfH4+Xl5ezQ8nU5cuXefnll+nUqRMLFy4EYODAgRiGwbhx43j88cfx9fW95uO0bNmSHj16ZDmnaNGi3HPPPXzxxRdKskQk27RdUETkBrVu3RqAgwcPAmnPZCUkJFCsWDEeeeSRq+6LiorCy8uL559/PuXaqVOnePTRRylVqhReXl7Ur1+f2bNnp4z/+++/lChRAoCxY8embG1Kveqze/duevToQbFixfDy8qJJkyYsW7bsquffsWMHrVu3pkCBApQrV4433ngjR1bg+vTpw2OPPcamTZtYs2ZNyvWff/6ZBx54gPLly+Pp6UlAQADPPfccly9fTpnz8MMPM23aNIA0W7eSvfvuuzRv3hw/Pz8KFChA48aNU95cp7ZmzRpatGhB0aJF8fb2pnr16rz00ktp5sTFxfHaa69x2223pcQzYsSINFsdLRYL0dHRzJ49OyWWhx9+OMuvf8mSJbRu3TpN3KnNmzePHj160LlzZ3x8fJg3b16G8zZt2kTHjh3x9fWlUKFC1KtXjylTpqSZs3v3bh588EFKlChBgQIFqF69Oi+//HKa1zOjBC55u2dqFouFwYMHM3fuXGrXro2npycrV64Esv+6Q1ISGRgYSMGCBfH19eWuu+5i9erVAPTv35/ixYuTkJBw1X333HMP1atXB+Dw4cPs3r07w8dPbf369URGRvL000+nuT5o0CCio6P57rvvrvkYyS5evEhiYmKWc9q1a8cvv/zC2bNns/24IpK/KckSEblB+/fvB8DPz++qMXd3d+677z6WLFlCfHx8mrElS5YQFxdHr169gKTfygcFBTFnzhz69OnDO++8g4+PDw8//HDKm+sSJUqknOO57777mDNnDnPmzOH+++8HkhKnO+64g127djFy5EgmTZpEoUKF6NatG99++23Kc584cYJWrVrx999/M3LkSIYOHcqXX3551Zv4G/XQQw8BpLy5Bvjmm2+IiYnhqaeeYurUqbRv356pU6fSr1+/lDlPPPEE7dq1A0j52ubMmZMyPmXKFBo2bMjrr7/OhAkTcHNz44EHHkjzZnrHjh107tyZuLg4Xn/9dSZNmkSXLl349ddfU+YYhkGXLl149913CQ4OZurUqXTr1o3333+fnj17psybM2cOnp6etGzZMiWWJ554ItOv+9ixYxw+fJhGjRplOL5p0yb27dtH79698fDw4P7772fu3LlXzVuzZg133XUXO3fu5Nlnn2XSpEm0atWKFStWpMzZtm0bTZs2Zd26dQwcOJApU6bQrVs3li9fnml817Ju3Tqee+45evbsyZQpU1IStOy87pCU+D/00EO4u7vz+uuvM3bsWAICAli3bh2Q9HMRGRnJqlWr0tx34sQJ1q1bR9++fQHo168fNWvWvGa8W7ZsAUhZWU7WuHFjrFZryvi1PPLIIxQpUgQvLy9atWrFn3/+meG8xo0bY5pmpltBRUSuYoqISJY+//xzEzB//PFH8/Tp0+aRI0fM+fPnm35+fmaBAgXMo0ePmqZpmv379zcrVKiQct+qVatMwFy+fHmax+vYsaNZuXLllM8nT55sAmZISEjKtfj4eLNZs2amt7e3GRUVZZqmaZ4+fdoEzNdee+2qGNu0aWPWrVvXjI2NTblmGIbZvHlzs2rVqinXhg4dagLmpk2bUq6dOnXK9PHxMQHz4MGDWb4Wr732mgmYp0+fznD83LlzJmDed999KddiYmKumvfmm2+aFovFPHToUMq1QYMGmZn9s5T+MeLj4806deqYrVu3Trn2/vvvZxmbaZrmnDlzTKvVav78889prs+YMcMEzF9//TXlWqFChcz+/ftn+lip/fjjjxl+r5MNHjzYDAgIMA3DME3TNFevXm0C5pYtW1LmJCYmmpUqVTIrVKhgnjt3Ls39yfeZpmneddddZuHChdO8dunnpP9ZTJb8/UsNMK1Wq7ljx46r5mfndd+7d69ptVrN++67z7Tb7RnGZLfbzXLlypk9e/ZMM/7ee++ZFovFPHDggGmapnn33Xdn+jOQ2qBBg0ybzZbhWIkSJcxevXplef+vv/5qdu/e3Zw1a5a5dOlS88033zT9/PxMLy8vc/PmzVfNj4iIMAHz7bffvmZsIiKmaZpayRIRyaa2bdtSokQJAgIC6NWrF97e3nz77beULVs2w/mtW7emePHiLFiwIOXauXPnWLNmTZpVk++//57SpUvTu3fvlGvu7u4MGTKES5cusWHDhizjOnv2LOvWrePBBx/k4sWLnDlzhjNnzhAZGUn79u3Zu3cvx44dS3muO+64g8DAwJT7S5QoQZ8+fW7oNUnP29sbSNqClaxAgQIp/x0dHc2ZM2do3rw5pmlme8Uh9WOcO3eOCxcu0LJlSzZv3pxyvWjRogAsXbo00+2P33zzDTVr1qRGjRopr9OZM2dStn6uX78+e19oOpGRkQAZngNKTExkwYIF9OzZM2WrXuvWrSlZsmSa1awtW7Zw8OBBhg4dmvK1JEu+7/Tp0/z0008MGDCA8uXLZzjnRtx9993UqlXrquvZed2XLFmCYRi8+uqrWK1p31Ykx2S1WunTpw/Lli1L87Mxd+5cmjdvTqVKlYCkqn+maV4z3suXL+Ph4ZHhmJeXV5qtqBlp3rw5CxcuZMCAAXTp0oWRI0fy+++/Y7FYGDVq1FXzk7+vZ86cuWZsIiKg7YIiItk2bdo01qxZw/r169m5cycHDhygffv2mc53c3Oje/fuLF26NOW8z+LFi0lISEiTZB06dIiqVate9QY1edvUtXou7du3D9M0GT16NCVKlEjz8dprrwFJZ75SP1d6yWdibtalS5cAKFy4cMq1w4cP8/DDD1OsWDG8vb0pUaIEd999NwAXLlzI1uOuWLGCO+64Ay8vL4oVK5ayfTL1/T179uTOO+/kscceo1SpUvTq1Yuvv/46TcK1d+9eduzYcdXrVK1aNeC/1+lGZZQgrF69mtOnTxMYGMi+ffvYt28fBw8epFWrVnz11Vcp8SVvP61Tp06mj3/gwIFrzrkRyUlOetl53ffv34/Vas0wSUutX79+XL58OWX76p49e/jrr79StphejwIFCly1DTdZbGxsmuQwu2677Ta6du3K+vXrsdvtacaSv683k8iKSP6i6oIiItkUGBh41RmQa+nVqxcff/wxP/zwA926dePrr7+mRo0a1K9fP8fiSn6T/vzzz2ea9KUvS32r/PPPP2mez263065dO86ePcuLL75IjRo1KFSoEMeOHePhhx/OVsGNn3/+mS5dunDXXXfx0UcfUaZMGdzd3fn888/TFI8oUKAAP/30E+vXr+e7775j5cqVLFiwgNatW7N69WpsNhuGYVC3bl3ee++9DJ/rRkrPw3/n8s6dO3fVWPJq1YMPPpjhvRs2bKBVq1Y39LyZySwZSJ88JMsoKcnu655dtWrVonHjxoSEhNCvXz9CQkLw8PDI9HXJSpkyZbDb7Zw6dYqSJUumXI+PjycyMhJ/f//rfkxI+v7Hx8cTHR1NkSJFUq4nf19TV9QUEcmKkiwRkVvorrvuokyZMixYsIAWLVqwbt26NFXgACpUqMC2bdswDCPNalZylbXkxraZvXGuXLkykLTFsG3btlnGU6FCBfbu3XvV9T179mT/i8pCcrGK5GRv+/bthIeHM3v27DSFLlJXH0yW2de3aNEivLy8WLVqFZ6eninXP//886vmWq1W2rRpQ5s2bXjvvfeYMGECL7/8MuvXr6dt27ZUqVKFrVu30qZNm2uuSlzPqkWNGjWA/ypNJouOjmbp0qX07Nkzw1LhQ4YMYe7cubRq1YoqVaoASYlqZt/H5O91cjKbGV9fX86fP3/V9WutiqaW3de9SpUqGIbBzp07adCgQZaP2a9fP4YNG8bx48eZN28enTp1ylap9fSSn+fPP/+kY8eOKdf//PNPDMO4ZhyZOXDgAF5eXinbXpMlf1+zU5RDRAS0XVBE5JayWq306NGD5cuXM2fOHBITE9NsFQTo2LEjJ06cSHN2KzExkalTp+Lt7Z2yta5gwYIAV715LlmyJEFBQXz88cccP378qhhOnz6d5rl+//13wsLC0oxnVOnues2bN49PP/2UZs2a0aZNGwBsNhuQdhudaZoZVjMsVKgQcPXXZ7PZsFgsaVZh/v33X5YsWZJmXkbltZPfbCdv13zwwQc5duwYM2fOvGru5cuXiY6OThNPRolKRsqWLUtAQMBV1em+/fZboqOjGTRoED169Ljqo3PnzixatIi4uDgaNWpEpUqVmDx58lXPm/z6lShRgrvuuovPPvuMw4cPZzgHkhKfCxcusG3btpRrx48fT1Np8lqy+7p369YNq9XK66+/ftXKZPrtk71798ZisfDss89y4MCBlKqCybJbwr1169YUK1YspeJmsunTp1OwYEE6deqUcu3MmTPs3r2bmJiYlGup/59ItnXrVpYtW8Y999xz1dbdv/76C4vFQrNmza4Zm4gIoOqCIiLXklxd8I8//shyXmYV3X755RcTMAsXLmzWrVv3qvGYmBizZs2apoeHhzl8+HBz6tSpKVXWJk+enGZurVq1zNKlS5vTpk0zv/rqK3P79u2maZrmjh07TF9fX9PPz88cOXKk+cknn5jjxo0zO3bsaNarVy/l/oiICNPPz8/09fU1x4wZY77zzjtm1apVzXr16l1XdcHp06ebc+bMMWfNmmW+/vrr5p133mkCZv369VOqLZpmUjW6KlWqmMWLFzfHjx9vTp061QwKCjLr169vAubnn3+eMvfrr782AfOhhx4yQ0JCzK+++so0TdNcu3atCZgtW7Y0p0+fbo4dO9YsWbJkSszJnn32WbNhw4bmK6+8Ys6cOdMcP368WbZsWbNcuXLm+fPnTdNMqnLXsWNH02KxmL169TKnTp1qTp482XzyySfNYsWKpfked+zY0SxUqJA5adIk86uvvjJ///33LF+bwYMHm2XLlk1T5a9Dhw6mn5+fmZiYmOE9y5cvNwFz0aJFpmma5sqVK013d3ezQoUK5pgxY8yPP/7YfO6558x77rkn5Z6///7b9Pb2Nv38/MxRo0aZn3zyifnSSy+Z9evXT5lz5swZs1ChQmblypXNyZMnmxMmTDADAgLMRo0aZVhdcNCgQVfFlt3X3TRNc/To0SZgNm/e3Hz33XfNqVOnmv369TNHjhx51eN27tzZBMyiRYumqYZpmtmvLmiapjlt2jQTMHv06GHOnDnT7NevnwmY48ePTzMv+Wd2/fr1KddatWplduzY0XzjjTfMTz75xBw6dKhZsGBB08fHx9y5c2eGMbdo0SJbcYmImKZpKskSEbmGm02yDMMwAwICTMB84403Mrz35MmT5iOPPGIWL17c9PDwMOvWrZsmAUn222+/mY0bNzY9PDyuKue+f/9+s1+/fmbp0qVNd3d3s2zZsmbnzp3NhQsXpnmMbdu2mXfffbfp5eVlli1b1hw3bpw5a9as60qykj+8vLzMcuXKmZ07dzY/++yzq940m6Zp7ty502zbtq3p7e1tFi9e3Bw4cKC5devWq5KsxMRE85lnnjFLlChhWiyWNG+2Z82aZVatWtX09PQ0a9SoYX7++edXlSNfu3at2bVrV9Pf39/08PAw/f39zd69e5vh4eFp4omPjzfffvtts3bt2qanp6fp6+trNm7c2Bw7dqx54cKFlHm7d+8277rrLrNAgQImcM1y7ps3bzaBlPLwJ0+eNN3c3MyHHnoo03tiYmLMggULpil5/8svv5jt2rUzCxcubBYqVMisV6+eOXXq1DT3/fPPP+Z9991nFi1a1PTy8jKrV69ujh49Os2c1atXm3Xq1DE9PDzM6tWrmyEhIZmWcM8oyTLN7L3uyT777DOzYcOGKa/p3Xffba5Zs+aqecnJ9OOPP37V2PUkWaZpmp988olZvXp108PDw6xSpYr5/vvvp0lyTTPjJGvKlClmYGCgWaxYMdPNzc0sU6aM2bdvX3Pv3r1XPcf58+dNDw8P89NPP812XCIiFtPMRq1UERERuaY2bdrg7++fppGypLV06VK6devGTz/9RMuWLZ0dzjVNnjyZiRMnsn///huqWigi+ZOSLBERkRyyadMmWrZsyd69e1MKlkhanTt3ZteuXezbt8/lS6InJCRQpUoVRo4cydNPP+3scEQkF1F1QRERkRzStGnTTPs35Xfz589n27ZtfPfdd0yZMsXlEyxIqtiZvsCIiEh2aCVLREREbjmLxYK3tzc9e/ZkxowZuLnp97wiknfpbzgRERG55fQ7XRHJT9QnS0REREREJAcpyRIREREREclBSrJERERERERykJIsERERERGRHKQkS0REREREJAcpyRIREREREclBSrJERERERERykJIsERERERGRHKQkS0REREREJAcpyRIREREREclBSrJERERERERykJIsERERERGRHKQkS0REREREJAcpyRIREREREclBSrJERERERERykJIsERERERGRHKQkS0REREREJAcpyRIREREREclBSrJERERERERykJIsERERERGRHKQkS0REREREJAcpyRIREREREclBSrJERERERERykJuzA3B1hmEQERFB4cKFsVgszg5HREREREScxDRNLl68iL+/P1Zr5utVSrKuISIigoCAAGeHISIiIiIiLuLIkSOUK1cu03ElWddQuHBhAI589hlFChZ0cjQikq/99Rfs28cPx+uz4Gw7jherQ5kycNtt0Lixs4MTERHJ+2JiohgwICAlR8iMxTRN00Ex5Yhp06bxzjvvcOLECerXr8/UqVMJDAy85n3z58+nd+/edO3alSVLlmT7+aKiovDx8eHC/PlKskTENYSFQXg4oyOeJJxqRFAWf3/o29fZgYmIiORtMTFR9Orlw4ULFyhSpEim83JV4YsFCxYwbNgwXnvtNTZv3kz9+vVp3749p06dyvK+f//9l+eff56WLVs6KFIRkVsoMBD69mVc0Dr6EkIQ6yHiGBMnJuVfIiIi4ly5Ksl67733GDhwII888gi1atVixowZFCxYkM8++yzTe+x2O3369GHs2LFUrlzZgdGKiNxigYEEB11inP+MlGQrdFEkISFKtkRERJwp1yRZ8fHx/PXXX7Rt2zblmtVqpW3btmzcuDHT+15//XVKlizJo48+mq3niYuLIyoqKs2HiIjLurKqlZxsjfD7FLZvIzQUJVsiIiJOkmsKX5w5cwa73U6pUqXSXC9VqhS7d+/O8J5ffvmFWbNm8ffff2f7ed58803Gjh17M6GKiDheYGDSylZYGMHh4xm9/QHCaUZoRFnCw6FataQpIiLiykys1kQsFjvqHOR4pgmmacMw3ICb+wbkmiTrel28eJGHHnqImTNnUrx48WzfN2rUKIYNG5byeVRUlEq4i0jucSXZGhcWxvLQ/YQRSHhENUIjyqYMi4iI67Fa4ylS5DgFCsQowXIi04TLlwsSFVUGw/C44cfJNUlW8eLFsdlsnDx5Ms31kydPUrp06avm79+/n3///Zfg4OCUa4ZhAODm5saePXuoUqXKVfd5enri6emZw9GLiDhYYCDBgRAcMoPlEY2Skq3QaoSHl9WqloiIyzEoXvwg3t42fH39cXPz4GZXUuRGmCQmxnPu3Gk8PA5y6lRVbvR0Va5Jsjw8PGjcuDFr166lW7duQFLStHbtWgYPHnzV/Bo1arB9+/Y011555RUuXrzIlClTtDolIvlD375XthAmJVsh2+8lNKKethCKiLgQmy0eNzeD4sUD8PRUyyBn8vAogM3mTmzsIWy2eOx2rxt6nFyTZAEMGzaM/v3706RJEwIDA5k8eTLR0dE88sgjAPTr14+yZcvy5ptv4uXlRZ06ddLcX7RoUYCrrouI5Gk6ryUi4tKStwdaLDlTk85iSfpIOmOUIw+ZryR/H25m22auSrJ69uzJ6dOnefXVVzlx4gQNGjRg5cqVKcUwDh8+jNWaawomiog4VhbntcLD1cxYRCQ3s1jA3R08bQnYPN1TrtvjEoizu5OQoITLkSymqZc7K1FRUfj4+HBh/nyKFNTyrYjkISEh/53Xohr467yWiIgzuLnFUrLkQQICKuHhcf3b09zcoJBXYtInixZhWbgQzp0DX1/MHj2ge3cAomPdSEzMycjzpvj4WI4cOcipU5VITEz7/YiJiaJXLx8uXLhAkSJFMn0MLfuIiORXqfpr9SVE/bVERHIhNzcoVNCA1auxlCuHpVcvWLgQ1q6FhQux9OqFpVw5WL2aQgUN3Jy0j83X18J33y1xzpM7gZIsEZH8LFUz4wV1xxMUuRAijinZEhHJBSyWKytYK1di6dIF0lXhTnHyZNL4ypUU8krM8RLxJ0+eYMSIZ2jQoDKlSnlSu3YAvXoFs2HD2px9ohtkmiYTJrxKjRplKFOmAN26tWX//r239DmVZImISEqyNa77VvoSQhDr0yRbIiLietyvHL2yDBgAdnvWk+12LI8+mua+nHD48L+0atWYn39ex+uvv8Ovv25n4cKVtGzZihdeGJRzT3QTpkyZyMcff8B7781gzZpNFCxYiO7d2xMbG3vLnlNJloiI/CcwkOARtVK2ECYnW1rVEhFxPZ62BFi0KPMVrPROnIDFi5PuyyHDhz+NxWLhxx/D6NKlO7fdVo2aNWszaNAw1qz5PdP7XnvtRZo0qYa/f0EaNKjM+PGjSUj4L67t27cSHNyKgIDClC9fhKCgxmzZ8icAhw8folevYCpW9KVs2UI0a1ab1au/z/B5TNNkxozJPP/8K3Ts2JU6deoxffqXnDgRcUu3L+aq6oIiIuIg6fprhUUEEhrRSiXfRUQc6Er3oSy4J52/ug6WhQuxPfggRT0zn3P+fPYe69y5s6xdu5JXXhlPoUKFrhr38Sma6b2FCxdm2rQvKFPGnx07tjN06EC8vQvz7LMjAHj88T7Uq9eQSZOmY7PZ2L79b9zckpbgXnhhEAkJ8Xz33U8UKlSI3bt3UqiQd4bPc+jQQU6ePEFQUNtUcfnQuHFT/vhjI92798reF3udlGSJiEjG0vTXmsHo7ZHqryUi4mrOnbu187Nw4MA+TNOkWrUa133v88+/kvLf5ctXZN++51m8eH5KknXs2GGGDHkh5bGrVKmaMv/o0cN06dKd2rXrAlCxYuVMn+fkyRMAlChRKs31kiVLcerUieuOO7uUZImISNbUX0tExCmyWlGyWMDHB/D1vb4HvTL/woWb75t1M52gFi9ewMcff8C//+4nOvoSiYmJFC78X0n0p58expAhj7FgwRzuvrst3bo9QKVKVQB44okhDB/+FOvWrSYoqC3Bwd2pU6fezX0xOUxnskREJHsyOa81caLOa4mIOJppJjUaNnv0uL77evRIui8HOuVWqVIVi8VCePju67ovLGwjjz/eh3btOjJ//go2bNjC8OEvEx8fnzJn5MgxbNy4g3vu6cTPP6/jjjtqsWLFtwD06/cYW7YcoGfPh9i5czutWzfhk0+mZvhcpUqVBuD06bTn1k6dOknJkqWvK+7roSRLRESuT7r+WkGsV8l3EREniLO7JzUaLlXq2pMBSpeG++9Pui8H+PoWo3Xr9syaNY3o6Oirxi9cOJ/hfWFhvxEQUIHnn3+Zhg2bUKVKVY4cOXTVvNtuq8bTTz/H4sWr6dz5fubO/TxlrFy5AAYMeJI5cxYzaNBwZs+emeFzVahQiVKlSqcpJx8VFcVff23i9tubXedXnH1KskRE5Pql6q81zn8GI3hb/bVERBwsuRif+dlnYLNlPdlmw5w1K819OeHdd6dht9tp2zaQZcsWsX//Xvbs2cXHH3/APfdknMRUrlyVo0cPs2jRfA4e3M/HH3+QskoFcPnyZV54YTC//BLK4cOH+P33X9my5Q+qVasJwKhRQ1m7dhWHDh1k69bN/PLLeqpXr5nhc1ksFp58cijvvvsG33+/jB07tvPUU/0oXdqfTp265dwLkY7OZImIyI1LVRyD0BCd1xIRcSDThOhYNwp16IC5bFlSH6wTGRRzKF06KcHq0IHoGGuObBVMVrFiZUJDNzNp0nheeWU4J08ep3jxEtSv35hJk6ZneE/Hjl146qnnGDFiMPHxcbRr14kXXhjNW2+NAcBms3H2bCRPPtmP06dP4udXnM6d72fUqLEA2O12XnhhEBERRylcuAht2nRgwoT3M43x2WdHEBMTzXPPPc6FC+e5444WLFy4Ei8vr5x7IdKxmDdzYi0fiIqKwsfHhwvz51OkYEFnh5Mv7T9+nL/278fNauXuOnXwK1Lk2jeJiHOEhCSVfCeQcKoRQVmCglSFUEQkK25usZQseZCAgEp4eFz/G383NyjklZj0yeLFWBYuTKoi6OubdGbr/vuBpIQsMTEnI8+b4uNjOXLkIKdOVSIxMe33IyYmil69fLhw4QJFsnhPqpUscVkRkZEM/OADvt+yJeWap83GgHbteO+xx/Dy8HBidCKSofT9tQgkdFE9wsP9VPJdROQWSUyEqGg33N3Bs+t92B58MGXMiEsgLt6NVDUlxAGUZIlLOnvxIne/+CKxZ87wBdAFiAHm2O2MXbWKI6dPs3T0aKxWHSsUcTnp+mstpxEhEX3VX0tE5BYyTYiPh3jcscQmlXg3TTDNnClyIddH71DFJU377jsizpxhg2HQH/AFygIjgfmmyYq//mLdtm3ODVJEspaqOMYC/2EpJd+Ti2OIiMitYZpgGDffB0tunJIscUmz16yht2GQUf/uLkBtq5Uv1q7NYFREXM6VZEv9tUREJL/QdkFxScfPn6dOJmMWoI5hcDwy0pEhicjN0nktERHJJ5RkiUsqU7Qo/5w+neGYCWy3Wmno5+fYoETk5mV0Xmv7vYRG1NN5LRERyTO0XVBc0sP33MNXVisHMhhbBuw0DB5u08bRYYlITkl9XqvueJ3XEhHJQRYLWK1Jf4pzKMkSlzSoUyf8ixfnLquVz4GzwFFgAtDLYqFz48a0rlfPuUGKyM1LPq8VtE7ntUREboLFAh4eUKAA+PhAkSJJfxYokHRdCZdjKckSl+Tr7c2Gt9+mQYMGPAr4AQHAODc3BnTowDejRql8u0heEhhIcNClNMUxQhdFEhKiZEtE5Frc3KBQoaRkaskSeOABaNs26c8lS5KuFyqUNE8cw2KaKu6YlaioKHx8fLgwfz5FChZ0djj50oETJ/hz3z7cbTbuql0bvyy6a4tIHhAWBuHhLI9oREjkvUT41cPfX+e1RCTvcnOLpWTJgwQEVMLDw+s674WCBWHlShgwAE6evHpOqVLw2WfQoQPExCQ1L3Y0X18LISHf0qlTN8c/+XWKj4/lyJGDnDpVicTEtN+PmJgoevXy4cKFCxTJ4j2plgLE5VUuXZoHW7TgvmbNlGCJ5Afpz2tFLkxzXksrWyIiSSwW8PJKSrC6dMk4wYKk6126JM3z8sr5rYMnT55gxIhnaNCgMqVKeVK7dgC9egWzYYNrtNtZvnwx999/D5Ur++Hra2H79r9v+XNq0VBERFzTlUqE48LCWB66nzACCY+oRmhE2ZRhEZH8zN096c8BA8Buz3qu3Q6PPgpHjiTdFx+fMzEcPvwvHTrciY9PUV5//R1q1apLQkIC69at4oUXBhEWtjtnnugmREdHc8cdLejW7UGefXagQ55TK1kiIuLaMjivFR56TKtaIpLv2WywaFHmK1jpnTgBixcn3ZdThg9/GovFwo8/htGlS3duu60aNWvWZtCgYaxZ83um97322os0aVINf/+CNGhQmfHjR5OQkJAyvn37VoKDWxEQUJjy5YsQFNSYLVv+BODw4UP06hVMxYq+lC1biGbNarN69feZPlevXg8xYsSrBAW1zbkv/Bq0kiUiIq4vfX+tCPXXEpG8r2jRa89ZuPD6HnPhQnjwQfD0zHzO+fPZe6xz586ydu1KXnllPIUKFbpq3MenaKb3Fi5cmGnTvqBMGX927NjO0KED8fYuzLPPjgDg8cf7UK9eQyZNmo7NZmP79r9xc0taunvhhUEkJMTz3Xc/UahQIXbv3kmhQt7ZC9pBlGSJiEjukSbZGs/o7Q8QTjNCI8oq2RKRfOncuVs7PysHDuzDNE2qVatx3fc+//wrKf9dvnxF9u17nsWL56ckWceOHWbIkBdSHrtKlaop848ePUyXLt2pXbsuABUrVr6ZL+OWUJIlIiK5TxbntcLDoW9fZwcoInLzslpRsliS+mD5+l7fYybPv3ABbrbG+M0UKV+8eAEff/wB//67n+joSyQmJlK48H8Fzp5+ehhDhjzGggVzuPvutnTr9gCVKlUB4IknhjB8+FOsW7eaoKC2BAd3p04d1+qfqjNZIiKSewUGEjyiVprzWkTovJaI5H2mCXFx0KPH9d3Xo0fSfTnRxKlKlapYLBbCw6+vuEVY2EYef7wP7dp1ZP78FWzYsIXhw18mPlU1jpEjx7Bx4w7uuacTP/+8jjvuqMWKFd8C0K/fY2zZcoCePR9i587ttG7dhE8+mXrzX1AOUpIlIiK535WS78nJFtu3qeS7iOR5djt0757UBys7SpeG+++/diXC7PL1LUbr1u2ZNWsa0dHRV41fuHA+w/vCwn4jIKACzz//Mg0bNqFKlaocOXLoqnm33VaNp59+jsWLV9O58/3Mnft5yli5cgEMGPAkc+YsZtCg4cyePTNnvqgcoiRLRETyBvXXEpF8JrkY32efXbtioM0Gs2alvS8nvPvuNOx2O23bBrJs2SL279/Lnj27+PjjD7jnnmYZ3lO5clWOHj3MokXzOXhwPx9//EHKKhXA5cuXeeGFwfzySyiHDx/i999/ZcuWP6hWrSYAo0YNZe3aVRw6dJCtWzfzyy/rqV69ZqYxnjt3lu3b/2b37p0A7N27h+3b/+bkyRM590KkoyRLRETylivJ1rjuW9NsIUxOtkRE8grThNhY6NABli1LWqnKSOnSSeMdOiTNz4mtgskqVqxMaOhmWrRoxSuvDKd58zrcf387NmxYy6RJ0zO8p2PHLjz11HOMGDGYu+5qwKZNv/HCC6NTxm02G2fPRvLkk/24/fZqDBjwIG3b3suoUWMBsNvtvPDCIJo2rUmPHh2oUqUa7777UaYx/vDDMu66qyE9e3YC4NFHe3HXXQ35/PMZOfdCpGMxb+bEWj4QFRWFj48PF+bPp0jBgs4OR0RErldICMsjGiUVx6Aa+JdVFUIRcSlubrGULHmQgIBKeHh43cD94HXltsWLk8q0nzuXVOSiR4+kLYKQlGAlJuZg4HlUfHwsR44c5NSpSiQmpv1+xMRE0auXDxcuXKBIkSKZPIKqC4qISF7Xt2+a/lphEYGERrRSyXcRyTMSEyE6GtzdoWvXpD5YyeLiID4+6UMcR0mWiIjkfemaGY/eHqn+WiKSp5jmf4lUbGxSiXfTzNmtgZJ9SrJERCT/UH8tEckHlFw5nwpfiIhI/pNJf62JE1WFUEREbp5WskREJP9Kf16LQEJDdV5LRBwredVJ9ehcQ/L34Wa+HUqyREQkf0t3Xmt5RBghEX11XktEHMYw3DEMiI+PwdOzgLPDyffi42MwjKTvy41SkiUiIgJpki1CQ3ReS0QcxjRtXLpUlDNnTgHg4VEQi8Xi5KjyH9M0iY+P4cyZU1y6VBTTvEaH5ywoyRIREUktMJDgQAgO+W8LYXhENSZOLEtQkFa1ROTWuHQpqZNwYuIprKqa4DSGAZcuFU35ftwoJVkiIiIZyei81qJ6hIf7aQuhiNwCFi5dKkN0dEms1gS0kOV4ppm0RfBmVrCSKcnKZ/YfP85bCxdyJiqKOhUq8PKDD+Ll4eHssEREXFP681o00nktEbmlTNOG3X7zb/LFuSymyphkKSoqCh8fHy7Mn0+RggWdHc4NS0xMJOjll9m4axcm4AnEAh4WC6N69mTM//7n5AhFRHKBsDAID2d0xJOEU40IyuLvr/NaIiL5RUxMFL16+XDhwgWKFCmS6Tzt+MwnWowcyW+7dvEScAK4DPwNtDVNXp8/n/eWLHFmeCIiuUNgIPTtq/5aIiKSJSVZ+cC2gwcJCw9nDDAOKHnlen1gKRAIjJs3z0nRiYjkQn37Ehx0KU2yFbookpAQJVsiIqIkK1944+uvsQHPZDDmBjwHnI+N5ddduxwbmIhIbnZlVSs52Rrh9yls30ZoKEq2RETyOSVZ+cDpCxfwBXwzGb/typ//njzpoIhERPKQVMnWgrrjU7YQJidbIiKS/yjJygeqlCnDGeBwJuN/AhagfsWKDotJRCTP0XktERG5QklWPvBG375YgTFA+lKS54G3gdI+PtRRkiUicvN0XktEJN/LdUnWtGnTqFixIl5eXjRt2pSwLP7FmjlzJi1btsTX1xdfX1/atm2b5fy8qrSvL31bt+ZzoAuwFtgHfElS0YsjwKfPPuvECEVE8hid1xIRyddyVZK1YMEChg0bxmuvvcbmzZupX78+7du359SpUxnODw0NpXfv3qxfv56NGzcSEBDAPffcw7FjxxwcufN9MXQoQ7t0Ya3NRlugKtAfOO/tzaKXX6ZjkyZOjlBEJA+6xnktJVsiInlTrmpG3LRpU26//XY+/PBDAAzDICAggGeeeYaRI0de83673Y6vry8ffvgh/fr1y9Zz5pVmxMkMw2DBzz9z/Nw5mlavzp01azo7JBGR/CMsjOWh3oQRmNLMOCgoKRcTERHXl91mxG4OjOmmxMfH89dffzFq1KiUa1arlbZt27Jx48ZsPUZMTAwJCQkUK1Ys0zlxcXHExcWlfB4VFXXjQbsgq9VK77vvdnYYIiL5U2AgwYQRHD6D5RGNkpKt0GqEh5elWjUlWyIieUWu2S545swZ7HY7pUqVSnO9VKlSnDhxIluP8eKLL+Lv70/btm0znfPmm2/i4+OT8hEQEHBTcYuIiKSR7rxWX0J0XktEJI/JNUnWzXrrrbeYP38+3377LV5eXpnOGzVqFBcuXEj5OHLkiAOjFBGRfCP9ea3IhTqvJSKSR+Sa7YLFixfHZrNxMl3D3JMnT1K6dOks73333Xd56623+PHHH6lXr16Wcz09PfH09LzpeEVERLIlMBACAxkXFsby0P1JWwgjqhEaUTZlWEREcpdcs5Ll4eFB48aNWbt2bco1wzBYu3YtzZo1y/S+iRMnMm7cOFauXEkTVdATERFXFRhI8IhaafprhYce06qWiEgulGtWsgCGDRtG//79adKkCYGBgUyePJno6GgeeeQRAPr160fZsmV58803AXj77bd59dVXmTdvHhUrVkw5u+Xt7Y23t7fTvg4REZFM9e1LcNh/xTFCtt9LaEQ9wsNRcQwRkVwiVyVZPXv25PTp07z66qucOHGCBg0asHLlypRiGIcPH8Zq/W9xbvr06cTHx9OjR480j/Paa68xZswYR4YuIiKSfVe2ECYlW+MZvf0BwmlGaERZJVsiIrlAruqT5Qx5rU+WiIjkQhn01/L3h759nR2YiEj+kt0+WbnmTJaIiEi+lcF5LSJ0XktExFXlqu2CIiIi+Vq681phEYGERrTSFkIRERejJCsfOXrmDEM//ZS1mzeTkJBAYW9vHmvfntd69cLNTT8KIiK5QprzWjMYvT1S57VERFyMzmRdQ145k/Xrrl20HTWKeMOgM1AJ+AnYAgQUK0b4J5/g5eHh3CBFROT66byWiIjDZPdMlpKsa8gLSZZhGPg++CA+8fGsA25LNbYI6AncXbcua8ePd06AIiJy80JCkrYQpkq2goK0qiUikpNU+EJSzFy1iqj4eD4hbYIF0B14Avh5+3YuxcQ4PjgREckZffsSHHQpTXGM0FBUHENExAmUZOUDizZupDBwTybjvYAEYOXmzY4LSkREcl5gYJpkawRvQ8QxJVsiIg6mJCsfME0TSxbjyT8EhiOCERGRWy9VspW65HtysiUiIreWkqx8oEtgIFHA2kzGvwbcgQ6NGjkuKBERufUy6a81caJWtUREbiUlWfnAoE6d8HZ35wngULqx74CPgGa1a+fawh4iInINGZ3XWhSpLYQiIreIqgteQ16oLggQun07HV55Bbtpcj9QEfgZ2AiU8fFh38yZFPTycmqMIiLiAGFhEB7O8ohGhNA3peS7+muJiFybqgtKGkF167Lr449p36QJP7i7M9VqZZ+3N8O6duXfWbOUYImI5Bepzmst8B+m81oiIreAVrKuIa+sZIlkxjAM1vz9N7/s3InFYqFV3boE1a2LxZJVuRQRyTPUX0tEJNvUjDiHKMmSvGzXkSPc/8Yb7D5+HH+bDTtw0m6nfvnyfPvKK1QqXdrZIYqII6TaQhhGIKGR9fCv66cthCIi6Wi7oIhk6fSFC7R56SVsJ0/yK3DUbue43c46IProUdq89BJRalAtkj+k76/l96n6a4mI3AQlWSL51CerVnE+Koo1hkFzwHLloxWwyjA4fOYMX65b59wgRcSxdF5LRCRHKMkSyae+3rCBHqZJmQzGKgOdgAUbNjg4KhFxCVeSLfXXEhG5MW7ODkBEnONCdDTlshgPAP6NjnZUOCLiivr2JTgsjODwGf+d11pUj/BwndcSEcmKkiyRfKpauXL8fP48GMZVYybwk9VKtXJZpWEiki8EBkJg4H/JFo0I2X4voRH1CA9Xfy0RkYxou6BIPjWwQwd+MQyWZjAWAmw3DB6/915HhyUirir1ea264686r6VthCIi/9FKlkg+dX+zZtzftCk9wsJ41DR5ADCAr4DZQP9WrWjXoIFTYxQRF3RlZWtc2DqWh4Yl9deKqEZoRNmUYRGR/E59sq5BfbIkL0tITGTi4sV8tHw5ERcuAFC+WDGGdO3Kc127YrVqsVtEsqD+WiKSz6gZcQ7Ja0mWaZrsPnqUc5cuUbFkSfz9/JwdkriAhMREDpw4gcVioUrp0thsNmeHJCK5SapkKyTyXiL86uHvr/NaIpL3KMnKIXkpyVr6+++8OmcO244cAcBqsdCpcWMmPfYYVf39nRydiIjkeleSrdHbHyDcrxkRlFWyJSJ5SnaTLO0FyifmrF9PtwkTKH30KCuA7cB002Tn5s00Hz6cvRERzg5RRERyu+T+Wt23pumvFRqqwhgikr9oJesa8sJKVnRsLGX79SM4NpYvAUuqsUjgdquVhoGBLHrpJSdFKCIieVJISMp5rXCqgX9ZrWqJSK6mlSxJsei334iKjWUcaRMsAD/gecNg6aZNnDp/3vHBiYhI3nWl5Ps4/xn0JQS2b1PJdxHJF5Rk5QMHT56ktM1GxUzGmwJ20+TImTMOjEpERPKF9P21Iheqv5aI5HlKsvKBYoULE2kYXMhk/GDyPG9vR4UkIiL5TRbntUJCnB2ciEjOUpKVD3Rv1gzDYuGjDMbswBSLhTtuu41KpUs7OjQREclvAgMJHlErZQthcrKlVS0RyUuUZOUD/n5+PNO5M68AbwBnr1zfBTwA/Aa8/tBDzgpPRETyo3TntapFrNcWQhHJM9ycHYA4xjuPPILVauX1ZcsYa5oUtlg4ZxiU8Pbmm8GDadewobNDFBGR/CYwMGllKyyM4PAZjN4eSTjNCI0oS3i4+muJSO6lEu7XkBdKuKd26vx5vv39d85HR1OldGmCAwPxdHd3dlgiIiIQFsbyUO+Uku/JzYz79nV2YCIiSbJbwl1J1jXktSQrt1n51198uGIFf+zZg5vNRvsmTXi2SxfqV6rk7NBERORWSddfK4KyBAVpVUtEnE9JVg5RkuU8I2fP5u1Fi2hotdLNMIgB5tlsHDdN5j3/PA+0aOHsEEVE5FYJC4Pw8JRkK5RW+PtrC6GIOJeSrByiJMs5VvzxB8HjxjEJeI7/mignAP2BRTYb+2fOpFzx4k6LUUREHCBVshVC35QthEq2RMQZsptkqbqguKQPli6lqdXKMP5LsADcgRmAh2kyc/Vq5wQnIiKOk6qZsfpriUhuoSRLXNLve/Zwn2FkOFYEaGcYbNy1y7FBiYiI82TSX2viRJV8FxHXoxLu4pJsVivxWYzHAm42m6PCERERV9G3b0rJ95TzWovqER7upy2EIuIytJIlLqldw4bMs9nIaC3rBPCjxULbBg0cHJWIiLiEVFsIx/nPYITfp2m2EGplS0ScTUmWuKTnunVjj93OIJJWrZKdBh60WPAuUICH27RxUnQiIuISdF5LRFyUkixxSc1q1OCTwYP5xGKhnNVKH+A+IMBi4Z8CBVjx2msUK1zY2WGKiIgr0HktEXExKuF+DSrh7lx7IyKY8cMPhO3ejbubGx2aNGFAu3YUz6JkpoiI5GPp+2tF1sO/rs5riUjOyG4JdxW+EJdWxteX6mXLciEmBjebjWply1K0UCFnh5WlbQcPEhIayumoKMqXKMHDrVtTqXRpZ4eVp4QfO8bsdeuIOHuWMr6+9Gvdmhrlyjk7LBFxBYGBSStbycUxaERIRF9CI8oSHq7+WiLiGFrJugatZDnPmi1bePCtt4i6fJlGNhsxwE67neqlS/Pd2LFUKVPG2SGmEZ+QwIApU5j700+UstmoBOw2TS4YBiO6d+fNfv2wWCzXfBzJnGEYPDtzJh9+9x1+VivVgL3AGcPgifbtmfbkk9hUdVJEUruysjU64knCqZbSzLhvX2cHJiK5kZoRS66268gRur7xBnfExnIQ+MNuZ4fdzh+AceoU97zyCjFxcc4OM41hs2bxzc8/8xlwxG5no93OMcNgPPD2okVMXrbM2SHmeuMWLGDad98xGThqGPxmGBw1DD4EZq5axavz5jk5QhFxOVeKY+i8log4kpIscUnvL12Kr93OYtOkfKrrTYDlhsGB06dZ8PPPzgrvKqfOn+eTlSt53TR5BHC/cr0gMAoYCEz85hsSEhOdFmNuFx0by/vffssw4FnA68p1T2AQ8CLwwdKlRMXEOCtEEXFlqUq+JydboYsiVfJdRG4JJVnikpb89hv9DIMCGYxVB4IsFpZs3OjosDL1/V9/kWAYDMxk/HHgRFQUm8LDHRlWnhK6fTsXYmN5PJPxx4FL8fGs27bNkWGJSG6SUX+t7dvUX0tEcpySLHFJMfHxlMhivIRpEhMbm8UMx4qJi8MG+GYyXiLVPLkxya9dZj8Xeo1FJNtSJVsL6o5Xfy0RyXG5LsmaNm0aFStWxMvLi6ZNmxJ2jV87ffPNN9SoUQMvLy/q1q3L999/76BI5WbUKV+eNZkUiYgDQq1W6lSq5NigslC3QgXsQGgm46sBq8VCrYAAxwWVx9SpUAGANZmMr06eV758JjNERNJJPq8VtE7ntUQkR+WqJGvBggUMGzaM1157jc2bN1O/fn3at2/PqVOnMpz/22+/0bt3bx599FG2bNlCt27d6NatG//884+DI5fr9VSnTqw0TdKXijCB14HThsHj7ds7IbKMtahVi9ply/Ki1crFdGMRwHirlc5NmlCueHFnhJcn1AwI4O6aNXnVauVMurGzwGirlWZVq1LPhZJvEcklAgN1XktEclSuKuHetGlTbr/9dj788EMgqZxzQEAAzzzzDCNHjrxqfs+ePYmOjmbFihUp1+644w4aNGjAjBkzsvWcKuHuHHa7nZ5vv82STZt40DTpCsQAX1qthBoGb/Xvz4vduzs7zDT+3LuXNi+/jG98PE8aBtWAzcDHVitePj788s47VChZ0tlh5mp7jh7lrhdfxBYdzROGQV1gBzDDaiWuQAF+evttamklS0RuRqpmxiGR9xLhVw9/f/XXEpEkea6Ee3x8PH/99Rdt27ZNuWa1Wmnbti0bMymAsHHjxjTzAdq3b5/pfIC4uDiioqLSfIjj2Ww25r/4IpMefZQ/S5WiFzAASKhalcWjRrlcggXQpGpVNr33HnfffTdj3NzoDnzg6Umve+9l03vvKcHKAdXLlSPs/fcJbteOie7udAfedHenY5s2hL3/vhIsEbl56c9rRS5Mc15LK1sikh1uzg4gu86cOYPdbqdUqVJprpcqVYrdu3dneM+JEycynH/ixIlMn+fNN99k7NixNx+wi0pITOTXXbs4d+kSVUqXdumtVW42G8926cKQ4GDOR0fjbrPhXSCjeoOuo0a5cnw2ZAgPt2nDkdOnqV6uHIHVqrl8E+LQbduYvnIlFouFYV26EFi9urNDylSFkiX5eNAgPnziCaJiYihSsCDubrnmrzIRyS0CAyEwkHFhYSwP3U8YgYRHVCM0omzKsIhIZvTOJJ1Ro0YxbNiwlM+joqIIyCPFCmauWsWYkBAiLlxIuRZYpQrTnn6aJlWrOjGyrFksFny9vZ0dRrYs+PlnRn3+OQfP/HdqqF5AAFOefJKgunWdGFnG/jl0iOYvvMCl2FiS9w1/8/PPFClYkM1TplAp3S8pXIm7mxt+WSzTi4jkiMBAggMhOGQGyyMaJSVbodUIDy+rLYQikqlcs12wePHi2Gw2Tp48meb6yZMnKV26dIb3lC5d+rrmA3h6elKkSJE0H3nBlGXLeHzaNFpfuMAfwClgCZB48CBBo0bx94EDzg0wDwhZv55e77xD/TNn+JWk13gl4HP0KPeMHs0GFyu4cuLsWRoPGQKxsUwCjgD/AhOAuJgYaj7xBJcuX3ZqjCIiLiNdM2P11xKRrOSaJMvDw4PGjRuzdu3alGuGYbB27VqaNWuW4T3NmjVLMx9gzZo1mc7Pq85fusRLs2czGJgDNCGpp1BX4CfDoGJiIi/Nnu3UGHO7uIQEhs+cSW9gMdCcpNe4PfCjaXK7afL8zJlOjTG9+yZMIME0WQc8B5QDKgAvAt8DcYZBr3fecWaIIiKuRee1RCSbck2SBTBs2DBmzpzJ7Nmz2bVrF0899RTR0dE88sgjAPTr149Ro0alzH/22WdZuXIlkyZNYvfu3YwZM4Y///yTwYMHO+tLcIqFv/1GXEICozIYKwQMMwxWbtlCRGSko0PLM3746y9OXbrEaCD96SsPYKRp8ufBg/xz6JATosvYlr17uZekpDu9IKAZ8OOWLQ6NSUQkV0jur9V9a5r+WmpmLCLJctWZrJ49e3L69GleffVVTpw4QYMGDVi5cmVKcYvDhw9jtf6XNzZv3px58+bxyiuv8NJLL1G1alWWLFlCnTp1nPUlOMWxyEhK2mz42+0Zjtcnqf/U8XPn8Pfzc2hsecWxyEjcLRZqZtIRof6VP4+eOZPSVNfZTNOkQRbjjYDNmfzMiIgIGZ/XiqhGSIjOa4nkd7kqyQIYPHhwpitRoaGhV1174IEHeOCBB25xVK6tVNGinDYMTpO0hS29XanmyY0p7etLgmmyD7gtg/Fdqea5DIuFnVm0ydsBYM1Vi90iIs7Rty/BYWEEh19JtiICCY1oRXi4+muJ5Fd6B5UPPHDnndisViZlMBYHvGe10rpOHcoVL+7o0PKMjo0bU6xgQd7KYMwOTLRYqBcQQH0XKplfu1IllnElmUonDAgF7sxnq74iIjcs1Xmtcf4zdF5LJJ9TkpUP+BUpwiu9evE28AywD0gANgD3WCzstFgY36+fU2PM7Qp4ejK+f39mAQ+TlLgkApuALhYLocBbAwa4VL+sRaNGYQPuBj4DLgEXgBlAO8DDYmH+Cy84MUIRkVxI57VEBLCYZhb7hYSoqCh8fHy4MH8+RQoWdHY4N8w0Td799lsmLFjA+VRluauXLs2MZ55xyR5OudEnK1fyypdfcvrSpZRrFf38+OCppwh2wf0iP+3YQYfRo7mcmJhyzQIUdHfnt3ffdelm1SIiuUJIyH/ntahGBGUJCtIWQpHcKiYmil69fLhw4UKWrZ6UZF1DXkmyksXExbFq82bOXbpEVX9/WtSq5VKrK3lBXEICa/7+m9MXLlC+RAmC6tTBZrM5O6wshaxfz6zVq7FYrTzTuTP35bM2ByIit1RYGISHpyRbobTC31/ntURyIyVZOSQvJVnhx47xzuLFLPjpJy7GxVGhWDEGduzIs8HBeBco4OzwxAkMw+CFzz/ns1WrOB8bC4BfwYI8HRzM6336ODk6EZE8JlWyFUJfIiirZEskl1GSlUPySpL1++7d3DN6NEUSEhhgGFQEfgXmWSzUqlCBdW++iU+hQk6OUhwtcPhw/ti7l7uAniQV6ZhL0lmytvXrs2bcOKfGJyKSJ4WFsTzUO80WQn9/6NvX2YGJyLVkN8lS4Yt8wG630/vtt6mbkMAuw+B1YAAwC/jdNNl/+DAvzZnj5CjF0d5ZvJg/9u7lPZKKoDxNUmGUjcAY4MetW5m9dq0TIxQRyaMCAwkeUYtx/jPSFMeYOFFVCEXyCiVZ+cAPmzfzb2QkUwyDwunG6gPPGgZf/vgjF2NinBGeOMmUpUupCQxNd90CvAKUBd5YsMDRYYmI5B+pSr4nJ1uhiyJV8l0kD1CSlQ9s2b+fkjYbTTIZ7wRcio9n3/HjjgxLnOzs+fN0ISmpSs8GBAMnzpxxbFAiIvlNuv5aI/w+VX8tkTxASVY+4OnuToxpEp/J+IVU8yT/sFitKd/7jJwHrFb9FSEi4hCpki311xLJ/fQOKh/o2KQJlwyDhZmMfwZUKVmSGuXKOTIscbKalSoxj6QmxOlFAt8CTapXd2xQIiL5nc5rieQJSrLygToVKtC5cWMGW62sAZLLScYBbwLzgRE9emjVIp95b8AAooFuQOqNoodJ2ipoB6YMHOiEyEREROe1RHI3vavOJ+YMH07d6tW5B6httXIvEGC18hLw0gMPMLB9eydHKI52V506vP3II4QCAcDdQAugIvAHMH3QIOpUrOi0+ERE8j2d1xLJtdQn6xrySp8sSGo8++PWrcz/6SfOR0dTpUwZHmvXjuraJpivHTp5kmGffcam8HAsQMvatXnv0Ucp7evr7NBERCS1K82MR0c8qf5aIk6S3T5Zbg6MSZzMarVyT8OG3NOwobNDybMMw2Dt1q2EhIZy+sIFypcsyYC2bbm9alUslozq+DlfbGIisQkJJCYmYrFYiI2PJy4+szIpciMuREfz5fr1rN26FcMwuLNWLQa0bUsJHx9nhyYiuUlgIAQGMi5kBssjGiU1M46oxsSJZQkKShoWEdeglaxryEsrWXJrRcfGcv/48azeupVaNhtV7Xb+tlo5ZBg83Lo1nz7zDDabzdlhpjH+6695LSQEK9CapHNY60kq6/7+448zuHNnp8aXF2zcvZvOY8YQdfkyQYCbaRJqsWB1c2PByJF0vv12Z4coIrnRlVWt5GQrNLIe/nX9qFZNyZbIrZTdlSydyRLJIU9Om8Zv27fzHfCP3c4SYL9hMAv4ct063vj6a+cGmM66bdt4NSSE9kAEsBJYAxwB7gSGfvIJfx844MwQc71T58/T8bXXqB0byyHTZI1p8gNw1DS5JzGRB958kz1Hjzo7TBHJjTI6r7V9m85ribgIJVkiOeDomTPM++kn3jIMOvJfg18bMAB4Fvhg6VIux8U5Lcb0Xvj8c4oA3wDFU10vQ1L5dnfguU8/dUZoecasNWuIjY1lsWHgn+q6H/CVaeJjGHz43XfOCk9E8oJUydaCuuPVX0vERSjJEskBqzZvxjBN+mUy3h84GxND2N69jgwrS7sPHqQ3kNEmWF/gfmBzeLhjg8pjvgsLI9g00ySxybyAXobBd7//7uiwRCQvupJsjQtap/5aIi5AhS9EckB8YiI2Mk5YAAonz0tIcFBE12aaZkpcGSlMUiEPuXHxCQl4ZzFemKSfHRGRHBMYSDBhBIf/VxwjdFE9wsN1XkvEkbSSJZIDmlStip2kc00ZWQ64Wa3Uc6G+U36+vizhv+bUqSUCywD/kiUdGlNe06R6dVZarWSUWpvAMquVJtWqOTosEcnrdF5LxOmUZInkgCa33cbtlSvzgtXKqXRj4cAEq5UezZtTyoV6Tw2/7z7CgXfSXTeB14DjwKu9ejk8rrzkqXvv5bhh8DJXJ7NTgG2GwdOq4Cgit0r681qRC9XMWMRBlGSJ5ACLxcKc55/nnLc3NaxWngOmAwOBBhYLfqVL88ETTzg5yrSGdu1Ki5o1eRFoCrwPTAIaAROAjk2a0CcoyIkR5n51K1bk/Ucf5R2gsdXKO8BkoOWVn5ER99+vvnUicusln9fqvjXNea3QUCVaIreK+mRdg/pkyfU4FhnJlGXLmLN2LacvXqS8nx8D2rdncKdOFPXO6nSO84wOCWHGd99xNjoagOKFCzO0WzdGPfCAkyPLO9Zu3crkJUtYu20bhmnSvHp1nunShW533OGyTapFJA8LCfmvmTHVwL+szmuJZFN2+2QpyboGJVmSH3z/558s+PlnLBYLDwUF0aZBA2eHJCIit1KqZsYhkfcS4VcPf3+UbIlcg5KsHKIkS/Kyvw8c4J5XXuH0pUtprvv7+BD61ltULVvWSZGJiIhDXEm2Rm9/gHC/ZkRQVsmWSBaym2TpTJZIPhURGUnz4cOxXrrEXCAWiAE+By5fuECjIUM4ny75EhGRPCaL81pqZixy45RkieRTz3zyCfF2OxuA/wGeQAHgYeBH4FJCAi98/rkTIxQREYcJDCR4RC3G+c9Ik2ypCqHIjVGSJZJP/fjXX3QFqmcw1ghoA3z722+ODUpERJwrVX+tvoRQLWK9Sr6L3AA3ZwcgIs4Rn5BAjSzGawCb4uIcFY6IiLiKwMCkla2wMILDZzB6eyThNCM0oizh4TqvJZIdWskSyacKeHryZxbjfwKFVOxFRCT/0nktkRumJEskn+p6552sATZmMLYG2AQ81Lq1Y4MSERHXk8l5rYkTtYVQJDMq4X4NKuEueVVUTAwVHn6Y+NhYXgEeBOzAV8CbQBFvb45+8QUeHh5OjVNERFxIqv5aYQQSSiuVfJd8RSXcRSRLRQoWZMf06QT4+/MKcBtJRTDGAdUqVGD3jBlKsEREJK0rWwiTi2MERS5Ms4VQK1siSbSSdQ1ayZIbER0by4XoaIoVLoxXLkhUwo8eZfa6dVitVh675x4qlCzp7JCu6WxUFP+eOkXFkiUplsVvkkRE5BYKC2N5qDdhBBJOtZRmxn37OjswkVsjuytZSrKuQUmWXI9/Dh1i3Pz5LN64kUTDoKC7O/8LCuLVXr0IKFHC2eFdxTAMpv/wAx8sWUL4yZMA1C5blufuu48B7dphsVicHOHV1m3bxuNTp3Lw5EkMkpbjK5QsyceDBtGuYUNnhycikj+FhKRsIUxOtoKCtIVQ8h4lWTlESZZk1++7d9PulVconZjI04ZBNWAz8JHViqVwYX555x0qly7t7DBTmKbJgClTmL1uHQ8CD5B0Jmu+xcK3pskznTox5fHHXSrRWrZpE93Hj6ck8AxQF9gBTAVOAF+NGEGPFi2cGaKISP6l81qSDyjJyiFKsiQ7TNOk1pNP4nvyJGsMg0Kpxk4Cza1WajZowIoxY5wU4dWWbdpE1/HjmQOk39XxETAICJ0wgbvr1HF8cJnwffBBSsXGshHwTXX9PNACOOLhwYWFC50Sm4iIXJEq2Qqhb8oWQiVbkheo8IWIA/20Ywe7jx/nrXQJFkAp4GXD4PvNmzl8+rQzwsvQx99/T6DVelWCBfAUUN1qZcb33zs6rEwt3bSJ87GxjCdtggVQFJgARMXH89WGDQ6PTUREUklVHEP9tSS/UpIlkgN2HD6MG9Ayk/E2gAnsOnLEcUFdw85Dh2hjGBmOWYA2hsHOf/91aExZ2bB9OwCZde5qe+XPn3fudEg8IiJyDeqvJfmYm7MDEMkLCnl6kghEAsUzGD955U9vLy/HBXUNhby8UuLKyEnA24W2yPoUSlojPMXVK1mQdCYLoGih9GuJIiLiVH37EhwWRnD4jP/Oay2qR3i4n7YQSp6llSyRHNDp9tvxtNn4JJPxGYC/jw9Nq1d3ZFhZur9lS762WonMYOwYsNxi4f4773R0WJka1KkTbiS9lhmZAdiAIcHBjgtKRESyJ11/rRF+n6q/luRpSrJEckDxIkV4smNHXrNYmA7EXbkeBYwBPgdG9eyJm83mrBCv8tS99+JZoAD3Wq3sSHV9C3Cv1YpfkSIMaNfOWeFdpXiRIgTVr89kYCIQfeV6DPAe8C5wZ+3alPbNaJ1LRERcQqpka4H/MJ3XkjxL1QWvQdUFJbsSEhN56qOPmPXjjxSzWqlgsbDXNLlsmrzSsyev9e7tUuXQAf7at49u48Zx9Nw5atps2IFwu53KJUqw/LXXqFW+vLNDTCMxMZE7Rozgr337KARUBg4Cl4D6FSvy53vv4eamXdAiIrmG+mtJLqMS7jlESZZcr91HjzI3NJTTUVGUL16cfq1bU654Rie1XEN8QgLf/v47P+/YgcVioXW9egQHBrrUqlt6P/3zD2O++ooT589TyseH0b160bpePWeHJSIiNyJ9f63IevjX1XktcU1KsnKIkizJ6/ZFRDD9hx/4Zft2LBYLrRo04Ml776VCyZLODi3PeGfxYl4JCcFITMQCGFYrz3TqxPsDBzo7tAwZhsEPf/3FrNWrOXTiBMWLFqVPq1Y82KIFXh4ezg4vQyfPnWPm6tUs/2MzcQmJNKtehac7dqRuxYrODk1Esit1f63Ie4nwq6f+WuJylGTlECVZkpd9tWED/d5/nyJAsGFgB5ZbrcRZrXw9ciTB+lftptUfMoR//v0XL+A+kkq6LgUuAKV8fTk+e7ZT40svPiGBnm+/zZKwMBpZrdxuGOyzWFhrmjSoUIHVb7xBCR8fZ4eZxq87d3Lv2DeIjrVjmMGAN27W70k0TjD5scd4tksXZ4coItfjSrI1OuLJlC2E/v7QN6PGjiIOpmbEIpKlfw4dot/779PbMDhqGHwBzAGOGgYdExN58K23+PdkVkXe5Vre+/Zb/vn3X+4lqcR8CPAFcBx4hKTVl/+9844TI7zaa/Pm8f0ff7AE+NMwmAH8aJpsBiKOHKH/e+85N8B0zl+6RKfXJxAd2xDDPAIsAGaRaBwGnmfop5+ybutWJ0cpItflSnGMcUHr1F9Lci0lWSL51IfffUdJ4FOgQKrr3sCXgJdhMP2HH5wSW14xas4cvICvgMKprnsBHwNlgPk//+yM0DIUExfHjO+/Z6hp0pWkptTJGgLvGwY/bNniUk21Z69bR9TlGAxzAeCXasQdmIibtT6TlixzUnQiclMCA1NKvicnW6GLIlXyXXIFJVki+dS6zZvpYRhkdMKmENDNMFi7ebOjw8pTjMREupE2wUrmBvTBtTrCb9m/n/OXL/O/TMa7A+4WC+u2bXNkWFlau20bmEEkpazpWUg0/se6bdsdHJWI5JiM+mtt36b+WuLyck2SdfbsWfr06UORIkUoWrQojz76KJcuXcpy/jPPPEP16tUpUKAA5cuXZ8iQIVy4cMGBUYu4LsMwcM9i3O3KHLlxFrJOolwpwQIwrhzRzSwuG0lfk+FCR3kNw8TM8FcFydwwTP0ci+R6qftr1R1PUORCNTMWl5Zrkqw+ffqwY8cO1qxZw4oVK/jpp594/PHHM50fERFBREQE7777Lv/88w9ffPEFK1eu5NFHH3Vg1CKuq3mdOiy2Wsno7Wc8sMxq5c66dR0dVp5iWq0sA2IzGiPp9JDdsSFlqV7FihR0d2dxJuPfAfGmyZ01azoyrCzdWbMGVss64GyG4zbrQpq7ULwicpOSz2t135rmvFZoqBItcS25IsnatWsXK1eu5NNPP6Vp06a0aNGCqVOnMn/+fCIiIjK8p06dOixatIjg4GCqVKlC69atGT9+PMuXLycxMdHBX4GI6xncuTMHDYMRkCbRsgPPAGdMk6c7dnROcHnEsK5duQA8BaT+W8cAXgYOAK1cqL+XT6FCPNyuHROtVjamGzsEPGe1cme1ajSqUsUZ4WXo0Xbt8HADi2UAadNZE5iE3djI0OBOTopORG6ZwECCR9RKc14rPPSYVrXEZeSKJGvjxo0ULVqUJk2apFxr27YtVquVTZs2ZftxkksturllvkknLi6OqKioNB8ieVFgtWpMGTiQSUB1m42RwAtAFauVTy0WPn3mGWoGBDg5ytzt7UceoUyxYswGygPPA6OAqsCbgLeXFz++8YYzQ7zKxIcfpmG1atwJdLZYGAP0BapbLFCsGHNHjHBugOmULFqUb0a+gLvtB9ysFYChwCu4WesDzzOqRw+63nGHc4MUkVsn1XmtvoTovJa4jFzRJ2vChAnMnj2bPXv2pLlesmRJxo4dy1NPPXXNxzhz5gyNGzemb9++jB8/PtN5Y8aMYezYsVddV58syat+372bD1es4OdUzYiHBAfT0IVWK3K7PpMm8dWGDSln4BKBNvXrs3rcOGeGlam4hARC1q/ns9WrOXTyJH5FitCndWsGtm+Pr7e3s8PL0J6jR/nwu+9Yumkz8YmJNK1WhWc6d6RtgwbODk1EHCW5v9b2Bwj3a5bSX0vNjCUn5YpmxCNHjuTtt9/Ocs6uXbtYvHjxTSVZUVFRtGvXjmLFirFs2TLc3TM/7h8XF0dcXFyaewMCApRkSZ5lmiY/7djBLzt3YiFp+9od1atjsViuea+znLt0iW9++YXj585R2teXB+68k2KFM6rh5xpM0yQsPJx127ZhmCbNa9QgqG5dl36NRURyrbAwlod6E0agmhlLjssVSdbp06eJjIzMck7lypUJCQlh+PDhnDt3LuV6YmIiXl5efPPNN9x3332Z3n/x4kXat29PwYIFWbFiBV5eXtcVY1RUFD4+PkqyJE/aFxFBjwkT2Hr4ML5WKyZw3jBoetttfDNqFAElSjg7xDRM0+S9JUsYHRJCfEICJW02ThsGbjYbr/3vf7zYvbvLJS7HIiN58M03+S08HB+rFRtw1jCoU64cC196ierlyjk7RBGRvCkkhOURjVKSLfzLalVLblquSLKya9euXdSqVYs///yTxo0bA7B69Wo6dOjA0aNH8ff3z/C+qKgo2rdvj6enJ99//z0FbyBJUpIledXZixdpMHgwBS5c4CPDoDVJpQJWAk9brXiUKMHmDz7Au0CBazyS40z//nuenjGDocCLQGngJPDulY/Jjz3Gs126ODHCtGLi4mjy7LNcPHGC6YbBvSQdhN0ADLJaOV+4MH9/+CElfHycHKmISB51ZQthcrIVSittIZSbkt0kK1cUvqhZsyYdOnRg4MCBhIWF8euvvzJ48GB69eqVkmAdO3aMGjVqEHbllGNUVBT33HMP0dHRzJo1i6ioKE6cOMGJEyew212paLKIc3yyahWnzp/nR8OgDUn9j6xAR2C1YbD/5EnmrF/v3CBTiU9IYOzcuTwCvE9SggVQCngHeAIY99VXxMbHOyvEq3y1YQO7IyJYZRh05r8+U0HAj4bB+YsXmfHDD06NUUQkT0vXzFj9tcRRckWSBTB37lxq1KhBmzZt6NixIy1atOCTTz5JGU9ISGDPnj3ExMQAsHnzZjZt2sT27du57bbbKFOmTMrHkSNHnPVliLiMBaGhdDdNMqofWA3oaLEwf8MGR4eVqQ3//MPJixd5NpPxZ4HI6GjWbt3qyLCyNH/DBtpZLNTKYKwM0NMwmB8a6uCoRETyoSz6a4WEODs4yYsyr2XuYooVK8a8efMyHa9YsSKpdz4GBQWRC3ZCijjNuUuXqJjFeAXT5OeLFx0VzjWdi44GoEIm48nXz1+Z5wrOXbxIoyz+HqoArLp0yXEBiYjkd4GBBAdCcMiM/85rRVRj4sSyBAVpC6HknFyzkiUiOauKvz+/WjP+K8AEfrNaqVK2rGODykKV0kkbBH/LZPy3dPNcwW3lyrHxSkGRjPxmsVAlkzOlIiJyC6XrrxXEem0hlBylJEsknxrYoQMbDIOMTgR9A2wxDAZ26ODosDLVqEoVGlaowFiLhZh0Y7HAaxYLdcqVo2n16s4IL0MD27fnH8NgbgZja4HVpsljLvQai4jkKzqvJbeQkiyRfKrHnXfSuXFjulksDAV+BX4Gngb+B/Rq0YIOjRo5M8Q0LBYL0wcP5h83N+6wWvkC+Av4ErjDamWzzcb0wYNdqoR763r1eCgoiP4kFebYQNKK23Cgk8VC+/r16X3XXU6NUUQk39N5LbkFckUJd2dSCXfJy+ITEnh9wQJmfPcdkVfOMpUqXJjBXbowskcP3Gw2J0d4tb/27eOl2bNZnarARdu6dRnfvz+B1ao5MbKM2e123vn2Wz5YupTjFy4AUKxgQR6/917G/O9/eGbRHF1ERJwgXX+tCHReS/6Tp/pkOZOSLLkRR06f5kxUFP7FilHK19fZ4VxTXEICu48exQLUKFcOj1zwxn/15s38sW8fjSpX5t4mTZwdzjVdjotj5ebN2A2DtvXrU9Tb29khXdOp8+c5FhmJX5EilHexxtQiIreU+mtJJm5JknX58mX++usvihUrRq1aaYsSx8bG8vXXX9OvX78bj9oFKcmS6/HLzp28Mns2G3btAsBqsdCpcWPeevhhapUv7+To8oavNmzg2Y8/5nSqqnzFCxVi0sCB9Gvd2omRZcxut/PukiV8sGQJEVdWsvwKFeLxe+/ltd69XXIla/fRo4z64guW/fEHxpV/IlpUr864fv0IqlvXydGJiDhQqmQrhL5EUFbJVj6X40lWeHg499xzD4cPH8ZisdCiRQvmz59PmTJlADh58iT+/v55rtGvkizJrlWbNxP8+us0ME2eM02qApuBSVYrJz08+Ontt6lXqZKzw8zVZq1Zw+NTp1IdGAHUBXaQ1Ix4J/Dhk0/yVMeOzgwxDdM0efj99wkJDeUxks66uQGLgWkWC63q12f5a6+51LbMXUeOcOcLL+AXG8tww+B2YB8w2WLhT4uFJS+/TKfbb3d2mCIijhUWxvJQ7zRbCP39oW9fZwcmjpbjSdZ9991HQkICX3zxBefPn2fo0KHs3LmT0NBQypcvryRL8jW73U6Vxx6j+tmzrDBNUq9NRAF3Wq0Ur1GD9W+95awQcz3DMCj6wANUT0hgA5D6/8ZYoBWw3c2NqIULsWZSmt7R1m7dStvRo/kSeCj9GNAWmD10qEutwLUfPZrD27ez0TAomup6ItDNYuFvHx/+/fxzl0oMRUQcRue18r3sJlnZfify22+/8eabb1K8eHFuu+02li9fTvv27WnZsiUHDhzIkaBFcqsft27lUGQk49IlWABFgJcMg9CdO9kXEeGM8PKEr376iYsJCYwhbYIF4AW8DkQnJvLZmjUOjy0zM1etorbVSka/6GwDtLNY+HTlSkeHlalDp06xeutWRqZLsCBpBe4N0+TY+fP88NdfTohORMQFZNRfa1GkSr7LVbKdZF2+fBk3N7eUzy0WC9OnTyc4OJi7776b8PDwWxKgSG6w7/hx3IDMfpF155U/95844aCI8p4/9+0D/nst00u+vtmFfumz7+hRmhsGmRWVv9M02e9CifeBKz+fmb3GDYCCFgv7jx93VEgiIq4nXX+tEX6fqr+WXCXbSVaNGjX4888/r7r+4Ycf0rVrV7p06ZKjgYnkJr7e3iQCmb1dPpRqntyYkj4+ABzOZPxQunmuwLdwYQ5n0bfrELhUlcGihQoBmb/Gp4DLpulSMYuIOE2qZGuB/zD115I0sp1k3XfffXz11VcZjn344Yf07t0bVYOX/KpTkyYUdHfngwzGTOADoHKJEjS57TYHR5Z3PNOpE+7AlEzGPwDcgaEu9AufnnffzWrTZFcGYyeABRYLPYOCHBxV5hpUrky1UqWYQtLPbXofAp5ubnTR4QMRkf8kNzNOtYWQiGNMnKhVrfws20nWqFGj+P777zMd/+ijjzAMI0eCEsltfAoV4oXu3ZkIjAHOXrl+FHgaWAiM6dvXZQoy5EbeBQvS7c47+QwYDpy8cv0U8CIwA+jYtKlLrbL87+67qV6mDO2tVr4D7CQlLxuAtlYrRYsU4ckOHZwbZCoWi4XX+/VjGfA4cOTK9XPAG1c+nuvWjWKFCzsrRBER16XzWpKKmhFfg6oLSnYZhsHouXN5Z9EiLKZJcauVk3Y7BTw8eHvAAJ52odLiuZVhGAS/8QYr//wTC1CMpITWBNo0aMDKMWNcLpE9FhnJAxMmsHHvXoparbhZLJyx26ldtiwLX36ZGuXKOTvEq8xctYrhn35KdFwcpW02zhgGpsXC0K5deat/f5d7jUVEXE7q/lqR9xLhV0/9tfKIW9KMOD9SkiXX69T583z9yy+cjoqifPHiPNCihX52ctjBEyd4Ze5cjp45Q1k/P8b27k3VsmWdHVamTNNk0549rN22DcMwaF6zJq3r1cOSxXktZ7sYE8PC337j0KlT+BUpwgN33klpX19nhyUikrtcSbZGRzyp/lp5hJKsHKIkS8S1xMTF8cXatXyxejURkZGULlaM/u3a8UibNngXKODs8ESy5fLly3R7803WbdtBogEWoEJJX2Y/9xx31a7t7PBEJKdl0MxY/bVyJyVZOURJlojrOHvxIm1eeonthw7RxWKhrmmyA1hqsVCzXDnWTphACReqLiiSkbNRUZR5eADxifHAXcDdJJ2Amw8k8NGTA3lK24tF8p5UWwjDCCQ0sh7+df20hTCXUZKVQ5RkibiOXm+/zY8bN7LOMKiX6voOoLXVyp23387il192Vngi2VLpscf499RZYBlwb6qRE0ArLOwjduF8PDw8nBOgiNxaOq+Vq2U3ybqh08tz5szhzjvvxN/fn0OHkrrTTJ48maVLl95YtCIi13AsMpKFv/3G2HQJFkBt4A3DYMmmTRw6dcoZ4Ylky9moqCsJ1hOkTbAASgMzMUnkqRkzHB+ciDhG6v5adccTFLlQzYzzoOtOsqZPn86wYcPo2LEj58+fx263A1C0aFEmT56c0/GJiACwac8e7KZJj0zGe5BUZXDj7t0OjErk+iz45RcgETL9Sb4T8OPHrVsdF5SIOEdyf63uW9P01woNVaKVF1x3kjV16lRmzpzJyy+/jM1mS7nepEkTtm/fnqPBiYgkSy4bnpjJeGK6eSKuyC3l383MfpJNwI7VhStPikgOCwwkeEStNP21wkOPaVUrl7vudyMHDx6kYcOGV1339PQkOjo6R4ISEUmveY0aeNhsfJXJ+FeAm9VKi5o1HRmWyHXpfdddgBswL5MZ64DzdG3a1HFBiYhrSNfMmO3btIUwF7vuJKtSpUr8/fffV11fuXIlNfXmRkRukZJFi9I3KIixViuh6cZ+AUZbrfRq2RJ/Pz8nRCeSPd4FClCjXGngC+BLklauku0FBmC1uDNpwABnhCcizqbzWnmG2/XeMGzYMAYNGkRsbCymaRIWFsZXX33Fm2++yaeffnorYhQRAWDK449z4MQJWu3YwZ1WK3UNg3+sVn4xDFpUrcpHTz3l7BBFrmnr5MkU7/sQF2P7AxOAIOAQsAoLNr5+8fk02/FFJB8KDITAQMaFhbE8dH9Sf62IaoRGlCU8XM2Mc4MbKuE+d+5cxowZw/79+wHw9/dn7NixPProozkeoLOphLuIa0m021ny++988eOPRJw+TZnixenfti333XEH7m7X/XsjEaew2+08NX06IaEbiIs3sVpNGlSuwPwXXqBKmTLODk9EXE1ISEp/rXCqgX9ZlXx3klvSJysxMZF58+bRvn17SpUqRUxMDJcuXaJkyZI5ErQrUpIlIjcrPj6esQsW8P2ff2KYJnfXqcOEvn3x1t8p+dqeY8d48Ysv2Hf8OIULFGBI5870vvtuZ4eVp1yIjmbuhg3sOHyYQp6e3NesGXdUr45FhUUkN1J/LZdwy5oRFyxYkF27dlGhQoWbDjI3UJIlIjdj1ebN3DduHJftdioC7iSdvPGwWPhkyBD6t2nj3ADFKf737rt89dMvJB2NrgFEAGcpVdSPfz6cQvEs/uGW7Fnw8888MuVDYhMScLPWxOQMifbjBNWpz+KXXsTX29vZIYrcmCvJ1ujtDxDu14wIyirZcqBb1ow4MDCQLVu23FRwIiL5wdEzZ+g6diwBdjthwEEgHNgB1DdNHpsyhT/Cw50bpDjci198wVc//URSQ+LjwHbgJDCXk+ejafjsMKfGlxds+Ocfer87idj4rpjmIRLs20i0HwWW8vPOw9w34W1u4LSEiGvIor9WSIizg5Nk132A4emnn2b48OEcPXqUxo0bU6hQoTTj9erVy7HgRERys+c+/ZRE02QVUDHV9VrAKqA88OzMmfz2zjvOCE+cwDAMpixfCbQFpgHJ29bcgP8BcRyNHMAPf/3FvY0bOyvMXO+NBd9gtTTAboYAyUVErEAX7MZsNvzThY27d9NcVZElNwsMJDgQgkNm/HdeK6IaISE6r+UKrjvJ6tWrFwBDhgxJuWaxWDBNE4vFgt1uz7noRERysXV//829pE2wkvkCfYEv9+51aEziXL/s3ElcQgzwNP8lWKn1BgYzZdkyJVk36GJMDD9u3QJ8zH8JVmqdcLOVZdFvvynJkryhb1+Cw8IIDr+SbEUEEhrRivBwbSF0putOsg4ePHgr4hARyXMSExIoncV4KcCuLUv5SuTFi1f+q1QmM7wAHy7FxjooorwnJi7uyn9l9n+fFSip11jylisl35OTrdHbIwmnWUrJdyVbjnfdSVZ+KXghInKzShQrxpqTJzHI+ADsaqCwCurkK02rVSPpp2Ed0DyDGeHAcepXaujQuPISvyJF8PUuyrlLa4EuGcw4id34h1oB/R0dmsitp/5aLuO6k6wvv/wyy/F+/frdcDAiInnJC/ffz5PTpzMVeDbd2EJgIzCsbVvHByZO4+/nRzX/MoRHvEfS1sAqqUYTgOFYcGO83gndMDebjSc7tGXi4k+xG48ADVKNGsBIPNys9Gvd2jkBijhCJue1Jk4sS1CQVrUc4bpLuPv6+qb5PCEhgZiYGDw8PChYsCBnz57N0QCdTSXcReRmNHnuOf7av59gks5guZOUYH0FlC9Rgn0ff4ybmijnK7uOHKHekGEk2j1JOpvVEjgCfAjsYHTPB3m9Tx+nxpjbXYyJoeWo0fxzKAK7MZCkQiOnsFk/xjDCmP3cUB5q1crZYYo4Rqr+WmEEEkorlXy/CbesT1ZG9u7dy1NPPcULL7xA+/btb/bhXIqSLBG5GYZh8NiHH/J1aCjRiYkAeFmtdLj9dha88AIeHh5OjlCcYc+xY/SaOJG/Dx4Bkn4uihcpyht9evPEvfc6N7g8IiomhgnffMOMlT9yIfoCAHfVrsfonj1o26CBc4MTcYbUzYzpq/5aN8ihSRbAn3/+Sd++fdm9e3dOPJzLUJIlIjnhwqVLLNq4kUS7na6BgZQqVszZIeU5MXFxhIWHE5+YSP2KFSmVbueFK7oUE8PuiAhK+vhQvkQJZ4dzTfEJCfy+Zw+X4+OpXb485YoXd3ZI17QvIoJN4eEU8/ambYMGuGvlWPK7sDCWh3onbSGkWkqypV3K2ePwJOvvv//mrrvuIioqKicezmUoyRKRmxGXkMCoL79kxg+ruRx/GQB3mwd9g+5i8sDH9PdKDrDb7by+YAFTly7l3OWk19jNaqVH8+Z88MQTlPDxcXKEuZ9pmrz77be8tXApZy+dA8BisdKpye189OTjBLhggnjwxAmenvEJqzb/hUnSW50SRfx4+cH7GBIcjMWSUQl9kXwkJOS/81pXki2d17q2W5ZkLVu2LM3npmly/PhxPvzwQwICAvjhhx9uLGIXpSRLRG6UYRgEjxvPys3bMMwRJDWbdQMWY7OOp2HlMvz81ni8tGXwhpmmySOTJxOyfj1Dgf6AN7ACeMNqpXjp0vz67rsU9fZ2apy53fOffcakJUuAJ4GBgB+wGjfrOEoWjeOv99+htAutHB45fZomw0YQebEwduNVoA1wiqTeWZ/yyoMPMk6/the5+rxWZD386/ppC2EWblmSZbWmLURssVgoUaIErVu3ZtKkSZQpU+bGInZRSrJE5Eat+OMPgseNI+ktf6d0o39ioSkznn6Sxzt0cEJ0ecPvu3fTbMQIPgceTje2B2hosfBynz68/OCDjg8uj9gbEUG1J58E3gGeTzd6FDdrfQZ3bsH7jz3mhOgy9sS0aXy2ZguJxlau7pc1DotlDP9+OjNXbNEUcQid18q27CZZGbVuyZJhGGk+7HY7J06cYN68eXkuwRIRuRmfrv4Rm7UxVydYAE3A0olPVq11dFh5ymc//kglm42MmodUB3qbJp+tXOnosPKUL9auxWb1BQZnMFqORGMgs9asw263Ozq0DMUlJPDlug0kGk+TcUPi57BaCvLlunWODk3EdQUGQt++BAddYoH/MIJYDxHHCA2FkBBnB5c7XXeS9frrrxMTE3PV9cuXL/P666/nSFAiInnBwZNnsBuNMh03zcYcOn3GgRHlPUdOn6aB3Z7pP2aNgMN5rLWIox05cwaoBXhlMqMRFy9f4uKV83DOdu7SJWITYkn67mfEG4ulGodPn3ZkWCK5w5Vka5z/DPoSkpJsTZyYtNgl2XfdSdbYsWO5dOnSVddjYmIYO3ZsjgQlIpIXlC5aBKs1PIsZ4ZT0yXyrgVxbiaJFCbdayWzfezhQQuexbkqJIkWwWA6QXGr+auF4unviXaCAI8PKlE/BgrhZ3Uj67mckDsx/VRBFJCtXVrVSJ1uhiyIJCVGylV3XnWSZpplhRZ6tW7dSTCWJRURS9G8ThGFsADL6F+kAVstCHmkb5OCo8pa+QUHsMAwyKrl0AvjSauWhtm0dHVae0icoiET7cWBeBqMXcLPO4H93t8TNZnN0aBkq4OlJ9+bNcLNOA67+pTB8QaJxlr5BQQ6OTCSXSbWFcJz/DEb4fQrbt6VsIVSylbVsJ1m+vr4UK1YMi8VCtWrVKFasWMqHj48P7dq140EdLBYRSdGjeXMaVa6GzXov8BkQA8QDX+NmDaJ8ieI81q6dc4PM5drWr0+7evXoabUyDbgI2IHlQJDVSoHChRnapYtzg8zlGlWpQq+Wd2G1DAQmAmcBA1iDzdqKAp4XGNWjh3ODTOfVXj3xcD+J1doaWA+YwBlgPBbLYB5u3YaaAQHODVIkt0h9XqvueJ3XyqZsVxecPXs2pmkyYMAAJk+ejE+qZXYPDw8qVqxIs2bNblmgzqLqgiJyM85evMjDU6ayImzTlV49FsDkrtr1mDt8aK5o5urqomNjeWraNOb99BN208RKUgrQ9LbbmPP881T193d2iLlefEICQz+dxcxVq0k0EuHKq1wroBIhw4bQsEoVZ4d4lbDwcB567wPCIw5jwYaJHXebB0937MA7jzyspsQiNyqDZsb5qb/WLSvhvmHDBpo3b467u/tNB5kbKMkSkZyw//hx1m/fjmEYNK9ZkzoVKjg7pDzn6JkzrN6yhfjERG6vWpXGt93m7JDynFPnz/PDX39xOT6eehUr0qxGDZdu6muaJr/s3Mk/hw5RyMuLjk2aUDyLN0Uikk35uL/WLUuyUouNjSU+Pj7NtayeLDdSkiUiN2v9tm1MWrKMtVu3YZgGzWrU5Lkuneh6xx3ODi1DUTExTPvuO2atXMmhyEiKe3vTp3VrhnbpopW3HHI5Lo6PV67kox/WcODEMbwLeNPn7jsZ1rUrVVy0HcrXv/zCqNlfcuDkacDAy6MAPVvcwSdPP42HCzbUTkhM5LMff+TDFavYfewQBTy86N68Kc/fdx+1y5d3dnjiJIdOneL9pUuZs/4XLsREUaFEGZ68ty1Pd+xIIa/MKmg6j2maLN64kfeXriBsbzg2i5V7Gjbg+fu60rJ2bWeHl7a/VuS9RPjVy/P9tW5ZkhUTE8OIESP4+uuviYyMvGrcVfpk5BQlWSJyMz5YvpxnZ87EZq2H3egDuGGzLsJu/MbI7t15s39/Z4eYxtmLF2k1ciThR4/SyzS5HdgHzLZacStUiNC33tJZlpsUHRtL29Fj2BQeDmZ3TFoCR3Czfo6nRzTr3hhLYLVqzg4zjVfnzmXcgm8Af+BRwA9YCfxAGd9iHJj5MV4ulGglJCbS9Y03Wbn5L7AEY5ptgVO42b7AZj3F8ldeol3Dhs4OUxxs68GD3D1qNNGx7iQajwAVgd+xWr6mbsUKbJjwOj6FCjk5yv+YpsnQTz/lg+XLsVnvwm7cB8TiZg3BbuxkxtNPuU4z+yvJ1ujtDxDu1yxPNzO+ZUnWoEGDWL9+PePGjeOhhx5i2rRpHDt2jI8//pi33nqLPn363HTwrkRJlojcqH8OHaLuM88Aw4F3SDqPlew9YDirx451qTd7D7//Pis2bGCDYZD6d6SngdZWK24BAWz+4AOX3iLm6l74/HPeX7oKu7EWSL2aGYXN2oHSvgf499MZLlOt7/Dp01R49HGSmmp/A6ROppYD3bi/WVMWjRrllPgy8vaiRbz05TwMcznQPtVILBZLNwoX+I2IL2a55MqF3BqGYVD9qWc4eLL4lf/3fFON/o3NejcD72nO9KefdlaIV1m2aRNdx48HpgGp4zKAIVgt09k9/SPXOneaD85rZTfJuu4S7suXL+ejjz6ie/fuuLm50bJlS1555RUmTJjA3LlzbypoEZG8ZPoPP+BmLQ28SdoEC+A53Kz1mLrieydElrHIqCi++uknRqZLsABKAJMMg78PHeK3XbucEV6ekLRNcA12YzBpEyyAItiNDzkWeZLv/vjDGeFlaPisWVf+awZpEyyAYOABloVtxjAMxwaWCcMw+GD5DxhmH9ImWABemOYMomIu8dVPPzkjPHGS9du3s+/4EezGFNImWAANsBvD+WJtKFExMc4IL0MfrPgBm7UpaRMsSHr7/i4Wiw8zfsiogYUTBQZe1V8rPPRYviz5ft1J1tmzZ6lcuTKQdP7q7NmzALRo0YKfbuFfWGfPnqVPnz4UKVKEokWL8uijj2bYFDkjpmly7733YrFYWLJkyS2LUUQktd927yPRuBfIqFCQhUSjC5vC9zs6rEz9c/gw8XY7nTMZbwt4Wiz8uW+fI8PKUw6cPMnFy5cg01e5Ee42f5d6jbccOAA0AjI7K9aFRHscEVfeDzjbmagoIs6eAjIr3V8Rd1sdl3qN5db7c98+bNYiQItMZgQTmxDLriNHHBlWlv7Yuw+7EZzJqBd2o4NL/RuSIl1/rb6E5Mv+WtedZFWuXJmDBw8CUKNGDb7++msgaYWraNGiORpcan369GHHjh2sWbOGFStW8NNPP/H4449n697Jkydra4uIOJyXuxsZN0NNdgkPN9ep1OpxpaR1ZhHHAommmTJPrt9/r11mr7Idw4xxqdfY3WYjqQNZZpK+loIucibr2q+xiUm0S73Gcut5uLlhmgkk9SrMyKWUea7C3Xatf0Oi8HR3nXivkr6/VuTCNP218nqydd1J1iOPPMLWrVsBGDlyJNOmTcPLy4vnnnuOF154IccDBNi1axcrV67k008/pWnTprRo0YKpU6cyf/58IiIisrz377//ZtKkSXz22We3JDYRkcwE394Iq2UFcHWRIIjFzfYVXZu6znmsRlWqUMLbm9mZjM8j6SRA+0aNHBhV3lKldGkqlvTHwheZzFiO3ThPxyZNHBlWlro0bQrsBjZnMGoCn+FTsAjFXKS6cFFvb26/rQZWy+ckxZfebyTaD9CxcWNHhyZO1KFRIwzzMrAwkxlfUKpocepWrOjAqLIWHNgQN9tcICGD0eNYLKvpfHsu+Dm+kmyN6741ZQthfmhmfN1J1nPPPceQIUMAaNu2Lbt372bevHls2bKFZ599NscDBNi4cSNFixalSap/dNq2bYvVamXTpk2Z3hcTE8P//vc/pk2bRunSpbP1XHFxcURFRaX5EBG5EY/dcw+FvGxYLd2A1L8QOovF0gsL5xjcObNtY47n6e7Os9268RHwCZBcK9YEVgPDrVZ6NGtG5Wz+fSpXs1qtjOrRDZOvgYmkffO0EZv1cVrWrudSPb7G/u9/uNm8gB7AzlQjMSQVddnEc107OSW2zIzs0Q3DXA+8RNIabLJtuFn7UCugEve4UMEZufVqBgRwb+PbsVkHA6GpRhKBqcBnjLi/i8sUnAEY2qULmMex0Bc4n2rkCDZrN4oWLEj/1q2dFN0NCAwkeEStNOe1iMi757WuO8lKLTY2lgoVKnD//fdTr169nIrpKidOnKBkyZJprrm5uVGsWDFOnDiR6X3PPfcczZs3p2vXrtl+rjfffBMfH5+UjwCVKhaRG1SyaFFWjhlN4QLbsFgqYKEd0AmrpSyebqtY/NKL1ChXztlhpjGqRw8ebdeOJ4DKNhv3A/WtVtoDjWvW5NNb9Mu0/GRg+/a82L078CJu1gDgPmzWxkBz6lQoyqKRt2ZXyI3y8vBgzeujcbNGALWB5kA3oDTwPvc3a8ZrvXs7M8Sr3N+8ORMffhgLb2OzlgW6YbU2A+pTsZTBD2NewWq9qbdAkgvNHf4ct1f1B1phszYA7sPNVhEYwqBOnXjuOt4vOkL9SpWYP+J53N2WYLX4A52xWNpioRI+BcNZ/fqrFCtc2NlhXr98cl7ruku42+12JkyYwIwZMzh58iTh4eFUrlyZ0aNHU7FiRR599NFsP9bIkSN5++23s5yza9cuFi9ezOzZs9mzZ0+asZIlSzJ27Fieeuqpq+5btmwZw4cPZ8uWLXh7ewNgsVj49ttv6datW6bPFxcXR1xcXMrnUVFRBAQEqIS7iNyw85cu8eX69azduhW7YXJnzRo82q4dJW/hOdab9cfevXy2Zg2HTp3Cr0gR+tx9N/c0bKg3pjlo+7//MnP1avZGHKdooYI82KIFwYGBLvWb9NTOX7rEyNmzWfHHH8Qn2qlcuhQT+vWj9S38JevN2hsRwSerVvHPocN4e3lyf7Nm3N+8OZ7urnMWUhzLbrfzw+bNfPXTT0RGXaRKmdI82q4djapUcXZomTpx7hyfrl7Nxt17cHez0a5BAx5q1SpvvC/Nhf21slvC/bpPy40fP57Zs2czceJEBg4cmHK9Tp06TJ48+bqSrOHDh/Pwww9nOady5cqULl2aU6dOpbmemJjI2bNnM90GuG7dOvbv339VMY7u3bvTsmVLQkNDM7zP09MTT0/P7H4JIiLXVNTbmyHBwQwJzqxKlOu5vWpVbq9a1dlh5Gl1K1bkg2wWcHIFRb29mTFokLPDuC6e7u4U9PSkkJcnBT09KeDpiU2/KMjXrFYrBTw8KOjpSaxXPAU8PCjgIkVbMlPa15dXevZ0dhi3RmAgBAYyLiyM5aH7k/prRVQjNKIs4eHQt6+zA7xx172Sddttt/Hxxx/Tpk0bChcuzNatW6lcuTK7d++mWbNmnDt3LseD3LVrF7Vq1eLPP/+k8ZWDqqtXr6ZDhw4cPXoU/wyasJ04cYIzZ86kuVa3bl2mTJlCcHAwlSpVytZzqxmxiIhI7vPhihU8O3MWFksBDLMZVstJ7MY2apevzJrXX6VMsWLODlEc7GJMDF3Gv0no9q242apiNyphs2wm0TjDiPvv563+/VWN2tlCQlge0SilmTH+ZV1uVeuWNSM+duwYt2VwINcwDBISMqp+cvNq1qxJhw4dGDhwIGFhYfz6668MHjyYXr16pSRYx44do0aNGoRd2cxZunRp6tSpk+YDoHz58tlOsERERCT3WfHHHzzzyScY5iDsxnFMczV2YyuwkT1HY+k4djzX+TtmyQP6T/6An3ccAL4j0b4H01xFonEUeJuJixfz0feu0xw+30p3XqtaxPpce17rupOsWrVq8fPPP191feHChTS8hZV65s6dS40aNWjTpg0dO3akRYsWfPLJJynjCQkJ7NmzhxgX6tQtIiIijjfh68VYrS2AyYB3qpE7SDTm8vfBvay90o5G8ofwY8f49vffsBsfAB2B5BUrT2AE0I83Fy7Bbrdn+hjiIOmaGefW/lrXfSbr1VdfpX///hw7dgzDMFi8eDF79uzhyy+/ZMWKFbciRgCKFSvGvHnzMh2vWLHiNX8rpd9aiYiI5G0XoqPZuGcH8Dn/vZFO7W7cbBVZ8ccftG3QwLHBidN8/+efWC1eGGavTGYM4Fjkl/xz+DD1tePJNeTy81rXvZLVtWtXli9fzo8//kihQoV49dVX2bVrF8uXL6ddu3a3IkYRERGRbIlLObpQNJMZFqAIsbfoiIO4prjERCwWT5JWrjLiA0BsfLzDYpJsyqS/1sSJrr2qle2VrAMHDlCpUiUsFgstW7ZkzZo1tzIuERERketWvEgRShUtzsnz35HUzyu9I9jt/9CwcgsHRybO1KBSJezGBeB3oFkGM77Hw82D6mXLOjgyyba+fQkOCyM4fEZKcYzQ0FaEh7tmyfdsr2RVrVqV06dPp3zes2dPTp48eUuCEhEREbkRVquVwZ3aY7V8CWxINxqPxTKYgl4F+N9ddzkjPHGSdg0aULGkPzbrUCAq3ehObNZ36Rt0N0W9vTO4W1xGuvNaI3jbZc9rZTvJSn+e6fvvvyc6OjrHAxIRERG5GS/cfz931amJxdIWC72Bz4C3cLPWxmb9gfkvDKOw2rLkK1arlW9eHE4Bj524WWsAr5J0bu8JbNYmVCvrwzuPPOzcICX7UiVbqbcQJidbriDbfbKsVisnTpygZMmSAGl6ZOVl6pMlIiKS+8QlJPDR99/z4YpVHDh5FHc3D+6/oykjut9PoypVnB2eOMneiAje/fZbQtb/REz8ZUr7luDJDm0Z2qULPoUKOTs8uVHp+mtFUJagoFuzhTC7fbKynWTZbDZOnDhBiRIlgKQka9u2bXm+55SSLBERkSTnL11izd9/czk+nnoVK9Igl/yiNdFux2a1qtGsAEnFLVZt3szpqCiq+fvTsnZt/WzkBWFhEB7+33mtyHr41/XL8fNa2U2ysl34wjRNHn74YTw9k6qyxMbG8uSTT1IoXda/ePHiGwxZREREXFGi3c6Ls2cz7bsfiEuIS7ne+LbqzB76DLXLl3didNfmZrM5OwRxAaZpMmXZMsZ89Q0XYv47l1W5VDlmDn6C1vXrOzE6uWlXSr6nFMegESERfVNKvju6OEa2z2T179+fkiVL4uPjg4+PD3379sXf3z/l8+QPERERyVsem/oh7y9dQVzCSOAocBlYyt8HbLR48SUOnjjh5AhFru3db7/luVmzuBDzP2APEAds4N9Tt9H+tbH8snOnkyOUHJHqvNYC/2FOO6+V7e2C+ZW2C4qISH627eBB6j/7LDATeCzd6FncrLUZ0K4+Hw8a5IToRLLn/KVLlOk/gNiEp4FJ6UbjsVpacEf1GH6d+KYzwpNbKYfPa2V3u+B1NyMWERGR/GNOaChutlJA/wxGi5FoPMGc9T+RaLc7OjSRbFu8cSNxCfHA8xmMemCYw/lt9w6tyuZFqUq+J1ciDF0UectLvivJEhERkUydPH8e06wKuGcyoxaX4y9z6fJlR4Ylcl1Onj+PzVYUKJPJjFoAnDh/3kERiUOl76/l9yls33ZL+2spyRIREZFMlS1WDItlN0nnVzKyjYKeBSlcoIAjwxK5LmX9/Ei0nwOOZDJjGwD+xYo5LCZxgtTnteqOv6XntZRkiYiISKb6tW5Nov0M/L+9O4+zse7/OP4615nNjFmsM0a2iZAtSzPIFspSlFREipQW1R1K3MkSUqK6U5K0KSXuUt1IoexLiCL7TgwxzGLGzJxzXb8/aH7RDEPHueaceT8fj/N4jOv6Xue853zPHOdzvtf1/TI5l71HCDDeoVerFjg1g58UYJ0aNqRIUAiQ2zVXGTiNV2hesw4Vzq4HK37ubLE1ssUP5yxmPHas50a1VGSJiIhInqqXK8dj7dsD/wIGAFuBP4BPcBqNKRZuMejOO23NKHIx4aGhvNLrPuBt4F5gLXAcmIPhaEGAc+vZ/VKoxMdfseu1NLvgRWh2QRERKexM02TUjBmMm/UNqRlpOdtb1q7L5L6PcHWZvK5zESlY3vv+e577ZDpHTh7L2Va7YmUmPdaHRtWq2ZhMbPeXxYw/Od6OQyVqExv79/W18ju7oIqsi1CRJSIickZ6ZiZLNm0iIyuLmhUqUCU21u5Iful0VhYZWVlEhoZiGDrpyNNcbjcLf/mFwydOULN8eepXrozD4bA7lhQUZ4ut5zfexfYSjThE2XOKrfwWWQFejCwiIiI+LDQ4mLb169sdw2/9tH07oz6fyZy1azAtkxLhxXik3U0MvOMOfdHrIRv37mX0jJl8sWIlLtNFRJFwHmrTikF33knJC3xglkIkPh7i4xn500/8b9GuM+trHbqGRYfKAlCzZv7uRiNZF6GRLBEREbnSZq9ZQ6fRY7C4Brf5MBALLMZpvM+15cqw9KVRRIaF2R3Tpy3bvJmbnh+Oyx2Ly3wUqAiswmlMoXypoqwc+yLRxYrZnFIKlL+cQvjnYsbZpcKZNUunC/5jKrJERETkSkrPzKTM/Q+QmnEjlvVfzl2T7Fecxg082aEVr/bubVdEn+d2u6nw4CMcTqqKaX0L/PUz3W6cRkPuaVaTj/v3syuiFGR/KbaWumrwyqoOFy2ydKKviIiIiI1mLFtGSnoalvUaf1/0uTZu81GmfL+Q01lZdsTzC/N+/pnfjx/BtF7l3AILIA63+QzTly7jeEqKHfGkoPvL+lpDyryfr0NUZImIiIjYaOPevQQ6rwbi8mjRhtSMNA4lJXkzll/ZuG8fAUYUkNc1hTfjcmez8/BhL6YSnxMfD1265KupiiwRERERG4UGB2NxEnDn0eIPAIoEBXkrkt8JDQ7GtDKA9DxanJnSXc+xeIqKLBEREREb3d6wIS73MeCrXPZaGI7J1Lu6KmWKF/dyMv/R4frrsaws4OM8WkymQulYalao4M1Y4sdUZImIiIjYqH7lyrSuUw+n8SAwBzDP7jkBPIFp/cjQLp3tC+gHKsXE0LVZcwyjP/A5/z9qmAoMAWbw/N13aF0y8Ri9kkRERERsNvPZp7mhenngVgKccQQYjTAcZQkw3uGtRx7htoYN7Y7o86Y80Zdb6tcGuhLgLE+A0QinEYvhGMPI7t3pffPNdkcUP6Ip3C9CU7iLiIiIN1iWxbLNm5m5fDmpGRlULVuWnq1aEaO1mzxqzY4dfLZkCUmpqcTFxNCzVSvKlypldyzxESnp6UR27XrRKdwDvJhJREREznrn2295ZdZXJJ5Mo0iQk9sTrueVXr2IKlrU7mhik4ysLHYcOsT23w+TnH4aw2Gw/48/VGR52PVVqnB9lSp2xxA/p5Gsi9BIloiIeJJpmtR+8kl+278fKA+0APYCSwh0hrDqlRepV7mynRHFBvuOHqXlkOHsTvwdw3EjplWWAGMxLnM//W+7jXEPPIDD4bA7pkihl9+RLF2TJSIi4kV3vfzy2QJrIrAH+AhYDPxKtrsYzQYPxTTNC96H+BfLsugwcgz7jzqB3zCthcBUXOZu4DVe/fprpnz/vc0pReRSqMgSERHxkqysLL5evQ64F3iUc/8brgVM4VRmGlPmz7cln9jjx19/ZeO+XbjMD4Dqf9njBJ7CQWde/uJrdPKRiO9QkSUiIuIlCzduxG1mAT3yaNEWiGT6kiVeTCV2+37DBgKcsZw5dfTvLHqwK/EgB48d82ouEbl8KrJERES8JNvlOvtTSB4tHEAQLrc7j/3ij9ymiYMgzvR/bs68XvS6EPEdKrJERES8pEWtWpyZ2HdWHi1+Av6gVZ063gsltmtYtSrZ7r3Ar3m0+JLSkSUop2nGRXyGiiwREREviQgNpXG1ypyZ9OLH8/YeBx4mwAhmcOfO3g8ntukYH09s8dI4jYeAk+ftnYfh+IAnbm1LgNNpQzoRuRwqskRERLxoztChFAsrArQC2gEvAX2Bijj4jWlP/4ugoCBbM4p3BQYE8PVzzxIWvAWnUQl4EngJw9EGaEfbetfxrApvEZ+idbIuQutkiYiIp6WfPk3fd95hxtJVpGdl4jScXF+lIhMefpgGWiOr0Nr/xx9MmD2bTxevIO10BlXLlqVv+5vp3qKFRrFECoj8rpMV4MVMIiIekZaRwaxVqziUlESZYsXo1LAh4foSRHxIaEgI7zz2GB3j49l+6BBRYWHcnpBAdLFidkcTG5UvVYp+HTsSFx1NasaZIuuW668v0AWWaZr8uHEjP+/aRXBgILc0aMDVZcrYHcuvmKbJpHnzmLt2LQFOJ71at+a2hAS7Y8lFaCTrIjSSJVKwvDVnDgM//Jj0zAwCjEhcZjJFgkJ4sUc3nrrtNrvjieTL/376iQfemMixlCScRiSmdQqnA/re0p5xD/Qq0B+q5crIdrn417tTmPzdd5iWA8MRhttMJjqqJB899Tht6tWzO+Lf/LxrF3e/PJ5diQdxGuFYVhamlUnnRk344F+P68svD/h23To6vfgKmdnpQBHADWRRvGgUK14ZQ9WyZW1OWPjkdyRL12SJiM+Y8v33PP7OO6Rn3gfsxWWeAPaTkdWbfu+9x9tz59odUeSiFm3cyO2jx3A8tTGwEbd5Ess6ist8gTf+N4d+U96zO6LY4JGJbzNp3nzc5ktY1jHc5klgA0eT63HryNGs3LrV7ojn2HX4MC3+/Tx7j8YAS3GbyZjWCeA9vlr9C7eNfkmLJ/9Dv+7Zwy0vvEhm9lXAfCANSAU+IynNoO6/BpCWnm5vSMmTiiwR8QnZLhf/nvoZcC/wNlD+7J6rgAnAAwz55HMys7PtiiiSL0M++Qyoj2XNAmqe3VoMGIzFS7w1d64WnS1kdh46xPsL5mNZrwFPA5Fn99TBsv6HZVVn2Kef25jw78bNmkVGZlHc5gKgCWfW+CoCPIDbnM6PGzewaONGe0P6uL6TJmFZgcBioDVnPrYHAV2BuWRkpfP8p5/aGVEuQEWWiPiExZs28UfKcaB/Hi36kZR2gh9+zWudGRH7/X78OMu3bMK0/kXul0U/jINgZixb5u1oYqPpS5fiNMKBB3LZG4TbfIL5G9ZxPCXF29FyZVkWHy9aist8kP8vCP+qHQHOa/h0yRJvR/MrK7ftBnoAMbnsTQAa8tkSvVcUVCqyRMQnJKWlnf2pUh4t4gAKzIcQkdwkpaae/Smv13E4TqMkx3PaSWGQlJaG4YjhzEhQbs68v53IeR+0l9s0OXX6FHm/jh243ZX0fvwPuU03eT/HAJU5dVpnbxRUKrJExCdUio4++9NPebRYfV47kYKnbIkSOA0neb+OD+JyH9LruJCpFB2N29wH/JFHi9UEBQQRU0BmnwxwOomJKkXer+MsnMZ6vY7/oeDAIGBVHnstYAWlIjW5SEGlIktEfEKDypW5tlwlDMcIIPO8vVkYjuFULlOOxtWr2xFPJF+Kh4fTuXFjAoxXgfOvu7KA4YQEBXF3kyY2pBO7dGvWjAAnwAuceR38VSIBxhvc06wJRYvkNdLlfY+0a41hTAW25LL3TVzmUXrfdJO3Y/mVjvF1gW/IvZj9GNjNvzp08G4oyTcVWSLiExwOB5Me64PTuRbDaAx8DmwGZmI4mmAYK5nc92EcDofNSUUubMx9PYgIS8VpxAPvcOZ1/B0ObgXe440+vbVkSCFTIiKC8Q/0BN4EOgELOPO6mIjTiKd4eDYju3e3M+LfPNWxI9fERuM0mgAvARuBZUAvYAD9b7uNa8uXv+B9yIVN7tuXsJBQ4EZgOPALZ87aeBzoSaXoGJ649VYbE8qFaJ2si9A6WSIFy8qtW3nmg6ks37IpZ1ujqjUY26sHTa691sZkIvm389Ah+r/3AbPXrsGyTACuiS3PqHu7cpdGsQqtTxcvZui0z9mVeBAAw+GkY0I8r/V+gIoF8NS74ykpPP3BB3y6eClZriwAyhQrzbOdO/Jkhw760ssDEk+c4OahQ9m47yBn1sgCB4G0qnMtc55/nqCgIHsDFkL5XSdLRdZFqMgSKZh2JyZyOCmJmGLFuLpMGbvjiFyWw0lJ7E5MJKpoUa4tV04fSgXLslj4yy8cPXmShlWrEucD728n0tLYevAgwYGB1K5Y0ScW0048cYITaWnEFi9OZFiY3XEu6tDx48xeu5bggAA6N2pEUR/4TPpHcjLHUlKIjoqieHi43XE8RkWWh6jIEhEREW/4dt06hk37nDU7zyw8HBIYQvcWzRh9b3eiC8ikF75uyaZNPD9tOkt+O7PcR4AzkC5NbmB0j3upULq0zen8w7qdOxnyyad89/M6LCwMh5PbGyYwuse9VLvqKrvj/WP5LbJ0TZaIiIiIzT7+8UduGfEC63aVAqYDSzid/RwfLfyZhGcGc/TkSZsT+r7Za9bQcsjzLNsSBEwFluByj+bzpdu5fsCz7D1yxO6IPm/Z5s3c8Oxg5m/IwGIysATTep2vVycSP2Agm/btszui16jIEhEREbFR8qlTPPzWJCx6YFqLgC5AU2AILvMnfj+WydBPP7U3pI/Lys6m5+tvYlrtMM2VnFnktynwDC7zZ06khjHg/Q9sTunbLMui5+tvku1qgNtcCzzImef4cdzmz6RnVuCRie/YnNJ7fKbISkpKonv37kRERBAVFUXv3r1Jy8eifCtXrqRly5aEhYURERFBs2bNyMjI8EJiERERkYv7bMkSTmdlAWP4+0ezSrjMx/noh8WkZ56/fIXk1//WrOF46gks6yUg4Ly90bjMgXy1ajVHTpywI55fWPLbb+xKPIhpvQiEnLc3Erc5lOVbNrHt4EE74nmdzxRZ3bt357fffmP+/PnMnj2bJUuW0KdPnwses3LlStq2bcvNN9/MTz/9xJo1a3j88ccxDJ/5tUVERMTPbT90iABnHBCbR4tmnM7K4HBSkjdj+ZXtv/9OgFEMqJFHi2aYlps9OmXwsm3//fezP+U1Q2ozAHYcPuyVPHY7v5QvkLZs2cK8efNYs2YNDRo0AGDChAm0b9+ecePGERub+5tSv379ePLJJxk0aFDOtqpVq3ols4iIiEh+RIaGYlp/AFlAblNyn/nmP7wALUbsayLDwnBbaUAyEJlLizPPsSY5u3z/P0vjISC3CS7OPseF5HXsE0M6K1euJCoqKqfAAmjdujWGYbB69epcjzl69CirV6+mdOnSNG7cmOjoaJo3b86yZcsu+FiZmZmkpKSccxMRERG5Uu684Qbc5kkgt+uu3DiNt2h6bS1KR0V5N5gfuT0hAQcm8G4uey0cjglULVuB6uXKeTua32hbrx5FgooAE/Jo8SalI0vQuHp1b8ayjU8UWYmJiZQ+b1rNgIAAihcvTmJiYq7H7N69G4Dhw4fz0EMPMW/ePOrVq0erVq3YsWNHno81ZswYIiMjc27l9McmIiIiV1CN8uW5s3ETDMdjwPvAn9de7cXBPZjWWobfc7eNCX1fbIkSPNKuDQ7HYOAN4NTZPYeAPljWt4y6t6vWqvsHIkJDGXjHbcArwGjOjBoCHAOeAT7ihe5dfGIdNU+wtcgaNGgQDofjgretW7de1n2bpgnAww8/TK9evahbty6vvfYaVatW5f3338/zuMGDB5OcnJxzO3DgwGU9voiIiEh+Te33L+5sfD3QG6dRikBnJSCOsJBvmf7M07SsU8fuiD7v9Qcf5MGbWuHgKZxGNIHOSjgoT0jgJ0zu25c7b7jB7og+b2jXrgy8oxOGYxiGowyBAXEYjrIEOt/gpfvv5+G2be2O6DW2XpM1YMAAevbsecE2cXFxxMTEcPTo0XO2u1wukpKSiImJyfW4MmdXSL/22mvP2V69enX279+f5+MFBwcTHBycj/QiIiIinlEkOJjPn32aEQe78sWKFaRmZFC1bEfubtKEsJDzZ2qTyxEYEMDkx/sy+M7OzFi+nKTUVOJi2tO1adO/XE8k/4RhGLzcsydPdujA9CVLOJqczFUlb+KeZs0oeYGFe/2RrUVWqVKlKFWq1EXbNWrUiJMnT7Ju3Trq168PwA8//IBpmiQkJOR6TMWKFYmNjWXbtm3nbN++fTvt2rX75+FFRPyUy+1m5rJlTP5uAbuPHKN0ZDj3tWxGz5YtCddF4R5hmiZfr17NpHnfs/VgIsXCQunWvDEP3nwzxcPD7Y4nNqp21VU8d7fvnBq4ZNMm3pr7LT9t30NIUCC3J9Tj0fbtKZ+Pz3d2qRQTw7OdO9sdw6+VLVGCAZ062R3DVg7Lsiy7Q+RHu3btOHLkCJMmTSI7O5tevXrRoEEDPj27ON/vv/9Oq1atmDp1KvHx8QC8/vrrDBs2jPfee4/rrruOjz76iHHjxrFp0yauvvrqfD1uSkoKkZGRJE+frhlnRMTvZWRmcssLo/lx4wYMozmmGY+DHeCYTVx0DIvHjKRsiRJ2x/RpLrebLmPH8eXK5TiNBNxmM+AAhmMW0VERLB4zkip5zJorUpA89/HHvDhzJgFGVVzmLcBJnMZMggPdfDtsCM1q1rQ7oojHpaSnE9m1K8nJyURcYHTOJya+AJg2bRrVqlWjVatWtG/fniZNmjB58uSc/dnZ2Wzbto309PScbU899RSDBw+mX79+1KlTh4ULFzJ//vx8F1giIoXN4KlTWbxpG/ADprkIGIvFLCzrN/YdhXteedXmhL7v5S++YNaq1cCXuM1VwFjgM0xrJ0eTi3PbqJfxke8/pRD7csUKXpw5E3gFl7kFGA+8h9s8yOmsBG4d+SIpf/lMJlLY+MxIll00kiUihUVqejrR9/UiI+tp4IVcWnwB3MmG//yHOpUqeTmdf8h2uSjb8yH+SLkLeDuXFouBFiwcOVITHUiB1uTZf7NyW3FMc3Euew/hoDwTHn6Qvrfc4vVsIleS341kiYjIlbVhzx4ysjKAvK4H6YjDEcSS337zZiy/svPwYf5IOU7ez3EzApylWKznWAow0zRZseU3TLNLHi1icThuYPGmTV7NJVKQqMgSERGAv6wPc6ETHCy0iszl03Ms/uLMa/nCr2ORwkxFloiIAHBdpUqEBocCn+fRYhaWlU2LWrW8GcuvVC5ThtKRJcj7OV6Ey31Mz7EUaIZhcEP1GjiN6Xm0OIhlreBGvY6lEFORJSIiABQtUoRH2t6E4RgPfH/e3i0EGE/RomYdalaoYEc8vxDgdNLvtltwON4DZpy3dx9Oow81ysfRXLOySQE34PYOuM1lwBjA/MuekxiO7kSEhnFvixb2hBMpAFRkiYhIjtE9etC6Tg2gDU6jCdAPh+NWHNQkLiaQT5/uZ3dEn/dMp07cfcMNQBecRn2gH9AZh6MKMcVS+fq5Z/9yWqFIwXRbw4YM7doV+DcBzirAk8D9OI2rCA3+mTlD/6119aRQ0+yCF6HZBUWksHG53Xy1atXZxYj/oHREOPe3as69LVoQFhJidzy/YJom365bd3Yx4sNEhYXSvfkN9GzViqiiRe2OJ5JvK7du5c05c1izfS8hQQF0anQ9D7dpQ6zW0xM/ld/ZBVVkXYSKLBEREfGWTfv28d/ly0nNyKBq2bLc06yZRoQ8bOehQ0xfupSktDTioqPp1rw5xcPD7Y4lPkJFloeoyBIREZEr7dTp0/R49XVmrVpBgFEMh1ESl2s3RYKDeffxR+nWvLndEX1eVnY2D781kQ9/WIjTiMAwonG59xLodPDagw/wWPv2dkcUH6B1skRERER8RI9XX+ebnzYAU3GZR8h2bcdiL+mZnbj31deYv3693RF93pOT32Xqj0uBibj/fI6tg2S5HqTvpEl8vnSp3RHFj6jIEhEREbHRpn37mLVqBW5zEtADCDy75ypgKg5HPCOmz7QvoB84eOwY734/H9N6CXgU+PP60tLAmzi4haHTPkcneImnqMgSERERsdF/ly8nwCgGdMllr4FpPsbyLZs4evKkl5P5j69Xr8bCAHrnsteBxeNsP7SfzQcOeDua+CkVWSIiIiI2Ss3IwOEoCQTl0aJsTju5PKkZGTgdRYG8rqE5+xynp3stk/g3FVkiIiIiNqpatiwu927gYB4tFlEkqAixxYt7M5ZfqVq2LC7zBLAxjxaLcBpO4mJivBlL/JiKLBEREREbdW3WjCLBwcAgwDxv706cxpv0bNXibBu5HLdefz2lIkvgcDwLZJ+39zABxlg6NWxI6agoG9KJP1KRJSIiImKjiNBQ3n38URx8imE0AaYBPwLDcBoJVCgdxohu3WxO6dsCAwL46KnHcTrm4zTigfc58xyPIcCoR4mI04x7oJfNKcWfqMgSERERsVm35s35bsRwGlVNBe4FWlIk6BX6tElg9biXKBUZaXdEn9eufn0WjxnNjbUcnJkAoyVBAcO598YarH11LBVKl7Y7ovgRLUZ8EVqMWERErpQDf/zBrsREIkNDqVOpEoah7z4Fjp48SWpGBrHFi+sUwSvkWEoKJ9PSiClWjKJFitgdx+9YlsWWAwc4mpzMVSVKUDk21u5IHpPfxYgDvJhJREREgO2//86Tk6fw/fqfsTjzXWdc9FWMurcL9zRvbnM6sVvpqChdG3SFlYyIoOQFPiDL5Zu/fj1Pf/Axv+7dmbOtUdUavPZgTxKqVrUxmXfpKzMREREv2nnoEA2fHsSCX05iMQXYBixg95F6dBs/nnfmzbM7oojIZZmzZg1th7/Apn1lgG848/42g592BNNs8HOs3LrV5oTeoyJLRETEiwZP/ZiUjCjc5mrgAeAaoBXwFfAw/aZ8QPKpU3ZGFBG5ZG63m4cnTsbiJkzrB6ADZ97f7sJtLsflrsNjk961OaX3qMgSERHxkuMpKcxatQq32R8ocd5eBzCU01lZzFi2zIZ0IiKX74dff+X340ewrBH8/YqkEEzreTbs3sHGvXttSOd9KrJERES85FBSEm7TDcTn0SKWAGdZ9h496s1YIiL/2P+/b12fR4vrz2vn31RkiYiIeEmJ8PCzP+3Mo0UKbvOoLsgXEZ/z/+9vu/JocWZ7YXl/U5ElIiLiJbElStD02loYxn+A7FxaTAKyubtJEy8nExH5Z9rWr09EkXBgfC57LWA85UuVIeGaa7yczB4qskRERLxodI9uGGzA4egIrD+79RjwAg4G88Stt1C2xPnXa4mIFGyhwcG80L0LZ74sehI4cHbPDuB+YBYv39+90KwHWDh+SxERkQKiaY0afPP8c5SOXAvUw2mEAdEEOkczoNNtjH+gl90RRUQuy5MdOjD+gQcIDX4PKI/TKApcQ2To13zwr3/RtVkzuyN6jcOyLMvuEAVZSkoKkZGRJE+fTkRoqN1xRETET7jcbr5dt46dhw8TGRpKx4SEQnOtgoj4t9T0dL5evZqjyclcVbIkHa6/niLBwXbH8oiU9HQiu3YlOTmZiAu8Z58/v6KIiIh4QYDTSYf4vGYZLHi2HDjA6998wxcrfuJ0Vha1Klbg8Vvack+zZoXm9B/xfYeOH+eN2bP5+MdlnDyVSsXS0TzS7iYevOkmvykC7HYsJYW35szh/QWLOZZyktjiJdl39CiPtG1LeCEasNBI1kVoJEtERAq779evp+OoF3G7i+My7wNKYDi+w7QW0qVpM6b174fT6bQ7psgFbd6/n6aDnyf5lBu3eR9QEQcrwfE111euwsJRwylapIjdMX3avqNHafLsEA6fSMFtdgeqAr9gOGZwTdkyLH1plM+P2Od3JEtfPYmIiEieUtLT6TzmFbJdLXGZu4GXgGcwrQXAf5mxdBnvfPedzSlFLsyyLDq/NI7kU2VxmzuBCcAALP6LZa1g3a4DDJ461e6YPq/Hq/8h8UQIbnMLMBkYAEzFtNaz41AafSe9Y3NC71GRJSIiInmatmgRp05nYFqTgZDz9nYGOvH6N3PRiTFSkC3etImtB/fiNt8ASp2393rcZj/em/8DqenpdsTzC5v27WPp5o24zLFA+fP2VsdtDuWLFSs4nJRkRzyvU5ElIiIiefppxw6cRn3gqlz3W3Rix6H9pGVkeDeYyCX4aft2nEY40CKPFreTkZXBloMHvZjKv/y0ffvZnzrm0eJ23Kab9bt3eyuSrVRkiYiISJ4CnE5wXKiAOrNP12RJQRbgdGJZbnJfBBz+fB0H6HV82f7/uTudR4vC9RyryBIREZE83XzddbjcG4Ffc9lr4TSmckP1moRqZjYpwG6uWxfTSgdm5dHiY0pFlqBWhQrejOVXWtaujeFwAh/n0eJjigQVoVHVqt6MZRsVWSIiIpKn2xs2pELpWJxGF2DXX/ZkAkNwm0sZeMdtNqUTyZ+aFSrQuk49nMbjwKq/7DGBKcBkBtx+K4EBWt3ocl1VsiRdmzXFaQwGFvxljwX8F8Mxlr63FJ5p3FVkiYiISJ4CAwL4bvgQoqOScHANDkdroCsBRjngRV6+/346JiTYHVPkoqY/05/aFYsBjXAaDYFuBDirAA/R+6abeKZTJ5sT+r53HnuUG6rHATfhNOpx5jmuAdxFx4T6jL73XpsTeo/WyboIrZMlIiICp06f5tPFi5m1ajWnTmdxXVwFHmnblurlytkdTSTfsl0uvl69mmmLF3Ms5RRVypTmwZtvplG1ajgcDrvj+QW32828n3/mox9+5PCJZCqUKs4DrVtzY+3afvEc53edLBVZF6EiS0REREREQIsRi4iIiIiI2EJFloiIiIiIiAepyBIREREREfEgFVkiIiIiIiIepCJLRERERETEg1RkiYiIiIiIeJCKLBEREREREQ9SkSUiIiIiIuJBKrJEREREREQ8KMDuACIiIoWRZVms372bHYcOERkayo21axMcGGh3LBER8QAVWSIiIl62ZscOHpzwNr/u3ZmzLSoskmFd7+RfHTvicDhsTCciIv+Uz5wumJSURPfu3YmIiCAqKorevXuTlpZ2wWMSExPp0aMHMTExhIWFUa9ePb744gsvJRYREfm7X/bsofngIfy2PxKYDSQDGzl5qgv93nuPMTNn2pxQRET+KZ8psrp3785vv/3G/PnzmT17NkuWLKFPnz4XPOa+++5j27ZtfPPNN2zcuJE77riDu+++m/Xr13sptYiIyLkGT/2ELFcF3OZi4BYgAqgJvAM8y/DPZnAsJcXWjCIi8s/4RJG1ZcsW5s2bx5QpU0hISKBJkyZMmDCB6dOnc+jQoTyPW7FiBU888QTx8fHExcUxZMgQoqKiWLdunRfTi4iInHH05EnmrVuL2+wPhOXS4mlcpsXnS5d6O5qIiHiQTxRZK1euJCoqigYNGuRsa926NYZhsHr16jyPa9y4MZ9//jlJSUmYpsn06dM5ffo0LVq08EJqERGRcx05eRILC6iVR4uSBBhlOJSU5M1YIiLiYT4x8UViYiKlS5c+Z1tAQADFixcnMTExz+NmzJhBly5dKFGiBAEBAYSGhjJr1iwqV66c5zGZmZlkZmbm/DtFp2yIiIiHlI6MxIEDi01Aw1xaHMdtJlKmWDFvRxMREQ+ydSRr0KBBOByOC962bt162ff//PPPc/LkSRYsWMDatWvp378/d999Nxs3bszzmDFjxhAZGZlzK1eu3GU/voiIyF9FFyvGzXXr4TReA9JzafEqhmHRpWlTb0cTEREPcliWZdn14H/88QfHjx+/YJu4uDg++eQTBgwYwIkTJ3K2u1wuQkJCmDlzJp06dfrbcbt27aJy5cps2rSJGjVq5Gxv3bo1lStXZtKkSbk+Xm4jWeXKlSN5+nQiQkMv9VcUERE5x/pdu2g8cDBZrtqY1gigKXAAmABM5IVu3Xi+a1d7Q4qISK5S0tOJ7NqV5ORkIiIi8mxn6+mCpUqVolSpUhdt16hRI06ePMm6deuoX78+AD/88AOmaZKQkJDrMenpZ74hNIxzB+ucTiemaeb5WMHBwQQHB+f3VxAREbkkda++mh9Hv8CDb07it/3tcrZHhkbwfJde9L/9dvvCiYiIR9g6knUp2rVrx5EjR5g0aRLZ2dn06tWLBg0a8OmnnwLw+++/06pVK6ZOnUp8fDzZ2dlce+21lClThnHjxlGiRAm++uornnnmGWbPnk379u3z9bgpKSlERkZqJEtERDzKsizW7NjBzsOHiQwNpWXt2hTRl3xXxOmsLAKdTpxOp91RRMTH+cRI1qWYNm0ajz/+OK1atcIwDDp37swbb7yRsz87O5tt27bljGAFBgYyd+5cBg0aRIcOHUhLS6Ny5cp89NFH+S6wRERErhSHw0H8NdcQf801dkfxS6ezsnjjf//jrTnfs//YYZyGk9sSEni28x16zkXkivOZkSy7aCRLRETEt2RkZtJm2Ass37IN07oHaAUcJcCYAuzkv4MGclvD3GZ3FBG5sPyOZPnEOlkiIiIi+fXKrFks37Id01oIfAj0AAbgMn/FbXak2/jXSUnPbXZHERHPUJElIiIifsPtdvPWnO8wrZ5Ak/P2BmLxHzIyM5m2aJH3w4lIoaEiS0RERPzG8dRUjiYfB9rm0eIqApw1+WXvXi+mEpHCRkWWiIiI+I3gwMCzP53Io4WFxUlCctqJiHieiiwRERHxG5FhYdxQvSZOYwqQ29xeP+By76NjfLy3o4lIIaIiS0RERPzKv++6A7e5AngcSD671QKWEWDcS72rq3Jj7dr2BRQRv6ciS0RERPxK+wYNePvRR3Ea7+A0YjGMGwlw1gSaUqNCOHOG/huHw2F3TBHxYz6zGLGIiIhIfj3Srh0d4+N5f8ECNu3fT1hwLJ0b30mbunVxOp12xxMRP6ciS0RERPxSbIkSDOnSxe4YIlII6XRBERERERERD1KRJSIiIiIi4kEqskRERERERDxIRZaIiIiIiIgHqcgSERERERHxIBVZIiIiIiIiHqQiS0RERERExINUZImIiIiIiHiQiiwREREREREPCrA7gIiIiIiccSwlhdlr1pCakUHVsmVpVbs2TqfT7lgicolUZImIiIjYzOV28+xHHzHhf3PJdmdjOIIwrUzKlYxhar8naFGrlt0RReQS6HRBEREREZs9OfldXvvqf2S7hwBHMa0MYBW/H69Km2EjWLtjh90RReQSqMgSERERsdGexEQmffstFuOA54GSgANIwLTm4TarMPTT6faGFJFLoiJLRERExEafLVmCYYQBfXLZG4LbfIJ569aSlJrq7WgicplUZImIiIjY6FhqKoYjFgjNo8U1WFgqskR8iIosERERERuVL1kSt7kPOJ5Hi7UEOAOJjoryYioR+SdUZImIiIjYqHuLFjgNE3gxl71/EGD8h65NmxAemtdIl4gUNCqyRERERGxUKjKSMffdC7wK3AMsA3YD7+M0GhIRls4L3e6xNaOIXBqtkyUiIiJiswGdOlGsaFGGfTqTg8fPzCTowMFN19VnQp+BVIqJsTmhiFwKFVkiIiLitzKzszmclERYSAilIiPtjnNBD9x0E/e3bMm6XbtIzcigSmws5UuVsjvWRWW7XBxKSiIkMJDoYsXsjiNSIKjIEhEREb+TfOoUL0yfzpTvfyAl48ysfI2q1uD5rnfSrn59m9Plzel0En/NNXbHyJf0zExenDmTt+fOJyntBADXVarCc3ffwZ033GBzOhF76ZosERER8SvJp07RZNAQ/vO/H0jJeBT4DviY1TuK0X7ECD5YsMDuiD7vdFYWNz0/nDH//R9JafcC3wLT+XVvJe56+WXGzZpld0QRW2kkS0RERPzKizNnsuVAIm5zFVAzZ7tpdgMe4pGJk+gYH0+JiAjbMvq6N+fMYeW27VjWYqBRznbTuhsYzMAPxtK5USNdSyaFlkayRERExG+43G4mf7cAt/kQfy2wzjCAMbjc8PGPP9qQzn9MnPs9ltWFvxZYZziAoRhGOFPmz7chmUjBoCJLRERE/MbxlBROnkoBbsyjRWkMowZbDh70Ziy/4nK72XPkd6BFHi1CMa2GbDlwwIupRAoWFVkiIiLiN0KDg8/+dDiPFiZwhKIhIV5K5H+chkFwYDCQmHcbx2HCixTxXiiRAkZFloiIiPiN8NBQWteph9OYBLhyafE/XO5D3KXZ7y6bw+HgzsaNCDCmAKdzabECl7lRMwxKoaYiS0RERPzK0K53YVkbcTi6AX+esuYGvsBp3E/L2nVJqFrVxoS+b+AdnTCMQzgctwM7z241gXk4jTuoU6kK7QvwVPkiV5qKLBEREfErTWvU4POBTxMaPBcHFQkMqE6AswxwJy1rV+bLwQNxOBx2x/RptStVYvbzzxEZuhKoQqCzKgHOq4B21K9cnO+GD8HpdNodU8Q2DsuyLLtDFGQpKSlERkaSPH06EaGhdscRERGRfEpNT2f60qVs2r+fsOBg7mjUiAZVqtgdy69kZGYyc/lyft61i5CgIDpcfz2Nq1dXESt+KyU9nciuXUlOTibiAstAqMi6CBVZIiIiIiIC+S+ydLqgiIiIiIiIB6nIEhERERER8SAVWSIiIiIiIh6kIktERERERMSDVGSJiIiIiIh4kIosERERERERD1KRJSIiIiIi4kEqskRERERERDxIRZaIiIiIiIgHBdgdQERERETEW/b/8Qczly0jKS2NStHR3N2kCRGhoXbHEj/jMyNZo0ePpnHjxoSGhhIVFZWvYyzLYujQoZQpU4YiRYrQunVrduzYcWWDioiIiEiB43K7eeztSVR88CEGfvQ5r3y5mj5vTiTmvl68P3++3fHEz/hMkZWVlcVdd93Fo48+mu9jxo4dyxtvvMGkSZNYvXo1YWFhtGnThtOnT1/BpCIiIiJS0PR/730mzfsey3oF0zxCtnsfFnvJyOpC7wkT+HLFCrsjih/xmSJrxIgR9OvXj1q1auWrvWVZvP766wwZMoTbbruN2rVrM3XqVA4dOsRXX311ZcOKiIiISIFxOCmJiXPnYlmjgP5A0bN7ygHv43C0Ycgn07Esy76Q4ld8psi6VHv27CExMZHWrVvnbIuMjCQhIYGVK1fmeVxmZiYpKSnn3ERERETEd81atQrTMoCHc9nrwLKeZMvBvWw9eNDb0cRP+W2RlZiYCEB0dPQ526Ojo3P25WbMmDFERkbm3MqVK3dFc4qIiIjIlZV86hROIxyIyqNFuZx2Ip5ga5E1aNAgHA7HBW9bt271aqbBgweTnJyccztw4IBXH19EREREPKtKbCwudxKwJY8WSzEcTiqe9+W8yOWydQr3AQMG0LNnzwu2iYuLu6z7jomJAeDIkSOUKVMmZ/uRI0e47rrr8jwuODiY4ODgy3pMERERESl4OsTHUzy8GCfSBmFZX3DuR+CjOI2xdIiPJ6ZYMbsiip+xtcgqVaoUpUqVuiL3XalSJWJiYli4cGFOUZWSksLq1asvaYZCEREREfFtwYGBvP/Eo9wx5mUcjiaY1pNAJWAVTuNVosJOMf6B5+yOKX7EZ67J2r9/Pxs2bGD//v243W42bNjAhg0bSEtLy2lTrVo1Zs2aBYDD4eCpp55i1KhRfPPNN2zcuJH77ruP2NhYbr/9dpt+CxERERGxw20NG7Jg5AgaVTsFdAcaE2AM5M7GlVgz/mXizp4FJeIJto5kXYqhQ4fy0Ucf5fy7bt26APz444+0aNECgG3btpGcnJzTZuDAgZw6dYo+ffpw8uRJmjRpwrx58wgJCfFqdhERERGx3421a7Osdm1+P36cpNRUripZkmJFi178QJFL5LC0IMAFpaSkEBkZSfL06USEhtodR0REREREbJKSnk5k164kJycTERGRZzufOV1QRERERETEF6jIEhERERER8SAVWSIiIiIiIh6kIktERERERMSDVGSJiIiIiIh4kIosERERERERD1KRJSIiIiIi4kEqskRERERERDxIRZaIiIiIiIgHqcgSERERERHxIBVZIiIiIiIiHqQiS0RERERExINUZImIiIiIiHiQiiwREREREREPUpElIiIiIiLiQSqyREREREREPEhFloiIiIiIiAepyBIREREREfEgFVkiIiIiIiIepCJLRERERETEg1RkiYiIiIiIeJCKLBEREREREQ9SkSUiIiIiIuJBAXYHKOgsywIgJT3d5iQiIiIiImKnP2uCP2uEvDisi7Uo5A4ePEi5cuXsjiEiIiIiIgXEgQMHuOqqq/LcryLrIkzT5NChQ4SHh+NwOOyO43NSUlIoV64cBw4cICIiwu44cgHqK9+hvvId6ivfob7yHeor3+Cv/WRZFqmpqcTGxmIYeV95pdMFL8IwjAtWqZI/ERERfvUH5s/UV75DfeU71Fe+Q33lO9RXvsEf+ykyMvKibTTxhYiIiIiIiAepyBIREREREfEgFVlyRQUHBzNs2DCCg4PtjiIXob7yHeor36G+8h3qK9+hvvINhb2fNPGFiIiIiIiIB2kkS0RERERExINUZImIiIiIiHiQiiwREREREREPUpElIiIiIiLiQSqyxOOSkpLo3r07ERERREVF0bt3b9LS0i7Y/oknnqBq1aoUKVKE8uXL8+STT5KcnOzF1IXDW2+9RcWKFQkJCSEhIYGffvrpgu1nzpxJtWrVCAkJoVatWsydO9dLSeVS+urdd9+ladOmFCtWjGLFitG6deuL9q14zqX+Xf1p+vTpOBwObr/99isbUHJcal+dPHmSvn37UqZMGYKDg7nmmmv0PugFl9pPr7/+es5niHLlytGvXz9Onz7tpbSF15IlS+jQoQOxsbE4HA6++uqrix6zaNEi6tWrR3BwMJUrV+bDDz+84jltY4l4WNu2ba06depYq1atspYuXWpVrlzZuueee/Jsv3HjRuuOO+6wvvnmG2vnzp3WwoULrSpVqlidO3f2Ymr/N336dCsoKMh6//33rd9++8166KGHrKioKOvIkSO5tl++fLnldDqtsWPHWps3b7aGDBliBQYGWhs3bvRy8sLnUvuqW7du1ltvvWWtX7/e2rJli9WzZ08rMjLSOnjwoJeTFz6X2ld/2rNnj1W2bFmradOm1m233eadsIXcpfZVZmam1aBBA6t9+/bWsmXLrD179liLFi2yNmzY4OXkhcul9tO0adOs4OBga9q0adaePXus7777zipTpozVr18/LycvfObOnWs999xz1pdffmkB1qxZsy7Yfvfu3VZoaKjVv39/a/PmzdaECRMsp9NpzZs3zzuBvUxFlnjU5s2bLcBas2ZNzrZvv/3Wcjgc1u+//57v+5kxY4YVFBRkZWdnX4mYhVJ8fLzVt2/fnH+73W4rNjbWGjNmTK7t7777buuWW245Z1tCQoL18MMPX9Gccul9dT6Xy2WFh4dbH3300ZWKKGddTl+5XC6rcePG1pQpU6z7779fRZaXXGpfvf3221ZcXJyVlZXlrYhiXXo/9e3b12rZsuU52/r372/dcMMNVzSnnCs/RdbAgQOtGjVqnLOtS5cuVps2ba5gMvvodEHxqJUrVxIVFUWDBg1ytrVu3RrDMFi9enW+7yc5OZmIiAgCAgKuRMxCJysri3Xr1tG6deucbYZh0Lp1a1auXJnrMStXrjynPUCbNm3ybC+ecTl9db709HSys7MpXrz4lYopXH5fvfDCC5QuXZrevXt7I6ZweX31zTff0KhRI/r27Ut0dDQ1a9bkxRdfxO12eyt2oXM5/dS4cWPWrVuXc0rh7t27mTt3Lu3bt/dKZsm/wva5Qp9gxaMSExMpXbr0OdsCAgIoXrw4iYmJ+bqPY8eOMXLkSPr06XMlIhZKx44dw+12Ex0dfc726Ohotm7dmusxiYmJubbPbz/K5bmcvjrfs88+S2xs7N/+MxPPupy+WrZsGe+99x4bNmzwQkL50+X01e7du/nhhx/o3r07c+fOZefOnTz22GNkZ2czbNgwb8QudC6nn7p168axY8do0qQJlmXhcrl45JFH+Pe//+2NyHIJ8vpckZKSQkZGBkWKFLEp2ZWhkSzJl0GDBuFwOC54y+8HwAtJSUnhlltu4dprr2X48OH/PLhIIfPSSy8xffp0Zs2aRUhIiN1x5C9SU1Pp0aMH7777LiVLlrQ7jlyEaZqULl2ayZMnU79+fbp06cJzzz3HpEmT7I4mf7Fo0SJefPFFJk6cyM8//8yXX37JnDlzGDlypN3RpJDTSJbky4ABA+jZs+cF28TFxRETE8PRo0fP2e5yuUhKSiImJuaCx6emptK2bVvCw8OZNWsWgYGB/zS2nFWyZEmcTidHjhw5Z/uRI0fy7JeYmJhLai+ecTl99adx48bx0ksvsWDBAmrXrn0lYwqX3le7du1i7969dOjQIWebaZrAmRH/bdu2cfXVV1/Z0IXU5fxdlSlThsDAQJxOZ8626tWrk5iYSFZWFkFBQVc0c2F0Of30/PPP06NHDx588EEAatWqxalTp+jTpw/PPfcchqHxhIIir88VERERfjeKBRrJknwqVaoU1apVu+AtKCiIRo0acfLkSdatW5dz7A8//IBpmiQkJOR5/ykpKdx8880EBQXxzTff6Bt4DwsKCqJ+/fosXLgwZ5tpmixcuJBGjRrlekyjRo3OaQ8wf/78PNuLZ1xOXwGMHTuWkSNHMm/evHOuiZQr51L7qlq1amzcuJENGzbk3Dp27MiNN97Ihg0bKFeunDfjFyqX83d1ww03sHPnzpxCGGD79u2UKVNGBdYVcjn9lJ6e/rdC6s/C2LKsKxdWLlmh+1xh98wb4n/atm1r1a1b11q9erW1bNkyq0qVKudM4X7w4EGratWq1urVqy3Lsqzk5GQrISHBqlWrlrVz507r8OHDOTeXy2XXr+F3pk+fbgUHB1sffvihtXnzZqtPnz5WVFSUlZiYaFmWZfXo0cMaNGhQTvvly5dbAQEB1rhx46wtW7ZYw4YN0xTuXnKpffXSSy9ZQUFB1n//+99z/n5SU1Pt+hUKjUvtq/NpdkHvudS+2r9/vxUeHm49/vjj1rZt26zZs2dbpUuXtkaNGmXXr1AoXGo/DRs2zAoPD7c+++wza/fu3db3339vXX311dbdd99t169QaKSmplrr16+31q9fbwHWq6++aq1fv97at2+fZVmWNWjQIKtHjx457f+cwv2ZZ56xtmzZYr311luawl3kUhw/fty65557rKJFi1oRERFWr169zvmwt2fPHguwfvzxR8uyLOvHH3+0gFxve/bsseeX8FMTJkywypcvbwUFBVnx8fHWqlWrcvY1b97cuv/++89pP2PGDOuaa66xgoKCrBo1alhz5szxcuLC61L6qkKFCrn+/QwbNsz7wQuhS/27+isVWd51qX21YsUKKyEhwQoODrbi4uKs0aNH68s/L7iUfsrOzraGDx9uXX311VZISIhVrlw567HHHrNOnDjh/eCFTF6f3/7sn/vvv99q3rz534657rrrrKCgICsuLs764IMPvJ7bWxyWpbFUERERERERT9E1WSIiIiIiIh6kIktERERERMSDVGSJiIiIiIh4kIosERERERERD1KRJSIiIiIi4kEqskRERERERDxIRZaIiIiIiIgHqcgSERERERHxIBVZIiLiE3r27InD4fjbbefOnR65/w8//JCoqCiP3NflWrJkCR06dCA2NhaHw8FXX31lax4REbk8KrJERMRntG3blsOHD59zq1Spkt2x/iY7O/uyjjt16hR16tThrbfe8nAiERHxJhVZIiLiM4KDg4mJiTnn5nQ6Afj666+pV68eISEhxMXFMWLECFwuV86xr776KrVq1SIsLIxy5crx2GOPkZaWBsCiRYvo1asXycnJOSNkw4cPB8h1RCkqKooPP/wQgL179+JwOPj8889p3rw5ISEhTJs2DYApU6ZQvXp1QkJCqFatGhMnTrzg79euXTtGjRpFp06dPPBsiYiIXQLsDiAiIvJPLV26lPvuu4833niDpk2bsmvXLvr06QPAsGHDADAMgzfeeINKlSqxe/duHnvsMQYOHMjEiRNp3Lgxr7/+OkOHDmXbtm0AFC1a9JIyDBo0iPHjx1O3bt2cQmvo0KG8+eab1K1bl/Xr1/PQQw8RFhbG/fff79knQEREChQVWSIi4jNmz559TvHTrl07Zs6cyYgRIxg0aFBO8RIXF8fIkSMZOHBgTpH11FNP5RxXsWJFRo0axSOPPMLEiRMJCgoiMjISh8NBTEzMZWV76qmnuOOOO3L+PWzYMMaPH5+zrVKlSmzevJl33nlHRZaIiJ9TkSUiIj7jxhtv5O233875d1hYGAC//PILy5cvZ/To0Tn73G43p0+fJj09ndDQUBYsWMCYMWPYunUrKSkpuFyuc/b/Uw0aNMj5+dSpU+zatYvevXvz0EMP5Wx3uVxERkb+48cSEZGCTUWWiIj4jLCwMCpXrvy37WlpaYwYMeKckaQ/hYSEsHfvXm699VYeffRRRo8eTfHixVm2bBm9e/cmKyvrgkWWw+HAsqxztuU2scWfBd+feQDeffddEhISzmn35zVkIiLiv1RkiYiIz6tXrx7btm3LtQADWLduHaZpMn78eAzjzJxPM2bMOKdNUFAQbrf7b8eWKlWKw4cP5/x7x44dpKenXzBPdHQ0sbGx7N69m+7du1/qryMiIj5ORZaIiPi8oUOHcuutt1K+fHnuvPNODMPgl19+YdOmTYwaNYrKlSuTnZ3NhAkT6NChA8uXL2fSpEnn3EfFihVJS0tj4cKF1KlTh9DQUEJDQ2nZsiVvvvkmjRo1wu128+yzzxIYGHjRTCNGjODJJ58kMjKStm3bkpmZydq1azlx4gT9+/fP9Zi0tLRz1v3as2cPGzZsoHjx4pQvX/6fPUkiIuI1msJdRER8Xps2bZg9ezbff/89119/PQ0bNuS1116jQoUKANSpU4dXX32Vl19+mZo1azJt2jTGjBlzzn00btyYRx55hC5dulCqVCnGjh0LwPjx4ylXrhxNmzalW7duPP300/m6huvBBx9kypQpfPDBB9SqVYvmzZvz4YcfXnBdr7Vr11K3bl3q1q0LQP/+/albty5Dhw693KdGRERs4LDOP9FcRERERERELptGskRERERERDxIRZaIiIiIiIgHqcgSERERERHxIBVZIiIiIiIiHqQiS0RERERExINUZImIiIiIiHiQiiwREREREREPUpElIiIiIiLiQSqyREREREREPEhFloiIiIiIiAepyBIREREREfEgFVkiIiIiIiIe9H+kd56O1SFBeAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCQUlEQVR4nOzdeZzNZRvH8c85s2IYY6xjJ2u20IiosWWpkUJ4SKW0SkVEpSxRlCKJQqVGUciWLGGkyBRiso0t21jHMsyY7fx+zx+zNMuZMRhzzsx836/XvJ787vt3zjVn5uFc577v67KYpmkiIiIiIiIiOcLq6ABERERERETyEyVZIiIiIiIiOUhJloiIiIiISA5SkiUiIiIiIpKDlGSJiIiIiIjkICVZIiIiIiIiOUhJloiIiIiISA5SkiUiIiIiIpKDlGSJiIiIiIjkICVZIiI55PHHH6dKlSqODuOGfPXVV1gsFv79919Hh5KnhYSE4O7uzpEjRxwdiuSA+Ph4KlasyKeffuroUEQkj1GSJSJyDckJSPKXp6cnNWvWZODAgZw+fTrX4oiOjmbUqFEEBwfn2nOmN2rUqDSvReHChalUqRKBgYF8+eWXxMbG3vBjr1ixglGjRuVcsDdp/PjxLF68+LrueeONN+jduzeVK1e2O+7v74/FYmH69Ok5EKHMnj2bOnXq4OnpSY0aNZg6dWq27gsODk7ze5z6648//kiZ5+bmxuDBgxk3bhwxMTG36tsQkXzI1dEBiIjkFWPGjKFq1arExMTw22+/MX36dFasWME///xD4cKFmTlzJoZh3LLnj46OZvTo0QAEBATcsufJjunTp+Pl5UVsbCwnTpxg1apV9O/fn8mTJ7N8+XIqVqx43Y+5YsUKpk2b5jSJ1vjx4+nevTtdu3bN1vy///6bX375hU2bNtkd379/P3/++SdVqlRh7ty5PPfcczkYbcHz2Wef8eyzz9KtWzcGDx7Mxo0bGTRoENHR0bz22mvZeoxBgwZx5513prl22223pfnzE088wfDhw/n222/p379/jsUvIvmbkiwRkWzq1KkTTZs2BeCpp57C19eXDz/8kCVLltC7d2/c3NwcHGHu6d69OyVLlkz581tvvcXcuXPp168fPXr0SLMaUFB8+eWXVKpUibvuusvueFBQEKVLl2bSpEl0796df//91ym3lxqGQVxcHJ6eno4OJVNXr17ljTfe4P7772fBggUADBgwAMMwGDt2LE8//TQ+Pj7XfJxWrVrRvXv3LOcUL16c++67j6+++kpJlohkm7YLiojcoDZt2gBw+PBhIO2ZrPj4eEqUKMETTzyR4b7IyEg8PT159dVXU66dOXOGJ598kjJlyuDp6UnDhg2ZM2dOyvi///5LqVKlABg9enTK1qbUqz579+6le/fulChRAk9PT5o2bcrSpUszPP+uXbto06YNhQoVokKFCrzzzjs5sgLXp08fnnrqKbZs2cKaNWtSrm/cuJEePXpQqVIlPDw8qFixIq+88gpXr15NmfP4448zbdo0gDRbt5J98MEHtGjRAl9fXwoVKkSTJk1S3lyntmbNGlq2bEnx4sXx8vKiVq1avP7662nmxMbG8vbbb3PbbbelxDNs2LA0Wx0tFgtRUVHMmTMnJZbHH388y+9/8eLFtGnTJk3cqX377bd0796dBx54AG9vb7799lu787Zs2ULnzp3x8fGhSJEiNGjQgClTpqSZs3fvXh555BFKlSpFoUKFqFWrFm+88Uaa19NeApe83TM1i8XCwIEDmTt3LrfffjseHh6sXLkSyP7rDolJpL+/P4ULF8bHx4d77rmH1atXA/DYY49RsmRJ4uPjM9x33333UatWLQCOHj3K3r177T5+auvXryciIoLnn38+zfUXXniBqKgofvrpp2s+RrLLly+TkJCQ5Zz27dvz22+/cf78+Ww/rogUbEqyRERu0MGDBwHw9fXNMObm5sZDDz3E4sWLiYuLSzO2ePFiYmNj6dWrF5D4qXxAQADffPMNffr04f3338fb25vHH3885c11qVKlUs7xPPTQQ3zzzTd88803PPzww0Bi4nTXXXexZ88ehg8fzqRJkyhSpAhdu3blxx9/THnuU6dO0bp1a/7++2+GDx/Oyy+/zNdff53hTfyNevTRRwFS3lwD/PDDD0RHR/Pcc88xdepUOnTowNSpU+nXr1/KnGeeeYb27dsDpHxv33zzTcr4lClTuOOOOxgzZgzjx4/H1dWVHj16pHkzvWvXLh544AFiY2MZM2YMkyZNokuXLvz+++8pcwzDoEuXLnzwwQcEBgYydepUunbtykcffUTPnj1T5n3zzTd4eHjQqlWrlFieeeaZTL/vEydOcPToURo3bmx3fMuWLRw4cIDevXvj7u7Oww8/zNy5czPMW7NmDffccw+7d+/mpZdeYtKkSbRu3Zrly5enzNm5cyfNmjVj3bp1DBgwgClTptC1a1eWLVuWaXzXsm7dOl555RV69uzJlClTUhK07LzukJj4P/roo7i5uTFmzBhGjx5NxYoVWbduHZD4exEREcGqVavS3Hfq1CnWrVtH3759AejXrx916tS5Zrzbt28HSFlZTtakSROsVmvK+LU88cQTFCtWDE9PT1q3bs1ff/1ld16TJk0wTTPTraAiIhmYIiKSpS+//NIEzF9++cU8e/aseezYMXPevHmmr6+vWahQIfP48eOmaZrmY489ZlauXDnlvlWrVpmAuWzZsjSP17lzZ7NatWopf548ebIJmEFBQSnX4uLizObNm5teXl5mZGSkaZqmefbsWRMw33777Qwxtm3b1qxfv74ZExOTcs0wDLNFixZmjRo1Uq69/PLLJmBu2bIl5dqZM2dMb29vEzAPHz6c5Wvx9ttvm4B59uxZu+MXLlwwAfOhhx5KuRYdHZ1h3rvvvmtaLBbzyJEjKddeeOEFM7N/ltI/RlxcnFmvXj2zTZs2Kdc++uijLGMzTdP85ptvTKvVam7cuDHN9RkzZpiA+fvvv6dcK1KkiPnYY49l+lip/fLLL3Z/1skGDhxoVqxY0TQMwzRN01y9erUJmNu3b0+Zk5CQYFatWtWsXLmyeeHChTT3J99nmqZ5zz33mEWLFk3z2qWfk/53MVnyzy81wLRareauXbsyzM/O675//37TarWaDz30kGmz2ezGZLPZzAoVKpg9e/ZMM/7hhx+aFovFPHTokGmapnnvvfdm+juQ2gsvvGC6uLjYHStVqpTZq1evLO///fffzW7dupmzZ882lyxZYr777rumr6+v6enpaW7bti3D/PDwcBMwJ0yYcM3YRERM0zS1kiUikk3t2rWjVKlSVKxYkV69euHl5cWPP/5I+fLl7c5v06YNJUuWZP78+SnXLly4wJo1a9KsmqxYsYKyZcvSu3fvlGtubm4MGjSIK1eusGHDhizjOn/+POvWreORRx7h8uXLnDt3jnPnzhEREUGHDh3Yv38/J06cSHmuu+66C39//5T7S5UqRZ8+fW7oNUnPy8sLSNyClaxQoUIp/x0VFcW5c+do0aIFpmlme8Uh9WNcuHCBS5cu0apVK7Zt25ZyvXjx4gAsWbIk0+2PP/zwA3Xq1KF27dopr9O5c+dStn6uX78+e99oOhEREQB2zwElJCQwf/58evbsmbJVr02bNpQuXTrNatb27ds5fPgwL7/8csr3kiz5vrNnz/Lrr7/Sv39/KlWqZHfOjbj33nupW7duhuvZed0XL16MYRi89dZbWK1p31Ykx2S1WunTpw9Lly5N87sxd+5cWrRoQdWqVYHEqn+maV4z3qtXr+Lu7m53zNPTM81WVHtatGjBggUL6N+/P126dGH48OH88ccfWCwWRowYkWF+8s/13Llz14xNRAS0XVBEJNumTZvGmjVrWL9+Pbt37+bQoUN06NAh0/murq5069aNJUuWpJz3WbRoEfHx8WmSrCNHjlCjRo0Mb1CTt01dq+fSgQMHME2TkSNHUqpUqTRfb7/9NpB45iv1c6WXfCbmZl25cgWAokWLplw7evQojz/+OCVKlMDLy4tSpUpx7733AnDp0qVsPe7y5cu566678PT0pESJEinbJ1Pf37NnT+6++26eeuopypQpQ69evfj+++/TJFz79+9n165dGV6nmjVrAv+9TjfKXoKwevVqzp49i7+/PwcOHODAgQMcPnyY1q1b891336XEl7z9tF69epk+/qFDh64550YkJznpZed1P3jwIFar1W6Sllq/fv24evVqyvbVffv2sXXr1pQtptejUKFCGbbhJouJiUmTHGbXbbfdxoMPPsj69eux2WxpxpJ/rjeTyIpIwaLqgiIi2eTv75/hDMi19OrVi88++4yff/6Zrl278v3331O7dm0aNmyYY3Elv0l/9dVXM0360pelvlX++eefNM9ns9lo374958+f57XXXqN27doUKVKEEydO8Pjjj2er4MbGjRvp0qUL99xzD59++inlypXDzc2NL7/8Mk3xiEKFCvHrr7+yfv16fvrpJ1auXMn8+fNp06YNq1evxsXFBcMwqF+/Ph9++KHd57qR0vPw37m8CxcuZBhLXq165JFH7N67YcMGWrdufUPPm5nMkoH0yUMye0lJdl/37Kpbty5NmjQhKCiIfv36ERQUhLu7e6avS1bKlSuHzWbjzJkzlC5dOuV6XFwcERER+Pn5XfdjQuLPPy4ujqioKIoVK5ZyPfnnmrqipohIVpRkiYjcQvfccw/lypVj/vz5tGzZknXr1qWpAgdQuXJldu7ciWEYaVazkqusJTe2zeyNc7Vq1YDELYbt2rXLMp7KlSuzf//+DNf37duX/W8qC8nFKpKTvdDQUMLCwpgzZ06aQhepqw8my+z7W7hwIZ6enqxatQoPD4+U619++WWGuVarlbZt29K2bVs+/PBDxo8fzxtvvMH69etp164d1atXZ8eOHbRt2/aaqxLXs2pRu3Zt4L9Kk8mioqJYsmQJPXv2tFsqfNCgQcydO5fWrVtTvXp1IDFRzeznmPyzTk5mM+Pj48PFixczXL/Wqmhq2X3dq1evjmEY7N69m0aNGmX5mP369WPw4MGcPHmSb7/9lvvvvz9bpdbTS36ev/76i86dO6dc/+uvvzAM45pxZObQoUN4enqmbHtNlvxzzU5RDhER0HZBEZFbymq10r17d5YtW8Y333xDQkJCmq2CAJ07d+bUqVNpzm4lJCQwdepUvLy8UrbWFS5cGCDDm+fSpUsTEBDAZ599xsmTJzPEcPbs2TTP9ccffxASEpJm3F6lu+v17bffMmvWLJo3b07btm0BcHFxAdJuozNN0241wyJFigAZvz8XFxcsFkuaVZh///2XxYsXp5lnr7x28pvt5O2ajzzyCCdOnGDmzJkZ5l69epWoqKg08dhLVOwpX748FStWzFCd7scffyQqKooXXniB7t27Z/h64IEHWLhwIbGxsTRu3JiqVasyefLkDM+b/PqVKlWKe+65hy+++IKjR4/anQOJic+lS5fYuXNnyrWTJ0+mqTR5Ldl93bt27YrVamXMmDEZVibTb5/s3bs3FouFl156iUOHDqVUFUyW3RLubdq0oUSJEikVN5NNnz6dwoULc//996dcO3fuHHv37iU6OjrlWur/TyTbsWMHS5cu5b777suwdXfr1q1YLBaaN29+zdhERABVFxQRuZbk6oJ//vlnlvMyq+j222+/mYBZtGhRs379+hnGo6OjzTp16pju7u7mkCFDzKlTp6ZUWZs8eXKauXXr1jXLli1rTps2zfzuu+/M0NBQ0zRNc9euXaaPj4/p6+trDh8+3Pz888/NsWPHmp07dzYbNGiQcn94eLjp6+tr+vj4mKNGjTLff/99s0aNGmaDBg2uq7rg9OnTzW+++cacPXu2OWbMGPPuu+82AbNhw4Yp1RZNM7EaXfXq1c2SJUua48aNM6dOnWoGBASYDRs2NAHzyy+/TJn7/fffm4D56KOPmkFBQeZ3331nmqZprl271gTMVq1amdOnTzdHjx5tli5dOiXmZC+99JJ5xx13mG+++aY5c+ZMc9y4cWb58uXNChUqmBcvXjRNM7HKXefOnU2LxWL26tXLnDp1qjl58mTz2WefNUuUKJHmZ9y5c2ezSJEi5qRJk8zvvvvO/OOPP7J8bQYOHGiWL18+TZW/jh07mr6+vmZCQoLde5YtW2YC5sKFC03TNM2VK1eabm5uZuXKlc1Ro0aZn332mfnKK6+Y9913X8o9f//9t+nl5WX6+vqaI0aMMD///HPz9ddfNxs2bJgy59y5c2aRIkXMatWqmZMnTzbHjx9vVqxY0WzcuLHd6oIvvPBChtiy+7qbpmmOHDnSBMwWLVqYH3zwgTl16lSzX79+5vDhwzM87gMPPGACZvHixdNUwzTN7FcXNE3TnDZtmgmY3bt3N2fOnGn269fPBMxx48almZf8O7t+/fqUa61btzY7d+5svvPOO+bnn39uvvzyy2bhwoVNb29vc/fu3XZjbtmyZbbiEhExTdNUkiUicg03m2QZhmFWrFjRBMx33nnH7r2nT582n3jiCbNkyZKmu7u7Wb9+/TQJSLJNmzaZTZo0Md3d3TOUcz948KDZr18/s2zZsqabm5tZvnx584EHHjAXLFiQ5jF27txp3nvvvaanp6dZvnx5c+zYsebs2bOvK8lK/vL09DQrVKhgPvDAA+YXX3yR4U2zaZrm7t27zXbt2pleXl5myZIlzQEDBpg7duzIkGQlJCSYL774olmqVCnTYrGkebM9e/Zss0aNGqaHh4dZu3Zt88svv8xQjnzt2rXmgw8+aPr5+Znu7u6mn5+f2bt3bzMsLCxNPHFxceaECRPM22+/3fTw8DB9fHzMJk2amKNHjzYvXbqUMm/v3r3mPffcYxYqVMgErlnOfdu2bSaQUh7+9OnTpqurq/noo49mek90dLRZuHDhNCXvf/vtN7N9+/Zm0aJFzSJFipgNGjQwp06dmua+f/75x3zooYfM4sWLm56enmatWrXMkSNHppmzevVqs169eqa7u7tZq1YtMygoKNMS7vaSLNPM3uue7IsvvjDvuOOOlNf03nvvNdesWZNhXnIy/fTTT2cYu54kyzRN8/PPPzdr1apluru7m9WrVzc/+uijNEmuadpPsqZMmWL6+/ubJUqUMF1dXc1y5cqZffv2Nffv35/hOS5evGi6u7ubs2bNynZcIiIW08xGrVQRERG5prZt2+Ln55emkbKktWTJErp27cqvv/5Kq1atHB3ONU2ePJmJEydy8ODBG6paKCIFk5IsERGRHLJlyxZatWrF/v37UwqWSFoPPPAAe/bs4cCBA05fEj0+Pp7q1aszfPhwnn/+eUeHIyJ5iKoLioiI5JBmzZpl2r+poJs3bx47d+7kp59+YsqUKU6fYEFixc70BUZERLJDK1kiIiJyy1ksFry8vOjZsyczZszA1VWf84pI/qW/4UREROSW02e6IlKQqE+WiIiIiIhIDlKSJSIiIiIikoOUZImIiIiIiOQgJVkiIiIiIiI5SEmWiIiIiIhIDlKSJSIiIiIikoOUZImIiIiIiOQgJVkiIiIiIiI5SEmWiIiIiIhIDlKSJSIiIiIikoOUZImIiIiIiOQgJVkiIiIiIiI5SEmWiIiIiIhIDlKSJSIiIiIikoOUZImIiIiIiOQgJVkiIiIiIiI5SEmWiIiIiIhIDlKSJSIiIiIikoOUZImIiIiIiOQgJVkiIiIiIiI5SEmWiIiIiIhIDlKSJSIiIiIikoOUZImIiIiIiOQgV0cH4OwMwyA8PJyiRYtisVgcHY6IiIiIiDiIaZpcvnwZPz8/rNbM16uUZF1DeHg4FStWdHQYIiIiIiLiJI4dO0aFChUyHVeSdQ1FixYF4NgXX1CscGEHRyMiOW7rVjhwgJ9PNoRyfhmHT5bjALdxEj/KlYOePR0Qo4iIiDiF6OhI+vevmJIjZMZimqaZSzHliGnTpvH+++9z6tQpGjZsyNSpU/H397/mffPmzaN37948+OCDLF68ONvPFxkZibe3N5fmzVOSJZKfhYTYvx4WxrLwxoTgTxg1wa88NWtCNv7aERERkXwmOjqSXr28uXTpEsWKFct0Xp5ayZo/fz6DBw9mxowZNGvWjMmTJ9OhQwf27dtH6dKlM73v33//5dVXX6VVq1a5GK2I5CmZZU3+/gSGhBAYNoNl4Y0JCu1EcHgDwsJQsiUiIiJ25anqgh9++CEDBgzgiSeeoG7dusyYMYPChQvzxRdfZHqPzWajT58+jB49mmrVquVitCKSb/j7Q9++BAZcYX79cQRELIDwEwQHQ1BQ5otgIiIiUjDlmSQrLi6OrVu30q5du5RrVquVdu3asXnz5kzvGzNmDKVLl+bJJ5/M1vPExsYSGRmZ5ktEBEhJtsZ220FfgghgfZpkS0RERATy0HbBc+fOYbPZKFOmTJrrZcqUYe/evXbv+e2335g9ezZ///13tp/n3XffZfTo0TcTqojkd/7+BPpDYNCM/85rhdckKEjntURE5GaYWK0JWCw21Dko95kmmKYLhuEK3NwPIM8kWdfr8uXLPProo8ycOZOSJUtm+74RI0YwePDglD9HRkaqhLuI2Ne3b5rzWiHh/gSHt9Z5LRERuW5WaxzFip2kUKFoJVgOZJpw9WphIiPLYRjuN/w4eSbJKlmyJC4uLpw+fTrN9dOnT1O2bNkM8w8ePMi///5LYGBgyjXDMABwdXVl3759VK9ePcN9Hh4eeHh45HD0IpJv+funKY4xMjSCMJoTHF5eyZaIiGSTQcmSh/HycsHHxw9XV3dudiVFboRJQkIcFy6cxd39MGfO1OBGT1flmSTL3d2dJk2asHbtWrp27QokJk1r165l4MCBGebXrl2b0NDQNNfefPNNLl++zJQpU7Q6JSI5KynZGhsSwrLggylbCJOTLXuUgImICICLSxyurgYlS1bEw0MtgxzJ3b0QLi5uxMQcwcUlDpvN84YeJ88kWQCDBw/mscceo2nTpvj7+zN58mSioqJ44oknAOjXrx/ly5fn3XffxdPTk3r16qW5v3jx4gAZrouI5Bg757UIzzgtjP8SsL59cz9MERFxHsnbAy2WnKlJZ7EkfiWeMcqRhyxQkn8ON7NtM08lWT179uTs2bO89dZbnDp1ikaNGrFy5cqUYhhHjx7Fas0zBRNFJD9LPq/FOrvDy4JDUla7Jk4sT0CAVrVEROTGWSzg5gYeLvG4eLilXLfFxhNrcyM+XglXbrKYpl7urERGRuLt7c2lefMoVljLtyKSQ0JCICwsZbUrOKIBfvV9tYVQRKQAcnWNoXTpw1SsWBV39+vfnubqCkU8ExL/sHAhlgUL4MIF8PHB7N4dunUDICrGlYSEnIw8f4qLi+HYscOcOVOVhIS0P4/o6Eh69fLm0qVLFCtWLNPHyFMrWSIi+Ua6ghnLaExQaCeCwxuoYIaIiGSbqysUKWzAytVY+veHdEXiLAsWQJkymF98QZGOHYmKtjok0fLxsRAU9CP3398195/cAbS3TkTEkZIaHAcGXGF+/XEERCxI0+A4JMTRAYqIiLOyWJJWsFauxNKlS4YEK8Xp04njK1dSxDMhx0vEnz59imHDXqRRo2qUKePB7bdXpFevQDZsWJuzT3SDTNNk/Pi3qF27HOXKFaJr13YcPLj/lj6nkiwREWeQlGyN7baDvgQRwPqUZEuJloiI2OOWdPTK0r8/2GxZT7bZsDz5ZJr7csLRo//SunUTNm5cx5gx7/P776EsWLCSVq1aM3ToCzn3RDdhypSJfPbZx3z44QzWrNlC4cJF6NatAzExMbfsOZVkiYg4E39/AgOuMNZvRkqyFRZ8QqtaIiKSgYdLPCxcmPkKVnqnTsGiRYn35ZAhQ57HYrHwyy8hdOnSjdtuq0mdOrfzwguDWbPmj0zve/vt12jatCZ+foVp1Kga48aNJD7+v7hCQ3cQGNiaihWLUqlSMQICmrB9+18AHD16hF69AqlSxYfy5YvQvPntrF69wu7zmKbJjBmTefXVN+nc+UHq1WvA9Olfc+pUOD/9tDjHXof0dCZLRMTZpD+vFa7zWiIiBVFS96EsuMGCBdf1mJYFC3B55BGKe2Q+5+LF7D3WhQvnWbt2JW++OY4iRYpkGPf2Lp7pvUWLFmXatK8oV86PXbtCefnlAXh5FeWll4YB8PTTfWjQ4A4mTZqOi4sLoaF/4+qauAQ3dOgLxMfH8dNPv1KkSBH27t1NkSJedp/nyJHDnD59ioCAdqni8qZJk2b8+edmunXrlb1v9jopyRIRcVZpkq1xjAztQRjNU/prKdkSEREuXLi187Nw6NABTNOkZs3a133vq6++mfLflSpV4cCBV1m0aF5KknXixFEGDRqa8tjVq9dImX/8+FG6dOnG7bfXB6BKlWqZPs/p06cAKFWqTJrrpUuX4cyZU9cdd3YpyRIRcXZJydbYkBCWBR9M6a+lZsYiIvlbVitKFgt4ewM+Ptf3oEnzL126+b5ZN9MJatGi+Xz22cf8++9BoqKukJCQQNGi/5VEf/75wQwa9BTz53/Dvfe2o2vXHlStWh2AZ54ZxJAhz7Fu3WoCAtoRGNiNevUa3Nw3k8N0JktEJK/w9ydwWN0057UI13ktEZGCyDQTGw2b3btf333duyfelwOdcqtXr4HFYiEsbO913RcSspmnn+5D+/admTdvORs2bGfIkDeIi4tLmTN8+Cg2b97Ffffdz8aN67jrrrosX/4jAP36PcX27Yfo2fNRdu8OpU2bpnz++VS7z1WmTFkAzp5Ne27tzJnTlC5d9rrivh5KskRE8pqkku/JyRahO1NKvtv7UgImIpI/xdrcEhsNlylz7ckAZcvCww8n3pcDfHxK0KZNB2bPnkZUVFSG8UuXLtq9LyRkExUrVubVV9/gjjuaUr16DY4dO5Jh3m231eT5519h0aLVPPDAw8yd+2XKWIUKFenf/1m++WYRL7wwhDlzZtp9rsqVq1KmTNk05eQjIyPZunULd97Z/Dq/4+xTkiUikhfZ6a9VkzC7X8ELI5RsiYjkQ8nF+MwvvgAXl6wnu7hgzp6d5r6c8MEH07DZbLRr58/SpQs5eHA/+/bt4bPPPua+++wnMdWq1eD48aMsXDiPw4cP8tlnH6esUgFcvXqVoUMH8ttvwRw9eoQ//vid7dv/pGbNOgCMGPEya9eu4siRw+zYsY3ffltPrVp17D6XxWLh2Wdf5oMP3mHFiqXs2hXKc8/1o2xZv1vaGFlnskRE8rJU57UI+8HulGW+jQkK76uCGSIi+YxpQlSMK0U6dsRcujSxD9YpO8UcypZNTLA6diQq2pojWwWTValSjeDgbUyaNI433xzC6dMnKVmyFA0bNmHSpOl27+ncuQvPPfcKw4YNJC4ulvbt72fo0JG8994oAFxcXDh/PoJnn+3H2bOn8fUtyQMPPMyIEaMBsNlsDB36AuHhxylatBht23Zk/PiPMo3xpZeGER0dxSuvPM2lSxe5666WLFiwEk9Pz5x7IdKxmDdzYq0AiIyMxNvbm0vz5lGscGFHh1MgHTx5kq0HD+JqtXJvvXr4Fit27ZtE5D8hIRAWxsjwZwmjJuGUx89PBTNERJyFq2sMpUsfpmLFqri7X/8bf1dXKOKZkPiHRYuwLFiQWEXQxyfxzNbDDwOJCVlCQk5Gnj/FxcVw7NhhzpypSkJC2p9HdHQkvXp5c+nSJYpl8Z5UK1nitMIjIhjw8ces2L495ZqHiwv927fnw6eewtPd3YHRieQhyatdQYk9t5KrE06cWJ6AAK1qiYjkdQkJEBnlipsbeDz4EC6PPJIyZsTGExvnSqqaEpILlGSJUzp/+TL3vvYaMefO8RXQBYgGvrHZGL1qFcfOnmXJyJFYrTpWKJJtffumaXAcgj/BCxsQFuarLYQiInmcaUJcHMThhiUmscS7aYJp5kyRC7k+SrLEKU376SfCz50j1DBIbi/nAwwH6pgmXbduZd3OnbRr1MhxQYrkRWkaHM9gGY0JCu1EcHgDndcSEcknEpMrR0dRsGkZQJzSnDVr6J0qwUqtC3C71cpXa9faGRWRbElfnTCp51ZyKXgRERG5cUqyxCmdvHiRepmMWYB6hsHJiIjcDEkkf0pKttI3OJ44USXfRUREbpS2C4pTKle8OP+cPWt3zARCrVbu8PXN3aBE8rMszmtlcYuIiIjYoSRLnNLj993Hu999x+t2tgwuBXYbBlPatnVEaCL5l53zWiHh/uBXPsPUsPAiBAWV1xkuEREnZLGkLnzh6GgKJiVZ4pReuP9+5qxZwz3nzjHWMHiQxOqCXwNjLRYeaNyYNg0aODhKkXwqXbJlT3ICFhzeWgUzREScgMUCbm7g4gIeHv9dj40Fmw3i45Vw5SYlWeKUfLy82DBhAk9PncqT27bRP+m6p6sr/du3Z9KTT6p8u8itlpRs2ZOcgI0MjSCM5gSHl1eyJSLiIK6u4JnUM3fhQkjVi5ju3aFbN3B3h5gY1Iw4l1hMUzltViIjI/H29ubSvHkUK1zY0eEUSIdOneKvAwdwc3HhnttvxzeL7toikstCQlgW7JXY4JiahFMePz+d1xIRuR6urjGULn2YihWr4u7ueZ33QuHCsHIl9O8Pp09nnFOmDHzxBXTsCNHRjkm0fHwsBAX9yP33d839J79OcXExHDt2mDNnqpKQkPbnER0dSa9e3ly6dIliWbwn1VKAOL1qZcvySMuWPNS8uRIsEWfj70/gsLqqTigi4gAWS+IK1sqV0KWL/QQLEq936ZI4z9Mz8b6cdPr0KYYNe5FGjapRpowHt99ekV69AtmwwTna7SxbtoiHH76PatV88fGxEBr69y1/TiVZIiJy85J6bqVOtpJ7binZEhG5NdzcEv+3f//Ec1dZsdngySfT3pcTjh79l9atm7Bx4zrGjHmf338PZcGClbRq1ZqhQ1/IuSe6CVFRUdx1V0tGjZqQa8+pJEtERHJGqgbHY/1mMIwJaRocK9kSEclZLi6JZ7AyW8FK79QpWLQo8b6cMmTI81gsFn75JYQuXbpx2201qVPndl54YTBr1vyR6X1vv/0aTZvWxM+vMI0aVWPcuJHEx8enjIeG7iAwsDUVKxalUqViBAQ0Yfv2vwA4evQIvXoFUqWKD+XLF6F589tZvXpFps/Vq9ejDBv2FgEB7XLuG78GFb4QEZGclao6IcFBiee1wmumFMfQeS0RkewpXvzacxYsuL7HXLAAHnkkbQXC9C5ezN5jXbhwnrVrV/Lmm+MoUqRIhnFv7+KZ3lu0aFGmTfuKcuX82LUrlJdfHoCXV1FeemkYAE8/3YcGDe5g0qTpuLi4EBr6N66uiUtwQ4e+QHx8HD/99CtFihRh797dFCnilb2gc4mSLBERuTX8/Qn0h8Cg/xoch4XXZOLExOIY6dWsmXKbiIhk04ULt3Z+Vg4dOoBpmtSsWfu673311TdT/rtSpSocOPAqixbNS0myTpw4yqBBQ1Meu3r1Ginzjx8/Spcu3bj99voAVKmSvquq4ynJEhGRW6tv3/8aHCclW2CnwXFwEcKTrivREhHJekXJYgFv78Qy7dcjef6lSzffN+tmipQvWjSfzz77mH//PUhU1BUSEhIoWvS/AmfPPz+YQYOeYv78b7j33nZ07dqDqlWrA/DMM4MYMuQ51q1bTUBAOwIDu1GvnnP1T9WZLBERufXSndcay8gMX8kFM8KCT+gMl4jINZhmYqPh7t2v777u3RPvy4kmTtWr18BisRAWtve67gsJ2czTT/ehffvOzJu3nA0btjNkyBvExcWlzBk+fBSbN+/ivvvuZ+PGddx1V12WL/8RgH79nmL79kP07Pkou3eH0qZNUz7/fOrNf0M5SCtZIiKSe7LR4HhZeGOCQjsRHN5ADY5FRLJgsyU2Gi5TJnvFL8qWhYcfhlS5zE3x8SlBmzYdmD17Gs88MyjDuaxLly7aPZcVErKJihUr8+qrb6RcO3bsSIZ5t91Wk9tuq8nzz7/Ck0/2Zu7cL3nggYcAqFChIv37P0v//s8yevQI5syZydNPv5gz31gO0EqWiIg4h1SrXfPrjyMgYoGqE4qIZCG5GN8XX1y7YqCLC8yenfa+nPDBB9Ow2Wy0a+fP0qULOXhwP/v27eGzzz7mvvua272nWrUaHD9+lIUL53H48EE+++zjlFUqgKtXrzJ06EB++y2Yo0eP8Mcfv7N9+5/UrFkHgBEjXmbt2lUcOXKYHTu28dtv66lVq06mMV64cJ7Q0L/Zu3c3APv37yM09G9Onz6Vcy9EOkqyRETEuSQlW2O77UjT4Dg52RIRkUSmCTEx0LEjLF2auFJlT9myieMdOybOz4mtgsmqVKlGcPA2WrZszZtvDqFFi3o8/HB7NmxYy6RJ0+3e07lzF5577hWGDRvIPfc0YsuWTQwdOjJl3MXFhfPnI3j22X7ceWdN+vd/hHbtOjFixGgAbDYbQ4e+QLNmdejevSPVq9fkgw8+zTTGn39eyj333EHPnvcD8OSTvbjnnjv48ssZOfdCpGMxb+bEWgEQGRmJt7c3l+bNo1jhwo4OR0Sk4AkK+q86ITXBr7y2EIpIvuLqGkPp0oepWLEq7u6eN3A/eCbdtmhRYpn2CxcSi1x07564RRASE6yEhBwMPJ+Ki4vh2LHDnDlTlYSEtD+P6OhIevXy5tKlSxQrViyTR9CZLBERcXbpqhPqvJaISFoJCRAVBW5u8OCDiX2wksXGJp7ByqlzWJI9SrJERMT5pWpwHBg2jpGhPQijeUqDYyVbIlLQmeZ/iVRMTGKJd9PM2a2Bkn1KskREJO9ISrbGhoSwLPhgSoPj5GSrb19HBygi4nhKrhxPhS9ERCTv8fcncFhdxvrNSFMcQ1UIRUTEGWglS0RE8q5057VCwv0JDm+tLYQikqckrzqpHp1zSP453MyPQ0mWiIjkbWnOa81gZGhEhvNamd0mIuIMDMMNw4C4uGg8PAo5OpwCLy4uGsNI/LncKCVZIiKSP2RyXiuM8hmmhoej1S4RcRqm6cKVK8U5d+4MAO7uhbFYLA6OquAxTZO4uGjOnTvDlSvFMc1rdHjOgpIsERHJX/z9CfSHwKDELYSEZ5yighki4myuXEnsJJyQcAarqiY4jGHAlSvFU34eN0rNiK9BzYhFRPKhkBCWBXulNDgOpzwBAVrVEhHHs1hsWK3xaCEr95lm4hbBrFaw1IxY7Dp48iTvLVjAuchI6lWuzBuPPIKnu7ujwxIRyV3+/gSSqmAG/gQvbEBYmK+2EIqIQ5mmCzbbjW9TE+eglaxryC8rWQkJCQS88Qab9+zBBDyAGMDdYmFEz56M+t//HByhiIiDhIRAWBjLwhsTFNGJcN8G+PnpvJaIiGSU3ZUs7fgsIFoOH86mPXt4HTgFXAX+BtqZJmPmzePDxYsdGZ6IiOP4+yeWgg+4wvz641J6bgUHo75bIiJyQ5RkFQA7Dx8mJCyMUcBYoHTS9YbAEsAfGPvttw6KTkTESSQlW2MD1qVpcBwcrERLRESuj5KsAuCd77/HBXjRzpgr8ApwMSaG3/fsyd3ARESckb8/gQFXGOs3IyXZCl4YoVUtERHJNhW+KADOXrqED+CTyfhtSf/77+nT3F2nTi5FJSLixNI1OF5GY4JCOxEc3kANjkVE5JqUZBUA1cuVY8M//3AUqGRn/C/AAjSsUiVX4xIRcXppkq1xjAztQRjN1eBYRESypOqC15AfqgueunCBCo89Rj9gNokJVbKLQGMgxtub8G++cUR4IiJ5R1J/LfwyJlkAQeGtCae8qhOKiORT+ba64LRp06hSpQqenp40a9aMkCw2yM+cOZNWrVrh4+ODj48P7dq1y3J+flXWx4e+bdrwJdAFWAscAL4msejFMWDWSy85MEIRkTzC35/AYXUJrLnP7lf6ghlBQY4OWEREHCFPrWTNnz+ffv36MWPGDJo1a8bkyZP54Ycf2LdvH6VLl84wv0+fPtx99920aNECT09PJkyYwI8//siuXbsoX97+p5Dp5YeVrGSvzJrFZz/9xFWbLeVaKS8vZr30El2aNXNgZCIi+UhQUEqD4zBqEk55AgK0qiUikh9kdyUrTyVZzZo148477+STTz4BwDAMKlasyIsvvsjw4cOveb/NZsPHx4dPPvmEfv36Zes581OSBYmv2fyNGzl54QLNatVSoQsRkVshVYPjEPwJjmiAX31fbSEUEcnjsptk5ZnCF3FxcWzdupURI0akXLNarbRr147Nmzdn6zGio6OJj4+nRIkSmc6JjY0lNjY25c+RkZE3HrQTslqt9L73XkeHISKSv9mrThjel+Dw8iqOISJSAOSZM1nnzp3DZrNRpkyZNNfLlCnDqVOnsvUYr732Gn5+frRr1y7TOe+++y7e3t4pXxUrVrypuEVEpABLanAcGHCF+X6DdV5LRKSAyDNJ1s167733mDdvHj/++COenp6ZzhsxYgSXLl1K+Tp27FguRikiIvlSUrKVusEx4SeYOFENjkVE8qM8s12wZMmSuLi4cPr06TTXT58+TdmyZbO894MPPuC9997jl19+oUGDBlnO9fDwwMPD46bjFRERyaBv3/+2ECaf11rYgLAwndcSEclP8sxKlru7O02aNGHt2rUp1wzDYO3atTRv3jzT+yZOnMjYsWNZuXIlTZs2zY1QRUREMpdqC+FYvxkM850FoTtTthBqZUtEJO/LM0kWwODBg5k5cyZz5sxhz549PPfcc0RFRfHEE08A0K9fvzSFMSZMmMDIkSP54osvqFKlCqdOneLUqVNcuXLFUd+CiIhIotTnteqP03ktEZF8JM9sFwTo2bMnZ8+e5a233uLUqVM0atSIlStXphTDOHr0KFbrf3nj9OnTiYuLo3v37mke5+2332bUqFG5GbqIiIh9SZUIxwb9t4UwLLwmEycm9tfK6jYREXFOeapPliPktz5ZIiLixNL11wqjJviVzzAtPBz8/KBvXwfEKCJSgOW7PlkiIiL5Xvr+WuGNgYxJVgjlCQuvSVBQeRXMEBFxQkqyREREnE2qZAv2ZRgOZFniale4P8HhrdXgWETEySjJKkCOnzvHy7NmsXbbNuLj4ynq5cVTHTrwdq9euLrqV0FExOlkljWlWu0aGRpBGM0JDi+vZEtExEnoTNY15JczWb/v2UO7ESOIMwweAKoCvwLbgYolShD2+ed4urs7NkgREbl+ISEsC/ZKOcMVTnmd1xIRuUWyeyZLSdY15IckyzAMfB55BO+4ONYBt6UaWwj0BO6tX5+148Y5JkAREbl5QUFpCmaEk1idUKtaIiI5J7tJVp7qkyU3ZuaqVUTGxfE5aRMsgG7AM8DG0FCuREfnfnAiIpIzUjU47ksQAaxXg2MREQdRklUALNy8maLAfZmM9wLigZXbtuVeUCIikvNSNTge6zeDYUxI0+BYyZaISO5QklUAmKaJJYvx5F8CIzeCERGRWy9VspW8qpU62RIRkVtLJeUKgC7+/vyyYwdrgfZ2xr8H3ICOjRvnbmAiInJr+fsT6A+BQTP+O68VXpOJExOLY9ijghkiIjdPhS+uIb8UvvDu0YNS8fGsByqnGvsJ6Aq0uP12Nrz7rkPiExGRXBASAmFhiQ2O/coTEp6xybEKZoiIZE3VBXNIfkiyAIJDQ+n45pvYTJOHgSrARmAzUM7bmwMzZ1LY09OhMYqISC7I7GBWUgIWgj/BEQ3wq++rnlsiIukoycoh+SXJAjh86hQvfv45v+7YQYLNhlfhwjzati3vPvoo7uqRJSIiqVa7giI6Ee7bAD8/NTgWEUmmJCuH5KckS8QewzBY8/ff/LZ7NxaLhdb16xNQvz4WS1blUkQkX0tKtkaG9iDMt3lKg2MlWyJS0GU3yVLhC5ECbM+xYzz8zjvsPXkSPxcXbMDY+fNpWKkSP775JlXLlnV0iCLiCP7+4O/P2JAQlgUfTCmYEZx0jkuJlohI1lTCXaSAOnvpEm1ffx2X06f5HThus3HSZmMdEHX8OG1ff51INagWKdj8/QkcVjdNg+Ow4BPquSUicg1KskQKqM9XreJiZCRrDIMWgCXpqzWwyjA4eu4cX69b59ggRcQ5pGpw3JcgCN2pBsciIllQkiVSQH2/YQPdTZNydsaqAfcD8zdsyOWoRMRppWpwPL/+OAIiFqRpcKxkS0TkP0qyRAqoS1FRVMhivCIQGRWVW+GISF6RlGyN7bYjZQth6mRLRESUZIkUWDUrVGCj1f5fASbwq9VKjQpZpWEiUqDZOa9FuM5riYiAkiyRAmtAx478ZhgssTMWBIQaBk936pTbYYlIXpPuvFbN8PXaQigiBZ5KuIsUUA83b87DzZrRPSSEJ02THoABfAfMAR5r3Zr2jRo5NEYRySOSSr4HhoQQGDaDkaERhNGc4PDyhIXZv0U9t0QkP1Mz4mtQM2LJz+ITEpi4aBGfLltG+KVLAFQqUYJBDz7IKw8+iDWT7YQiIlkKCWFZsBch+INf+QzDYeFF1OBYRPKk7DYjVpJ1DfktyTJNk73Hj3PhyhWqlC6Nn6+vo0MSJxCfkMChU6ewWCxUL1sWFxcXR4ckIvlBFpUwRoY/Sxg1U5Ktvn1zMS4RkRukJCuH5Kcka8kff/DWN9+w89gxAKwWC/c3acKkp56ihp+fg6MTEZECJSiIZeGNCcE/JdkKCNCqlog4t+wmWdoLVEB8s349XcePp+zx4ywHQoHppsnubdtoMWQI+8PDHR2iiIgUJOkKZgSwnuCFESqYISL5glayriE/rGRFxcRQvl8/AmNi+BqwpBqLAO60WrnD35+Fr7/uoAhFRKRACwmBsDCWhTcmKKIT4b4NdF5LRJySVrIkxcJNm4iMiWEsaRMsAF/gVcNgyZYtnLl4MfeDExERSWpwHBhwhfn1x2VocKyVLRHJa5RkFQCHT5+mrIsLVTIZbwbYTJNj587lYlQiIiLpJCVbYwPWpWlwHBysREtE8hb1ySoAShQtSoRhcAnwtjN+OHmel1cuRiUiIpIJf38CSey5lVwcI3hhA8LCfLWFUETyBCVZBUC35s0ZPGsWn5omI9KN2YApFgt3Va9O1bJlHRGeiIhIRukaHC+jMUGhnQgOb6AGxyLi9JRkFQB+vr68+MADvLl0KTbgeaAEsAd4A9gErHz0UUeGKCIiYl+aZGscI0N7gF8Du1ODg2sSFqZkS0QcT0lWAfH+E09gtVoZs3Qpo02TohYLFwyDUl5e/DBwIO3vuMPRIYqIiGQuKdkaGxICYT/YnbKMxgSF9yU4vLySLRFxKJVwv4b8UMI9tTMXL/LjH39wMSqK6mXLEujvj4ebm6PDEhERuXkhISwL9krT4NjPD/r2dXRgIpJfZLeEu5Ksa8hvSVZes3LrVj5Zvpw/9+3D1cWFDk2b8lKXLjSsWtXRoYmIiLMKCkopmJGcbAUEaFVLRG6ekqwcoiTLcYbPmcOEhQu5w2qlq2EQDXzr4sJJ0+TbV1+lR8uWjg5RREScVaoGxyH4ExzRAL/6qk4oIjdHSVYOUZLlGMv//JPAsWOZBLzCf02U44HHgIUuLhycOZMKJUs6LEYREckDUiVbQfRN2UKoZEtEbkR2kyw1Ixan9PGSJTSzWhnMfwkWgBswA3A3TWauXu2Y4EREJO9IanAcGHAlQ4PjoCBHByci+ZWSLHFKf+zbx0OGYXesGNDeMNi8Z0/uBiUiInmXvz+Bw+oy1m9GmmRr4sTExS4RkZykEu7ilFysVuKyGI8BXF1cciscERHJL/r2/a/BcfJ5rYUNCAvztTtd2wpF5EYoyRKn1P6OO/h2yxbesNkyLLeeAn6xWHivUSMHRCYiInlemgbHM1hGY0LC/cGvfIapYcFFCAsrr2RLRK6LkixxSq907crdmzbxAvAR4Jl0/SzwiMWCV6FCPN62reMCFBGRvC9dsmXPMhoTFNqJ4PAGanAsItmm6oLXoOqCjjNr9WqemTYNH4uFDkkl3H+2WChcqBDL336bFnXqODpEERHJ75KqE44M7UGYb3NVJxQp4FTCPYcoyXKs/eHhzPj5Z0L27sXN1ZWOTZvSv317SmbxSy0iIpLjQkJYFuyVpsGxnx/07evowEQkN2U3ydJ2QXFq5Xx8qFW+PJeio3F1caFm+fIUL1LE0WFlaefhwwQFB3M2MpJKpUrxeJs2VC1b1tFh5SthJ04wZ906ws+fp5yPD/3atKF2hQqODktE8jN/fwL9ITDov4IZYeE1CQrSeS0RyUgrWdeglSzHWbN9O4+89x6RV6/S2MWFaGC3zUatsmX5afRoqpcr5+gQ04iLj6f/lCnM/fVXyri4UBXYa5pcMgyGdevGu/36YbFYrvk4kjnDMHhp5kw++eknfK1WagL7gXOGwTMdOjDt2WdxUdVJEbnVUjU4DsGfYFprC6FIAaFmxJKn7Tl2jAffeYe7YmI4DPxps7HLZuNPwDhzhvvefJPo2FhHh5nG4Nmz+WHjRr4AjtlsbLbZOGEYjAMmLFzI5KVLHR1injd2/nym/fQTk4HjhsEmw+C4YfAJMHPVKt769lsHRygiBUKqBsdj/WYQELEgTYNj9d0SESVZ4pQ+WrIEH5uNRaZJpVTXmwLLDINDZ88yf+NGR4WXwZmLF/l85UrGmCZPAG5J1wsDI4ABwMQffiA+IcFhMeZ1UTExfPTjjwwGXuK/ipMewAvAa8DHS5YQGR3tqBBFpKBJSrbGdtuRpsFxcrIlIgWXkixxSos3baKfYVDIzlgtIMBiYfHmzbkdVqZWbN1KvGEwIJPxp4FTkZFsCQvLzbDyleDQUC7FxPB0JuNPA1fi4li3c2duhiUiknhea1hdxvrNSJNsTZyoVS2RgkqFL8QpRcfFUSqL8VKmyYWYmFyL51qiY2NxAXwyGS+Vap7cmOTXLrPfC73GIuJwffv+1+A4+bxWcGv11xIpgPLcSta0adOoUqUKnp6eNGvWjJBrfET0ww8/ULt2bTw9Palfvz4rVqzIpUjlZtSrVIk1mRSJiAWCrVbqVa2au0FloX7lytiA4EzGVwNWi4W6FSvmXlD5TL3KlQFYk8n46uR5lSplMkNEJBekO681jAk6ryVSAOWpJGv+/PkMHjyYt99+m23bttGwYUM6dOjAmTNn7M7ftGkTvXv35sknn2T79u107dqVrl278s8//+Ry5HK9nrv/flaaJulLRZjAGOCsYfB0hw4OiMy+lnXrcnv58rxmtXI53Vg4MM5q5YGmTalQsqQjwssX6lSsyL116vCW1cq5dGPngZFWK81r1KCBEyXfIlKApUq27J3XCgmx/yUi+UOeKuHerFkz7rzzTj755BMgsZxzxYoVefHFFxk+fHiG+T179iQqKorly5enXLvrrrto1KgRM2bMyNZzqoS7Y9hsNnpOmMDiLVt4xDR5EIgGvrZaCTYM3nvsMV7r1s3RYabx1/79tH3jDXzi4njWMKgJbAM+s1rx9Pbmt/ffp3Lp0o4OM0/bd/w497z2Gi5RUTxjGNQHdgEzrFZiCxXi1wkTqKuVLBFxRkFB//XXoib4lc8wJTwcNTgWcXLZLeGeZ5KsuLg4ChcuzIIFC+jatWvK9ccee4yLFy+yZMmSDPdUqlSJwYMH8/LLL6dce/vtt1m8eDE7duyw+zyxsbHEpjrTERkZScWKFZVkOUCCzca0n35i2rJl7D99GoC7a9ViyMMP81Dz5g6Ozr69x4/z7g8/MH/jRmITEijq4cFj7doxont3/Hx9HR1evnDkzBnG//ADQevWER0fTyE3N/oEBDCiRw+qqemziDizVP217A4nJWDhlCcgQGe4RJxRdpOsPFP44ty5c9hsNsqUKZPmepkyZdi7d6/de06dOmV3/qlTpzJ9nnfffZfRo0fffMBOKj4hgd/37OHClStUL1vWqbdWubq48FKXLgwKDORiVBRuLi54FbJXb9B51K5QgS8GDeLxtm05dvYstSpWxL9GDadvQhy8cyfTV67EYrEwuEsX/GvVcnRImapcujSfvfACnzzzDJHR0RQrXBg31zzzV5mIFGT+/omVCO2NpS+YsbABYWG+KpghkkfpnUk6I0aMYPDgwSl/Tl7Jyg9mrlrFqKAgwi9dSrnmX706055/nqY1ajgwsqxZLBZ8vLwcHUa2zN+4kRFffsnhc/+dGmpQsSJTnn2WgPr1HRiZff8cOUKLoUO5EhND8pL2Dxs3UqxwYbZNmULVdB9SOBM3V1d8s/gESUQkT0lOwJKTLRoTFNqJ4PAGqk4okgflmcIXJUuWxMXFhdNJ28aSnT59mrKZbBEqW7bsdc0H8PDwoFixYmm+8oMpS5fy9LRptLl0iT+BM8BiIOHwYQJGjODvQ4ccG2A+ELR+Pb3ef5+G587xO4mv8UrA+/hx7hs5kg1OVnDl1PnzNBk0CGJimAQcA/4FxgOx0dHUeeYZrly96tAYRUQKnFQFM+bXH0dAxAJVJxTJg/JMkuXu7k6TJk1Yu3ZtyjXDMFi7di3NMzmf07x58zTzAdasWZPp/Pzq4pUrvD5nDgOBb4CmJPYUehD41TCokpDA63PmODTGvC42Pp4hM2fSG1gEtCDxNe4A/GKa3GmavDpzpkNjTO+h8eOJN03WAa8AFYDKwGvACiDWMOj1/vuODFFEpOBKSrbGdtuRoTqhEi0R55dnkiyAwYMHM3PmTObMmcOePXt47rnniIqK4oknngCgX79+jBgxImX+Sy+9xMqVK5k0aRJ79+5l1KhR/PXXXwwcONBR34JDLNi0idj4eEbYGSsCDDYMVm7fTnhERG6Hlm/8vHUrZ65cYSSQ/vSVOzDcNPnr8GH+OXLEAdHZt33/fjqRmHSnFwA0B37Zvj1XYxIRkXT8/QkcVpexfjNSkq2w4BNa1RJxcnkqyerZsycffPABb731Fo0aNeLvv/9m5cqVKcUtjh49ysmTJ1Pmt2jRgm+//ZbPP/+chg0bsmDBAhYvXky9evUc9S04xImICEq7uOCXyXhDEvtPnbxwIRejyl9ORETgZrFQJ5Pxhkn/e/xc+g5PjmOaJo2yGG8MYLPlTjAiIpK1VA2O+xIEoTu1hVDEieW5whcDBw7MdCUqODg4w7UePXrQo0ePWxyVcytTvDhnDYOzJG5hS29PqnlyY8r6+BBvmhwAbrMzvifVPKdhsbA7iw4OuwCseepzGBGR/C1NcYxxjAztQRjNCQ4vn1IcI7PbRCR36R1UAdDj7rtxsVqZZGcsFvjQaqVNvXpUKFkyt0PLNzo3aUKJwoV5z86YDZhosdCgYkUaOlHJ/NurVmUpSclUOiFAMHB3AVv1FRHJEzI5rxUWRoYvrXaJOEaeW8mS6+dbrBhv9urFyLlziQJeIrHAwSbgLYuF3RYLwf36OTbIPK6QhwfjHnuM56ZPJwEYCtQCtgJjLBaCgeX9+ztVv6yFI0ZQa8AA7gUmAo+QmBB+R2LxC3eLhXlDhzoyRBERyYq/P4H+EBg0I6nBcfkMU0IoT1h4zZTVrr59cz9MkYLIYppZ7BcSIiMj8fb25tK8eRQrXNjR4dww0zT54McfGT9/PhdTleWuVbYsM1580Sl7OOVFn69cyZtff83ZK1dSrlXx9eXj554j0An3a/y6axcdR47kakJCyjULUNjNjU0ffODUzapFRCSVzJaqwsJSGhyHUZNwyhMQoC2EIjcqOjqSXr28uXTpUpatnpRkXUN+SbKSRcfGsmrbNi5cuUINPz9a1q3rVKsr+UFsfDxr/v6bs5cuUalUKQLq1cPFxcXRYWUpaP16Zq9ejcVq5cUHHuChAtbmQEQkXwsJSZNsBUc0wK++rxoci9wAJVk5JD8lWWEnTvD+okXM//VXLsfGUrlECQZ07sxLgYF4FSrk6PDEAQzDYOiXX/LFqlVcjIkBwLdwYZ4PDGRMnz4Ojk5ERHJUqmQriL6EUx4/P5RsiVwHJVk5JL8kWX/s3ct9I0dSLD6e/oZBFeB34FuLhbqVK7Pu3XfxLlLEwVFKbvMfMoQ/9+/nHqAniWey5gJbgHYNG7Jm7FiHxiciIrdAUrI1MvzZlC2Efn46ryWSHdlNslRdsACw2Wz0njCB+vHx7DEMxgD9gdnAH6bJwaNHef2bbxwcpeS29xct4s/9+/kQ2AA8D7wIbAZGAb/s2MGctWsdGKGIiNwSydUJUzU4JvwEEyeqCqFITlGSVQD8vG0b/0ZEMMUwKJpurCHwkmHw9S+/cDk62hHhiYNMWbKEOsDL6a5bgDdJrFH1zvz5uR2WiIjklnQNjgNYT/DCCJV8F8kBSrIKgO0HD1LaxYWmmYzfD1yJi+PAyZO5GZY42PmLF+lCYlKVngsQCJw6dy53gxIRkdyVtKqVnGwN850FoTvVX0vkJinJKgA83NyINk3iMhm/lGqeFBwWqzXlZ2/PRcBq1V8RIiIFQqpka379cSlbCJOTLRG5PnoHVQB0btqUK4bBgkzGvwCqly5N7QoVcjMscbA6VavyLXDFzlgE8CPQtFat3A1KREQcK/m8VsA6ndcSuQmujg5Abr16lSvzQJMmDNy+nVKGQTsSt4jFAh8C84DPunfXqkUB82H//rR5/XW6At8A5ZKuHwV6kVhpcMqAAQ6KTkREHMrfn0BCCAyb8V9/rYUNCAtL7K+VyS0ikkQl3K8hv5Rwv3jlCg+OHcuve/ZQx2qlsmGw1WrlrGHweo8evNO3r5oSF0CTfvyR1778EoC7SUysNpF4Jmv6Cy/wVIcODoxOREScQur+WhGdoH4Du9PCwyEgQMmW5G/qk5VD8kuSBYmNZ3/ZsYN5v/7Kxagoqpcrx1Pt21NL2wQLtCOnTzP4iy/YEhaGBWh1++18+OSTlPXxcXRoIiLiTFIlW/iVzzgcXp5gWqvBseRr2U2ytF2wALFardx3xx3cd8cdjg4l3zIMg7U7dhAUHMzZS5eoVLo0/du1484aNZx2pTAmIYGY+HgSEhKwWCzExMURG5dZmRS5EZeiovh6/XrW7tiBYRjcXbcu/du1o5S3t6NDExHJPn//xG2EISHAvgzDgSxjWXgIQeF9CQ4vT1iYki0puLSSdQ35aSVLbq2omBgeHjeO1Tt2UNfFhRo2G39brRwxDB5v04ZZL76Ii4uLo8NMY9z33/N2UBBWoA2J2wXXk3hm76Onn2bgAw84NL78YPPevTwwahSRV68SALiaJsEWC1ZXV+YPH84Dd97p6BBFRHJOSAjLgr0IwZ8wahJOefz8oG9fRwcmkjOyu5KlSgciOeTZadPYFBrKT8A/NhuLgYOGwWzg63XreOf77x0bYDrrdu7kraAgOgDhwEpgDXCMxPNZL3/+OX8fOuTIEPO8Mxcv0vntt7k9JoYjpska0+Rn4Lhpcl9CAj3efZd9x487OkwRkZzj70/gsLppGhyrOqEUREqyRHLA8XPn+PbXX3nPMOjMfw1+XYD+wEvAx0uWcDU21mExpjf0yy8pBvwAlEx1vRyJ5dvdgFdmzXJEaPnG7DVriImJYZFh4Jfqui/wnWnibRh88tNPjgpPROTWSdXgODnZCl4YoQbHUmAoyRLJAau2bcMwTfplMv4YcD46mpD9+3MzrCztPXyY3oC9TbA+wMPAtrCw3A0qn/kpJIRA00yTxCbzBHoZBj/98UduhyUikjtSNTge6zeDYb6z0jQ4VrIl+ZmSLJEcEJeQgAv2ExaAosnz4uNzKaJrM00zJS57ipJYyENuXFx8PF5ZjBcl8XdHRCRfS5Vspd5CmJxsieRHSrJEckDTGjWwkXiuyZ5lgKvVSoMqVXIvqGvw9fFhMWCv8k0CsBTwK106V2PKb5rWqsVKqxV7qbUJLLVaaZpZV08RkfxG57WkAFEJd5Ec0PS227izWjWG/vsvdxoGqVOTMGC81Ur3Fi0o40S9p4Y89BCvzJ7N+8CwVNdN4G3gJPB+r14OiS2/eK5TJ6b//DNvABP476wewBRgp2Hwvio4ikhB07cvgSEhBIbNYFl4Y0LwJ3hhA4KDfe1OV4NjyYtUwv0aVMJdsmvf8eMEDB9O7JUrPGYY1AS2AXMtFqqUK8eGCROcri9Sq9de47c9e/AHegEGEAT8DXRu2pSf3nrLkeHlC5OXLOGV2bO5w2qlt2HgBiy0WvnNMBj28MNMePxxR4coIuI42WhwHEZN8CuvnlviFLJbwl1J1jUoyZLrcSIigilLl/LN2rWcvXyZSr6+9O/QgYH3309xr6xO5zjOyKAgZvz0E+ejogAoWbQoL3ftyogePRwcWf6xdscOJi9ezNqdOzFMkxa1avFily50vesup21SLSKSqzLbL5iUgAVFdCLctwF+fmpwLI6lJCuHKMmSgmDFX38xf+NGLBYLjwYE0LZRI0eHJCIikihptWtkaA/CfJunNDhWsiWOoCQrhyjJkvzs70OHuO/NNzl75Uqa637e3gS/9x41ymfcuiEiIuIQISEsC/YiBH/CqJmSbPXt6+jApCDJbpKl6oIiBVR4RAQthgzBeuUKc4EYIBr4Erh66RKNBw3iYrrkS0RExGEyqU6onlvijJRkiRRQL37+OXE2GxuA/wEeQCHgceAX4Ep8PEO//NKBEYqIiNiRqsFxX4KoGb5eDY7F6SjJEimgftm6lQeBWnbGGgNtgR83bcrdoERERLIjVYPjsX4zCIhYkKbBsZItcTQlWSIFVFx8PLWzGK8NxMbG5lY4IiIi1y8p2RrbbUeaLYTJyZaIoyjJEimgCnl48FcW438BRVTsRURE8oJMzmtNnKhVLXEMJVkiBdSDd9/NGmCznbE1wBbg0TZtcjcoERGRm5HuvFYAOq8ljqES7tegEu6SX0VGR1P58ceJi4nhTeARwAZ8B7wLFPPy4vhXX+Hu7u7QOEVERG6I+mvJLaA+WTlESZbkZ+EREbR54w32h4djJF1zAepWrkzwuHGUyOIvDxERkTwhk/5a9igBk2tRkpVDlGTJjYiKieFSVBQlihbFMw+sBIUdP86cdeuwWq08dd99VC5d2tEhXdP5yEj+PXOGKqVLKxkUEZFrCwpiWXhjQvAHv/IZhsPCi6jBsVyTkqwcoiRLrsc/R44wdt48Fm3eTIJhUNjNjf8FBPBWr15ULFXK0eFlYBgG03/+mY8XLybs9GkAbi9fnlceeoj+7dtjsVgcHGFG63bu5OmpUzl8+jQGiQdLK5cuzWcvvED7O+5wdHgiIuLMkrYQ2pOcgCWvdgUEaFVLMlKSlUOUZEl2/bF3L+3ffJOyCQk8bxjUBLYBn1qtWIoW5bf336da2bKODjOFaZr0nzKFOevW8QjQg8QzWfMsFn40TV68/36mPP20UyVaS7dsodu4cZQGXgTqA7uAqcAp4Lthw+jesqUjQxQRkbwqKQFLTraCIxrgV99XWwglDSVZOURJlmSHaZrUffZZfE6fZo1hUCTV2GmghdVKnUaNWD5qlIMizGjpli08OG4c3wDpd0V8CrwABI8fz7316uV+cJnweeQRysTEsBnwSXX9ItASOObuzqUFCxwSm4iI5BOpkq2giE6E+zZQwQxJkd0kSyXcRXLAr7t2sffkSd5Ll2ABlAHeMAxWbNvG0bNnHRGeXZ+tWIG/1ZohwQJ4DqhltTJjxYrcDitTS7Zs4WJMDONIm2ABFAfGA5FxcXy3YUOuxyYiIvlIUoPjwIArzK8/joCIBWkaHKsUvGSHkiyRHLDr6FFcgVaZjLcFTGDPsWO5F9Q17D5yhLaGYXfMArQ1DHb/+2+uxpSVDaGhAGTWuatd0v9u3L07V+IREZF8LinZGtttR5oGx8HBSrTk2lwdHYBIflDEw4MEIAIoaWf8dNL/enl65l5Q11DE0zMlLntOA15OtEXWu0jiGuEZMq5kQeKZLIDiRdKvJYqIiNwEf38C/SEwaMZ/xTGCaxIWVl5bCCVTWskSyQH333knHi4ufJ7J+AzAz9ubZrVq5WZYWXq4VSu+t1qJsDN2AlhmsfDw3XfndliZeuH++3El8bW0ZwaJPb4GBQbmXlAiIlJwJG0hHOs3g74EQehObSGUTGklSyQHlCxWjGc7d+bt5cvxMU36Ax5AJPAh8CUwtWdPXF1cHBpnas916sSny5fT6epVvjQMbk+6vh14zGrFt2hR+rdv78gQ0yhZrBgBDRsyeccOypFYmKMIEE1igvUB0Or22ynrY2+dS0REJAf4+yeubIWEEBg2jpGhPQijOcHh5TOrDK/VrgJK1QWvQdUFJbviExJ47tNPmf3LL5SwWqlssbDfNLlqmrzZsydv9+7tVOXQAbYeOEDXsWM5fuECdVxcsAFhNhvVSpVi2dtvU7dSJUeHmEZCQgJ3DRvG1gMHKAJUAw4DV4CGVarw14cf4uqqz45ERCSXhISwLNgrWw2OlWzlDyrhnkOUZMn12nv8OHODgzkbGUmlkiXp16YNFUraO6nlHOLi4/nxjz/YuGsXFouFNg0aEOjv71Srbun9+s8/jPruO05dvEgZb29G9upFmwYNHB2WiIgUVEFBdi+nb3Ds5wd97ZX1lTxDSVYOUZIl+d2B8HCm//wzv4WGYrFYaN2oEc926kTl0qUdHVq+8f6iRbwZFISRkIAFMKxWXrz/fj4aMMDRodllGAY/b93K7NWrOXLqFCWLF6dP69Y80rIlnu7ujg7PrtMXLjBz9WqW/bmN2PgEmteqzvOdO1O/ShVHhyYiBV1QUIZkKyBAq1p5lZKsHKIkS/Kz7zZsoN9HH1EMCDQMbMAyq5VYq5Xvhw8nUP8C3LSGgwbxz7//4gk8ROJB2CXAJaCMjw8n58xxaHzpxcXH03PCBBaHhNDYauVOw+CAxcJa06RR5cqsfucdSnl7OzrMNH7fvZtOo98hKsaGYQYCXrhaV5BgnGLyU0/xUpcujg5RRAq6VA2OQ/AnOKIBfvV9tYUwD1IzYhHJ0j9HjtDvo4/obRgcNwy+Ar4BjhsGnRMSeOS99/j3dFZF3uVaPvzxR/759186kVhiPgj4CjgJPEHi6sv/3n/fgRFm9Pa337Lizz9ZDPxlGMwAfjFNtgHhx47x2IcfOjbAdC5eucL9Y8YTFXMHhnkMmA/MJsE4CrzKy7NmsW7HDgdHKSIFXqoGx2P9ZjDMd5YaHOdzSrJECqhPfvqJ0sAsoFCq617A14CnYTD9558dElt+MeKbb/AEvgOKprruCXwGlAPmbdzoiNDsio6NZcaKFbxsmjxIYlPqZHcAHxkGP2/f7lRNteesW0fk1WgMcz7gm2rEDZiIq7UhkxYvdVB0IiLppEq25vsNTtPgOJNjXZJHKckSKaDWbdtGd8PA3gmbIkBXw2Dttm25HVa+YiQk0JW0CVYyV6APztVHY/vBg1y8epX/ZTLeDXCzWFi3c2duhpWltTt3ghlAYsqanoUE43+s2xmay1GJiFxDUrKV3HMrOdmaOFGrWvlFnkmyzp8/T58+fShWrBjFixfnySef5MqVK1nOf/HFF6lVqxaFChWiUqVKDBo0iEuXLuVi1CLOyzAM3LIYd02aIzfOQtZJlDMlWABG0hHdzOJyIfF7MpzoKK9hmJh2PypI5oph6vdYRJxUugbHAawneGGEthDmA872b3ym+vTpw8mTJ1mzZg3x8fE88cQTPP3003z77bd254eHhxMeHs4HH3xA3bp1OXLkCM8++yzh4eEsWLAgl6MXcT4t6tVj0a+/MtEwMnzaEgcstVp5pH59R4SWb5hWK0sNgxgStwimGSPx9JAt98PKVIMqVSjs5sai+PiU5tSp/QTEmSZ316mT26Fl6u46tfl56w8Y5nmgRIZxF+sCWjhRvCIiGaRpcDyDZTQmKLQTweEN1OA4D8sTK1l79uxh5cqVzJo1i2bNmtGyZUumTp3KvHnzCA8Pt3tPvXr1WLhwIYGBgVSvXp02bdowbtw4li1bRkJCQi5/ByLOZ+ADD3DYMBgGpP6c3wa8CJwzTZ7v3NkxweUTgx98kEvAc0Dqv3UM4A3gENDaifp7eRcpwuPt2zPRamVzurEjwCtWK3fXrEnj6tUdEZ5dT7Zvj7srWCz9gZhUIyYwCZuxmZcD73dQdCIi1yH1ea364whgPTUJs/ulghnOL0+sZG3evJnixYvTtGnTlGvt2rXDarWyZcsWHnrooWw9TnKpRVfXzL/t2NhYYmNjU/4cGRl544GLODH/mjWZMmAAL82cyRIXF7rZbNiAH6xWjpkms158kToVKzo6zDxtwhNPELRhA3POn2cV8D8SyzF8T2KC5eXpyS/vvOPQGNOb+PjjhB46xN1799LZYqGpaXIAWGCx4FeiBHOHDXN0iGmULl6cH4YPpdu7EzCMyiQYvUks4b6UBCOUEd278+Bddzk6TBGR7Eta2Robso7MlrJGRvQgjOYEh5cnLEwrW84oT/TJGj9+PHPmzGHfvn1prpcuXZrRo0fz3HPPXfMxzp07R5MmTejbty/jxo3LdN6oUaMYPXp0huvqkyX51R979/LJ8uVsTNWMeFBgIHc40WpFXtdn0iS+27Ah5QxcAtC2YUNWjx3ryLAyFRsfT9D69XyxejVHTp/Gt1gx+rRpw4AOHfDx8nJ0eHbtO36cT376iSVbthGXkECzmtV58YHOtGvUyNGhiYjkvJAQlgV7pWlw7OcHffs6OrD8L080Ix4+fDgTJkzIcs6ePXtYtGjRTSVZkZGRtG/fnhIlSrB06VLc3DI/7m9vJatixYpKsiTfMk2TX3ft4rfdu7GQuH3trlq1sFgs17zXUS5cucIPv/3GyQsXKOvjQ4+776ZEUXs1/JyDaZqEhIWxbudODNOkRe3aBNSv79SvsYiI5AFBQSkNjpOTrYAArWrdSnkiyTp79iwRERFZzqlWrRpBQUEMGTKECxcupFxPSEjA09OTH374IcvtgpcvX6ZDhw4ULlyY5cuX4+mZ/vh51iIjI/H29laSJfnSgfBwuo8fz46jR/GxWjGBi4ZBs9tu44cRI6hYqpSjQ0zDNE0+XLyYkUFBxMXHU9rFhbOGgauLC2//73+81q2b0yUuJyIieOTdd9kUFoa31YoLcN4wqFehAgtef51aFSo4OkQREcnLQkIgLCwl2QqmNX5+2kJ4q+SJJCu79uzZQ926dfnrr79o0qQJAKtXr6Zjx44cP34cPz8/u/dFRkbSoUMHPDw8WLFiBYVvIElSkiX51fnLl2k0cCCFLl3iU8OgDYmlAlYCz1utuJcqxbaPP8arUKFrPFLumb5iBc/PmMHLwGtAWeA08EHS1+SnnuKlLl0cGGFa0bGxNH3pJS6fOsV0w6ATidWGNgAvWK1cLFqUvz/5hFLe3g6OVERE8rykZGtkaA/CfJunbCFUspWzsptk5YnqgnXq1KFjx44MGDCAkJAQfv/9dwYOHEivXr1SEqwTJ05Qu3ZtQpLKrERGRnLfffcRFRXF7NmziYyM5NSpU5w6dQqbzZmKJos4xuerVnHm4kV+MQzaktj/yAp0BlYbBgdPn+ab9esdG2QqcfHxjJ47lyeAj0hMsADKAO8DzwBjv/uOmLg4R4WYwXcbNrA3PJxVhsED/NdnKgD4xTC4ePkyM37+2aExiohIPpHc4LjbjjQNjpMrEUruyhNJFsDcuXOpXbs2bdu2pXPnzrRs2ZLPP/88ZTw+Pp59+/YRHR0NwLZt29iyZQuhoaHcdtttlCtXLuXr2LFjjvo2RJzG/OBgupkm9uoH1gQ6WyzM27Aht8PK1IZ//uH05cu8lMn4S0BEVBRrd+zIzbCyNG/DBtpbLNS1M1YO6GkYzAsOzuWoREQkX/P3J3BY3TQNjgk/wcSJKvmem/JECXeAEiVKZNp4GKBKlSqk3vkYEBBAHtgJKeIwF65coUoW45VNk42XL+dWONd0ISoKgMqZjCdfv5g0zxlcuHyZxln8PVQZWHXlSu4FJCIiBUffvv81OE4+rxXcWiXfc0meWckSkZxV3c+P3632/wowgU1WK9XLl8/doLJQvWziBsFNmYxvSjfPGdxWoQKbkwqK2LPJYqF6JmdKRUREblqqBsdj/WYwjAlpthBqZevWUZIlUkAN6NiRDYaBvRNBPwDbDYMBHTvmdliZaly9OndUrsxoi4XodGMxwNsWC/UqVKBZrVqOCM+uAR068I9hMNfO2FpgtWnylBO9xiIikk+lSrZ0Xit35JntgiKSs7rffTdz16+n67ZtPGea9AAM4Dvgc6BXy5Z0bNzYsUGmYrFYmD5wIG1ef527bDYGGwb1gV3Ah1Yr+6xW1gwc6FQl3Ns0aMCjAQE8FhzMRuB/gBuwEJhmsdChQQN633OPY4MUEZGCw9+fQH8IDPpvC2FYeE0mTkzsr5XFbXKd8kQJd0dSCXfJz+Li4xkzfz4zfvqJiKSzTGWKFmVgly4M794dVxcXB0eY0dYDB3h9zhxWpypw0a5+fcY99hj+NWs6MDL7bDYb7//4Ix8vWcLJS5cAKFG4ME936sSo//0Pjyyao4uIiNwy6fprhWH/31A1OE4rX/XJciQlWXIjjp09y7nISPxKlKCMj4+jw7mm2Ph49h4/jgWoXaEC7nngjf+qbdv468ABGlerRqemTR0dzjVdjY1l5bZt2AyDdg0bUtzLy9EhXdOZixc5ERGBb7FiVHKyxtQiIpJDkpIte9IkYH7lVTCDW5RkXb16la1bt1KiRAnq1k1blDgmJobvv/+efv363XjUTkhJllyP33bv5s05c9iwZw8AVouF+5s04b3HH6dupUoOji5/+G7DBl767DPOpqrKV7JIESYNGEC/Nm0cGJl9NpuNDxYv5uPFiwlPWsnyLVKEpzt14u3evZ1yJWvv8eOM+Oorlv75J0bSPxEta9VibL9+BNSv7+DoREQk16Ra7QqK6ES4b4MC3+A4x5OssLAw7rvvPo4ePYrFYqFly5bMmzePcuXKAXD69Gn8/PzyXaNfJVmSXau2bSNwzBgamSavmCY1gG3AJKuV0+7u/DphAg2qVnV0mHna7DVreHrqVGoBwyDlTNb7wG7gk2ef5bnOnR0ZYhqmafL4Rx8RFBzMUySeyXIFFpF4Jqt1w4Yse/ttp9qWuefYMe4eOhTfmBiGGAZ3AgeAyRYLf1ksLH7jDe6/805HhykiIrkpKdkaGdqDMN/mhFO+wCZbOZ5kPfTQQ8THx/PVV19x8eJFXn75ZXbv3k1wcDCVKlVSkiUFms1mo/pTT1Hr/HmWmyap1yYigbutVkrWrs36995zVIh5nmEYFO/Rg1rx8WwAUv+/MQZoDYS6uhK5YAHWTErT57a1O3bQbuRIvgYeTT8GtAPmvPyyU63AdRg5kqOhoWw2DIqnup4AdLVY+Nvbm3+//NKpEkMREcklISEsC/ZK2UKYnGz17evowHJPdpOsbL8T2bRpE++++y4lS5bktttuY9myZXTo0IFWrVpx6NChHAlaJK/6ZccOjkREMDZdggVQDHjdMAjevZsD4eGOCC9f+O7XX7kcH88o0iZYAJ7AGCAqIYEv1qzJ9dgyM3PVKm63WrH3b09boL3FwqyVK3M7rEwdOXOG1Tt2MDxdggWJK3DvmCYnLl7k561bHRCdiIg4nL8/gcPqMtZvRppS8Oq5lVG2k6yrV6/i6vpfxXeLxcL06dMJDAzk3nvvJSyTA3MiBcGBkydxBTJbMb876X8PnjqVSxHlP38dOAD891qml3x9mxN96HPg+HFaGAaZFZW/2zQ56ESJ96Gk38/MXuNGQGGLhYMnT+ZWSCIi4oxSNTjuSxA1w9erwXE62e6TVbt2bf766y/q1KmT5vonn3wCQJcuXXI2MpE8xMfLiwQgHPCzM34k1Ty5MaW9vQE4ChlWWeC/1zh5njPwKVqUoxYLZLIr+wg4VZXB4kWKAImv8W12xs8AV03TqWIWEREH8fdPXNkKCSEwbAYjQyMIoznB4eUJCyuY57VSy/ZK1kMPPcR3331nd+yTTz6hd+/eqBq8FFT3N21KYTc3PrYzZgIfA9VKlaLpbfbeukp2vHj//bgBUzIZ/5jERr8vO9EHPj3vvZfVpskeO2OngPkWCz2z6v6YyxpVq0bNMmWYQuLvbXqfAB6urnQpyP9qiohIWv7+0LcvY7vtSLOFMPXKlr2v/C7bSdaIESNYsWJFpuOffvophmHkSFAieY13kSIM7daNicAo4HzS9ePA88ACYFTfvk5TkCEv8ipcmK53380XwBDgdNL1M8BrwAygc7NmTrXK8r9776VWuXJ0sFr5CbCRmLxsANpZrRQvVoxnO3Z0bJCpWCwWxvTrx1LgaeBY0vULwDtJX6907UqJokUdFaKIiDirTM5rhYWR4Ss5AcvP1Iz4GlRdULLLMAxGzp3L+wsXYjFNSlqtnLbZKOTuzoT+/XneiUqL51WGYRD4zjus/OsvLEAJEhNaE2jbqBErR41yukT2REQEPcaPZ/P+/RS3WnG1WDhns3F7+fIseOMNaleo4OgQM5i5ahVDZs0iKjaWsi4unDMMTIuFlx98kPcee8zpXmMREXEyqfpr2R1OVZ0wICBvbSu8Jc2ICyIlWXK9zly8yPe//cbZyEgqlSxJj5Yt9buTww6fOsWbc+dy/Nw5yvv6Mrp3b2qUL+/osDJlmiZb9u1j7c6dGIZBizp1aNOgARZLZiUxHO9ydDQLNm3iyJkz+BYrRo+776asj4+jwxIRkbwuVQIWgj/BEQ3wq++bZ85wKcnKIUqyRJxLdGwsX61dy1erVxMeEUHZEiV4rH17nmjbFq9ChRwdnki2XL16la7vvsvanbuxGYn/DFcp7cOcV17hnttvd3B0IiK5IFWyFRTRiXDfBnmiwbGSrByiJEvEeZy/fJm2r79O6JEjdLFYqG+a7AKWWCzUqVCBtePHU8qJqguK2HM+MpJyj/cnLiEOuAe4l8QTcPOABD599ime0/ZiESkokpKtkeHP5okGx0qycoiSLBHn0WvCBH7ZvJl1hkGDVNd3AW2sVu6+804WvfGGo8ITyZaqTz3Fv2fOA0uBTqlGTgFtgAPELvgOd3d3h8QnIuIQISEsC/Zy+vNa2U2ybuj08jfffMPdd9+Nn58fR44kdqeZPHkyS5YsubFoRUSu4UREBAs2bWJ0ugQL4HbgHcNg8ZYtHDlzxhHhiWTL+cjIpATrGdImWABlgc+BeJ6bMSPXYxMRcSh//zQNjgNYT/DCiDzb4Pi6k6zp06czePBgOnfuzMWLF7HZbAAUL16cyZMn53R8IiIAbNm3D5tp0j2T8e4kVhncvHdvLkYlcn3m//YbkACZ/ibfDfjyy44duReUiIizSOq5lZxsDfOdBaE70/TcyiuuO8maOnUqM2fO5I033sDFxSXletOmTQkNDc3R4EREkiWXDU/IZDwh3TwRZ+Sa8u9mZr/JJmDD6sSVJ0VEbrlUydb8+uMIiFiQocGxs7vudyOHDx/mjjvuyHDdw8ODqKioHAlKRCS9FrVr4+7iwneZjH8HuFqttKxTJzfDErkuve+5B3AFvs1kxjrgIg82a5Z7QYmIOKukZGtstx1pGhwHBzt/onXdSVbVqlX5+++/M1xfuXIldfTmRkRukdLFi9M3IIDRVivB6cZ+A0ZarfRq1Qo/X18HRCeSPV6FClG7QlngK+BrEleuku0H+mOxuDGpf39HhCci4pz8/QkcVjfNea2w4BNOvarler03DB48mBdeeIGYmBhM0yQkJITvvvuOd999l1mzZt2KGEVEAJjy9NMcOnWK1rt2cbfVSn3D4B+rld8Mg5Y1avDpc885OkSRa9oxeTK+fftxJeYxYDwQABwFVgIu/PDaq2m244uISJK+fQkMCSEwbEZif63QTgSHNyAsLLG/lj2Oqk54QyXc586dy6hRozh48CAAfn5+jB49mieffDLHA3Q0lXAXcS4JNhuL//iDr375hfCzZylXsiSPtWvHQ3fdhZvrdX9uJOIQNpuN56ZPJyj4V2LiDKxWuKNaJeYNHUr1cuUcHZ6IiPNL7q8V2oMw3+bgVz7DlPBwcrzB8S3pk5WQkMC3335Lhw4dKFOmDNHR0Vy5coXSpUvnSNDOSEmWiNysuLg4Rs+fz4q//sIwTe6tV4/xffvipb9TCrR9J07w2ldfceDkSYoWKsSgBx6g9733OjqsfOVSVBRzN2xg19GjFPHw4KHmzbmrVi0sKiwikn8k9deyl2QBBIW3TmlwnBPJ1i1rRly4cGH27NlD5cqVby7CPEJJlojcjFXbtvHQ2LFctdmoAriRePLG3WLh80GDeKxtW8cGKA7xvw8+4LtffyPxaHRtIBw4T5nivvzzyRRKZvEPt2TP/I0beWLKJ8TEx+NqrYPJORJsJwmo15BFr7+Gj5eXo0MUkZyUyeGs9A2O/fygb98bf5pb1ozY39+f7du333hkIiIFxPFz53hw9Ggq2myEAIeBMGAX0NA0eWrKFP4MC3NskJLrXvvqK7779VcSGxKfBEKB08BcTl+M4o6XBjs0vvxgwz//0PuDScTEPYhpHiHetpME23FgCRt3H+Wh8RO4gdMSIuLM/P3tfqUvmEH4CSZOvPUFM677AMPzzz/PkCFDOH78OE2aNKFIkSJpxhs0aJBjwYmI5GWvzJpFgmmyCqiS6npdYBVQCXhp5kw2vf++I8ITBzAMgynLVgLtgGlA8rY1V+B/QCzHI/rz89atdGrSxFFh5nnvzP8Bq6URNjMISC4iYgW6YDPmsOGfLmzeu5cWqoosUjCkK5gRgj/BCxsQFuabo+e1UrvuJKtXr14ADBo0KOWaxWLBNE0sFgs2my3nohMRycPW/f03nUibYCXzAfoCX+/fn6sxiWP9tns3sfHRwPP8l2Cl1hsYyJSlS5Vk3aDL0dH8smM78Bn/JVip3Y+rS3kWbtqkJEukIEle2UpOtmhMUHhfgsPLp1QnzMlk67qTrMOHD+fcs4uI5GMJ8fGUzWK8DGDTlqUCJeLy5aT/KpPJDE/AmysxMbkUUf4THRub9F+Z/b/PCpTWayxSUKVJtgYzMvxZwsJrpiRbN3NeK7XrTrIKSsELEZGbVapECdacPo2B/QOwq4GiKqhToDSrWZPE34Z1QAs7M8KAkzSsekeuxpWf+BYrho9XcS5cWQt0sTPjNDbjH+pWfCy3QxMRZ5KUbI0N+m8LYVh4TSZOLE9AwM2val13kvX1119nOd6vX78bDkZEJD8Z+vDDPDt9OlOBl9KNLQA2A4Pbtcv9wMRh/Hx9qelXjrDwD0ncGlg91Wg8MAQLrozLqY9SCyBXFxee7diOiYtmYTOeABqlGjWA4bi7WunXpo1jAhQR53KN81rppSyWX8N1l3D38fFJ8+f4+Hiio6Nxd3encOHCnD9//noezumphLuI3Iymr7zC1oMHCSTxDJYbiQnWd0ClUqU48NlnuKqJcoGy59gxGgwaTILNg8SzWa2AY8AnwC5G9nyEMX36ODTGvO5ydDStRozknyPh2IwBJBYaOYOL9TMMI4Q5r7zMo61bOzpMEXE2SQ2Ol4U3JiiiE9TPWNAvPj6SH3+8BX2y7Nm/fz/PPfccQ4cOpUOHDjf7cE5FSZaI3AzDMHjqk0/4PjiYqIQEADytVjreeSfzhw7F3d3dwRGKI+w7cYJeEyfy9+FjQOLvRclixXmnT2+e6dTJscHlE5HR0Yz/4QdmrPyFS1GXALjn9gaM7Nmddo0aOTY4EXFuyckWgRmGouOv0uvHp3MnyQL466+/6Nu3L3v37s2Jh3MaSrJEJCdciopi4aZNJNhsPNisGWXS7QqQmxcdG0tIWBhxCQk0rFIlT7zGV6Kj2RseTmlvbyqVKuXocK4pLj6eP/bt42pcHLdXqkSFkiUdHdI1HQgPZ0tYGCW8vGjXqBFuWjkWkeyy00wrMjYW7/ffv2aSlWN/07i6uhIeHp5TDyciki/Exscz4uuvmfHzaq7GXQVg4Gez6BtwD5MHPKUPb3KAzWZjzPz5TF2yhAtXE19jV6uV7i1a8PEzz1DK29vBEWbOq3Bhmt52m6PDuCbTNPngxx95b8ESzl+5AIDFYuX+pnfy6bNPU9EJE8TDp07x/IzPWbVtKyaJnyeXKubLG488xKDAQCwWeyX0RURSsVf9Ijo6W7ded5K1dOnSNH82TZOTJ0/yySefcPfdd1/vw4mI5FuGYfDw+PdYuW0nhjmMxGazrsTbFvH1+nGEHjnGxvfG4aktgzfMNE2e/Phjgtav52XgMcALWG4YvLNpEwGHDvH7Bx9Q3MvLsYHmcUO//JJJixcDzwIDAF9MczUrt47lrqEj2PrR+5R1opXDY2fPctfQEURcLorJbKAtcIazkZ/x8qxZnIuMZKyKi4jILXTdSVbXrl3T/NlisVCqVCnatGnDpEmTciouEZE8b8XWrazY+iewHLg/1cgwbEYbth5oxtfr1vF0x44OijDv27JvH3PWr+dL4PFU118E7jMM7jh5kmkrVvDGI484JsB8YH94eFKC9T7waqqRASQYnThzsSETFi7ko6eeckyAdrzz/fecv+yCzdjMf/2yKgFNgUqM+2EUAzp0yBNbNEUkb7LXuiVLhmGk+bLZbJw6dYpvv/2WcuXK3YoYRUTypFmrf8HF2oS0CVaypmC5n89Xrc3tsPKVL375haouLthrHlIL6G2afLFyZW6Hla98tXYtLlYfYKCd0QokGAOYvWYdNpstt0OzKzY+nq/XbSDBeB77DYlfwWopzNfr1uV2aCJSgFx3kjVmzBii7exFvHr1KmPGjMmRoERE8oPDp89hMxpnOm6aTThy9lwuRpT/HDt7lkY2W6b/mDUGjuaz1iK57di5c0BdwDOTGY25fPUKl5POwznahStXiImPIfGnb48XFktNjp49m5thiUgBc91J1ujRo7ly5UqG69HR0YwePTpHghIRyQ/KFi+G1RqWxYwwSntnXplIrq1U8eKEWa1kViY3DCil81g3pVSxYlgsh0guNZ9RGB5uHngVKpSbYWXKu3BhXK2uJP707YkF81+nLogiInnfdSdZpmnarcizY8cOSpQokSNBiYjkB4+1DcAwNgAZS8DCIayWBTzRLiCXo8pf+gYEsMsw+NnO2Cnga6uVR9u1y+2w8pU+AQEk2E4C39oZvYSrdQb/u7cVri4uuR2aXYU8POjWojmu1mlAxg+F4SsSjPP0DQjI5chEpCDJdpLl4+NDiRIlsFgs1KxZkxIlSqR8eXt70759ex7RwWIRkRTdW7SgcbWauFg7AV8A0UAc8D2u1gAqlSrJU+3bOzbIPK5dw4a0b9CAnlYr04DLgA1YBgRYrRQqWpSXu3RxbJB5XOPq1enV6h6slgHAROA8YABrcLG2ppDHJUZ07+7YINN5q1dP3N1OY7W2AdYDJnAOGIfFMpDH27SlTsWKjg1SRPK1bDcjnjNnDqZp0r9/fyZPnox3qmV2d3d3qlSpQvPmzW9ZoI6iZsQicjPOX77M41OmsjxkS1KvHgtgcs/tDZg75OU80czV2UXFxPDctGl8++uv2EwTK4kpQLPbbuObV1+lhp+fo0PM8+Li43l51mxmrlpNgpEASa9y3YpVCRo8iDuqV3d0iBmEhIXx6IcfExZ+FAsumNhwc3Hn+c4def+Jx9WUWERuSGR0NN69el2zGXG2k6xkGzZsoEWLFri5ud10kHmBkiwRyQkHT55kfWgohmHQok4d6lWu7OiQ8p3j586xevt24hISuLNGDZrkgSa/ec2Zixf5eetWrsbF0aBKFZrXru3UTX1N0+S33bv558gRinh60rlpU0pm8aZIRORasptkXffHOPfee2/Kf8fExBAXF5dmPKsnExEpiNbv3MmkxUtZu2MnhmnQvHYdXulyPw/edZejQ7MrMjqaaT/9xOyVKzkSEUFJLy/6tGnDy126OPXKW4WSJemfR7ZfXo2N5bOVK/n05zUcOnUCr0Je9Ln3bgY/+CDVnbQdyve//caIOV9z6PRZwMDTvRA9W97F588/j7sTNtSOT0jgi19+4ZPlq9h74giF3D3pFhrKqw89xO2VKjk6PHGQI2fO8NGSJXyz/jcuRUdSuVQ5nu3Ujuc7d6aIZ2YVNB3HNE0Wbd7MR0uWE7I/DBeLlfvuaMSrDz1Iq9tvd3R4koXrXsmKjo5m2LBhfP/990RERGQYd5Y+GTlFK1kicjM+XraMl2bOxMXaAJvRB3DFxboQm7GJ4d268e5jjzk6xDTOX75M6+HDCTt+nF6myZ3AAWCO1YprkSIEv/eezrLcpKiYGNqNHMWWsDAwu2HSCjiGq/VLPNyjWPfOaPxr1nR0mGm8NXcuY+f/APgBTwK+wErgZ8r5lODQzM/wdKJEKz4hgQffeZeV27aCJRDTbAecwdXlK1ysZ1j25uu0v+MOR4cpuWzH4cPcO2IkUTFuJBhPAFWAP7Bavqd+lcpsGD8G7yJFHBzlf0zT5OVZs/h42TJcrPdgMx4CYnC1BmEzdjPj+efUzN4BsruSdd3VBYcOHcq6deuYPn06Hh4ezJo1i9GjR+Pn58fXX399U0GLiOQn/xw5wkszZwJDsBl/A8OAwdiM34FJvLdwIWu2b3dojOkNnjWLEydO8Jdp8iXwPPAhsNcwKB0Vxf8mTuQ6P5uTdEZ99x1/7v8X09yIyTzgBeA9Eoz9xMQ14OF33yfBiT6wPHr2LGPnLwAeAA4Co4AXgZ+AJZy8cIE+kyY5MMKMPlyyhFXb/8ZkBaa5mMRGymNIsIURlxBA9wkfEBUT4+AoJTcZhkH39z7gSkx1Eoz9wPsk/n/vGwxzC/8cOc3wOXMcHGVay0JC+HjZMmAaNmMD8DIwnARjJybP89z0GewPD3dskJKp606yli1bxqeffkq3bt1wdXWlVatWvPnmm4wfP565c+feihhFRPKk6T//jKu1LPAuiQUvUnsFV2sDpi5f4YDI7IuIjOS7X39luGGQfhNKKWCSYfD3kSNs2rPHEeHlC4nbBNdgMwYC6beLFsNmfMKJiNP89OefjgjPriGzZyf91wwg/WpVINCDpSHbMAwjdwPLhGEYfLzsZwyzD9Ah3agnpjmDyOgrfPfrr44ITxxkfWgoB04ew2ZMAXzSjTbCZgzhq7XBREZHOyI8uz5e/jMu1mYkftyVmhX4AIvFmxk/22tgIc7gupOs8+fPU61aNSDx/NX58+cBaNmyJb/ewr+wzp8/T58+fShWrBjFixfnySeftNsU2R7TNOnUqRMWi4XFixffshhFRFLbtPcACUYnwF6hIAsJRhe2hB3M7bAy9c/Ro8TZbDyQyXg7wMNi4a8DB3IzrHzl0OnTXL56BTJ9lRvj5uLnVK/x9kOHgMZAZmfFupBgiyU86f2Ao52LjCT8/Bkgs9L9VXBzqedUr7Hcen8dOICLtRjQMpMZgcTEx7Dn2LHcDCtLf+4/gM0IzGTUE5vR0an+DZG0rjvJqlatGocPHwagdu3afP/990DiClfx4sVzNLjU+vTpw65du1izZg3Lly/n119/5emnn87WvZMnT3bq6kcikj95urlivxlqsiu4uzpPpVb3pJLWmUUcAySYZso8uX7/vXaZvco2DDPaqV5jNxcXEjuQZSbxeynsJGeyrv0am5hEOdVrLLeeu6srphlPYq9Ce66kzHMWbi7X+jckEg8354lX0rruJOuJJ55gx44dAAwfPpxp06bh6enJK6+8wtChQ3M8QIA9e/awcuVKZs2aRbNmzWjZsiVTp05l3rx5hF9jL+rff//NpEmT+OKLL25JbCIimQm8szFWy3IgY5EgiMHV5TsebOY8h+8bV69OKS8vMjuV8C2J/ac6NG6ci1HlL9XLlqVKaT8sfJXJjGXYjIt0bto0N8PKUpdmzYC9wDY7oybwBd6Fi1HCSaoLF/fy4s7bamO1fElifOltIsF2iM5NmuR2aOJAHRs3xjCvAgsymfEVZYqXpH6VKrkYVdYC/e/A1WUuEG9n9CQWy2oeuFO/x87qupOsV155hUGDBgHQrl079u7dy7fffsv27dt56aWXcjxAgM2bN1O8eHGapvpHp127dlitVrZs2ZLpfdHR0fzvf/9j2rRplC1bNlvPFRsbS2RkZJovEZEb8dR991HE0wWrpSuQ+gOh81gsvbBwgYEPZLZtLPd5uLnxUteufAp8DiSXXjCB1cAQq5XuzZtTLZt/n0pGVquVEd27YvI9MJG0b54242J9mla3N3CqHl+j//c/XF08ge7A7lQj0cAQYAuvPHi/Q2LLzPDuXTHM9cDrJK7BJtuJq7UPdStW5T5VFyxQ6lSsSKcmd+JiHQgEpxpJAKYCXzDs4S64urg4JD57Xu7SBcyTWOgLXEw1cgwXa1eKFy7MY23aOCg6uZbrTrJSi4mJoXLlyjz88MM0aNAgp2LK4NSpU5QuXTrNNVdXV0qUKMGpU6cyve+VV16hRYsWPPjgg9l+rnfffRdvb++Ur4oqVSwiN6h08eKsHDWSooV2YrFUxkJ74H6slvJ4uK5i0euvUbtCBUeHmcaI7t15sn17ngGqubjwMNDQaqUD0KROHWbdog/TCpIBHTrwWrduwGu4WisCD+FibQK0oF7l4iwcfmt2hdwoT3d31owZias1HLgdaAF0BcoCH/Fw8+a83bu3I0PM4OEWLZj4+ONYmICLtTzQFau1OdCQKmUMfh71JlbrTb0Fkjxo7pBXuLOGH9AaF2sj4CFcXaoAg3jh/vt55TreL+aGhlWrMm/Yq7i5LsZq8QMewGJph4WqeBcOY/WYtyhRtKijw5RMXHefLJvNxvjx45kxYwanT58mLCyMatWqMXLkSKpUqcKTTz6Z7ccaPnw4EyZMyHLOnj17WLRoEXPmzGHfvn1pxkqXLs3o0aN57rnnMty3dOlShgwZwvbt2/Hy8gLAYrHw448/0rVr10yfLzY2ltjY2JQ/R0ZGUrFiRfXJEpEbdvHKFb5ev561O3ZgM0zurlObJ9u3p/QtPMd6s/7cv58v1qzhyJkz+BYrRp977+W+O+7QG9McFPrvv8xcvZr94ScpXqQwj7RsSaC/v1N9kp7axStXGD5nDsv//JO4BBvVypZhfL9+tLmFH7LerP3h4Xy+ahX/HDmKl6cHDzdvzsMtWuDh5jxnISV32Ww2ft62je9+/ZWIyMtUL1eWJ9u3p3H16o4OLVOnLlxg1urVbN67DzdXF9o3asSjrVvrfamDZLdP1nWflhs3bhxz5sxh4sSJDBgwIOV6vXr1mDx58nUlWUOGDOHxxx/Pck61atUoW7YsZ86cSXM9ISGB8+fPZ7oNcN26dRw8eDBDMY5u3brRqlUrgoOD7d7n4eGBh4dHdr8FEZFrKu7lxaDAQAYFZlYlyvncWaMGd9ao4egw8rX6VarwcTYLODmD4l5ezHjhBUeHcV083Nwo7OFBEU8PCnt4UMjDAxd9UFCgWa1WCrm7U9jDgxjPOAq5u1PISYq2ZKasjw9v9uzp6DDkOl33StZtt93GZ599Rtu2bSlatCg7duygWrVq7N27l+bNm3PhwoUcD3LPnj3UrVuXv/76iyZJB1VXr15Nx44dOX78OH5+fhnuOXXqFOfOnUtzrX79+kyZMoXAwECqVq2areeOjIzE29tbK1kiIiJ5yCfLl/PSzNlYLIUwzOZYLaexGTu5vVI11ox5i3IlSjg6RMlll6Oj6TLuXYJDd+DqUgObURUXyzYSjHMMe/hh3nvsMVWjlmvK7krWdX+cc+LECW6zcyDXMAzi4+1VP7l5derUoWPHjgwYMICQkBB+//13Bg4cSK9evVISrBMnTlC7dm1CQkIAKFu2LPXq1UvzBVCpUqVsJ1giIiKS9yz/809e/PxzDPMFbMZJTHM1NmMHsJl9x2PoPHoc1/kZs+QDj03+mI27DgE/kWDbh2muIsE4Dkxg4qJFfLrCeZrDS9533UlW3bp12bhxY4brCxYs4I5bWKln7ty51K5dm7Zt29K5c2datmzJ559/njIeHx/Pvn37iHaiTt0iIiKS+8Z/vwirtSUwGfBKNXIXCcZc/j68n7VJ7WikYAg7cYIf/9iEzfgY6Awkr1h5AMOAfry7YDE2my3TxxC5Htd9Juutt97iscce48SJExiGwaJFi9i3bx9ff/01y5cvvxUxAlCiRAm+/fbbTMerVKlyzU+l9KmViIhI/nYpKorN+3YBX/LfG+nU7sXVpQrL//yTdo0a5W5w4jAr/voLq8UTw+yVyYz+nIj4mn+OHqWhdjxJDrjulawHH3yQZcuW8csvv1CkSBHeeust9uzZw7Jly2jfvv2tiFFEREQkW2JTji4Uz2SGBShGzC064iDOKTYhAYvFg8SVK3u8AYiJi8u1mCR/y/ZK1qFDh6hatSoWi4VWrVqxZs2aWxmXiIiIyHUrWawYZYqX5PTFn0js55XeMWy2f7ijWstcjkwcqVHVqtiMS8AfQHM7M1bg7upOrfLlczkyya+yvZJVo0YNzp49m/Lnnj17cvr06VsSlIiIiMiNsFqtDLy/A1bL18CGdKNxWCwDKexZiP/dc48jwhMHad+oEVVK++FifRmITDe6GxfrB/QNuJfiXl527ha5ftlOstKfZ1qxYgVRUVE5HpCIiIjIzRj68MPcU68OFks7LPQGvgDew9V6Oy7Wn5k3dDBF1ZalQLFarfzw2hAKue/G1VobeIvEc3vP4GJtSs3y3rz/xOOODVLylesufCEiIiLizDzc3Fg56i0+XbGCT5av4tDpebi5uvPwXc0Y1u0FGlev7ugQxQGa1qjBtskf8MGPPxK0/gOi465S1qcUz3bsystduuBdpIijQ5R8JNtJlsViydCgTQ3bRERECo6LV66w5u+/uRoXR4MqVWhU7f/t3Xd8U/X+x/FXki5aOpgtRVYFEVkyC8gSUIYC4gJBBEQRxQUo44oMFXGAekUREQd40SpXUS4gisheAoKC7D0LQumipW1yzu8PsD/BBgqGnCZ9Px+PPB7lfL8neTffNOSTc873G2d1JLeCAwMZ2LkzAzt3xuly4bDb9blFqBIby78ffpgO9erxR2oq18XG0qx6db02xOPyXWSZpknv3r0JDj47K8uZM2fo378/YRdU/V9//bVnE4qIiIilnC4XQ6dN492535GVk5W7vV7lqkx7+gmqly9vYbpLC3A4rI4gBYBpmvx79mxGfz6TlIz/vy4rLvoaPnj8EVrVrm1hOvE3+b4mq1evXpQuXZrIyEgiIyO5//77iY2Nzf33nzcRERHxLw9NfIc3v51DVs4w4BCQCXzLxj0Omg79F3sTEy1OKHJp42fNYuCHH5KS0R3YDmQBS9h3vDJtR41h+ZYtFicUf2IztULvRaWmphIZGUlKQgIRukhWREQKmd/27qX2U08BHwAPXdCaRIC9Og/eUpv3BwywIJ1I/iSnp1Om14OcyXkMmHBBazZ2W1MaVc1gxWvjrIgnPiQ1I4PIbt1ISUkhIiLCbb/LXoxYRERECo9PFy8mwBEN9MqjtThO4xE+XbQUp8vl7Wgi+fb1qlVk5WQDz+TRGoRhDmbltt91VFY8RkWWiIiIuHUsORnTrAIEuulxA5nZmaRnZnozlshlOZacjMMRBZRx0+MGABKTk72USPydiiwRERFxq2zx4ths2zh7/UpefiM0OJTwIkW8GUvkspQtUQKn6xRw0E2P3wCILV7ca5nEv6nIEhEREbceaNUKp+sEMCWP1mME2N+nT+uWODSDnxRgXRo1okhQCJDXNVeZOOyv06JGbSqULu3taOKnVGSJiIiIW9XKleOxDh2Ap4DBwDbgD+A/OOxNKBZuMuzuuy3NKHIp4aGhvN7nAeA94H5gHXASmIvd1pIAx7Zz7SKeke91skRERKRwmtivH9FRUYyfNYW0zDdyt7eoUYcpA4ZyTcmSFqYTyZ8Bt91GSGAgz/0ngWPJM3K316hQmcmPvUiDKlUsTCf+RlO4X4KmcBcRETkrIyuLpZs3k5mdTY0KFagSG2t1JL90JjubzOxsIkNDsdt10pGnOV0uFv76K0dPnaJG+fLUq1wZm81mdSzxEfmdwl1HskRERCRfQoODaVevntUx/NbPO3bw0hczmbtuLYZpUCK8GP3b38KQO+/UF70esmnfPsZ+OZOvVq7CaTiJKBLOw21bM+zuuyl5kQ/MIpdLX4+IiIiIWGzO2rXcNGQY89anYZhvAjM5mdaDV/47h6ZDnyPl9GmrI/q85Vu20HDwEL5aeRinMQ6YSWpmP96avYiGg4dy7NQpqyOKH1GRJSIiImKhjKwsekx4C5fZAZexEXgSuBuYiMtYxZaDxxiTkGBtSB/ncrno9vqbZDsb4jQ2cXZR4ruB8biMXzjwRzbPfPyJtSHFr6jIEhEREbHQl8uXk5qRjmm+yd8Xfa6Fy3iUqT8s5Ex2thXx/ML8X37h8MljGOYbwIWnXsbhMp4lYdlyTqamWhFP/JCKLBERERELbdq3j0DHtUCcmx5tSctM50hSkjdj+ZVN+/cTYI8C3F1TeCtOVw67jh71YirxZyqyRERERCwUGhyMSTLgctPjDwCKBAV5K5LfCQ0OxjAzgQw3PU4Aeo7Fc1RkiYiIiFjojkaNcLpOAN/k0Wpit02h7rVVKVO8uJeT+Y+ODRpgmtnAp256TKFC6VhqVKjgzVjix1RkiYiIiFioXuXKtKldF4f9IWAuYJxrOQU8gWEuYmTXu6wL6AcqxcTQrXkL7PZBwBf8/1HDNGAE8CXP33un1iUTj9ErSURERMRiM4c+w03VygO3E+CII8DeGLutLAH293m3f386N2pkdUSfN/WJAdxWrxbQjQBHeQLsjXHYY7HbxvFijx70vfVWqyOKH7GZpmlaHaIgS01NJTIykpSEBC0EKCIiIleNaZos37KFmStWkJaZSdWyZendujUxxYpZHc2vrN25k8+XLiUpLY24mBh6t25N+VKlrI4lPiI1I4PIbt1ISUkh4iILWAd4MZOIiIic8/533/H6rG9ITE6nSJCDO+Ib8HqfPkQVLWp1NLFIZnY2O48cYcfho6RknMFus3Pgjz9UZHlYgypVaFClitUxxM/pSNYl6EiWiIh4kmEY1HrySX4/cAAoD7QE9gFLCXSEsPr1l6lbubKVEcUC+48fp9WI0exJPIzddjOGWZYA+xKcxgEGde7M+AcfxGazWR1TpNDL75EsXZMlIiLiRfe8+uq5AmsSsBeYBiwBfiPHVYzmw0diGMZF70P8i2madHxxHAeOO4DfMcyFwHScxh7gTd749lum/vCDxSlF5HKoyBIREfGS7Oxsvl2zHrgfeJTz/xuuCUzldFY6UxcssCSfWGPRb7+xaf9unMbHQLW/tDiAp7FxF69+9S06+UjEd6jIEhER8ZKFmzbhMrKBnm56tAMiSVi61IupxGo/bNxIgCOWs6eO/p1JT3YnHuLQiRNezSUiV05FloiIiJfkOJ3nfgpx08MGBOF0udy0iz9yGQY2gjg7/nk5+3rR60LEd6jIEhER8ZKWNWtydmLfWW56/Az8Qevatb0XSizXqGpVclz7gN/c9Pia0pElKKdpxkV8hoosERERL4kIDaXJ9ZU5O+nFogtaTwKPEGAPZvhdd3k/nFimU8OGxBYvjcP+MJB8Qet87LaPeeL2dgQ4HBakE5EroSJLRETEi+aOHEmxsCJAa6A98AowAKiIjd+Z8cxTBAUFWZpRvCswIIBvnxtKWPBWHPZKwJPAK9htbYH2tKt7I0NVeIv4FK2TdQlaJ0tERDwt48wZBrz/Pl8uW01GdhYOu4MGVSoy8ZFHqK81sgqtA3/8wcQ5c/hsyUrSz2RStWxZBnS4lR4tW+oolkgBkd91sgK8mElExCPSMzOZtXo1R5KSKFOsGF0aNSJcX4KIDwkNCeH9xx6jU8OG7DhyhKiwMO6Ijye6WDGro4mFypcqxcBOnYiLjiYt82yRdVuDBgW6wDIMg0WbNvHL7t0EBwZyW/36XFumjNWx/IphGEyeP59569YR4HDQp00bOsfHWx1LLkFHsi5BR7JECpZ3585lyCefkpGVSYA9EqeRQpGgEF7u2Z2nO3e2Op5Ivvzv55958O1JnEhNwmGPxDBP47DBgNs6MP7BPgX6Q7VcHTlOJ099MJUp33+PYdqw28JwGSlER5Vk2tOP07ZuXasj/s0vu3dz76sT2J14CIc9HNPMxjCzuKtxUz5+6nF9+eUB361fT5eXXycrJwMoAriAbIoXjWLl6+OoWrasxQkLn/weydI1WSLiM6b+8AOPv/8+GVkPAPtwGqeAA2Rm92Xghx/y3rx5VkcUuaTFmzZxx9hxnExrAmzCZSRjmsdxGi/w9v/mMnDqh1ZHFAv0n/Qek+cvwGW8gmmewGUkAxs5nlKX218cy6pt26yOeJ7dR4/S8l/Ps+94DLAMl5GCYZ4CPuSbNb/SeewrWjz5H/pt715ue+FlsnKuARYA6UAa8DlJ6XbqPDWY9IwMa0OKWyqyRMQn5Did/Gv658D9wHtA+XMt1wATgQcZ8Z8vyMrJsSqiSL6M+M/nQD1McxZQ49zWYsBwTF7h3XnztOhsIbPryBE++nEBpvkm8AwQea6lNqb5P0yzGqM++8LChH83ftYsMrOK4jJ+BJpydo2vIsCDuIwEFm3ayOJNm6wN6eMGTJ6MaQYCS4A2nP3YHgR0A+aRmZ3B8599ZmVEuQgVWSLiE5Zs3swfqSeBQW56DCQp/RQ//eZunRkR6x0+eZIVWzdjmE+R92XRj2AjmC+XL/d2NLFQwrJlOOzhwIN5tAbhMp5gwcb1nExN9Xa0PJmmyaeLl+E0HuL/C8K/ak+A4zo+W7rU29H8yqrte4CeQEwerfFAIz5fqveKgkpFloj4hKT09HM/VXLTIw6gwHwIEclLUlrauZ/cvY7DcdhLcjK3nxQGSenp2G0xnD0SlJez72+nct8HreUyDE6fOY3717ENl6uS3o//IZfhwv1zDFCZ02d09kZBpSJLRHxCpejocz/97KbHmgv6iRQ8ZUuUwGF34P51fAin64hex4VMpehoXMZ+4A83PdYQFBBETAGZfTLA4SAmqhTuX8fZOOwb9Dr+h4IDg4DVblpNYCWlIjW5SEGlIktEfEL9ypW5oVwl7LYxQNYFrdnYbaOpXKYcTapVsyKeSL4UDw/nriZNCLC/AVx43ZUJjCYkKIh7mza1IJ1YpXvz5gQ4AF7g7OvgrxIJsL/Nfc2bUrSIuyNd3te/fRvs9unA1jxa38FpHKfvLbd4O5Zf6dSwDjCbvIvZT4E9PNWxo3dDSb6pyBIRn2Cz2Zj8WD8cjnXY7U2AL4AtwEzstqbY7auYMuARbDabxUlFLm7cAz2JCEvDYW8IvM/Z1/H32Lgd+JC3+/XVkiGFTImICCY82Bt4B+gC/MjZ18UkHPaGFA/P4cUePayM+DdPd+rEdbHROOxNgVeATcByoA8wmEGdO3ND+fIXvQ+5uCkDBhAWEgrcDIwGfuXsWRuPA72pFB3DE7ffbmFCuRitk3UJWidLpGBZtW0bz348nRVbN+dua1y1Oq/16UnTG26wMJlI/u06coRBH37MnHVrMU0DgOtiy/PS/d24R0exCq3Plixh5Iwv2J14CAC7zUGn+Ia82fdBKhbAU+9OpqbyzMcf89mSZWQ7swEoU6w0Q+/qxJMdO+pLLw9IPHWKW0eOZNP+Q5xdIwtsBNK69g3Mff55goKCrA1YCOV3nSwVWZegIkukYNqTmMjRpCRiihXj2jJlrI4jckWOJiWxJzGRqKJFuaFcOX0oFUzTZOGvv3I8OZlGVasS5wPvb6fS09l26BDBgYHUqljRJxbTTjx1ilPp6cQWL05kWJjVcS7pyMmTzFm3juCAAO5q3JiiPvCZ9I+UFE6kphIdFUXx8HCr43iMiiwPUZElIiIi3vDd+vWMmvEFa3edXXg4JDCEHi2bM/b+HkQXkEkvfN3SzZt5fkYCS38/u9xHgCOQrk1vYmzP+6lQurTF6fzD+l27GPGfz/j+l/WYmNhtDu5oFM/Ynvdz/TXXWB3vH8tvkaVrskREREQs9umiRdw25gXW7y4FJABLOZPzHNMW/kL8s8M5npxscULfN2ftWlqNeJ7lW4OA6cBSnK6xfLFsBw0GD2XfsWNWR/R5y7ds4aahw1mwMROTKcBSDPMtvl2TSMPBQ9i8f7/VEb1GRZaIiIiIhVJOn+aRdydj0hPDXAx0BZoBI3AaP3P4RBYjP/vM2pA+Ljsnh95vvYNhtscwVnF2kd9mwLM4jV84lRbG4I8+tjilbzNNk95vvUOOsz4uYx3wEGef48dxGb+QkVWB/pPetzil9/hMkZWUlESPHj2IiIggKiqKvn37kp6PRflWrVpFq1atCAsLIyIigubNm5OZmemFxCIiIiKX9vnSpZzJzgbG8fePZpVwGo8z7aclZGRduHyF5Nf/1q7lZNopTPMVIOCC1micxhC+Wb2GY6dOWRHPLyz9/Xd2Jx7CMF8GQi5ojcRljGTF1s1sP3TIinhe5zNFVo8ePfj9999ZsGABc+bMYenSpfTr1++i+6xatYp27dpx66238vPPP7N27Voef/xx7Haf+bVFRETEz+04coQARxwQ66ZHc85kZ3I0KcmbsfzKjsOHCbAXA6q76dEcw3SxV6cMXrEdhw+f+8ndDKnNAdh59KhX8ljtwlK+QNq6dSvz589n7dq11K9fH4CJEyfSoUMHxo8fT2xs3m9KAwcO5Mknn2TYsGG526pWreqVzCIiIiL5ERkaimH+AWQDeU3Jffab//ACtBixr4kMC8NlpgMpQGQePc4+x5rk7Mr9/yyNR4C8Jrg49xwXktexTxzSWbVqFVFRUbkFFkCbNm2w2+2sWbMmz32OHz/OmjVrKF26NE2aNCE6OpoWLVqwfPnyiz5WVlYWqamp591ERERErpa7b7oJl5EM5HXdlQuH/V2a3VCT0lFR3g3mR+6Ij8eGAXyQR6uJzTaRqmUrUK1cOW9H8xvt6talSFARYKKbHu9QOrIETapV82Ysy/hEkZWYmEjpC6bVDAgIoHjx4iQmJua5z549ewAYPXo0Dz/8MPPnz6du3bq0bt2anTt3un2scePGERkZmXsrpz82ERERuYqqly/P3U2aYrc9BnwE/Hnt1T5s3IdhrmP0ffdamND3xZYoQf/2bbHZhgNvA6fPtRwB+mGa3/HS/d20Vt0/EBEaypA7OwOvA2M5e9QQ4ATwLDCNF3p09Yl11DzB0iJr2LBh2Gy2i962bdt2RfdtGAYAjzzyCH369KFOnTq8+eabVK1alY8++sjtfsOHDyclJSX3dvDgwSt6fBEREZH8mj7wKe5u0gDoi8NeikBHJSCOsJDvSHj2GVrVrm11RJ/31kMP8dAtrbHxNA57NIGOStgoT0jgf5gyYAB333ST1RF93shu3RhyZxfstlHYbWUIDIjDbitLoONtXunVi0fatbM6otdYek3W4MGD6d2790X7xMXFERMTw/Hjx8/b7nQ6SUpKIiYmJs/9ypxbIf2GG244b3u1atU4cOCA28cLDg4mODg4H+lFREREPKNIcDBfDH2GMYe68dXKlaRlZlK1bCfubdqUsJALZ2qTKxEYEMCUxwcw/O67+HLFCpLS0oiL6UC3Zs3+cj2R/BN2u51Xe/fmyY4dSVi6lOMpKVxT8hbua96ckhdZuNcfWVpklSpVilKlSl2yX+PGjUlOTmb9+vXUq1cPgJ9++gnDMIiPj89zn4oVKxIbG8v27dvP275jxw7at2//z8OLiPgpp8vFzOXLmfL9j+w5doLSkeE80Ko5vVu1IlwXhXuEYRh8u2YNk+f/wLZDiRQLC6V7iyY8dOutFA8PtzqeWOj6a67huXt959TApZs38+687/h5x15CggK5I74uj3boQPl8fL6zSqWYGIbedZfVMfxa2RIlGNyli9UxLGUzTdO0OkR+tG/fnmPHjjF58mRycnLo06cP9evX57Nzi/MdPnyY1q1bM336dBo2bAjAW2+9xahRo/jwww+58cYbmTZtGuPHj2fz5s1ce+21+Xrc1NRUIiMjSUlI0IwzIuL3MrOyuO2FsSzatBG7vQWG0RAbO8E2h7joGJaMe5GyJUpYHdOnOV0uur42nq9XrcBhj8dlNAcOYrfNIjoqgiXjXqSKm1lzRQqS5z79lJdnziTAXhWncRuQjMM+k+BAF9+NGkHzGjWsjijicakZGUR260ZKSgoRFzk65xMTXwDMmDGD66+/ntatW9OhQweaNm3KlClTcttzcnLYvn07GRkZuduefvpphg8fzsCBA6lduzYLFy5kwYIF+S6wREQKm+HTp7Nk83bgJwxjMfAaJrMwzd/Zfxzue/0NixP6vle/+opZq9cAX+MyVgOvAZ9jmLs4nlKczi+9io98/ymF2NcrV/LyzJnA6ziNrcAE4ENcxiHOZMdz+4svk/qXz2QihY3PHMmyio5kiUhhkZaRQfQDfcjMfgZ4IY8eXwF3s/Hf/6Z2pUpeTucfcpxOyvZ+mD9S7wHey6PHEqAlC198URMdSIHWdOi/WLW9OIaxJI/WI9goz8RHHmLAbbd5PZvI1eR3R7JEROTq2rh3L5nZmYC760E6YbMFsfT3370Zy6/sOnqUP1JP4v45bk6AoxRL9BxLAWYYBiu3/o5hdHXTIxab7SaWbN7s1VwiBYmKLBERAfjL+jAXO8HBRKvIXDk9x+Ivzr6WL/46FinMVGSJiAgAN1aqRGhwKPCFmx6zMM0cWtas6c1YfqVymTKUjiyB++d4MU7XCT3HUqDZ7XZuqlYdhz3BTY9DmOZKbtbrWAoxFVkiIgJA0SJF6N/uFuy2CcAPF7RuJcD+NC1r1KZGhQpWxPMLAQ4HAzvfhs32IfDlBa37cdj7Ub18HC00K5sUcIPv6IjLWA6MA4y/tCRjt/UgIjSM+1u2tCacSAGgIktERHKN7dmTNrWrA21x2JsCA7HZbsdGDeJiAvnsmYFWR/R5z3bpwr033QR0xWGvBwwE7sJmq0JMsTS+fW7oX04rFCmYOjdqxMhu3YB/EeCoAjwJ9MJhv4bQ4F+YO/JfWldPCjXNLngJml1QRAobp8vFN6tXn1uM+A9KR4TTq3UL7m/ZkrCQEKvj+QXDMPhu/fpzixEfJSoslB4tbqJ369ZEFS1qdTyRfFu1bRvvzJ3L2h37CAkKoEvjBjzSti2xWk9P/FR+ZxdUkXUJKrJERETEWzbv389/V6wgLTOTqmXLcl/z5joi5GG7jhwhYdkyktLTiYuOpnuLFhQPD7c6lvgIFVkeoiJLRERErrbTZ87Q8423mLV6JQH2YtjsJXE691AkOJgPHn+U7i1aWB3R52Xn5PDIu5P45KeFOOwR2O3ROF37CHTYePOhB3msQwerI4oP0DpZIiIiIj6i5xtvMfvnjcB0nMYxcpw7MNlHRlYX7n/jTRZs2GB1RJ/35JQPmL5oGTAJ15/PsXmIbOdDDJg8mS+WLbM6ovgRFVkiIiIiFtq8fz+zVq/EZUwGegKB51quAaZjszVkTMJM6wL6gUMnTvDBDwswzFeAR4E/ry8tDbyDjdsYOeMLdIKXeIqKLBEREREL/XfFCgLsxYCuebTaMYzHWLF1M8eTk72czH98u2YNJnagbx6tNkweZ8eRA2w5eNDb0cRPqcgSERERsVBaZiY2W0kgyE2Psrn95MqkZWbisBUF3F1Dc+45zsjwWibxbyqyRERERCxUtWxZnK49wCE3PRZTJKgIscWLezOWX6latixO4xSwyU2PxTjsDuJiYrwZS/yYiiwRERERC3Vr3pwiwcHAMMC4oHUXDvs79G7d8lwfuRK3N2hAqcgS2GxDgZwLWo8SYH+NLo0aUToqyoJ04o9UZImIiIhYKCI0lA8efxQbn2G3NwVmAIuAUTjs8VQoHcaY7t0tTunbAgMCmPb04zhsC3DYGwIfcfY5HkeAvS4lIs4w/sE+FqcUf6IiS0RERMRi3Vu04Psxo2lcNQ24H2hFkaDX6dc2njXjX6FUZKTVEX1e+3r1WDJuLDfXtHF2AoxWBAWM5v6bq7PujdeoULq01RHFj2gx4kvQYsQiInK1HPzjD3YnJhIZGkrtSpWw2/Xdp8Dx5GTSMjOJLV5cpwheJSdSU0lOTyemWDGKFilidRy/Y5omWw8e5HhKCteUKEHl2FirI3lMfhcjDvBiJhEREQF2HD7Mk1Om8sOGXzA5+11nXPQ1vHR/V+5r0cLidGK10lFRujboKisZEUHJi3xAliu3YMMGnvn4U37btyt3W+Oq1Xnzod7EV61qYTLv0ldmIiIiXrTryBEaPTOMH39NxmQqsB34kT3H6tJ9wgTenz/f6ogiIldk7tq1tBv9Apv3lwFmc/b97Ut+3hlM8+HPsWrbNosTeo+KLBERES8aPv1TUjOjcBlrgAeB64DWwDfAIwyc+jEpp09bGVFE5LK5XC4emTQFk1swzJ+Ajpx9f7sHl7ECp6s2j03+wOKU3qMiS0RExEtOpqYya/VqXMYgoMQFrTZgJGeys/ly+XIL0omIXLmffvuNwyePYZpj+PsVSSEY5vNs3LOTTfv2WZDO+1RkiYiIeMmRpCRchgto6KZHLAGOsuw7ftybsURE/rH/f99q4KZHgwv6+TcVWSIiIl5SIjz83E+73PRIxWUc1wX5IuJz/v/9bbebHme3F5b3NxVZIiIiXhJbogTNbqiJ3f5vICePHpOBHO5t2tTLyURE/pl29eoRUSQcmJBHqwlMoHypMsRfd52Xk1lDRZaIiIgXje3ZHTsbsdk6ARvObT0BvICN4Txx+22ULXHh9VoiIgVbaHAwL/Toytkvi54EDp5r2Qn0Ambxaq8ehWY9wMLxW4qIiBQQzapXZ/bzz1E6ch1QF4c9DIgm0DGWwV06M+HBPlZHFBG5Ik927MiEBx8kNPhDoDwOe1HgOiJDv+Xjp56iW/PmVkf0GptpmqbVIQqy1NRUIiMjSUlIICI01Oo4IiLiJ5wuF9+tX8+uo0eJDA2lU3x8oblWQUT8W1pGBt+uWcPxlBSuKVmSjg0aUCQ42OpYHpGakUFkt26kpKQQcZH37AvnVxQREREvCHA46NjQ3SyDBc/Wgwd5a/Zsvlr5M2eys6lZsQKP39aO+5o3LzSn/4jvO3LyJG/PmcOni5aTfDqNiqWj6d/+Fh665Ra/KQKsdiI1lXfnzuWjH5dwIjWZ2OIl2X/8OP3btSO8EB2w0JGsS9CRLBERKex+2LCBTi+9jMtVHKfxAFACu+17DHMhXZs1Z8aggTgcDqtjilzUlgMHaDb8eVJOu3AZDwAVsbEKbN/SoHIVFr40mqJFilgd06ftP36cpkNHcPRUKi6jB1AV+BW77UuuK1uGZa+85PNH7PN7JEtfPYmIiIhbqRkZ3DXudXKcrXAae4BXgGcxzB+B//LlsuW8//33FqcUuTjTNLnrlfGknC6Ly9gFTAQGY/JfTHMl63cfZPj06VbH9Hk93/g3iadCcBlbgSnAYGA6hrmBnUfSGTD5fYsTeo+KLBEREXFrxuLFnD6TiWFOAUIuaL0L6MJbs+ehE2OkIFuyeTPbDu3DZbwNlLqgtQEuYyAfLviJtIwMK+L5hc3797NsyyacxmtA+Qtaq+EyRvLVypUcTUqyIp7XqcgSERERt37euROHvR5wTZ7tJl3YeeQA6ZmZ3g0mchl+3rEDhz0caOmmxx1kZmey9dAhL6byLz/v2HHup05uetyBy3CxYc8eb0WylIosERERcSvA4QDbxQqos226JksKsgCHA9N0kfci4PDn6zhAr+Mr9v/P3Rk3PQrXc6wiS0RERNy69cYbcbo2Ab/l0WrisE/npmo1CNXMbFKA3VqnDoaZAcxy0+NTSkWWoGaFCt6M5Vda1aqF3eYAPnXT41OKBBWhcdWq3oxlGRVZIiIi4tYdjRpRoXQsDntXYPdfWrKAEbiMZQy5s7NF6UTyp0aFCrSpXReH/XFg9V9aDGAqMIXBd9xOYIBWN7pS15QsSbfmzXDYhwM//qXFBP6L3fYaA24rPNO4q8gSERERtwIDAvh+9Aiio5KwcR02WxugGwH2csDLvNqrF53i462OKXJJCc8OolbFYkBjHPZGQHcCHFWAh+l7yy0826WLxQl93/uPPcpN1eKAW3DY63L2Oa4O3EOn+HqMvf9+ixN6j9bJugStkyUiIgKnz5zhsyVLmLV6DafPZHNjXAX6t2tHtXLlrI4mkm85TiffrlnDjCVLOJF6miplSvPQrbfS+PrrsdlsVsfzCy6Xi/m//MK0nxZx9FQKFUoV58E2bbi5Vi2/eI7zu06WiqxLUJElIiIiIiKgxYhFREREREQsoSJLRERERETEg1RkiYiIiIiIeJCKLBEREREREQ9SkSUiIiIiIuJBKrJEREREREQ8SEWWiIiIiIiIB6nIEhERERER8SAVWSIiIiIiIh4UYHUAERGRwsg0TTbs2cPOI0eIDA3l5lq1CA4MtDqWiIh4gIosERERL1u7cycPTXyP3/btyt0WFRbJqG5381SnTthsNgvTiYjIP+UzpwsmJSXRo0cPIiIiiIqKom/fvqSnp190n8TERHr27ElMTAxhYWHUrVuXr776ykuJRURE/u7XvXtpMXwEvx+IBOYAKcAmkk93ZeCHHzJu5kyLE4qIyD/lM0VWjx49+P3331mwYAFz5sxh6dKl9OvX76L7PPDAA2zfvp3Zs2ezadMm7rzzTu699142bNjgpdQiIiLnGz79P2Q7K+AylgC3ARFADeB9YCijP/+SE6mplmYUEZF/xieKrK1btzJ//nymTp1KfHw8TZs2ZeLEiSQkJHDkyBG3+61cuZInnniChg0bEhcXx4gRI4iKimL9+vVeTC8iInLW8eRk5q9fh8sYBITl0eMZnIbJF8uWeTuaiIh4kE8UWatWrSIqKor69evnbmvTpg12u501a9a43a9JkyZ88cUXJCUlYRgGCQkJnDlzhpYtW3ohtYiIyPmOJSdjYgI13fQoSYC9DEeSkrwZS0REPMwnJr5ITEykdOnS520LCAigePHiJCYmut3vyy+/pGvXrpQoUYKAgABCQ0OZNWsWlStXdrtPVlYWWVlZuf9O1SkbIiLiIaUjI7Fhw2Qz0CiPHidxGYmUKVbM29FERMSDLD2SNWzYMGw220Vv27Ztu+L7f/7550lOTubHH39k3bp1DBo0iHvvvZdNmza53WfcuHFERkbm3sqVK3fFjy8iIvJX0cWKcWudujjsbwIZefR4A7vdpGuzZt6OJiIiHmQzTdO06sH/+OMPTp48edE+cXFx/Oc//2Hw4MGcOnUqd7vT6SQkJISZM2fSpUuXv+23e/duKleuzObNm6levXru9jZt2lC5cmUmT56c5+PldSSrXLlypCQkEBEaerm/ooiIyHk27N5NkyHDyXbWwjDHAM2Ag8BEYBIvdO/O8926WRtSRETylJqRQWS3bqSkpBAREeG2n6WnC5YqVYpSpUpdsl/jxo1JTk5m/fr11KtXD4CffvoJwzCIj4/Pc5+MjLPfENrt5x+sczgcGIbh9rGCg4MJDg7O768gIiJyWepcey2Lxr7AQ+9M5vcD7XO3R4ZG8HzXPgy64w7rwomIiEdYeiTrcrRv355jx44xefJkcnJy6NOnD/Xr1+ezzz4D4PDhw7Ru3Zrp06fTsGFDcnJyuOGGGyhTpgzjx4+nRIkSfPPNNzz77LPMmTOHDh065OtxU1NTiYyM1JEsERHxKNM0WbtzJ7uOHiUyNJRWtWpRRF/yXRVnsrMJdDhwOBxWRxERH+cTR7Iux4wZM3j88cdp3bo1drudu+66i7fffju3PScnh+3bt+cewQoMDGTevHkMGzaMjh07kp6eTuXKlZk2bVq+CywREZGrxWaz0fC662h43XVWR/FLZ7Kzeft//+PduT9w4MRRHHYHnePjGXrXnXrOReSq85kjWVbRkSwRERHfkpmVRdtRL7Bi63YM8z6gNXCcAPtUYBf/HTaEzo3ymt1RROTi8nskyyfWyRIRERHJr9dnzWLF1h0Y5kLgE6AnMBin8RsuoxPdJ7xFakZeszuKiHiGiiwRERHxGy6Xi3fnfo9h9gaaXtAaiMm/yczKYsbixd4PJyKFhoosERER8Rsn09I4nnISaOemxzUEOGrw6759XkwlIoWNiiwRERHxG8GBged+OuWmh4lJMiG5/UREPE9FloiIiPiNyLAwbqpWA4d9KpDX3F4/4XTtp1PDht6OJiKFiIosERER8Sv/uudOXMZK4HEg5dxWE1hOgP1+6l5blZtr1bIuoIj4PRVZIiIi4lc61K/Pe48+isP+Pg57LHb7zQQ4agDNqF4hnLkj/4XNZrM6poj4MZ9ZjFhEREQkv/q3b0+nhg356Mcf2XzgAGHBsdzV5G7a1qmDw+GwOp6I+DkVWSIiIuKXYkuUYETXrlbHEJFCSKcLioiIiIiIeJCKLBEREREREQ9SkSUiIiIiIuJBKrJEREREREQ8SEWWiIiIiIiIB6nIEhERERER8SAVWSIiIiIiIh6kIktERERERMSDVGSJiIiIiIh4UIDVAURERETkrBOpqcxZu5a0zEyqli1L61q1cDgcVscSkcukIktERETEYk6Xi6HTpjHxf/PIceVgtwVhmFmUKxnD9IFP0LJmTasjishl0OmCIiIiIhZ7csoHvPnN/8hxjQCOY5iZwGoOn6xK21FjWLdzp9URReQyqMgSERERsdDexEQmf/cdJuOB54GSgA2IxzDn4zKqMPKzBGtDishlUZElIiIiYqHPly7Fbg8D+uXRGoLLeIL569eRlJbm7WgicoVUZImIiIhY6ERaGnZbLBDqpsd1mJgqskR8iIosEREREQuVL1kSl7EfOOmmxzoCHIFER0V5MZWI/BMqskREREQs1KNlSxx2A3g5j9Y/CLD/m27NmhIe6u5Il4gUNCqyRERERCxUKjKScQ/cD7wB3AcsB/YAH+GwNyIiLIMXut9naUYRuTxaJ0tERETEYoO7dKFY0aKM+mwmh06enUnQho1bbqzHxH5DqBQTY3FCEbkcKrJERETEb2Xl5HA0KYmwkBBKRUZaHeeiHrzlFnq1asX63btJy8ykSmws5UuVsjrWJeU4nRxJSiIkMJDoYsWsjiNSIKjIEhEREb+Tcvo0LyQkMPWHn0jNPDsrX+Oq1Xm+2920r1fP4nTuORwOGl53ndUx8iUjK4uXZ87kvXkLSEo/BcCNlarw3L13cvdNN1mcTsRauiZLRERE/ErK6dM0HTaCf//vJ1IzHwW+Bz5lzc5idBgzho9//NHqiD7vTHY2tzw/mnH//R9J6fcD3wEJ/LavEve8+irjZ82yOqKIpXQkS0RERPzKyzNnsvVgIi5jNVAjd7thdAcepv+kyXRq2JASERGWZfR178ydy6rtOzDNJUDj3O2GeS8wnCEfv8ZdjRvrWjIptHQkS0RERPyG0+Viyvc/4jIe5q8F1ll2YBxOF3y6aJEF6fzHpHk/YJpd+WuBdZYNGIndHs7UBQssSCZSMKjIEhEREb9xMjWV5NOpwM1uepTGbq/O1kOHvBnLrzhdLvYeOwy0dNMjFMNsxNaDB72YSqRgUZElIiIifiM0OPjcT0fd9DCAYxQNCfFSIv/jsNsJDgwGEt33sR0lvEgR74USKWBUZImIiIjfCA8NpU3tujjskwFnHj3+h9N1hHs0+90Vs9ls3N2kMQH2qcCZPHqsxGls0gyDUqipyBIRERG/MrLbPZjmJmy27sCfp6y5gK9w2HvRqlYd4qtWtTCh7xtyZxfs9iPYbHcAu85tNYD5OOx3UrtSFToU4KnyRa42FVkiIiLiV5pVr84XQ54hNHgeNioSGFCNAEcZ4G5a1arM18OHYLPZrI7p02pVqsSc558jMnQVUIVAR1UCHNcA7alXuTjfjx6Bw+GwOqaIZWymaZpWhyjIUlNTiYyMJCUhgYjQUKvjiIiISD6lZWSQsGwZmw8cICw4mDsbN6Z+lSpWx/IrmVlZzFyxgl927yYkKIiODRrQpFo1FbHit1IzMojs1o2UlBQiLrIMhIqsS1CRJSIiIiIikP8iS6cLioiIiIiIeJCKLBEREREREQ9SkSUiIiIiIuJBKrJEREREREQ8SEWWiIiIiIiIB6nIEhERERER8SAVWSIiIiIiIh6kIktERERERMSDVGSJiIiIiIh4UIDVAUREREREvOXAH38wc/lyktLTqRQdzb1NmxIRGmp1LPEzPnMka+zYsTRp0oTQ0FCioqLytY9pmowcOZIyZcpQpEgR2rRpw86dO69uUBEREREpcJwuF4+9N5mKDz3MkGlf8PrXa+j3ziRiHujDRwsWWB1P/IzPFFnZ2dncc889PProo/ne57XXXuPtt99m8uTJrFmzhrCwMNq2bcuZM2euYlIRERERKWgGffgRk+f/gGm+jmEcI8e1H5N9ZGZ3pe/EiXy9cqXVEcWP+EyRNWbMGAYOHEjNmjXz1d80Td566y1GjBhB586dqVWrFtOnT+fIkSN88803VzesiIiIiBQYR5OSmDRvHqb5EjAIKHqupRzwETZbW0b8JwHTNK0LKX7FZ4qsy7V3714SExNp06ZN7rbIyEji4+NZtWqV2/2ysrJITU097yYiIiIivmvW6tUYph14JI9WG6b5JFsP7WPboUPejiZ+ym+LrMTERACio6PP2x4dHZ3blpdx48YRGRmZeytXrtxVzSkiIiIiV1fK6dM47OFAlJse5XL7iXiCpUXWsGHDsNlsF71t27bNq5mGDx9OSkpK7u3gwYNefXwRERER8awqsbE4XUnAVjc9lmG3Oah4wZfzIlfK0incBw8eTO/evS/aJy4u7oruOyYmBoBjx45RpkyZ3O3Hjh3jxhtvdLtfcHAwwcHBV/SYIiIiIlLwdGzYkOLhxTiVPgzT/IrzPwIfx2F/jY4NGxJTrJhVEcXPWFpklSpVilKlSl2V+65UqRIxMTEsXLgwt6hKTU1lzZo1lzVDoYiIiIj4tuDAQD564lHuHPcqNltTDPNJoBKwGof9DaLCTjPhweesjil+xGeuyTpw4AAbN27kwIEDuFwuNm7cyMaNG0lPT8/tc/311zNr1iwAbDYbTz/9NC+99BKzZ89m06ZNPPDAA8TGxnLHHXdY9FuIiIiIiBU6N2rEjy+OofH1p4EeQBMC7EO4u0kl1k54lbhzZ0GJeIKlR7Iux8iRI5k2bVruv+vUqQPAokWLaNmyJQDbt28nJSUlt8+QIUM4ffo0/fr1Izk5maZNmzJ//nxCQkK8ml1ERERErHdzrVosr1WLwydPkpSWxjUlS1KsaNFL7yhymWymFgS4qNTUVCIjI0lJSCAiNNTqOCIiIiIiYpHUjAwiu3UjJSWFiIgIt/185nRBERERERERX6AiS0RERERExINUZImIiIiIiHiQiiwREREREREPUpElIiIiIiLiQSqyREREREREPEhFloiIiIiIiAepyBIREREREfEgFVkiIiIiIiIepCJLRERERETEg1RkiYiIiIiIeJCKLBEREREREQ9SkSUiIiIiIuJBKrJEREREREQ8SEWWiIiIiIiIB6nIEhERERER8SAVWSIiIiIiIh6kIktERERERMSDVGSJiIiIiIh4kIosERERERERD1KRJSIiIiIi4kEqskRERERERDxIRZaIiIiIiIgHBVgdoKAzTROA1IwMi5OIiIiIiIiV/qwJ/qwR3LGZl+pRyB06dIhy5cpZHUNERERERAqIgwcPcs0117htV5F1CYZhcOTIEcLDw7HZbFbH8TmpqamUK1eOgwcPEhERYXUcuQiNle/QWPkOjZXv0Fj5Do2Vb/DXcTJNk7S0NGJjY7Hb3V95pdMFL8Fut1+0SpX8iYiI8Ks/MH+msfIdGivfobHyHRor36Gx8g3+OE6RkZGX7KOJL0RERERERDxIRZaIiIiIiIgHqciSqyo4OJhRo0YRHBxsdRS5BI2V79BY+Q6Nle/QWPkOjZVvKOzjpIkvREREREREPEhHskRERERERDxIRZaIiIiIiIgHqcgSERERERHxIBVZIiIiIiIiHqQiSzwuKSmJHj16EBERQVRUFH379iU9Pf2i/Z944gmqVq1KkSJFKF++PE8++SQpKSleTF04vPvuu1SsWJGQkBDi4+P5+eefL9p/5syZXH/99YSEhFCzZk3mzZvnpaRyOWP1wQcf0KxZM4oVK0axYsVo06bNJcdWPOdy/67+lJCQgM1m44477ri6ASXX5Y5VcnIyAwYMoEyZMgQHB3PdddfpfdALLnec3nrrrdzPEOXKlWPgwIGcOXPGS2kLr6VLl9KxY0diY2Ox2Wx88803l9xn8eLF1K1bl+DgYCpXrswnn3xy1XNaxhTxsHbt2pm1a9c2V69ebS5btsysXLmyed9997ntv2nTJvPOO+80Z8+ebe7atctcuHChWaVKFfOuu+7yYmr/l5CQYAYFBZkfffSR+fvvv5sPP/ywGRUVZR47dizP/itWrDAdDof52muvmVu2bDFHjBhhBgYGmps2bfJy8sLncseqe/fu5rvvvmtu2LDB3Lp1q9m7d28zMjLSPHTokJeTFz6XO1Z/2rt3r1m2bFmzWbNmZufOnb0TtpC73LHKysoy69evb3bo0MFcvny5uXfvXnPx4sXmxo0bvZy8cLnccZoxY4YZHBxszpgxw9y7d6/5/fffm2XKlDEHDhzo5eSFz7x588znnnvO/Prrr03AnDVr1kX779mzxwwNDTUHDRpkbtmyxZw4caLpcDjM+fPneyewl6nIEo/asmWLCZhr167N3fbdd9+ZNpvNPHz4cL7v58svvzSDgoLMnJycqxGzUGrYsKE5YMCA3H+7XC4zNjbWHDduXJ797733XvO22247b1t8fLz5yCOPXNWccvljdSGn02mGh4eb06ZNu1oR5ZwrGSun02k2adLEnDp1qtmrVy8VWV5yuWP13nvvmXFxcWZ2dra3Iop5+eM0YMAAs1WrVudtGzRokHnTTTdd1ZxyvvwUWUOGDDGrV69+3rauXbuabdu2vYrJrKPTBcWjVq1aRVRUFPXr18/d1qZNG+x2O2vWrMn3/aSkpBAREUFAQMDViFnoZGdns379etq0aZO7zW6306ZNG1atWpXnPqtWrTqvP0Dbtm3d9hfPuJKxulBGRgY5OTkUL178asUUrnysXnjhBUqXLk3fvn29EVO4srGaPXs2jRs3ZsCAAURHR1OjRg1efvllXC6Xt2IXOlcyTk2aNGH9+vW5pxTu2bOHefPm0aFDB69klvwrbJ8r9AlWPCoxMZHSpUufty0gIIDixYuTmJiYr/s4ceIEL774Iv369bsaEQulEydO4HK5iI6OPm97dHQ027Zty3OfxMTEPPvndxzlylzJWF1o6NChxMbG/u0/M/GsKxmr5cuX8+GHH7Jx40YvJJQ/XclY7dmzh59++okePXowb948du3axWOPPUZOTg6jRo3yRuxC50rGqXv37pw4cYKmTZtimiZOp5P+/fvzr3/9yxuR5TK4+1yRmppKZmYmRYoUsSjZ1aEjWZIvw4YNw2azXfSW3w+AF5Oamsptt93GDTfcwOjRo/95cJFC5pVXXiEhIYFZs2YREhJidRz5i7S0NHr27MkHH3xAyZIlrY4jl2AYBqVLl2bKlCnUq1ePrl278txzzzF58mSro8lfLF68mJdffplJkybxyy+/8PXXXzN37lxefPFFq6NJIacjWZIvgwcPpnfv3hftExcXR0xMDMePHz9vu9PpJCkpiZiYmIvun5aWRrt27QgPD2fWrFkEBgb+09hyTsmSJXE4HBw7duy87ceOHXM7LjExMZfVXzzjSsbqT+PHj+eVV17hxx9/pFatWlczpnD5Y7V792727dtHx44dc7cZhgGcPeK/fft2rr322qsbupC6kr+rMmXKEBgYiMPhyN1WrVo1EhMTyc7OJigo6KpmLoyuZJyef/55evbsyUMPPQRAzZo1OX36NP369eO5557DbtfxhILC3eeKiIgIvzuKBTqSJflUqlQprr/++ovegoKCaNy4McnJyaxfvz53359++gnDMIiPj3d7/6mpqdx6660EBQUxe/ZsfQPvYUFBQdSrV4+FCxfmbjMMg4ULF9K4ceM892ncuPF5/QEWLFjgtr94xpWMFcBrr73Giy++yPz588+7JlKunssdq+uvv55NmzaxcePG3FunTp24+eab2bhxI+XKlfNm/ELlSv6ubrrpJnbt2pVbCAPs2LGDMmXKqMC6Sq5knDIyMv5WSP1ZGJumefXCymUrdJ8rrJ55Q/xPu3btzDp16phr1qwxly9fblapUuW8KdwPHTpkVq1a1VyzZo1pmqaZkpJixsfHmzVr1jR37dplHj16NPfmdDqt+jX8TkJCghkcHGx+8skn5pYtW8x+/fqZUVFRZmJiommaptmzZ09z2LBhuf1XrFhhBgQEmOPHjze3bt1qjho1SlO4e8nljtUrr7xiBgUFmf/973/P+/tJS0uz6lcoNC53rC6k2QW953LH6sCBA2Z4eLj5+OOPm9u3bzfnzJljli5d2nzppZes+hUKhcsdp1GjRpnh4eHm559/bu7Zs8f84YcfzGuvvda89957rfoVCo20tDRzw4YN5oYNG0zAfOONN8wNGzaY+/fvN03TNIcNG2b27Nkzt/+fU7g/++yz5tatW813331XU7iLXI6TJ0+a9913n1m0aFEzIiLC7NOnz3kf9vbu3WsC5qJFi0zTNM1FixaZQJ63vXv3WvNL+KmJEyea5cuXN4OCgsyGDRuaq1evzm1r0aKF2atXr/P6f/nll+Z1111nBgUFmdWrVzfnzp3r5cSF1+WMVYUKFfL8+xk1apT3gxdCl/t39Vcqsrzrcsdq5cqVZnx8vBkcHGzGxcWZY8eO1Zd/XnA545STk2OOHj3avPbaa82QkBCzXLly5mOPPWaeOnXK+8ELGXef3/4cn169epktWrT42z433nijGRQUZMbFxZkff/yx13N7i800dSxVRERERETEU3RNloiIiIiIiAepyBIREREREfEgFVkiIiIiIiIepCJLRERERETEg1RkiYiIiIiIeJCKLBEREREREQ9SkSUiIiIiIuJBKrJEREREREQ8SEWWiIj4hN69e2Oz2f5227Vrl0fu/5NPPiEqKsoj93Wlli5dSseOHYmNjcVms/HNN99YmkdERK6MiiwREfEZ7dq14+jRo+fdKlWqZHWsv8nJybmi/U6fPk3t2rV59913PZxIRES8SUWWiIj4jODgYGJiYs67ORwOAL799lvq1q1LSEgIcXFxjBkzBqfTmbvvG2+8Qc2aNQkLC6NcuXI89thjpKenA7B48WL69OlDSkpK7hGy0aNHA+R5RCkqKopPPvkEgH379mGz2fjiiy9o0aIFISEhzJgxA4CpU6dSrVo1QkJCuP7665k0adJFf7/27dvz0ksv0aVLFw88WyIiYpUAqwOIiIj8U8uWLeOBBx7g7bffplmzZuzevZt+/foBMGrUKADsdjtvv/02lSpVYs+ePTz22GMMGTKESZMm0aRJE9566y1GjhzJ9u3bAShatOhlZRg2bBgTJkygTp06uYXWyJEjeeedd6hTpw4bNmzg4YcfJiwsjF69enn2CRARkQJFRZaIiPiMOXPmnFf8tG/fnpkzZzJmzBiGDRuWW7zExcXx4osvMmTIkNwi6+mnn87dr2LFirz00kv079+fSZMmERQURGRkJDabjZiYmCvK9vTTT3PnnXfm/nvUqFFMmDAhd1ulSpXYsmUL77//voosERE/pyJLRER8xs0338x7772X+++wsDAAfv31V1asWMHYsWNz21wuF2fOnCEjI4PQ0FB+/PFHxo0bx7Zt20hNTcXpdJ7X/k/Vr18/9+fTp0+ze/du+vbty8MPP5y73el0EhkZ+Y8fS0RECjYVWSIi4jPCwsKoXLny37anp6czZsyY844k/SkkJIR9+/Zx++238+ijjzJ27FiKFy/O8uXL6du3L9nZ2Rctsmw2G6Zpnrctr4kt/iz4/swD8MEHHxAfH39evz+vIRMREf+lIktERHxe3bp12b59e54FGMD69esxDIMJEyZgt5+d8+nLL788r09QUBAul+tv+5YqVYqjR4/m/nvnzp1kZGRcNE90dDSxsbHs2bOHHj16XO6vIyIiPk5FloiI+LyRI0dy++23U758ee6++27sdju//vormzdv5qWXXqJy5crk5OQwceJEOnbsyIoVK5g8efJ591GxYkXS09NZuHAhtWvXJjQ0lNDQUFq1asU777xD48aNcblcDB06lMDAwEtmGjNmDE8++SSRkZG0a9eOrKws1q1bx6lTpxg0aFCe+6Snp5+37tfevXvZuHEjxYsXp3z58v/sSRIREa/RFO4iIuLz2rZty5w5c/jhhx9o0KABjRo14s0336RChQoA1K5dmzfeeINXX32VGjVqMGPGDMaNG3fefTRp0oT+/fvTtWtXSpUqxWuvvQbAhAkTKFeuHM2aNaN79+4888wz+bqG66GHHmLq1Kl8/PHH1KxZkxYtWvDJJ59cdF2vdevWUadOHerUqQPAoEGDqFOnDiNHjrzSp0ZERCxgMy880VxERERERESumI5kiYiIiIiIeJCKLBEREREREQ9SkSUiIiIiIuJBKrJEREREREQ8SEWWiIiIiIiIB6nIEhERERER8SAVWSIiIiIiIh6kIktERERERMSDVGSJiIiIiIh4kIosERERERERD1KRJSIiIiIi4kEqskRERERERDzo/wDt0Sk9wmtRPgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -672,13 +802,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/2 completed. Accuracy: 0.89\n", - "Epoch 2/2 completed. Accuracy: 0.79\n" + "Epoch 1/2 completed. Accuracy: 0.84\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/2 completed. Accuracy: 0.94\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNIElEQVR4nOzdd1QUVxvH8e/u0kEQEEXsoti7sRdU7D0ag9HYTYwaY09M7BpN01hi1GiiRmyxxN5rNBqJ3dhQYw0CNkBB2s68fyD7urAgKLKU53MOR5l7Z+e3w7Zn78wdjaqqKkIIIYQQQggh0oXW3AGEEEIIIYQQIjuRIksIIYQQQggh0pEUWUIIIYQQQgiRjqTIEkIIIYQQQoh0JEWWEEIIIYQQQqQjKbKEEEIIIYQQIh1JkSWEEEIIIYQQ6UiKLCGEEEIIIYRIR1JkCSGEEEIIIUQ6kiJLiFd08+ZNNBoNS5cuTdN63t7eeHt7v5FM2V3RokXp1auXuWO8kqdPn9KvXz/c3d3RaDQMHTrU3JHeCI1Gw8SJE19p3az8901vvXr1omjRouaO8UqWLl2KRqPh5s2br7R+Vr7v6WHgwIE0bdrU3DGEGdSqVYvRo0ebO4ZIJ1JkiSwr4Y084cfGxgYPDw+aN2/OnDlzePLkibkjZioHDx402l8ajQYXFxdq1arFihUrzB0v25s2bRpLly7lo48+Yvny5bz//vscPXqUiRMnEhoammE5tm/f/spFkMg+IiMjmThxIgcPHjR3lHQ1bdo0Nm7caO4YAFy8eJGJEyemqdi8ceMGixcv5vPPPzfZfunSJcP7XUa+bmRXoaGhfPDBB7i5uWFvb0+jRo04depUqtZN/H764k/iIvnatWt07twZZ2dn7OzsqFevHgcOHEhym59++inz5s0jKCgoXe6fMC8LcwcQ4nVNnjyZYsWKERsbS1BQEAcPHmTo0KHMnDmTzZs3U7FixTey3SJFivDs2TMsLS3TtN7u3bvfSJ7UGjJkCG+99RYADx8+ZM2aNXTv3p3Q0FAGDRpk1mzZ2f79+6lVqxYTJkwwLPvuu++YNGkSvXr1Infu3BmSY/v27cybN++NFVrPnj3DwuLV3lquXLmCVivf/QEsWrQIRVHe2O1HRkYyadIkgGw1sj5t2jQ6d+5Mhw4dzB2FixcvMmnSJLy9vVM9Mjd79myKFStGo0aNTLb7+fnh7u7O48ePWbduHf369UvHxDmLoii0bt2as2fPMmrUKPLkycOPP/6It7c3J0+epGTJkimuv3z58iTLTpw4wezZs2nWrJlh2Z07d6hduzY6nY5Ro0Zhb2/PkiVLaNasGfv27aNBgwaGvu3bt8fR0ZEff/yRyZMnp9+dFWYhRZbI8lq2bEn16tUNv48ZM4b9+/fTpk0b2rVrx6VLl7C1tU337SZ8m5hWVlZW6Z4lLerXr0/nzp0Nv3/00UcUL16clStX5qgiKyoqCisrqwz7UB8SEkLZsmUzZFuRkZHY2dm99u3ExcWhKEqaHrOv8pxIYG1t/crrZjdp/fJGZH2xsbGsWLGCAQMGmGxXVZWVK1fy3nvvcePGDVasWJFpi6yIiAjs7e3NHSNF69at4+jRo6xdu9bwntilSxe8vLyYMGECK1euTHH97t27J1mWcMRI165dDcu++uorQkND+eeffyhVqhQA/fv3p3Tp0gwbNoyTJ08a+mq1Wjp37syvv/7KpEmT0Gg06XFXhZnIV4YiW2rcuDHjxo3j1q1b+Pn5GbVdvnyZzp074+Ligo2NDdWrV2fz5s1JbiM0NJRhw4ZRtGhRrK2tKViwID169ODBgweA6XOygoKC6N27NwULFsTa2pr8+fPTvn17o8NFTJ2TFRISQt++fcmXLx82NjZUqlSJZcuWGfVJ2N53333HTz/9hKenJ9bW1rz11lv8/fffr7yvrKyscHZ2TjL6EBcXx5QpUwzbKVq0KJ9//jnR0dFG/ZI7Byfx+TUJh3f++eefDB8+3HB4RseOHbl//77RuqqqMnXqVAoWLIidnR2NGjXiwoULSbbx6NEjRo4cSYUKFXBwcMDR0ZGWLVty9uxZo34Jb3yrV69m7NixFChQADs7O86cOYNGo+H7779PcttHjx5Fo9GwatWqZPddTEwM48ePp1q1ajg5OWFvb0/9+vWNDgNJ2PaNGzfYtm2b4XCSXr16MWrUKACKFStmWP7iY8XPz49q1apha2uLi4sLvr6+3LlzxyiDt7c35cuX5+TJkzRo0AA7O7tkDzXq1asX8+bNA4wPdQHjx9esWbMMf/eLFy+m6n4mSPx4mDhxIhqNhmvXrhlG7JycnOjduzeRkZFG677OY0ZRFCZOnIiHh4fhMXPx4sVUn+cVERHBiBEjKFSoENbW1pQqVYrvvvsOVVWT3L/BgwezceNGypcvj7W1NeXKlWPnzp0v3UbCY2HNmjV8/vnnuLu7Y29vT7t27ZL8XV88Lyk2NhYXFxd69+6d5DbDw8OxsbFh5MiRhmUvez25efMmbm5uAIYPcon/bql9nbxw4QKNGzfG1taWggULMnXq1DSNwCXsRxsbG8qXL8/vv/9ust93331HnTp1cHV1xdbWlmrVqrFu3TqjPhqNhoiICJYtW2b0PAO4desWAwcOpFSpUtja2uLq6so777yT5FC+2NhYJk2aRMmSJbGxscHV1ZV69eqxZ88eo34v2z9Lly7lnXfeAaBRo0aGPCkdnnnkyBEePHiAj4+PyfY///yTmzdv4uvri6+vL3/88Qd3795N0k9RFGbPnk2FChWwsbHBzc2NFi1acOLECaN+fn5+1KhRAzs7O5ydnWnQoIHRkRZpfW0/dOgQAwcOJG/evBQsWBBI/X6HlN9znz59ir29PZ988kmS9e7evYtOp2P69OnExsZy+fJl7t27Z3IfvmjdunXky5ePt99+27DMzc2NLl26sGnTpiTvdS8THR3N+vXradiwoeH+Axw+fJgqVaoYCiwAOzs72rVrx6lTp7h69arR7TRt2pRbt25x5syZNG1fZD4ykiWyrffff5/PP/+c3bt3079/fyD+A0HdunUpUKAAn332Gfb29vz222906NCB9evX07FjRyB+koL69etz6dIl+vTpQ9WqVXnw4AGbN2/m7t275MmTx+Q2O3XqxIULF/j4448pWrQoISEh7Nmzh9u3byd7uMizZ8/w9vbm2rVrDB48mGLFirF27Vp69epFaGhokjeVlStX8uTJEz788EM0Gg3ffPMNb7/9Nv/++2+qvv1+8uSJoVB89OgRK1eu5J9//uHnn3826tevXz+WLVtG586dGTFiBMePH2f69OlcunQp2Q9CqfHxxx/j7OzMhAkTuHnzJrNmzWLw4MGsWbPG0Gf8+PFMnTqVVq1a0apVK06dOkWzZs2IiYkxuq1///2XjRs38s4771CsWDGCg4NZuHAhDRs25OLFi3h4eBj1nzJlClZWVowcOZLo6GhKly5N3bp1WbFiBcOGDTPqu2LFCnLlykX79u2TvS/h4eEsXryYrl270r9/f548ecLPP/9M8+bN8ff3p3LlypQpU4bly5czbNgwChYsyIgRIwCoUKECMTExrFq1iu+//97wmEr48Pvll18ybtw4unTpQr9+/bh//z5z586lQYMGnD592ujwwocPH9KyZUt8fX3p3r07+fLlM5n3ww8/JDAwkD179pg81AVgyZIlREVF8cEHH2BtbY2Li0uq7ufLdOnShWLFijF9+nROnTrF4sWLyZs3L19//fVL103NY2bMmDF88803tG3blubNm3P27FmaN29OVFTUS29fVVXatWvHgQMH6Nu3L5UrV2bXrl2MGjWK//77L0kRfuTIETZs2MDAgQPJlSsXc+bMoVOnTty+fRtXV9eXbu/LL79Eo9Hw6aefEhISwqxZs/Dx8eHMmTMmR90tLS3p2LEjGzZsYOHChUYjixs3biQ6OhpfX18gda8nbm5uzJ8/n48++oiOHTsaPmQmHFqd2tfJoKAgGjVqRFxcnKHfTz/9lOojB3bv3k2nTp0oW7Ys06dP5+HDh4YvqRKbPXs27dq1o1u3bsTExLB69Wreeecdtm7dSuvWrYH4w7f69etHjRo1+OCDDwDw9PQE4O+//+bo0aP4+vpSsGBBbt68yfz58/H29ubixYuGkd+JEycyffp0w+2Eh4dz4sQJTp06ZTjPJjX7p0GDBgwZMoQ5c+bw+eefU6ZMGQDDv6YkfLFTpUoVk+0rVqzA09OTt956i/Lly2NnZ8eqVasMX9Yk6Nu3L0uXLqVly5b069ePuLg4Dh8+zF9//WU46mPSpElMnDiROnXqMHnyZKysrDh+/Dj79+83OtQtLQYOHIibmxvjx48nIiIiTfv9Ze+5lStXpmPHjqxZs4aZM2ei0+kM2121ahWqqtKtWzf+++8/ypQpQ8+ePV86KdXp06epWrVqkqMZatSowU8//URAQAAVKlRI9f3fvn07oaGhdOvWzWh5dHQ0zs7OSfon3PfEhyZWq1YNiC+qk3ssiCxCFSKLWrJkiQqof//9d7J9nJyc1CpVqhh+b9KkiVqhQgU1KirKsExRFLVOnTpqyZIlDcvGjx+vAuqGDRuS3KaiKKqqquqNGzdUQF2yZImqqqr6+PFjFVC//fbbFHM3bNhQbdiwoeH3WbNmqYDq5+dnWBYTE6PWrl1bdXBwUMPDw4225+rqqj569MjQd9OmTSqgbtmyJcXtHjhwQAWS/Gi1WvXLL7806nvmzBkVUPv162e0fOTIkSqg7t+/37AMUCdMmJBke0WKFFF79uxp+D3h7+Xj42PYh6qqqsOGDVN1Op0aGhqqqqqqhoSEqFZWVmrr1q2N+n3++ecqYHSbUVFRql6vN9rujRs3VGtra3Xy5MlJ7nvx4sXVyMhIo/4LFy5UAfXSpUuGZTExMWqePHmMtmVKXFycGh0dbbTs8ePHar58+dQ+ffok2R+tW7c2Wvbtt9+qgHrjxg2j5Tdv3lR1Ol2Sv8v58+dVCwsLo+UNGzZUAXXBggUpZk0waNAg1dRLf8Ljy9HRUQ0JCXnl+5n48TBhwgQVSNKvY8eOqqurq9GyV33MBAUFqRYWFmqHDh2Mbm/ixIlJHjOmbNy4UQXUqVOnGi3v3LmzqtFo1GvXrhndPysrK6NlZ8+eVQF17ty5KW4n4XFYoEABw/NaVVX1t99+UwF19uzZhmU9e/ZUixQpYvh9165dJp/nrVq1UosXL274PbWvJ/fv30/2uZva18mhQ4eqgHr8+HHDspCQENXJycnk4zqxypUrq/nz5zf8HVVVVXfv3q0CRvddVdUkz9uYmBi1fPnyauPGjY2W29vbm/x7J15fVVX12LFjKqD++uuvhmWVKlVK8jxNLLX7Z+3atSqgHjhwIMXbS9C9e/ckz4kEMTExqqurq/rFF18Ylr333ntqpUqVjPrt379fBdQhQ4YkuY2E59DVq1dVrVarduzYMcnr54vPs7S+tterV0+Ni4sz6pva/Z6a99yE58COHTuM2itWrGh4T014HXvZc15V4x8riV+XVFVVt23bpgLqzp07X3obL+rUqZNqbW2tPn782Gh527Zt1dy5cxs951VVVWvXrq0C6nfffZfktqysrNSPPvooTdsXmY8cLiiyNQcHB8Msg48ePWL//v106dLFMJrz4MEDHj58SPPmzbl69Sr//fcfAOvXr6dSpUqGb2xflNwx0ra2tlhZWXHw4EEeP36c6ozbt2/H3d3d6BhuS0tLhgwZwtOnTzl06JBR/3fffdfoW7H69esD8aM6qTF+/Hj27NnDnj17WLNmDV27duWLL75g9uzZRpkAhg8fbrRuwijMtm3bUn3/Evvggw+M9mH9+vXR6/XcunULgL179xITE8PHH39s1M/UlOfW1taGbyH1ej0PHz7EwcGBUqVKmZwhqmfPnkm+Ze/SpQs2NjZGMyzu2rWLBw8emDzm/kU6nc4wqqAoCo8ePSIuLo7q1auneoYqUzZs2ICiKHTp0sXwOH3w4AHu7u6ULFkyyWF61tbWJg8lexWdOnUyjKYlSI/7mfg8k/r16/Pw4UPCw8Nfuu7LHjP79u0jLi6OgQMHGq338ccfpyrb9u3b0el0DBkyxGj5iBEjUFWVHTt2GC338fExjJBA/AiQo6Njqp+DPXr0IFeuXIbfO3fuTP78+Q3PO1MaN25Mnjx5jEbvHj9+zJ49e3j33XeN7ktaXk8SS8vr5Pbt26lVqxY1atQwrO/m5pbkm3xT7t27x5kzZ+jZsydOTk6G5U2bNjV57uKLz9vHjx8TFhZG/fr1U/34e3H92NhYHj58SIkSJcidO7fRbeTOnZsLFy4kOYQrQVr2T1o9fPjQ5IgHwI4dO3j48KHR37Vr166cPXvW6FDq9evXo9FojCbYSZDwHNq4cSOKojB+/Pgkozivcw5Q//79jUaYIPX7PTXvuT4+Pnh4eBi9Vv/zzz+cO3fO8FpdtGhRVFVN1aVVnj17ZvI80ITzSp89e/bS20gQHh7Otm3baNWqVZJJjD766CNCQ0N59913OX36NAEBAQwdOtRw+Kap7Tg7OxuOOBFZlxRZIlt7+vSp4cPMtWvXUFWVcePG4ebmZvST8IYUEhICwPXr1ylfvnyatmVtbc3XX3/Njh07yJcvHw0aNOCbb7556VSst27domTJkkne7BIOK0n4IJmgcOHCRr8nvCmntrCrUKECPj4++Pj40KVLF/z8/GjTpg2fffaZ4TyXW7duodVqKVGihNG67u7u5M6dO0mmtHhZ/oTbTjyzk5ubW5IPIIqi8P3331OyZEmsra3JkycPbm5unDt3jrCwsCTbLlasWJJluXPnpm3btkYnOa9YsYICBQrQuHHjl96fZcuWUbFiRcP5G25ubmzbts3k9lPr6tWrqKpKyZIlkzxWL126ZHicJihQoEC6Tahiah/B69/P13ncpvYxk/jx6uLikuyH1hfdunULDw8Po8IHUv8cTMiU2udg4se2RqOhRIkSKU71bWFhQadOnYzOFdmwYQOxsbFGRVZaX08SS8vrZMK2Envx3JPkJPc8T279rVu3UqtWLWxsbHBxcTEc8pjax9+zZ88YP3684Zy7hNeK0NBQo9uYPHkyoaGheHl5UaFCBUaNGsW5c+cM7WnZP69CTXQOYAI/Pz+KFSuGtbU1165d49q1a3h6emJnZ2dUdFy/fh0PDw9cXFyS3cb169fRarXpPhGPqdeO1O731LznarVaunXrxsaNGw3nc65YsQIbGxvD+W9pYWtra/K8q4RDjNMyYdb69euJiooy+QVDy5YtmTt3Ln/88QdVq1alVKlSbNu2jS+//BKI/zI4MVVVZdKLbEDOyRLZ1t27dwkLCzN88Eo4GXvkyJE0b97c5DqJP6Sl1dChQ2nbti0bN25k165djBs3junTp7N///50O7Y68TeFCZJ7c06NJk2asHXrVvz9/Q3nN8Drfaup1+tNLk/P/NOmTWPcuHH06dOHKVOm4OLiglarZejQoSZPvk/uTbNHjx6sXbuWo0ePUqFCBTZv3szAgQNfOvOgn58fvXr1okOHDowaNYq8efMaTsC+fv16mu9PAkVR0Gg07Nixw+T+SvymnJ6zZ5q6rfS4n6/zd38Tj/nXYa48vr6+LFy4kB07dtChQwd+++03SpcuTaVKldJtGxnxOplWhw8fpl27djRo0IAff/yR/PnzY2lpyZIlS146A1yCjz/+mCVLljB06FBq166Nk5MTGo0GX19fo9eKBg0acP36dTZt2sTu3btZvHgx33//PQsWLKBfv35vdP+4urqaLNTDw8PZsmULUVFRJovSlStXGs7zywjJvbabeu1I7X5PrR49evDtt9+yceNGunbtysqVK2nTpo3RaGhq5c+f3+QEGQnLEp/Tm5IVK1bg5OREmzZtTLYPHjyY3r17c+7cOaysrKhcubLhPGgvL68k/UNDQ5M991tkHVJkiWwr4cT+hDfC4sWLA/GHziQ3e1MCT09P/vnnn1farqenJyNGjGDEiBFcvXqVypUrM2PGjCSzHCYoUqQI586dQ1EUow/1ly9fNrS/aXFxcUD8yF/CNhVF4erVq0YnagcHBxMaGmqUydnZOclFMWNiYlI1u5MpCbd99epVw98M4P79+0k+gKxbt45GjRolmbQjrW9QLVq0wM3NjRUrVlCzZk0iIyN5//33X7reunXrKF68OBs2bDD6gGPqUB1TkvtQ5OnpiaqqFCtWzOQb8Ot4lQ9ir3s/37SEx8y1a9eMvk1/+PBhqkaXihQpwt69e3ny5InRaNabeg4mPhRNVVWuXbv20mv6NWjQgPz587NmzRrq1avH/v37+eKLL4z6pPb1JLnHQVpeJ4sUKWLysLorV66kuN6LOVKz/vr167GxsWHXrl1Gh3ctWbIkybrJ3a9169bRs2dPZsyYYVgWFRVl8oK+CTM59u7dm6dPn9KgQQMmTpxIv3790rR/0vpcK126NCtWrCAsLMyoaNiwYQNRUVHMnz8/yevalStXGDt2LH/++Sf16tXD09OTXbt28ejRo2RHszw9PVEUhYsXL6Y4aU16vLandr+n9j23fPnyVKlShRUrVlCwYEFu377N3LlzU53nRZUrV+bw4cNJnivHjx/Hzs4u1a+99+7d48CBA/Tq1SvFy1DY29tTu3Ztw+979+7F1taWunXrGvX777//iImJSXGSFJE1yOGCIlvav38/U6ZMoVixYobh+7x58+Lt7c3ChQtNvkm8OCV0p06dOHv2rMlZ9JL7tjoyMjLJTGaenp7kypUrxalgW7VqRVBQkNG5FnFxccydOxcHBwcaNmyY8p1NB1u3bgUwfCPeqlUrAGbNmmXUb+bMmQBGo12enp788ccfRv1++umnZL/tfBkfHx8sLS2ZO3eu0b5OnAXiRxQS/z3Wrl2b5nMiLCws6Nq1K7/99htLly6lQoUKqbqIdcKIxosZjh8/zrFjx1K13YTryCT+wPH222+j0+mYNGlSkvunqioPHz5M1e2nZZsped37+aY1adIECwsL5s+fb7T8hx9+SNX6rVq1Qq/XJ+n//fffo9FoaNmyZbplBfj1118N54pC/AfRe/fuvXQ7CdfQ2bJlC8uXLycuLs7oUEFI/etJwsxmiR8HaXmdbNWqFX/99Rf+/v5G7S8evpac/PnzU7lyZZYtW2Z02NiePXu4ePGiUV+dTodGozF6Tbl58yYbN25Mcrv29vYmH9umXivmzp2b5HUq8XPLwcGBEiVKGF7D07J/0vpcq127NqqqGl03CeJHkosXL86AAQPo3Lmz0c/IkSNxcHAw7PNOnTqhqqrhQtMvSrj/HTp0QKvVMnny5CSjSS/uo/R4bU/tfk/Le+7777/P7t27mTVrFq6urkbPm7RM4d65c2eCg4PZsGGDYdmDBw9Yu3Ytbdu2NSqYrl+/nuyo/erVq1EUJVXnIiY4evQoGzZsoG/fvklG4RL+/nXq1En17YnMSUayRJa3Y8cOLl++TFxcHMHBwezfv589e/ZQpEgRNm/ebHRx1Hnz5lGvXj0qVKhA//79KV68OMHBwRw7doy7d+8arq80atQo1q1bxzvvvEOfPn2oVq0ajx49YvPmzSxYsMDk4TkBAQE0adKELl26ULZsWSwsLPj9998JDg42TK9sygcffMDChQvp1asXJ0+epGjRoqxbt44///yTWbNmJTlP5HUdPnzYUAwm3KdDhw7h6+tL6dKlgfhiq2fPnvz000+EhobSsGFD/P39WbZsGR06dKBRo0aG2+vXrx8DBgygU6dONG3alLNnz7Jr165XPtTBzc2NkSNHMn36dNq0aUOrVq04ffo0O3bsSHKbbdq0YfLkyfTu3Zs6depw/vx5VqxYYTQCllo9evRgzpw5HDhwIFXTiidsf8OGDXTs2JHWrVtz48YNFixYQNmyZQ2jgilJmKr3iy++wNfXF0tLS9q2bYunpydTp05lzJgx3Lx5kw4dOpArVy5u3LjB77//zgcffGB0XaS0SNjmkCFDaN68OTqdLsXHZ3rczzctX758fPLJJ8yYMYN27drRokULzp49a3jMvGxEoW3btjRq1IgvvviCmzdvUqlSJXbv3s2mTZsYOnSo0SQX6cHFxYV69erRu3dvgoODmTVrFiVKlDBcaiIl7777LnPnzmXChAlUqFAhybfdqX09sbW1pWzZsqxZswYvLy9cXFwoX7485cuXT/Xr5OjRo1m+fDktWrTgk08+MUzhnjCa9jLTp0+ndevW1KtXjz59+vDo0SPmzp1LuXLljB5XrVu3ZubMmbRo0YL33nuPkJAQ5s2bR4kSJZJsp1q1auzdu5eZM2fi4eFBsWLFqFmzJm3atGH58uU4OTlRtmxZjh07xt69e5NMuV+2bFm8vb2pVq0aLi4unDhxgnXr1jF48GBDn9Tun8qVK6PT6fj6668JCwvD2tqaxo0bkzdvXpP7o169eri6urJ3717D+aCBgYEcOHAgyaQsCaytrWnevDlr165lzpw5NGrUiPfff585c+Zw9epVWrRogaIoHD58mEaNGjF48GBKlCjBF198wZQpU6hfvz5vv/021tbW/P3333h4eDB9+nQgfV7bU7vf0/Ke+9577zF69Gh+//13PvroI6NLl6RlCvfOnTtTq1YtevfuzcWLF8mTJw8//vgjer0+SZHapEkTAJPnTa5YsQIPD48k179McOvWLbp06UK7du1wd3fnwoULLFiwgIoVKzJt2rQk/ffs2UPhwoVl+vbsIEPmMBTiDUiYNjbhx8rKSnV3d1ebNm2qzp49O8l0qQmuX7+u9ujRQ3V3d1ctLS3VAgUKqG3atFHXrVtn1O/hw4fq4MGD1QIFCqhWVlZqwYIF1Z49e6oPHjxQVTXpFO4PHjxQBw0apJYuXVq1t7dXnZyc1Jo1a6q//fab0e0mnsJdVVU1ODhY7d27t5onTx7VyspKrVChguF2EyRsz9QU8SQz1e6LTE3hbmVlpZYuXVr98ssv1ZiYGKP+sbGx6qRJk9RixYqplpaWaqFChdQxY8YYTVusqqqq1+vVTz/9VM2TJ49qZ2enNm/eXL127Vqy0/wmnnI/IdeL0xzr9Xp10qRJav78+VVbW1vV29tb/eeff5LcZlRUlDpixAhDv7p166rHjh1Lso8TtrF27doU91G5cuVUrVar3r17N8V+CRRFUadNm6YWKVJEtba2VqtUqaJu3bo1yfTbqmp6CndVVdUpU6aoBQoUULVabZJpr9evX6/Wq1dPtbe3V+3t7dXSpUurgwYNUq9cuWLo07BhQ7VcuXKpyquq8dOxf/zxx6qbm5uq0WgM07mn9PhKy/1M/FhMmML9/v37Rv0SHg8v3t/XeczExcWp48aNU93d3VVbW1u1cePG6qVLl1RXV1d1wIABL90vT548UYcNG6Z6eHiolpaWasmSJdVvv/3WaErrhPs3aNCgJOsnzm5KQu5Vq1apY8aMUfPmzava2tqqrVu3Vm/dumXU19S+VdX4v0WhQoVMTjmfIDWvJ6qqqkePHlWrVaumWllZJfm7pfZ18ty5c2rDhg1VGxsbtUCBAuqUKVPUn3/+OVVTuKtq/GO8TJkyqrW1tVq2bFl1w4YNJu/7zz//rJYsWVK1trZWS5curS5ZssTw2HrR5cuX1QYNGqi2trZGU3k/fvzYsE8cHBzU5s2bq5cvX07yd5s6dapao0YNNXfu3KqtrW2yr4+p3T+LFi1Sixcvrup0ulRN5z5kyBC1RIkSht9nzJihAuq+ffuSXWfp0qUqoG7atElV1fjnwrfffquWLl1atbKyUt3c3NSWLVuqJ0+eNFrvl19+UatUqaJaW1urzs7OasOGDdU9e/YY2l/3tV1VU7/fVfXl77kvatWqlQqoR48eNVqelincVVVVHz16pPbt21d1dXVV7ezs1IYNG5q8H0WKFDH5fLx8+bIKqMOHD09xG+3bt1fd3d1VKysrtVixYuqnn35q8jOKXq9X8+fPr44dOzZV+UXmplFVM505LIQQmUyVKlVwcXFh37595o4i0kFoaCjOzs5MnTo1yblL5nDw4EEaNWrE2rVr6dy5s7njiEzo33//pXTp0uzYscMweiKS6tixI+fPn+fatWvmjpKuNm7cyHvvvcf169fJnz+/ueOI1yTnZAkhBHDixAnOnDlDjx49zB1FvAJT15pJOI8vucN4hMhsihcvTt++ffnqq6/MHSXTunfvHtu2bUvV5ERZzddff83gwYOlwMom5JwsIUSO9s8//3Dy5ElmzJhB/vz5k0wkILKGNWvWsHTpUlq1aoWDgwNHjhxh1apVNGvWLMnsXUJkZokncBHxbty4wZ9//snixYuxtLTkww8/NHekdJdZJhMS6UOKLCFEjrZu3TomT55MqVKlWLVqldFEKSLrqFixIhYWFnzzzTeEh4cbJsOYOnWquaMJIdLBoUOH6N27N4ULF2bZsmW4u7ubO5IQKZJzsoQQQgghhBAiHck5WUIIIYQQQgiRjqTIEkIIIYQQQoh0JEWWEEIIIYQQQqQjKbKEEEIIIYQQIh1JkSWEEEIIIYQQ6UiKLCGEEEIIIYRIR1JkCSGEEEIIIUQ6kiJLCCGEEEIIIdKRFFlCCCGEEEIIkY6kyBJCCCGEEEKIdCRFlhBCCCGEEEKkIymyhBBCCCGEECIdSZElhBBCCCGEEOlIiiwhhBBCCCGESEdSZAkhhBBCCCFEOpIiSwghhBBCCCHSkRRZQgghhBBCCJGOpMgSQgghhBBCiHQkRZYQQgghhBBCpCMpsoQQQgghhBAiHUmRJYQQQgghhBDpSIosIYQQQgghhEhHUmQJIYQQQgghRDqyMHeAzE5RFAIDA8mVKxcajcbccYQQQgghhBBmoqoqT548wcPDA602+fEqKbJeIjAwkEKFCpk7hhBCCCGEECKTuHPnDgULFky2XYqsl8iVKxcAd375BUc7OzOnEUJkGydPArCDFqy5Vp0SJaBaNTNnEkIIIUSKIiPD6dOnkKFGSE6WK7LmzZvHt99+S1BQEJUqVWLu3LnUqFHjpeutXr2arl270r59ezZu3Jjq7SUcIuhoZydFlhAi/VhbA2CHA5aWjlhbg7zECCGEEFnDy04jylITX6xZs4bhw4czYcIETp06RaVKlWjevDkhISEprnfz5k1GjhxJ/fr1MyipEEIIIYQQIqfKUkXWzJkz6d+/P71796Zs2bIsWLAAOzs7fvnll2TX0ev1dOvWjUmTJlG8ePEMTCuEEEIIIYTIibJMkRUTE8PJkyfx8fExLNNqtfj4+HDs2LFk15s8eTJ58+alb9++qdpOdHQ04eHhRj9CCCGEEEIIkVpZ5pysBw8eoNfryZcvn9HyfPnycfnyZZPrHDlyhJ9//pkzZ86kejvTp09n0qRJrxNVCCGEEEKIV6Ci1cah0eiRKwdlPFUFVdWhKBbA6/0BskyRlVZPnjzh/fffZ9GiReTJkyfV640ZM4bhw4cbfg8PD5cp3IUQQgghxBul1cbg6HgPW9tIKbDMSFXh2TM7wsPzoyhWr3w7WabIypMnDzqdjuDgYKPlwcHBuLu7J+l//fp1bt68Sdu2bQ3LFEUBwMLCgitXruDp6ZlkPWtra6yfz/olhBBCCCHEm6eQJ88NHBx0ODt7YGFhxeuOpIhXoRIXF8Pjx/exsrpBSEhJXvXsqixTZFlZWVGtWjX27dtHhw4dgPiiad++fQwePDhJ/9KlS3P+/HmjZWPHjuXJkyfMnj1bRqeEEEIIIUSmoNPFYGGhkCdPIayt5Xoe5mRlZYtOZ0lU1C10uhj0eptXup0sU2QBDB8+nJ49e1K9enVq1KjBrFmziIiIoHfv3gD06NGDAgUKMH36dGxsbChfvrzR+rlz5wZIslwIIYQQQghzSTg8UKNJnznpNJr4n/hzjNLlJnOUhL/D6xy2maWKrHfffZf79+8zfvx4goKCqFy5Mjt37jRMhnH79m202iwzYaIQQuAfkNvcEYQQQmQDGg1YWoK1LhadtaVhuT46lmi9JbGxUnBlpCxVZAEMHjzY5OGBAAcPHkxx3aVLl6Z/ICGESAt/fwgIYEtgVfwetiTQ1QsPD3OHEkIIkZVZWIC9TVz8L+s3wLp18PgxODuj7dwZ206dsLWCiCgL4uLMmzWnyHJFlhBCZFl+fmwJrIo/AwjACyoUwNsLatQwdzAhhBBZlYUF2NspsHM3mj59INEkcZp16yBfPtRffsG+RQsiIrVmKbScnTX4+f1O69YdMn7jZiDH1gkhxJvm78+Wby4yLnAAfnTnII3w8i5A9+5SYAkhhHh1Gs3zEaydO9G0a5ekwDIIDo5v37kTe5u4dJ8iPjg4iNGjP6Zy5eLky2dNuXKF8PVty6FD+9J3Q69IVVWmTRtP6dL5yZ/flg4dfLh+/eob3aYUWUIIkRE8CoB3fHHl7S3FlRBCiNdn+fzUK02fPqDXp9xZr0fTt6/Reunh9u2bNGpUjcOH9zN58rf8+ed51q3bSf36jRg1alD6beg1zJ79DQsXzmHmzAXs2XMcOzt7OnVqTlRU1BvbphRZQgghhBBCZEHWulhYvz75EazEgoJgw4b49dLJiBED0Wg07N3rT7t2nShRwosyZcoxaNBw9uz5K9n1Jkz4lOrVvfDwsKNy5eJ8+eU4YmP/n+v8+bO0bduIQoVyUbiwI97e1Th9+gQAt2/fwte3LUWLOlOggD21a5dj9+7tJrejqioLFsxi5MixtGrVnvLlKzJ//q8EBQWybdvGdNsPick5WUIIIYQQQmRCz68+lALL+Eku0kCzbh26Ll3IbZ18n9DQ1N3W48eP2LdvJ2PHfom9vX2Sdien3MmumytXLubNW0r+/B5cuHCeoUP74+CQi08+GQ3ABx90o2LFKsyYMR+dTsf582ewsIgfghs1ahCxsTFs2/YH9vb2XL58EXt7B5PbuXXrBsHBQXh7+7yQy4lq1Wry99/H6NTJN3V3No2kyBJCCCGEECKrevz4zfZPwb//XkNVVby8Sqd53ZEjxxr+X7hwUa5dG8mGDasNRdZ//91myJBRhtv29Cxp6H/37m3atetEuXIVAChatHiy2wkODgLAzS2f0fK8efMREhKU5typJUWWEEIIIYQQmVBKI0oaDTg5Ac7OabvR5/3Dwl7/ulnqa9zAhg1rWLhwDjdvXici4ilxcXHkyuVoaB84cDhDhvRjzZrlNGzoQ4cO71CsmCcAH344hBEjPmL//t14e/vQtm0nypev+Hp3Jp3JOVlCCCGEEEJkMaoaf6FhtXPntK3XuXP8eulwYWJPz5JoNBoCAi6naT1//2N88EE3mjZtxerVWzl06DQjRnxBTEyMoc9nn03k2LELNGvWmsOH91OrVlm2bv0dgB49+nH69L+8++77XLx4nsaNq/PTT3NNbitfPncA7t83Pm8tJCSYvHnd05Q7LaTIEkIIIYQQIguK1ltCp06QL9/LOwO4u8Pbb8evlw6cnV1o3Lg5P/88j4iIiCTtYWGhJtfz9z9KoUJFGDnyC6pUqY6nZ0nu3LmVpF+JEl4MHDiMDRt206bN26xYscTQVrBgIfr0GcDy5RsYNGgEy5YtMrmtIkWKkS+fu9F08uHh4Zw8eZy33qqdxnucelJkCSGEEEIIkQUlTMan/vIL6HQpd9bpUH/+2Wi99PDdd/PQ6/X4+NRg8+b1XL9+lStXLrFw4RyaNTNdxBQvXpK7d2+zfv1qbty4zsKFcwyjVADPnj1j1KjBHDlykNu3b/HXX39y+vTfeHmVAWDMmKHs27eLW7ducPbsKY4cOUCpUmVMbkuj0TBgwFC++24q27dv5sKF83z0UQ/c3T3e6IWR5ZwsIYQQQgghsiBVhYgoC+xbtEDdvDn+OlhBJiZzcHePL7BatCAiUpsuhwomKFq0OAcPnmLGjC8ZO3YEwcH3yJPHjUqVqjFjxnyT67Rq1Y6PPhrG6NGDiYmJpmnT1owaNY6vvpoIgE6n49GjhwwY0IP794Nxdc1DmzZvM2bMJAD0ej2jRg0iMPAuuXI50qRJC6ZN+z7ZjJ98MprIyAiGDfuAsLBQatWqx7p1O7GxsUm/HZGIRn2dM9ZygPDwcJycnAhbvRpHOztzx8mRrt+7x8nr17HQamlYvjyujo4vX0mIzMTfny0BpfD36m5YJBcjFkIIkcDCIoq8eW9QqFAxrKzS/sHfwgLsbeLif9mwAc26dfGzCDo7x5+z9fbbQHxBFheXnsmzp5iYKO7cuUFISDHi4oz/HpGR4fj6OhEWFoZjCp9JZSRLZFqBDx/Sf84ctp8+bVhmrdPRp2lTZvbrh42VlRnTCSGEEEJkDnFxEB5hgaUlWLfviK5LF0ObEh1LdIwFL8wpITKAFFkiU3r05AkNP/2UqAcPWAq0AyKB5Xo9k3bt4s79+2waNw6tVk4rFEIIIYRQVYiJgRgs0UTFT/GuqqCq6TPJhUgbKbJEpjRv2zYCHzzgvKKQcHk5Z+AzoIyq0uHkSfafO4dP5crmCynEy/j7Q0AAWwKr4vewIoGB4OEBXl7mDiaEECI7iy+uzJ0iZ5MiS2RKy/bsoesLBdaL2gHltFqW7tsnRZbIvPz82BJYFX8GEIAXVCiAt5eciyWEEELkBFJkiUzpXmgo5ZNp0wDlFYV7Dx9mZCQhUsffny0HHQzFVSAF8PaW4koIIYTISeSEFpEp5c+dm3+SaVOB81ot+V1dMzKSEC/3/PBAvBvF/3hIgSWEEELkRFJkiUypV7NmrNJq+ddE22bgoqLQq0mTjI4lxMslOuFKCiwhhBAZTaMBrTb+X2EeUmSJTGlQ69Z45MlDA62WJcAj4C4wDfDVaGhTrRqNK1Y0b0ghhBBCiExCowErK7C1BScncHSM/9fWNn65FFwZS4oskSk5Ozhw6OuvqVy5Mn0BV6AQMMXCgj4tWrB2zBiZvl0IIYQQgucXI7aPL6Y2boR33gEfn/h/N26MX25vH99PZAzZ1SLT8nB1ZevEifwbFMSJa9ew1OloUK4crilcXVsIIYQQIiexsAA7O9i5E/r0geBg4/Z16yBfPvjlF2jRAiIj4y9enNGcnTX4+f1O69YdMn7jZiBDASLTK+7uTpd69ehYu7YUWEIIIYQQz2k0YGMTX2C1a5e0wEoQHBzfvnNnfP/0PnQwODiI0aM/pnLl4uTLZ025coXw9W3LoUP70ndDr2jLlg28/XYzihd3xdlZw/nzZ974NqXIEkIIIYQQIguytIz/t08f0OtT7qvXQ9++xuulh9u3b9KoUTUOH97P5Mnf8uef51m3bif16zdi1KhB6beh1xAREUGtWvWYOPHrDNumFFlCCCGEEEJkQTodrF+f/AhWYkFBsGFD/HrpZcSIgWg0Gvbu9addu06UKOFFmTLlGDRoOHv2/JXsehMmfEr16l54eNhRuXJxvvxyHLGxsYb28+fP0rZtIwoVykXhwo54e1fj9OkTANy+fQtf37YULepMgQL21K5djt27tye7LV/f9xk9ejze3j7pd8dfQs7JEkIIIYQQIhPKnfvlfdatS9ttrlsHXbqAtXXyfUJDU3dbjx8/Yt++nYwd+yX29vZJ2p2ccie7bq5cuZg3byn583tw4cJ5hg7tj4NDLj75ZDQAH3zQjYoVqzBjxnx0Oh3nz5/BwiJ+CG7UqEHExsawbdsf2Nvbc/nyReztHVIXOoNIkSWEEEIIIUQW9fjxm+2fkn//vYaqqnh5lU7zuiNHjjX8v3Dholy7NpING1Ybiqz//rvNkCGjDLft6VnS0P/u3du0a9eJcuUqAFC0aPHXuRtvhBRZQgghhBBCZEIpjShpNPHXwXJ2TtttJvQPCwNVfeVoAKivcQMbNqxh4cI53Lx5nYiIp8TFxZEr1/8nOBs4cDhDhvRjzZrlNGzoQ4cO71CsmCcAH344hBEjPmL//t14e/vQtm0nypfPXNdPlXOyhBBCCCGEyGJUFaKjoXPntK3XuXP8eq9bYEH86JJGoyEg4HKa1vP3P8YHH3SjadNWrF69lUOHTjNixBfExMQY+nz22USOHbtAs2atOXx4P7VqlWXr1t8B6NGjH6dP/8u7777PxYvnady4Oj/9NPf171A6kiJLCCGEEEKILEivh06d4q+DlRru7vD22y+fiTC1nJ1daNy4OT//PI+IiIgk7WFhoSbX8/c/SqFCRRg58guqVKmOp2dJ7ty5laRfiRJeDBw4jA0bdtOmzdusWLHE0FawYCH69BnA8uUbGDRoBMuWLUqfO5VOpMgSQgghhBAiC0qYjO+XX14+Y6BOBz//bLxeevjuu3no9Xp8fGqwefN6rl+/ypUrl1i4cA7NmtU2uU7x4iW5e/c269ev5saN6yxcOMcwSgXw7NkzRo0azJEjB7l9+xZ//fUnp0//jZdXGQDGjBnKvn27uHXrBmfPnuLIkQOUKlUm2YyPHz/i/PkzXL58EYCrV69w/vwZgoOD0m9HJCJFlhBCCCGEEFmQqkJUFLRoAZs3x49UmeLuHt/eokV8//Q4VDBB0aLFOXjwFPXqNWLs2BHUqVOet99uyqFD+5gxY77JdVq1asdHHw1j9OjBNGhQmePHjzJq1DhDu06n49GjhwwY0IO33vKiT58u+Pi0ZMyYSQDo9XpGjRpEzZpl6Ny5BZ6eXnz33Y/JZtyxYzMNGlTh3XdbA9C3ry8NGlRhyZIF6bcjEtGor3PGWg4QHh6Ok5MTYatX42hnZ+44QojMyt8fAgLYQlv8qcHBQC88PKB7d3MHE0IIkdlZWESRN+8NChUqhpWVzSusDzbPV9uwIX6a9seP4ye56Nw5/hBBiC+w4uLSMXg2FRMTxZ07NwgJKUZcnPHfIzIyHF9fJ8LCwnB0dEzmFmR2QSGEeH1+fmwJrIo/AwjAi0AK4O0NNWqYO5gQQoicIC4OIiLA0hLat4+/DlaC6GiIiYn/ERlHiiwhhHhV/v5sOehgVFx5eMBoGb0SQgiRwVT1/4VUVFT8FO+qmr6HBorUkyJLCCFexfPDA/EeQUBA/JCVt5eMXgkhhDA/Ka7MTya+EEKIV+XlZfRfKbCEEEIIAVJkCSGEEEIIYVYJo04yH13mkPB3eJ0/hxRZQgghhBBCmJGiWKIoEBMTae4ogvi/g6LE/11elZyTJYQQQgghhBmpqo6nT3Pz4EEIAFZWdmg0GjOnynlUVSUmJpIHD0J4+jQ3qvqSKzynQIosIYQQQgghzOzp0/grCcfFhaCVY83MRlHg6dPchr/Hq5IiSwghhBBCCLPT8PRpfiIi8qLVxiIDWRlPVeMPEXydEawEUmTlMNfv3eOrdet4EB5O+SJF+KJLF2ysrMwdSwghhBBCEH/ooF7/+h/yhXlJkZVDxMXF4f3FFxy7dAkVsAY2Hj/ON2vXMubdd5n43nvmjiiEEEIIIUS2IEd85hD1PvuMo5cu8TkQBDwDzgA+qsrk1auZuXGjOeMJIYQQQgiRbUiRlQOcu3ED/4AAJgJTgLzPl1cCNgE1gCkrV5opnRBCCCGEENmLFFk5wNTffkMHfGyizQIYBoRGRfHnpUsZG0wIIYQQQohsSIqsHOB+WBjOgHMy7SWe/3szODiDEgmRxfn7Q0AAWwJK4R+Qm8BAcwcSQgghRGYiE1/kAJ7583Pon3+4DRQ20X4C0ACVihbN0FxCZEl+fmwJrIo/AwjAi0AK4O0NNWqYO5gQQgghMgspsnKAqd27s3TPHiYCPxNfUCUIBb4G3J2cKC9FlhDJ8/dny0EHo+LKwwNGdzd3MCGEEEJkNlnucMF58+ZRtGhRbGxsqFmzJv7+/sn2XbRoEfXr18fZ2RlnZ2d8fHxS7J9duTs7071xY5YA7YB9wDXgV+InvbgDLP7kEzMmFCKTSyiwPDoS4NEIPOJHr7pLgSWEEEIIE7JUkbVmzRqGDx/OhAkTOHXqFJUqVaJ58+aEhISY7H/w4EG6du3KgQMHOHbsGIUKFaJZs2b8999/GZzc/JYOHcrQdu3Yp9PhA5QEegKhDg6s/+ILWlWvbuaEQmRyHgXAywsvL/DyksMDhRBCCJE8jaqqqrlDpFbNmjV56623+OGHHwBQFIVChQrx8ccf89lnn710fb1ej7OzMz/88AM9evRI1TbDw8NxcnIibPVqHO3sXit/ZqAoCmsOH+be48fULFWKumXKmDuSEJmfv3/8JBde/x+6kiJLCCGEyHkiI8Px9XUiLCwMR0fHZPtlmXOyYmJiOHnyJGPGjDEs02q1+Pj4cOzYsVTdRmRkJLGxsbi4uCTbJzo6mujoaMPv4eHhrx46E9JqtXRt2NDcMYQQQgghhMi2sszhgg8ePECv15MvXz6j5fny5SMoKChVt/Hpp5/i4eGBj49Psn2mT5+Ok5OT4adQoUKvlVsIIYQQQgiRs2SZIut1ffXVV6xevZrff/8dGxubZPuNGTOGsLAww8+dO3cyMKUQQgghhBAiq8syhwvmyZMHnU5HcKIL5gYHB+Pu7p7iut999x1fffUVe/fupWLFiin2tba2xtra+rXzCiGEEEIIIXKmLDOSZWVlRbVq1di3b59hmaIo7Nu3j9q1aye73jfffMOUKVPYuXMn1WUGPSGEEEIIIcQblmVGsgCGDx9Oz549qV69OjVq1GDWrFlERETQu3dvAHr06EGBAgWYPn06AF9//TXjx49n5cqVFC1a1HDuloODAw4ODma7H0IIIYQQQojsK0sVWe+++y73799n/PjxBAUFUblyZXbu3GmYDOP27dtotf8fnJs/fz4xMTF07tzZ6HYmTJjAxIkTMzK6EEIIIYQQIofIUkUWwODBgxk8eLDJtoMHDxr9fvPmzTcfSAghhBBCCCFekGXOyRJCCCGEEEKIrECKLCGEEEIIIYRIR1nucEHx6u4+eMDQxYvZd+oUsbGx5HJwoF/z5kzw9cXCQh4KQgghhBBCpAcZycoh/rx0iZL9+vH70aM0iIqin15P/rAwpv72G8X79SMqJsbcEYUQQgghhMgWpMjKARRFodW4cbgpCleATcAs4BSwDgh89IjWkyaZM6IQmZe/PwQEGH594b9CCCGEECbJMWI5wKJduwiPiWENUCJRWyfgQ2DR+fM8jYzEwc4u4wMKkVn5+bElsCr+DCAALwIDwdsbatQwdzAhhBBCZGZSZOUA648dIxfQLJl2X+BHYOepU3SuVy/jggmRWT0fvRoX+Ly4ogAeHjC6u7mDCSGEECIrkCIrB1BVFU0K7QnHjCoZEUaIzOx5cbUlsCr+HlM4iBceHuDtJaNXQgghhEg9OScrB2hXowbhwL5k2n8DLIEWVatmXCghMisvL/BuBF7xBVb37lJgCSGEECJtpMjKAQa1bo2DpSUfArcStW0j/lDB2uXK4SjnYwkhhBBCCPHapMjKAbRaLVsmTiRQo6EE8C7wKVAHaAO4OTmxY8IEs2YUQgghhBAiu5AiK4fwrlCBSwsX0rx6dXZYWjJXq+WagwPD27fn5s8/Y2djY+6IQgghhBBCZAsy8UUOUszdna3jx5s7hshkFEVhz5kzHLl4EY1GQ6MKFfCuUAGNJqXpUoQQQgghRHKkyBIiB7t05w5vT53K5Xv38NDp0ANT1qyhUuHC/D52LMXc3c0dUQghhBAiy5HDBYXIoe6HhdHk88/RBQfzJ3BXr+eeXs9+IOLuXZp8/jnhkZHmjimEEEIIkeVIkSVEDvXTrl2EhoezR1GoA2ie/zQCdikKtx884Nf9+80bUgghhBAiC5IiS4gc6rdDh+isquQ30VYcaA2sOXQog1MJIYQQQmR9UmQJkUOFRURQMIX2QkB4RERGxRFCCCGEyDakyBIih/IqWJDDWtMvASrwh1ZLyYIplWFCCCGEEMIUKbKEyKH6t2jBEUVhk4k2P+C8ovBBy5YZHUsIIYQQIsuTKdyFyKHerl2bt2vWpLO/P31VlXcABVgFLAN6NmpE08qVzZoxQ/n5sSWwKv7UIIACBALe3uYOJYQQQoisSIosIXIonU7H6k8/5ZsNG/hxyxYWhoUBUNjFhW/at2dY+/Y544LE/v4QEMC4wAEE4EUgBfDwgNHdzR1MCCGEEFmVFFk5jKqqXL57l8dPn1I0b148XF3NHUmYkaWFBV906cLot9/m36AgNBoNnu7u6HQ6c0d7854XV1sCq+LHTENx5e0FNWqYO5wQQgghsjIpsnKQTX/9xfjlyzl35w4AWo2G1tWqMaNfP0p6eJg5nTAnSwsLSuXESS68vPCnI15eBfBCiishhBBCpA+Z+CKHWH7gAB2mTcP97l22AueB+arKxVOnqDNiBFcDA80dUQghhBBCiGxBiqwcICIqio/nz6c7sFNVaQ2UBz4AjisKuZ4947OlS82aUQghhBBCiOxCiqwcYP3Ro4RHRTEFSDyNgSswUlHYdPw4IaGhGR9OCCGEEEKIbEaKrBzgRnAw7jodRZNprwnoVZU7Dx5kYCohhBBCCCGyJymycgCXXLl4qCiEJdN+I6Gfg0NGRRJCCCGEECLbkiIrB+hUuzaKRsOPJtr0wGyNhlolSlDM3T2jowkhhBBCCJHtSJGVA3i4uvJxmzaMBaYCj54vvwS8AxwFJr//vrniCSGEEEIIka3IdbJyiG9790ar1TJ582YmqSq5NBoeKwpuDg6sHTyYplWqmDuiEEIIIYQQ2YIUWTmETqfjuz59GP322/z+11+ERkTg6e5O2xo1sLa0NHc8IYQQQgghsg0psnKYvLlz82GLFuaOkWo7T57kh61b+fvKFSx0OppXr84n7dpRqVgxc0cTQgghhBDCJDknS2Rany1bRstJkwg8fZpBT5/yflgYew8epPqwYaw9csTc8YQQQgghhDBJiiyRKW39+2++Xr+eGcBJRWE88BVwXa/nHUWh+4wZ3JXregkhhBBCiExIiiyRKc3ZtImaWi3DAc0Lyy2BBYCVqrJo927zhBNCCCGEECIFUmSJTOmvK1foqCgm2xyBporCsUuXMjaUEEIIIYQQqSATX4hMSafVEpNCexRgodNlVByR3fj7s+WgA/7UIAB7ALy8zJxJCCGEENmGjGSJTKlplSqs1OkwNZYVBOzVaPCpXDmDU4ksz98f/PwYt74SfnTnII3AowBeXlCjhrnDCSGEECK7kJEskSkN69CBukePMgj4HrB5vvw+0EWjwcHWll5NmpgvoMha/P0hIIAtgVXxe/gFga4V8fAAbymuhBBCCPEGSJElMqXapUvz0+DBfDhvHms1GporCpHADo0GO1tbtk6YgEuuXOaOKbKQLbTF36MGXt5eeCHFlRBCCCHeHCmyRKbVr1kzGpYvz4IdO/C/fBlLCwsmV69On6ZNyePoaO54IiuSE6+EEEIIkQGkyBKZWn5nZ0oVKEBYZCQWOh1eBQqQ297e3LFSdO7GDfwOHuR+eDiF3dzo1bgxxdzdzR0rWwn47z+W7d9P4KNH5Hd2pkfjxpQuWNDcsYQQQgghACmyRCa25/Rpunz1FeHPnlFVpyMSWLhzJ6Xc3dk2aRKe+fObO6KRmNhY+syezYo//iCfTkcxYKOqMmX1akZ36sT0Hj3QaDQvvR2RPEVR+GTRIn7Ytg1XrRYvYCswfd06PmzenHkDBqCTWSeFEEIIYWYyu6DIlC7duUP7qVOpFRXFDeBvvZ4Lej1/A0pICM3GjiUyOtrcMY0M//ln1h4+zC/AHb2eY3o9/ykKXwJfr1/PrM2bzR0xy5uyZg3ztm1jFnBXUTiqKNxVFH4AFu3axfiVK82cUAghhBBCiiyRSX2/aRPOej0bVJXCLyyvDmxRFP69f581hw+bK14SIaGh/LRzJ5NVld6A5fPldsAYoD/wzdq1xMbFmS1jVhcRFcX3v//OcOAT/j/jpDUwCPgUmLNpE+GRkeaKKIQQQggBSJElMqmNR4/SQ1GwNdFWCvDWaNh47FhGx0rW9pMniVUU+ifT/gEQFB7O8YCAjIyVrRw8f56wqCg+SKb9A+BpTAz7z53LyFhCCCGEEElIkSUypciYGNxSaHdTVSKjojIsz8tERkejA5yTaXd7oZ94NQn7LrnHhexjIYQQQmQWWa7ImjdvHkWLFsXGxoaaNWvi7++fYv+1a9dSunRpbGxsqFChAtu3b8+gpOJ1lC9cmD3JTBIRDRzUailfrFjGhkpBhSJF0AMHk2nfDWg1GsoWKpRxobKZ8kWKALAnmfbdCf0KF06mhxBCCCFExshSRdaaNWsYPnw4EyZM4NSpU1SqVInmzZsTEhJisv/Ro0fp2rUrffv25fTp03To0IEOHTrwzz//ZHBykVYftW7NTlUl8VQRKjAZuK8ofNC8uRmSmVavbFnKFSjAp1otTxK1BQJfarW0qV6dgnnymCNetlCmUCEalinDeK2WB4naHgHjtFpqlyxJxUxUfAshhBAiZ8pSRdbMmTPp378/vXv3pmzZsixYsAA7Ozt++eUXk/1nz55NixYtGDVqFGXKlGHKlClUrVqVH374IYOTi7Tq7u1Np1q1eFuj4T1gDbAEaKzVMg34qmdPymSiUSGNRsPS4cO5YmVFBa2Wr4ANwFigklaL3smJOR9+aOaUWd/Cjz/msb09FbVaJhG/j6cAFbRagmxtWfzJJ2ZOKIQQQgiRhYqsmJgYTp48iY+Pj2GZVqvFx8eHY8lMgHDs2DGj/gDNmzdPtj9AdHQ04eHhRj8i4+l0OlZ/+ikz+vblRL58+AJ9gNiSJdkwZgyfdupk7ohJVC9ZkuMzZ9KwYUMmWljQCZhjbY1vy5YcnzmTInnzmjtilleqYEH8v/+etk2b8o2lJZ2A6ZaWtGrSBP/vv6esHCoohBBCiEwgy1yM+MGDB+j1evLly2e0PF++fFy+fNnkOkFBQSb7BwUFJbud6dOnM2nSpNcPnEnFxsXx56VLPH76FE9390x9aJWFTscn7doxpG1bQiMisNTpcLA1Nd9g5lG6YEF+GTKEXk2acOf+fUoVLEgNL69MfxHig+fOMX/nTjQaDcPbtaNGqVLmjpSsInnzsnDQIH748EPCIyNxtLPD0iLLvJQJIYQQIgeQTyaJjBkzhuHDhxt+Dw8Pp1AmOiztdSzatYuJfn4EhoUZltXw9GTewIFUL1nSjMlSptFocHZwMHeMVFlz+DBjlizhxoP/nzVUsVAhZg8YgHeFCmZMZto/t25RZ9QonkZFoT5ftvbwYRzt7Dg1ezbFEn1JkZlYWljg6uho7hhCCCGEEElkmcMF8+TJg06nIzg42Gh5cHAw7u7uJtdxd3dPU38Aa2trHB0djX6yg9mbN/PBvHk0DgvjbyAE2AjE3biB95gxnPn3X/MGzAb8DhzA99tvqfTgAX8Sv493Ak5379Js3DgOZbIJV4IePaLakCEQFcUM4A5wE5gGREdGUubDD3n67JlZMwohhBBCZEVZpsiysrKiWrVq7Nu3z7BMURT27dtH7dq1Ta5Tu3Zto/4Ae/bsSbZ/dhX69CmfL1vGYGA5UJ34awq1B/5QFIrGxfH5smVmzZjVRcfGMmLRIroSPxlDHeL3cXNgr6rylqoyctEis2ZMrOO0acSqKvuBYUBBoAjwKbAdiFYUfL/91pwR04e/P1sOOuAfWICAAJDrQQshhBDiTctShwsOHz6cnj17Ur16dWrUqMGsWbOIiIigd+/eAPTo0YMCBQowffp0AD755BMaNmzIjBkzaN26NatXr+bEiRP89NNP5rwbGW7d0aNEx8YyxkSbPTBcUeh3+jSBDx/i4eqa0fGyhR0nTxLy9CnjgMRnX1kBn6kq7W7c4J9btwzXezK301ev0pL4ojsxb6A2sPf06QzNlK78/SEggHHn3yHAtTaBFMAD8PKCGjXMHU4IIYQQ2VmWKrLeffdd7t+/z/jx4wkKCqJy5crs3LnTMLnF7du30Wr/PzhXp04dVq5cydixY/n8888pWbIkGzdupHz58ua6C2bx38OH5NXp8NDrTbZXIv76U/ceP5Yi6xX99/AhlhoNZVTVZHul5//effAg0xRZqqpSOYX2qsCpZB4zmdrz4mpLYFX8GcBB10Z4eIC3FFdCCCGEyCBZqsgCGDx4MIMHDzbZdvDgwSTL3nnnHd555503nCpzy5c7N/cVhfvEH8KW2KUX+olX4+7sTKyqcg0oYaL90gv9Mg2NhovJFIUAFwC0WeaI4ngJBRZt8feoQQBeUlwJIYQQIsNlsU9Q4lW8U7cuOq2WGSbaooGZWi2Ny5enYJ48GR0t22hVrRoudnZ8ZaJND3yj0VCxUCEqZaIp88sVK8ZmnhdTifgDB4G6WXHU18vr/z9IgSWEEEKIjCdFVg7g6ujIWF9fvgY+Bq4BscAhoJlGw0WNhi979DBrxqzO1tqaL3v25GegF/GFSxxwHGin0XAQ+KpPn0x1vaz1Y8agAxoCvwBPgTBgAdAUsNJoWD1qlBkTCiGEEEJkTVJk5RBfdOnCN7164WdrS0niJ2PwBoLz5WPn5MnUKl3avAGzgQEtW7Jw4EC2OzhQHrAEagEXXVzY+MUXtKxWzcwJjRXLl4+906cTaWFBXyAXkBsYCOgtLfl71izcnJzMmlEIIYQQIivSqGoKJ2UIwsPDcXJyImz1ahzt7Mwd57VFRkez69QpHj99SkkPD+qVLZupRleyg+jYWPacOcP9sDAKu7nhXb48Op3O3LFS5HfgAD/v3o1Gq+XjNm3omFUvc+DvDxB/ThY1CAiA7t3NnEkIIYQQ2UZkZDi+vk6EhYWleD3dLDfxhXh1Af/9x7cbNrDmjz94Eh1NERcX+rdqxSdt2+Jga2vueNmGtaUlbd56y9wxUkVRFEYtWcIvu3YRGhUFwLnr1zn9779M7tbNzOmEEEIIIbImKbJyiL8uX6bZuHE4xsYyVFEoCvz56BFTV6xgw5Ej7J8+HSd7e3PHFBms1qhR/H31Kg2Ad4mfpGNFZCRT1qzh2OXL7JkyxcwJhRBCCCGyHjknKwfQ6/V0/fprKsTGcklRmAz0AX4G/lJVrt++zefLl5s5pcho327YwN9XrzKT+ElQBhI/McoxYCKw9+xZlu3bZ8aEQgghhBBZkxRZOcCOU6e4+fAhsxWFXInaKgGfKAq/7t3Lk8hIc8QTZjJ70ybKAEMTLdcAY4ECwNQ1azI6lhBCCCFElidFVg5w+vp18up0VE+mvTXwNCaGa/fuZWQsYWaPQkNpR3xRlZgOaAsEPXiQsaGEEEIIIbIBKbJyAGtLSyJVlZhk2sNe6CdyDo1Wa/jbmxIKaLXyEiGEEEIIkVbyCSoHaFW9Ok8VhXXJtP8CeObNS+mCBTMyljCzMsWKsZL4ixAn9hD4HaheqlTGhhJCCCGEyAakyMoByhcpQptq1Ris1bIHSLgwWjQwHVgNjO7cWUYtcpiZffoQAXQAXjxQ9Dbxhwrqgdn9+5sh2evZElAK/4DcBASYO4kQQgghcir5VJ1DLB8xggqlStEMKKfV0hIopNXyOfD5O+/Qv3lzMycUGa1B+fJ83bs3B4FCQEOgHlAU+BuYP2gQ5YsWNVu+NPH3Bz8/xq2vhF9gIw4GegHg5WXmXEIIIYTIkTSqqqov75ZzhYeH4+TkRNjq1Tja2Zk7zmtRFIW9Z8+y+o8/CI2IwDN/fvo1bUopOUwwR7sVHMzwX37heEAAGqB+uXLM7NsXd2dnc0d7OX9/CAhgS2BV/KnBQRrh4RFfXNWoYe5wQgghhMhuIiPD8fV1IiwsDEdHx2T7ycWIcxCtVkuzKlVoVqWKuaNkW4qisO/sWfwOHuR+WBiF8+alj48Pb5UsiUZjah4/84uKiyMqNpa4uDg0Gg1RMTFExyQ3TUom8rzAGhc4gAC8wKMA3pm0uIqICOPAgV85e3YfqqJQpmxdfHz64OTkZu5oQgghhHgDZCTrJbLTSJZ4syKionj7yy/ZffYsZXU6Sur1nNFquaUo9GrcmMUff4xOpzN3TCNf/vYbE/z80AKNiT8P6wDx07p//8EHDG7Txqz5UuTvD8C4gPcNxwVmxgLr8uVjTJ3Ykshn4TQELFSVQxotWFgx6rO1vPVWJt7HQgghhDCS2pEsOSdLiHQyYN48jp4/zzbgH72ejcB1ReFn4Nf9+5n622/mDZjI/nPnGO/nR3MgENgJ7AHuAHWBoT/9xJl//zVnxCwvNDSEyROaUzHqCbdUlb2qyk7grqrQPC6ar6d34u7dK+aOKYQQQoh0JkWWEOng7oMHrPzjD75SFFrx/wv86oA+wCfAnE2beBYdbbaMiY1asgRHYC2Q54Xl+Ymfvt0SGLZ4sTmiZRt79vxMXFQEvysKHi8sdwVWqyq5FYVt234wVzwhhBBCvCFSZAmRDnadOoWiqvRIpr0n8CgyEv+rVzMyVoou37hBV8DUQbDOwNvAKZkH/bWc9N9MW1UxKmIT2ABdlThO/bUxg1MJIYQQ4k2TIkuIdBATF4cO0wULQK6EfrGxGZTo5VRVNeQyJRfxE3mIVxcXG4VDCu25gNi4LDDJiBBCCCHSRIosIdJB9ZIl0RN/XpMpWwALrZaKmei6U67Ozmzk/xenflEcsBnwyJs3QzNlN56larNDa4Gp0loFNmkt8PSqmdGxhBBCCPGGSZElRDqoXqIEbxUvziitlpBEbQHANK2WznXqkC8TXXtqRMeOBADfJlquAhOAe8B4X98Mz5WdtGz5EUFKHF+QtJidDZxX4mjVZrAZkgkhhBDiTZIiS4h0oNFoWD5yJI8dHCit1TIMmA/0ByprNLi6uzPnww/NnNLY0PbtqVemDJ8CNYHvgRlAVWAa0Kp6dbp5e5sxYdZXtGgF+vb9nm+Bqlod3wKzgHpaHcOAt98eTZUqzcyaUQghhBDpTy5GLEQ6KVWwICdmz2b25s0s37eP+0+eUNjVlc+bN2dw69bkdkjp7BzzOPz114zz82PBtm2MjIgAIE+uXEzr0IEx77xj5nTZQ/v2QylatAKbN85k3Ll9qKpC6VK1GdNuKLVqdTB3PCGEEEK8AXIx4peQixGLnGD7iROsOXwYjUbD+97eNKlc2dyRXi6LXIxYCCGEENlHai9GLCNZQuRgZ/79l2Zjx3L/6VPDsmX79+Ph5MTBr76iZIECZkwnhBBCCJE1yTlZQuRQgQ8fUmfECLRPn7ICiAIigSXAs7Awqg4ZQugLxZcQQgghhEgdKbKEyKE+/uknYvR6DgHvAdaALdAL2As8jY1l1JIlZkwohBBCCJE1SZElRA619+RJ2gOlTLRVBZoAvx89mrGhhBBCCCGyASmyhMihYmJjKZ1Ce2kgOjo6o+K8ki0BpkpEIYQQQgjzkokvhMihbK2tOREVlWz7CcA+M86o6e8PAQFsCayKH40IpAAeGCYYFEIIIYQwOymyhMih2tety7J9+zgG1E7Utgc4Doxs3DjjgyXnheLKnwEcfFgRjwqueHvJ1O1CCCGEyFykyBIih5rdvz8b//wTn6goxgJdAD2wCpgOuDk48GX37mbNaODvz5aDDvgzgAC8CKQA3p2kuBJCCCFE5iTnZAmRQzna2XFh/nwKeXgwFihB/CQYUwCvIkW4vGABVlZW5g2ZICAAvBuBdyO8vAvg7S0FlhBCCCEyLxnJEuINiIiKIiwiApdcubDJLIWKCR6urlxesICAu3dZtn8/Wq2Wfs2aUSRvXnNHe6nw8EeEhNwkb96iODq6mDuOEEIIIYSBFFlCpKN/bt1iyurVbDh2jDhFwc7Skve8vRnv60shNzdzx0tCURTm79jBnI0bCQgOBuD3P/9kWMeO9GnaFI1GY+aESd24sZ/t2/oTFvovCvHD8W55izJw0E9UqdLU3PGEEEIIIeRwQSHSy1+XL1N7xAhOHTvGN4rCVuCz2Fi27ttHzeHD+TcoyNwRjaiqSt85c/h44UKqBAezDlgDeAUG0u+HH/jkp59QVdXcMY0EBGxmzYom2Ib+y5fAVuLPH7MMucmUCc04cmSdmRMKIYQQQkiRJUS6UFWV3t9/T4W4OM4oCsOA1sA44IyiYPvkCUMWLDBzSmNb/P1Zun8/vwKrgU7ET36xQVWZB8zdto0/Llwwa8bEtv7eDU/gH+Az4vfxaOA88eeTzZvVw4zphBBCCCHiSZElRDr448IFLt+7x1eKgn2itnzAF4rC9lOnuH3/vjnimbRw+3ZqaLWYmj/wI6CUVsuC7dszOlayjl85RGTsU74EnBO15QamARExzzh0aFWGZxNCCCGEeJEUWUKkgwu3b2MB1E+mvQmgApfu3Mm4UC9x8dYtmiiKyTYN0ERRuHjzZoZmSsn5W6cBSO7KXT7P/7148XCG5BFCCCGESI4UWUKkA3tra+KAh8m0Bz//18HGJoMSvZy9jY0hlynBgIOdXUbFeSl7m/gxwpBk2hPOeLO3z50RcYQQQgghkiVFlhDpoPVbb2Gt0/FTMu0LAA8nJ2qWKpWRsVL0dv36/KbVmiwM/wO2aDS8XbduRsdKVuvq72BB/L40ZQGgA9q2HZJxoYQQQgghTJAiS4h0kMfRkQGtWjFBo2E+EP18eTgwEVgCjHn3XSx0OnNFTOKjli2xtrWlpVbLi9NbnAZaarW4OjrSp2nmmRLd0S43hYr5MAv4Boh4vjwSmAl8B5Qu1wBnZ3czJRRCCCGEiCdFlhDp5NvevenZpAkDAQ+tlqo6HQW0WqZqNEzw9WVQ69bmjmgkv4sLu6ZM4Z6TE+WBsjodpXQ6qgIRrq7s/fJLnB0czB3TSNeuO8ifvxqfEj+hSMXn/44AihatyJQp+8yaTwghhBACQKNmtgvhZDLh4eE4OTkRtno1jpno/BSReV2+e5cVBw9yPzycwnny0KNxYwrmyWPuWMmKiY3l97/+4vCFC2g0GhpXrEjbGjUy1agbfn5s8RqBPzUAuHXrD86cmUhoaBBOTvnw9R1HxYrJTYkhhBBCCJE+IiPD8fV1IiwsDEdHx2T7WWRgJiFyhNIFCzKlu6mJ0TOn2/fv4x8QwN+XL6PRaHCwsaGqpydF8uY1dzTw94eAALYEVsUvsACBgIcHeHk14J139ps7Xapt2PAtfn5jIS4GDaDX6mjd+mP69//e3NFMUhSFkyd3sHf3Iu4H/Uuu3Plo2Oh96tXrgpVV5pm85UWPHweze/ci/v57B7GxMZQqVZ1WrQZStGgFc0cTQgiRA8lI1kvISJbIzlYdOkSP77/HEWirKOiBLVot0Votv332GW1r1DBPsBeKK39qcPBhRTwquOLlBeaK9KqGDKnE7ZvnsAE6Ev/N1iYgDMjt7M6yZffMmi+x2NgYvv36Hf7y30wVrY4aip6rGi37VQXPIuWZOHU/Tk5u5o5p5OLFP5k0qQ1RUdGoalvAAa12B4pyj379ZtGu3SfmjiiEECKbSO1IlpyTJUQO9c+tW/T4/nu6Kgp3FYWlwHLgrqLQKi6OLl99xc3glCZ5f0P8/Nhy0IFxgQPwozsHaYR3J1e6d896Bdbvv8/k9s1ztCR+ink/YClwD+gNhD4O4ttv3zNjwqRWrpzAqb+3shE4qehZAOxTFU4B4XcuMXtm5hqlffo0lMmT2xEVVRFVvQOsAX5GUW4BI1m8eChnz2adUU8hhBDZgxRZQuRQP2zbRl5gMWD7wnIH4FfARlGYv2NHxoby9wcvL/BuFP/jUYDRo7NecZVg+fIx2ACrgFwvLLcBFgL5gSOHV5sjmknR0ZHs2j6PoapCe+IvSp2gCjBL0XPi9G7u3LlkpoRJ7d+/jGfPwlHV1YDrCy2WwDdotZXZuDFzHpYphBAi+5IiS4gcav+pU3RWFKxMtNkDHRSFfadOZXSs7CUuhg4YF1gJLIBugAWZ54jt69dP8/TZE5IbW+sEWGo0nDuXeUaGzp3bj6o2Ir5kTUyDonTNVHmFEELkDFmmyHr06BHdunXD0dGR3Llz07dvX54+fZpi/48//phSpUpha2tL4cKFGTJkCGFhYRmYWojMS1EULFNot3jeR7w6DSnPLpTZZh5S1fi/d3K5dMTfp4R+mUH8YzTlR3JmyiuEECJnyDJFVrdu3bhw4QJ79uxh69at/PHHH3zwwQfJ9g8MDCQwMJDvvvuOf/75h6VLl7Jz50769u2bgamFyLzqlC/PBq0WUx8/Y4DNWi11K8jMbK9Dr7VgMxBlok0l/uyhuIyNlKKiRStiY2nDhmTatwExqkqZMnUzMlaKypSpg0azH3hksl2rXZ+p8gohhMgZskSRdenSJXbu3MnixYupWbMm9erVY+7cuaxevZrAwECT65QvX57169fTtm1bPD09ady4MV9++SVbtmwhLi4zfawRwjwGt2nDDUVhNBgVWnrgY+CBqjKwVSvzhMsm2rcfThjwEcbFlAJ8AfwLVKjYxBzRTLK3d6Jx0z58rdVxLFHbLWCo1oKyXjXx9KxqjngmNW3aFwsLLRpNX4zLWRWYgaIcpW3bj82UTgghRE6VJYqsY8eOkTt3bqpXr25Y5uPjg1ar5fjx46m+nYSpFi0skj9IJzo6mvDwcKMfIbKjGl5ezO7fnxlAKZ2Oz4BRgKdWy2KNhsUff0yZQoXMnDJr6937a5xdPFgGFAZGAmOAksB0wMbGgalT95ozYhK9en1DUa+a1AVaa7RMBLoDpTRaolzyM3z0GvMGTCR37rx89tkadLqdaLVFgaHAWLTaysBIOnceQ61a7c0ZUQghRA6U2U4JMCkoKIi8iS6MamFhgYuLC0FBQam6jQcPHjBlypQUDzEEmD59OpMmTXrlrEJkJUPatqVGyZL8sHUrq86fR6PR0KhyZYa0bUsVT09zx8sWli79jxkzuvHHoVXMfT7JRSxQqVJTpkzZbd5wJtjY2DP5y/0cOODH/t0/8XfwTRwcXfFt3Ivmzfvj4OBs7ohJvPVWG+bMOcO2bT9w/PgW4uJi8PKqTps2M6hc2cfc8YQQQuRAZi2yPvvsM77++usU+1y69PpTBYeHh9O6dWvKli3LxIkTU+w7ZswYhg8fbrRuIfk2X2RjNUuVIjoujjKFC6MBGlWsSOXixc0dK0VPnz7myJG1PH58D2dnd+rWfYdcuVzMHStZw4f70abNkOcz4SmULl2HChW8zR0rWZaW1jRr1pdmzbLOOawFC5biww/n8uGHc80dRQghhDBvkTVixAh69eqVYp/ixYvj7u5OSEiI0fK4uDgePXqEu7t7ius/efKEFi1akCtXLn7//XcsLVOahQqsra2xtrZOVX4hsrprgYF0njaNs7dv46zVogJf+PlRs0QJ1o4ZQyE3N3NHNKKqKhs3zmSl3xfExcbgprPggRLH4p+G4PveJDp1+hSNRvPyG8pADx/+xzfT3+ZSgD+OWh06NPgpcRQtWJrRn2+kYMFS5o4ohBBCiHRm1nOy3NzcKF26dIo/VlZW1K5dm9DQUE6ePGlYd//+/SiKQs2aNZO9/fDwcJo1a4aVlRWbN2/GxsYmI+6WEFnCoydPaDxmDM/u3mUv8FBReKgobAOC/v2XJp9/ztNnz8wd08iOHQtYsmQkH8VGcxeVe/pY7qoqQ+Ji+PXXMWzZMsfcEY1ER0cy4YtGhF87xRbgkaLnoRLHAcA28BrjxjQgLOy+uWMKIYQQIp1liYkvypQpQ4sWLejfvz/+/v78+eefDB48GF9fXzw8PAD477//KF26NP7+/sD/C6yIiAh+/vlnwsPDCQoKIigoCL1eb867I0Sm8NOuXYSEhrJXUWhC/PWPtEArYLeicD04mOUHDpg35AtiY2NYs2IcvYHvgYQx7HzAt8CHwNpVE4iJMTVhunkcOrSKO4FX2a3E0Yb/X2fKG9inxPHsyQN27Fhg1oxCCCGESH9ZosgCWLFiBaVLl6ZJkya0atWKevXq8dNPPxnaY2NjuXLlCpGRkQCcOnWK48ePc/78eUqUKEH+/PkNP3fu3DHX3RAi01hz8CCdVBVTZxx6Aa00GlYfOpTRsZL1zz+HePzkIZ8k0/4JEBYRxtmz+zIyVoqOHFqBj0ZDWRNt+YF3FYU/Dy7P6FhCCCGEeMOyxOyCAC4uLqxcuTLZ9qJFi6KqquF3b29vo9+FEMYeP31K0RTai6gqh588yag4LxUR8RiAIsm0FzH0C82IOKkS8eQhb6XwOlQEiHgammF5hBBCCJExssxIlhAifXl6ePCn1vRLgAoc1WrxLFAgY0OlwN09fkr5o8m0H03ULzNwL1iao1oLkiuz/tRoyedRIkMzCSGEEOLNkyJLiByqf4sWHFIUdphoWwucVhT6t2iR0bGS5elZFc8iFZio0RKZqC0KGK/RUrRgaUqVSn4ynIzWrPkHXFDiWGGibR+wR1Vo2mJARscSQgghxBsmRZYQOVTnunVpU60aHTQahgJ/AoeBgcB7gG+9erSoWjXjAvn7Q0AAWwJK4XewAAcPGjdrNBoGDF7EeQsramp1LAVOAr8CNbU6TuosGDB4Uaaawr1ixcY08u5OTzR8CBwifsRtBNBao6VqJR8aNOhq3pBCCCGESHcaVU5cSlF4eDhOTk6ErV6No52dueMIka5iYmOZvGYNC7Zt42FEBAD5cuVicLt2fNa5MxY63ZsPkVBcBVbFnxocfFgRjwqueHlBjRpJu1+7dpLlyz7j9Nm9hmWVKzSie8+v8PIysYKZ6fV6fv/9W7ZtmsnD59O1O9o50bTlR7z33kQsLeW6fEIIIURWERkZjq+vE2FhYTg6OibbT4qsl5AiS7yKO/fv8yA8HA8XF/I5O5s7zktFx8Zy+e5dNEDpggWxeslFu9ONn5+huArAi0AK4O1turhK7NSp3Vy79jfFi1elevWWbzzq64qOfsapUztRFD2VKvng4JDb3JFeKjQ0hIcP/8PR0RU3t8LmjiOEEEKYXWqLrDTNLvjs2TNOnjyJi4sLZcsaT0ocFRXFb7/9Ro8ePV4tsRDZwJGLFxm7bBmHLl0CQKvR0LpaNb7q1YuyhTPvh1RrS0sqFSuWsRv19wcvL/zpSABeAIzu/vLVDh1axeKFgwl7+siwzMnemd79Z9G4ceZ7/dHr9Wzc+B1bN87kYVgIAE72TjRtOZCuXSdkypGsu3cv8+vST/H/ewvK8+/hypWqzXs9plGhgrd5wwkhhBBZQKrPyQoICKBMmTI0aNCAChUq0LBhQ+7du2doDwsLo3fv3m8kpBBZwa5Tp2j8+edEXr7MSuBvYL6qcuXUKeqMHMm5GzfMHTHT8vKK/3mZPXt+5vsZ7+Hx9BFLgBPAMqBQxGPmzOrJ9u3z33DStFFVlTmze7N82Rg6hYVwEDgC9I0IY8v6r5k2pS16fZyZUxq7c+cSn46syf0T25inqpwAVgMOAccZP86Hv//eZu6IQgghRKaX6iLr008/pXz58oSEhHDlyhVy5cpF3bp1uX379pvMJ0SWoNfr+XDuXBqpKn+qKl2B6sAHwN+KQqGYGD5ZuNDMKbM2RVH4ecFgqhJfXPUCqgE9iC9oawDLFg9FURTzhUzk3Ln9HDi4nKWoLAQaAnWBGcA2VeHkmT0cOpT89f/MYfFPQ/CIiuCEomcA8fv4XeCIqtBcVZg/t2+mKwyFEEKIzCbVRdbRo0eZPn06efLkoUSJEmzZsoXmzZtTv359/v333zeZUYhMb+/Zs9x6+JApqkris5kcgc8VhYMXL3ItMNAc8bKFP/5YRWRsFBOBxGdH2gCTgWdxMezZ80uGZ0vO7l0/UVZrgamjIJsAPhote3YuyOhYyQoJucXps3sZo+jJnajNAvhSVXkQGszJk6Ym/hdCCCFEglQXWc+ePcPC4v+ncGk0GubPn0/btm1p2LAhAQEBbySgEFnBtXv3sCB+NMWUus//vR4UlEGJsp9r104A/9+XiSUs//ffUxmSJzWC7l6mrhJHcpPK11MVggOvZWimlAQFxX9hltw+rgzYabTcu3c9oyIJIYQQWVKqJ74oXbo0J06coEyZMkbLf/jhBwDatWuXvsmEyEKcHRyIAwIBDxPtt17oJ16Nk1NeAG5DklEW+P8+TuiXGdjncuWWRgPJTOJ6C7DPRLMM2tvnBuL3cQkT7SHAM1XJEjMjCiGEEOaU6pGsjh07smrVKpNtP/zwA127dkVmgxc5Vevq1bGztGSOiTYVmAMUd3OjeglTH11FarRu/TGWaJidTPsc4r81atduaMaFeol6Dd9jj6pyyURbELBGo6WudyqmVMwgxYtXpmC+4swi/nGb2A+ApYUVNWrIl2pCCCFESlJdZI0ZM4bt27cn2/7jjz9mqhPOhchITvb2jOrUiW+AiUDC5OJ3gYHAOmBi9+5otal+yolE7OwcqFG3M78AI4Dg58tDgE+BBUC1mu0z1ShLw4bvUTB/CZppLdgG6IkvXg4BTbQ6bB3z0KLFAPOGfIFGo6Frj2lsAfoDd54vfwxMff7TrsMIcuVyMVdEIYQQIktI03WyhBDJG+/rS6xez7T165muquTRagnW67G1smJenz6836iRuSNmeaNGrSY6OoJZJ7YzG3AhvqBVgcqVmzJmzAbzBkzE2tqOydMO8s20jrS5+jdOWh0WGg0P9XEUyV+CKV9sJHfuzHN4I0D9+u8SGRnOksVDWRL9jHw6Cx4qehSNlg7th9G9+1RzRxRCCCEyPY0qx/ilKDw8HCcnJ8JWr8bRLvGcZkIkFRIaym9HjnA/PJzCefLwTr168tgxxd8fgHEB7xsuklUjuZlDEgkKusGKFWN58OAurq4F6Np1EgUKlHxTSV+bqqpcuXKcc+f2oSgKZcrUoWLFxmg0yU2JYX6RkU84enQdISG3cHR0pW7dd3B2djd3LCGEEMKsIiPD8fV1IiwsDEdHx2T7yUiWEOksb+7cDG7Txtwxsq3o6EhOndrBvTuXePTwP2Iiwzh9eicuLvmxtc2cE4toNBpKl65F6dK1zB0l1ezscuHjIxeYf1OePXvG9OkdOH/uIHpFRQO45S3AsGHLKFeugbnjCSGEeE1ygogQIst48uQRn42syaIFgyl74wwDw0KocOMcvyz6hE9H1iAs7L65IwrxUuHhj+jWzYUzZ3ajV2oBn6HSjZCQIMaMacz27fPNHVEIIcRrkiJLCJHx/P0hIIAtAaUICLQntZfZW/DjAB7fucQpVH5XVSYB61E5o6pE/BfAjz/0f6OxhUgPw4dXIy4uDthO/DQok4ElwA2gJAsXDCEmJsacEYUQQrymVyqyli9fTt26dfHw8ODWrfir08yaNYtNmzalazghRDbj7w9+fmw56MC4wAF8c74leBTAy+vl52M9fPgfR4+uZ7Kip2KitnLAl4qev45vJiTklqnVhcgUwsMfERJyF/gQaJmo1R1YhEocCxZ8lPHhhBBCpJs0F1nz589n+PDhtGrVitDQUPR6PQC5c+dm1qxZ6Z1PCJFdvFBc+dGdgzTCu5Mr3bunbsKLK1eOo1cVOifT3hlQUbl8+Vh6phYiXR05sgaIg2QfyXUBV86e3ZtxoYQQQqS7NBdZc+fOZdGiRXzxxRfodDrD8urVq3P+/Pl0DSeEyCb8/NhCW/w9OhLg0Qg8CjB6dOpnEwQM1xiLS6Y9LlE/ITIjnS5hvqnkHskqoEejkcexEEJkZWl+Fb9x4wZVqlRJstza2pqIiIh0CSWEyIa8vMDLK+GfNCtdug6WOgtWJdO+CtBpdZQpU+91UgrxRjVo0JX4iX1XJtNjPxBKzZrtMy6UEEKIdJfmIqtYsWKcOXMmyfKdO3dSpkyZ9MgkhBBJ5M6dl4be7zNRq+NgorYjwFitjvr138XV1cMM6YRIHVtbBwoWLAEsBX4lfuQqwVWgDxqNJX36zDBHPCGEEOkkzdfJGj58OIMGDSIqKgpVVfH392fVqlVMnz6dxYsXv4mMQggBQP8P5hAcdI1GFw5TR6ujoqLnvFbHn4qeciVrMOCjBeaOKMRLzZp1lve75+FZVE9gGuAN3AJ2ATo+/XS10eH4Qgghsp40F1n9+vXD1taWsWPHEhkZyXvvvYeHhwezZ8/G19f3TWQUQgggfhRg8tT9/PXXRvbv/YW99++QO09BRvv0platjlhYWJo7ohAvZWVlxcpVj5k//yMOHlxBbMwStFooVrwao0atJn9+T3NHFEII8ZrSVGTFxcWxcuVKmjdvTrdu3YiMjOTp06fkzZv3TeUTQggjOp0Fdet2pm7d5GZny3xiYmJYs2YSJ05sR1UVypdvSPfu07CzczB3NGEmOp2Ojh1HEBYWwr1717C1zUWbNkOkwEpnERFhHDq0gtu3L2BtbU/t2h0pVaoWGo3G3NGEENmcRlVV9eXd/s/Ozo5Lly5RpEiRN5UpUwkPD8fJyYmw1atxtLMzdxwhsiY/P7Z4jcCf/08nmJaZBbOyU6d2MX1KG6L1cRQFLIk/88ZSo2HgkCU0adLTvAGFWXz33Xv88cca4k+NLg0EAo/InduDH344i6NjHvMGzAYOH17D7Nl9iY2NRqstB9xHrw+kfPkmfP75WhwcnM0dUQiRBUVGhuPr60RYWBiOjo7J9kvzxBc1atTg9OnTrxVOCCFyggcP7jJtUiuK6OPwB24AAcAFoLKqMm92LwIC/jZvSJHhli79lD/+WEX8BYnvAeeBYGAFoaGP+OSTambNlx38888hvvvuPWJi2qGqt9Drz6DX3wE2cfHiaaZN60wav2MWQog0SfM5WQMHDmTEiBHcvXuXatWqYW9vb9ResWLFdAsnhBBZ2eLFw9CrCruAoi8sL0v8FAeFgUWLPuHbb4+aI54wA0VR2LLlR8AHmAckHLZmAbwHRPPwYR9OntxBtWotzRUzy1uzZhoaTRVUdTmQMImIFmiHoizln3/acfnyMcqUqWPGlEKI7CzNRVbC5BZDhgwxLNNoNKiqikajQa/Xp186IYTIws6f2U1LjAusBM5Ad2DpVRnJykkuXjxCbOxTYCD/L7Be1BUYzObNs6XIekWRkU84e3Y3sJD/F1gvao1OV5CjR9dLkSWEeGPSXGTduHHjTeQQQohsR4mNwT2F9nyAosoXUznJkycPn/8vXzI9bAAnoqKeZlCi7Cc6OvL5/5J79mmBvLKPhRBvVJqLrJwy4YUQQryuXC4e7An+FwXTJ8DuBmztnDI4lTAnL6+axD8a9gOmRlECgHsUK9YxQ3NlJ46Orjg4uPH06T6gnYkewSjKeQoV6pHR0YQQOUiai6xff/01xfYePeRFSwghADq+PZr58wcwF/gkUds64BjQ3qdPxgcTZuPq6oGHR0kCA2cSf2jgi1O2xwIjAEu6d//SLPmyA53OghYt+rFhwxwUpTdQ+YVWBfgMCwsLGjeWzytCiDcnzUXWJ58Yf1SIjY0lMjISKysr7OzspMgSQojnWrb8kN27FzH0+kn2EX8OliXxBdYqIK9bYXr2/NqsGUXG++KL3xkypBp6fVXiz82qD9wBfgAu8O67Y3FwyG3OiFle585jOHlyN7du1UdR+hE/0UgIWu1PKMpxBg9eJlO4CyHeqDRP4f748WOjn6dPn3LlyhXq1avHqlWr3kRGIYTIsmbM8MfHpzd7Lax4F3gbWK/VUaNmB36cfxULizR/1yWyuEKFyvDDD6cpVqw48B3QGhiAo+N9PvpoPt26TTZzwqzPzi4X06fvp2PHQdjbLwfaAH0oU8aWyZN306jR++aOKITI5tJ8MeLknDhxgu7du3P58uX0uLlMQy5GLMRr8veHgAC2eI3ALyD+CsReXjnnYsQJnj4N49ix9ej1cdSo0R4Xl+QmPhCvKjo6koAAf+LiYihatBLOzpl/H0dGPiUw8DJOTnlxcyts7jgvFRsbw5UrfxET84zChcuRJ09Bc0d6qcDAawQEHMfBwYXKlX2wsLA0dyQhRBaW2osRp9tXqBYWFgQGBqbXzQkhsgM/P7YEVsWfAQQEFgCPnFdgxcZG8+uvY9ixYxExMfGzmS1cOARv72707/89dnbJv0CL1NHr9axZM5ltm2bx5Fk4ADqtjrp1OtP/w7k4ObmZOWHy7OwcKFGiurljvJSqqvz++3esW/cdT5+GAKDRaKlevQ0DBvyAm1shMydMKijoBgsWDObUqR1A/PfJjo756dLlU9q2HYJGY2oKfSGESB9pHsnavHmz0e+qqnLv3j1++OEHChUqxI4dO9I1oLnJSJYQr8Dfny0HHfCnBgF4EUgBvL1zVnEF8ReenTKlPadO7UFVRxN/sVkLYANa7TSKFy/NV18dxMrKxsxJsy5VVZk9qxeHDixnKCo9AQdgKzBFq8PW3ZOvvjsu5zi9pl9+GcnGjTOAAUB/wBXYjVY7ldy54fvvj+PsnNIFCzLW/ft3GD68Fk+eWKMo44AmQAjx185aTJcuY+nefYp5QwohsqQ3NpLVoUMHo981Gg1ubm40btyYGTNmpDmoECIbSTg0MLAq/h4dORjohYcHeOew0asEJ09u5+TJrcR/5G/9QstoFKUx167VZP/+X2nR4gMzJcz6rlw5zv4Dv7IE6PXC8o+BZoqeKveusX37PLp0+cI8AbOBwMCrzwusb4GRL7T0R1FaEhpamfXrv6Zfv+/NlDCp336bypMnehTlKP+/XlZhoDpQmLVrJ9K8ef8scYimECJrSvPEF4qiGP3o9XqCgoJYuXIl+fPnfxMZhRBZiZcXeDcCr/gCq3v3nFlgAeze/QtabXWMC6wE1dFo2rBr1y8ZHStb2bv3F4rqLDA1r20pwFdV2LdzYUbHylb27VuKVusCDDbRWhBF6ceePUvR6zPHhbVjY6PZv98PRfkI0xckHoZGY8/+/SlfkkYIIV5HmousyZMnExkZmWT5s2fPmDxZZkQSQogEwcG3UZQqybaralXu37+dgYmynwf3b1NFH5fsm1k1IOSRnC/8Oh48uAOUBZI7rLUqz56F8uzZkwxMlbynTx8TGxsJVE2mhwMajZc894QQb1Sai6xJkybx9OnTJMsjIyOZNGlSuoQSQojsIHduN7Taqyn0CMjUkzJkBU6583JFqyO5k4sDgNwOLhkZKdtxdHRDo/kXiEumRwCWlrbY2jpkZKxk2dk5odVaEv/XNyUaVb0pzz0hxBuV5iJLVVWTM/KcPXsWFxd5IxNCiARNmryPohwE/E20/otGsw4fH7lez+vw9u7ORUWPqSmXgoBlWh0NfXpndKxsxdu7G3p9ILDSRGsYWu1CGjbsik6XOa75Zm1tS506ndBqfwSSfikMS1GUh3h7d8/oaEKIHCTVRZazszMuLi5oNBq8vLxwcXEx/Dg5OdG0aVO6dOnyJrMKIUSWUqdOZ4oXfwutthXwCxAJxAC/odU2ws2tME2b9jNvyCyuUiUfqlRsQhetjnnAE0APbAEaanVY5HKhXbuhZs2Y1Xl6VqV+/a5oNP2Bb4BHgALsQattjLX1Uzp3/sy8IRPx9R2HpeV9tNomwAHip3B/AHyJRjOYxo17U6hQGfOGFEJka6mewn3ZsmWoqkqfPn2YNWsWTk5OhjYrKyuKFi1K7dq131hQc5Ep3IVIA//4EZsttI2fvj0gfuKLnOzJk0fMnt0Xf/9NxH/Q0wAq5co1YsSIX7PExVwzu6ioCObP+5A//liFXlXQEl8ClCpRjWEjV+HhUdLcEbO82NgYFi8exq5di1CUWHi+lwsVqsjw4Uvx9Ez+3ENzCQjwZ+bM3gQGXgR0gB6dzppWrT6id+9v5KLEQohXktop3NN8naxDhw5Rp04dLC1zxouTFFlCpIEUWcm6d+86588fQFEUypSpQ5Ei5c0dKdt58OAup0/vJi4uhpIl36JEiWrmjpTthIaGcPLkDmJinlG0aEVKl66dqS/qq6oqFy8e4datf7Cxsad69VY4OuYxdywhRBb2xq6T1bBhQ8P/o6KiiImJMWpPaWNCCJETnTt3gI0bv+fs2X2oqkLp0nVo124ItWq1N3c0kyIjw9m2bR77di4k+OFdnBycadC4J+3aDc3UI2958hSkadM+5o6RKtHRz9i5cyE7dvxEUNBVbG2daNjwXdq3H07+/J7mjmfSkSO/sWzZ5wQH3wQUrKwcqFfvbQYO/AkrKytzx0siLi6WvXt/YevWBfz33wWsrOw5f/4gHTuOoHDhcuaOJ8wkJOQWmzZ9z4EDq4iMfISbW3FatuxHq1YDsbGxN3e8JFRV5dixDWzaNIerV4+j0eioUqUZHTsOp1y5+uaOJ1KQ5pGsyMhIRo8ezW+//cbDhw+TtGeW62SkFxnJEiINZCQriS1b5rBo0SdotZVQlPcAC7TaDSjKn3Tq9Bk9e043d0QjT548Yuxn9bl39zK+qsJbwDVgqVYH9k5M/eqInMvymqKiIhg3rjkBAcdR1c5APeAOWu1SrKyeMXXqHry8MtfF5VasGM+aNV8CHkBfwBXYCezA2dmDRYuuYWWV3BTvGS8uLpapUzty6tQONJp2qGoTIASdbhla7X3Gjt1ElSpNzR1TZLAbN84yZkxjoqK0KEovoCjwFxrNbxQtWoFp0/Zhb++U8o1kIFVVWbx4GFu2zEarbYiidACi0GpXoCgXGDhwgVzM3gxSO5KV5tkFR40axf79+5k/fz7W1tYsXryYSZMm4eHhwa+/yoX9hBAiwa1b/7Bo0SfACBTlNDAaGI6iHAFmsH79V5w+vce8IRP5efEwwv67wglVYQkwEJgJXFH0eESEMfObLqTxuzmRyKpVE7l69QyqehhYBQwCvkJRAoiJKc/06V3Q65ObLj3j3b9/mzVrpgFtgOvAROBjYBuwiceP7zFjRjczJkxq06aZnD69G9iOqv5O/IWUJ6PXXyEuriFff/0uUVERZk4pMpKiKHz1lS9RUUVRlADgW+Kfe8tR1ePcunWNZcsy1wQu/v5b2LJlNjDv+Uy1Q4HPUJSzwEDmz/+IwMCULhMizCnNRdaWLVv48ccf6dSpExYWFtSvX5+xY8cybdo0VqxY8SYyCiFElrRjx3y02vzAdOInvHjRMLTaSmzdOs8MyUwLD3/I4T9WMkbRk/hgKjdgpqLn+q1/uHTpqDniZQvxhwkuRlEGAbUStTqiKHN5+PAWf/+9zRzxTPr55xHP/7cASHxYYFvgHfz9d6AoSsYGS4aiKGzZ8iOq2h1onqjVBlWdT2RkKH/8scoc8YSZnD9/gHv3LqMoswDnRK2VUZTh7Nv3K5GR4WZIZ9rWrfPQamsR/3XXi7TAd2g0udmxY4EZkonUSHOR9ejRI4oXLw7En3/16NEjAOrVq8cff/yRvukSbbdbt244OjqSO3du+vbta/KiyKaoqkrLli3RaDRs3LjxjWUUQogXXb78N4rSAjA1UZAGRWlLQMCJjI6VrNu3/yFWH0ebZNp9AGuNlmvXMk/mrCY4+F+ePQuFZPdyVXS6AplqH//772mgKpA/mR7t0Ouf8ehRYAamSl54+AMePbpNfAFoSlF0uoqZah+LN+/atRNotU7EH55rSltiYyO5c+dSRsZK0dWrJ1CU5F4rbFCU5pnqPUQYS3ORVbx4cW7cuAFA6dKl+e2334D4Ea7cuXOna7gXdevWjQsXLrBnzx62bt3KH3/8wQcfpO441FmzZmXq2Y+EENmTpaUVpi+GmuApFhaZZ8KAhCzJJY4C4lQ1U2XOav6/75Lby3pUNTJT7WOdzpL4K5AlJ/6+WFlljvOWX76PVTLbc0+8eRYWVqhqDPHXKjTlqaFfZqHTvew95Mnz9xmRGaW5yOrduzdnz54F4LPPPmPevHnY2NgwbNgwRo0ale4BAS5dusTOnTtZvHgxNWvWpF69esydO5fVq1cTGJjyN2dnzpxhxowZ/PLLL28kmxBCJOett1qh0WwFkk4SBFHodKupWbNVRsdKlqdnVXI7OLMsmfaVxF9/qmrVxIdgidRyd/ckb94SkOxe3oKiPKZ69czzuKhZsx1wGThlolUFfsHOzhVHR5eMDZYMB4fclChRC41mKfH5EjuKXn+datUyzz4Wb17Vqi1Q1f+1d+dxUdSPH8dfO4uAiIA3Qh6QopZHXnikiUd5ZaaWmkdaplnaoZbpt7wqs8u+/bLMLDu17LTyyDLTPFIx09I88CwV0RQFEeTYmd8fGN80UNR1B5b38/HYRzKfz8B7dxba987sTBrwWR4z3iMkJJyqVet4MtZ5RUd3xOn8EMjMZfQQDse3NG6s53FBddEla8SIETz44IMAtGvXju3bt/Phhx+yceNGHnroIbcHBFizZg0hISE0atQoZ1m7du0wDIN169bluV5qaip9+vThtddeIzQ0NF8/Kz09neTk5LNuIiKX4qab7sHf3w+HoxvwzzeEEnE47gCOc/PNw21K92/Fivlx862jmI6DmcDf54q1gO+AkYaT5s26ExoaaV/IQs4wDG677VHgY+B5zn7xtAbDuJdrr21doK7x1afPJJzO4sBtwNZ/jKQCo4B1dO36gC3Z8nLbbY9iWT8A/yF7H+zffsMw+lGpUl3q17/JpnRih0qVatGw4c0YxgPA8n+MZAHTgFl07z4Sp/Oir250xdxyy0NY1iGgP3DiHyP7MYxuBAQE06bNAHvCyQVddMn6p9OnT1OlShW6d+9O3bp13ZXpXxISEihfvvxZy3x8fChdujQJCQl5rjdixAiaN29O1675vxbNlClTCA4OzrlVqlTpknOLFCmzZzN/eSDjlrdh9vJwli+HqCi7Q9krJKQ8EycupHjx33E4qgA3AZ1xOMLx8fmO//znM666qqbdMc9y221jaXfjIO4FIpw+dAfqGk7aAxG1rueBh3RUwOVq334wPXo8BjyGYVQGumEYjYDmVKlSiTFjPrY54dl8ff158slFGMYh4FqgOXArEAr8l2bNunPHHRPsjPgvzZt3Z+DA54HnMIyrgFsxjOZAPSpU8GfixPkYxmW9BJJCaNSo96le/RqgNYZRH+iG0xkBPEjnzsPp2nWEzQnPFhFRj9GjP8LH5yscjjDgZhyOdkAEAQF7ePLJbyhZsmDsQZZ/u+jrZLlcLp555hlmzJjB4cOHiYuLIzIyknHjxlG1alUGDRqU7+81ZswYnnvuufPO2bZtG1988QXvvfceO3bsOGusfPnyTJo0ifvuu+9f63399deMGjWKjRs3EhgYCIDD4WDevHnceuutef689PR00tPTc75OTk6mUqVKuk6WSF5iY5m/PDD7ulhEEU84YWG6PtY/paScYNmy9/n116WYpkmtWs258cZBhISUv/DKNtm5cz1LlrzNX0f2UTKoLK1a9aV+/Zv0wtSN9u3bzHffvUl8/C5KlAimRYueREd3KVDvpP9TSsoJ3ntvDOvXLyArK5PQ0AjuvPMZ6tZtY3e0PMXH7+Tbb2fyxx+/4+9fgmbNutO8eXeKFfOzO5rYxOVy8csv37BixUckJydSsWIkN944iKuvbmB3tDwdP57Ad9+9xfbta/Hx8eG6626kdev+BATkfY0muXLye52si/5LPnnyZN577z2ef/55Bg8enLO8du3avPzyyxdVskaNGsXAgQPPOycyMpLQ0FCOHDly1vKsrCwSExPzPAzwhx9+YPfu3f86GUePHj1o2bIly5cvz3U9Pz8//Pz0x1fkgmJjIS6OcZtvJ65Ms5xyFRMF0QXrOqq2CwwMoUuXB+nS5UG7o+Rb9eqNqV69sd0xvFrVqnUYMuQVu2PkW2BgCMOGFa7TRRcr5oefXwD+/gH4+QXg51ccw3DaHUtsZBgGvr7FzzwvTuPrWxxf3+J2xzqvUqVC6dXrCbtjyEW66D1Z1apV44033qBt27aULFmSX3/9lcjISLZv306zZs04fvy420Nu27aNa665hp9//pmGDbOPU//uu+/o0KEDBw4cICws7F/rJCQkcPTo0bOW1alTh//7v/+jS5cuRERE5OtnJycnExwcrD1ZIueKjQVgXFz/nOMCVa5EpKBYsOBV3nzzYRyOACyrGQ7HYUzzVypXrseTT35D6dJ5nZJevFVq6kkmT+7G5s1LcTqjMM0IHI5fMM2/6N59NAMGPKuzUcsF5XdP1kUf93Hw4EGqVav2r+WmaZKZmdvZTy5frVq16NChA4MHDyY2NpbVq1czfPhwevfunVOwDh48SM2aNYk988IvNDSU2rVrn3UDqFy5cr4LloiIiBQ+69cvYObMB7CsYZhmPJb1Laa5CVjDgQNHmTTpFi7yPWbxAi+/fBe//74eWIjLtR3LWoxp7gee44svnmfRoul2RxQvctEl65prrmHlypX/Wv7ZZ59Rv359t4TKzZw5c6hZsyZt27alU6dOtGjRgpkzZ+aMZ2ZmsmPHDlJTU69YBhERESn4PvnkOQyjJfAyEPiPkaaY5mz27v2ZX39dak84scXBg3GsXfs5pvl/QCfg7z1WfsBo4E4+++wFXC5Xnt9D5GJc9Geyxo8fz4ABAzh48CCmafLFF1+wY8cO3n//fRYsWHAlMgJQunRpPvzwwzzHq1atesF3pfSulYiIiHc7dSqJHTtWAe/wvxfS/9QKpzOC9esXcN117TycTuzy88+LcDj8sazeecy4m2PH3ufPP7cQEVHPo9nEO130nqyuXbsyf/58vv/+e0qUKMH48ePZtm0b8+fP58Ybb7wSGUVERETyJTPz7zMEh+QxwwEEk5l5Oo9x8UZZWek4HP5k77nKTTAAGRl6Xoh75HtP1p49e4iIiMDhcNCyZUuWLFlyJXOJiIiIXLSgoLKEhIRz4sQisq/nda79uFy/ERk51MPJxE4REddhmieAtUCzXGYswsfHn/DwGp4NJl4r33uyqlevzl9//ZXzda9evTh8+PAVCSUiIiJyKQzDoHPnoTgc7wE/njOagcPxAP7+gdxwQx874olNrrvuRsqXr4ZhjACSzxndimFMJSamL4GBITakE2+U75J17ueZFi1axKlTp9weSERERORydO/+KLVrt8ThaAf0Ad4GnsUwamMY3/Doo3MICChpc0rxJMMweOyxj/D13Y5h1ALGk/25vXsxjMaEh4dz113P25xSvEnBvKy8iIiIyCUqVsyPiRMXsmjRdBYsmMHhwx/h4+NH06bd6NFjLldf3cDuiGKD6tUb8fLL65k370WWLfsvGRkplCp1FR06jOaWWx6mRIlguyOKF8l3yXI4HP+6QJsu2CYiIlJ0pKScYNOmJWRkpFG1al0iI6+zO1KeihXzo2vXEXTtOgKXKwvDcOp1ixAWVp3Bg/+Phg07kZz8F2FhUVx7bUs9N8Tt8l2yLMti4MCB+Plln5Xl9OnTDB06lBIlSpw174svvnBvQhEREbGVy5XFe++NYeHC6WRmpuUsr1atCQ8/PIvKla+1Md2FOZ06cEeyX8t+/fX/8dFHT5GampizvEKFKIYPf5169drYmE68Tb4/kzVgwADKly9PcHAwwcHB9OvXj7CwsJyv/76JiIiId5k2bTBfffV/ZGaOBg4AacBX7NmTwmOPtSIhYa/NCUUubN68F5k1awSpqT2BHUA68CNHjoQzYUIHtm5dZXNC8SYOS1foPa/k5GSCg4NJmjuXoIAAu+OIFAyzZzM/vgGxRBNHFISFExUF0dF2BxMRd9u79zceeqge8CZwzzmjiRhGbW68sQvDhr1hQzqR/ElJOcGAAeFkZg4Fpp4zmoHD0ZIaNfx4/vkVdsSTQiQ1NZnevYNJSkoiKCgoz3nafy4i+Rcby/zlgcQylDiiiCecsDDo18/uYCJypSxf/gFOZygu14BcRktjmkNYtuxFhg59TYflSYG1Zs0XZy5A/Uguo75Y1ki2b+9NQsJeQkMjPB1PvJD+GorIhcXGQlwc4zbfTlyZZjnlKkZ7r0S83okTh7Gs6kCxPGZcQ0bGKdLSUnSNISmwTpw4jNNZCperYh4zrjkzL0ElS9xCJUtELiwujvl0gR63EQVEoXIlUlSULh2Ow7GY7M+v+OUy4zf8/EpSvLiuOyUFV5ky4bhcicB+oFIuM34DoHTpME/GEi+W7xNfiEgRFxVldwIRsUGbNnficv0FzMxl9DCGMZO2be/E6XR6OppIvjVt2g1f3xLAlFxG0zCMF6lduw3ly1fxdDTxUipZIiIikqdKlWrRqdMw4CFgFLAd+AuYjWFcT8mSPtx22xhbM4pcSEBASe6661ngdaAf8DNwDFiIw9Eap3PHmXER99DhgiIiInJeQ4a8QkhIeebN+y9paS/lLK9d+0aGDXudsmWvsjGdSP507jyMYsX8mT17AidOzMlZXqVKA+6/fynVqze2MZ14G5UsEREROS/DMOjdezzduj3Cli0ryMhIo0qV2oSFVbc7mlfKyDhNRkYaAQHBGIYOOnKnm24aRNu2A/j116UcP36IypVrU61aQxwOh93RxMuoZImIiEi++PkF0LBhB7tjeK24uFg+/vgZfv55PpZlUrJkBTp2vIfu3UcTEJD39Xgk//bt28wnnzzDTz99jmlmUrx4Kdq3v5vbbhtDUFBZu+OJF9HbIyIiIiI2W79+AaNHt2DDhl1Y1n+BTzl58nY+++xlHnsshlOnkuyOWOht3bqKUaOa8tNP6zHNZ4BPSUu7m6+/nsWoUc05fvyw3RHFi6hkiYiIiNgoPT2VqVPvxLI6YZobgQeB24BpmOZP7N+/i7lzJ9mcsnBzuVy88EI/srIaY5q/kX1R4tuAFzHNDfz1VxLvvPOozSnFm6hkiYiIiNho1apPSE09gWW9xL8v+lwX0xzKd9+9Q0bGaTvieYVfflnMsWN/YFlTgYBzRiMxzUdYufJjkpOP2RFPvJBKloiIiIiN9u3bjNNZHYjMY0Z70tJOkJgY78lYXuWPPzZjGKWAhnnMuAmXK4NDh3Z5MpZ4MZUsERERERv5+QUAxwFXHjP+AsDXt7inInkdP78ALCsVSM1jxlFAj7G4j0qWiIiIiI2aNr0Vl+sv4MtcRi0cjje5+upoSpeu6OFk3qNx4y5YVgbwQR4zZlK+/NVUqVLbk7HEi6lkiYiIiNioWrWG1KvXHsMYDCwEzDMjx4EHsKwf6NXrP/YF9AKhoRHccEMfDGMk8DH/22t4EngC+ISePcfqumTiNrpOloiIiIjNHntsLpMnd+f332/G6ayKZVXEsjbhcGQxZMhrNG3a1e6Ihd4DD8wkLS2F9et743SGY1mVgS1Y1in69HmKm24aZHdE8SIqWSIiIiI2CwwM4ZlnlrJ16ypWr/6UtLSThIffQtu2AylVKtTueF7Bzy+AceO+ZOfO9axY8REnTyYSGtqBtm0HUq5cZbvjiZdRyRKR85s9m/nxDYglhLgzi6KibE0k4hW++eYN5s17kRMnjuLr60uTJrdw110vEBgYYnc0sUlGRhrx8Ts5eHAXqakncTic/PXXnypZbla9emOqV29sdwzxcg7Lsiy7QxRkycnJBAcHkzR3LkEB515XQcSLxcZCXBzj4ocSRxTxhBMWBv362R1MpHAzTZMHH6zHn39uASoDMcA+YAVOZwAvvLCSatUa2BlRbHDkyB888cRNJCTsxOFog2WFYRgrMM0/6Np1JHff/SIOh8PumCJFXmpqMr17B5OUlERQUFCe87QnS0TOdqZczY9vwGxeyilXMVEQHW13OJHC77nnbj9TsKYD9/K/c1BtxuVqz9ixbfj440R9AL8IsSyLp57qxpEjGcDvWFYtAEzTBUzjq69GcNVVNWnffrCtOUUk//QXXET+5++CRRdm0w/CwomJyd57pYIlcvkyMjJYt24h0A+4j7P/N1wHeIv09CSWLHnLlnxij99+W8Yff2zENN8Gav1jxAk8DNzG559PRQcfiRQeKlkicraoqOxbWDhR2nsl4labNy/FNNOB/nnM6AAEs2LFXA+mErtt2vQdTmc42YeO5qYfCQk7OHr0gAdTicjlUMkSERHxkKyszDP/8s9jhgPwxeXK8lAiKQiyDwv0I3v75yb7+aLnhUjhoZIlIiLiIXXqxADFgHl5zIgF/qJevbYeyyT2q1GjKS7XHuC3PGZ8QXBwGOXKVfJkLBG5DCpZIiIiHhIQEETNmo3JPunFsnNGjwH3Yhj+9Ogx1vPhxDbR0bdQunRlDGMIcOKc0cU4HO9w88334XTqfGUihYVKloiIiAeNH7+QEiWCgLZAR+BZYBhQFdjKI4+8h6+vr40JxdN8fIrx+OOf4+cXh2FEAg8Cz+JwdAA60qBBe3r0eMzmlCJyMfSWiIiIiAcFBobwzjt/8MYbw1i5ch4ZGUsxDCfVq1/HvfdOo1q1RnZHFBtUr96IV1/dxIIF0/jxx085ffok4eE16NTpXWJi+movlkgho99YESl00tJSWLt2HomJ8ZQqVZGmTbsREFDS7lgi+ebvH8D9979BdPQtxMfHUaJECE2a3EqpUhXsjiY2KleuMrfcMoIKFSJJS8suWY0bdy7QBcs0TTZvXsbu3b9QrJgfjRp1pmLFq+2O5VVM02Tx4hn8/PMinE4f2rW7iyZNutodSy6g4P7WiojkYuHC13j33bGkp6dgGCGY5gl8fYfRv/9TdO36sN3xRPIlNnY+r7wyhOTkBAwjBMtKYcaMB+jceRh33/1CgX5RLVdGVlYmb775MN9+OxPLAocjENM8QUhIOA8/PIsGDdrbHfFfdu/+heee60NCwg4MIwjLSufNNx+iWbPbeeihWXrzyw02bPiGZ57pSWZmClAccLFu3VcEBpbnhRdWEB5ew+6Ikgd9JktECo3vvnuLN94YTnp6X2AfppkI/ElGxkBmzRrBokWv2x1R5II2b17O5MndOHmyMbAZ0zyOZR3BNCcxf/403nprpN0RxQbTp9/H4sVvYppTsKyjmOZxYBNJSbV56qlb2L59jd0Rz3Lo0G7+85+2HDkSBKzENE9gWceBWaxb9y2TJ3fXxZMv0969v/Hkk7eSmRkGLAFSgJPAR6SkZPHQQ41JTU2xN6TkSSVLRAqFrKxM3n9/PNAPeB2ofGbkKmAacDezZ08kMzPdrogi+TJ79gSgEZb1BVD7zNJSwFjgWRYtek0XnS1i4uN38f33s7Cs/wKPAMFnRuphWV9jWbX48MMnbUz4b/PmvUh6enFMcwnQguxrfBUH7sY0P2Lz5u/ZvHm5nRELvRkzhmFZPsCPQDuyX7b7Ar2BRWRknOTDD8fZGVHOQyVLRAqFLVt+JDn5EJDXu/wjSEk5wm+//eDJWCIX5dixg2zbtgLLepDcj9i/F/Bj1apPPJxM7LRy5VwMIwi4O5dRX0xzOJs2LSY5+Zino+XKsiyWL/8Q0xzE/wrhP3XE6azBihUfejqaV9mx42egPxCay2gToCkrVnzs2VCSbypZIvI/cXHMj6tBbFyI3Un+JSUl8cy/IvKYEQlQYF6EiOTm5MkLPY9LYhjlOHlSz+OiJCUlEYejItl7gnITeWbecY9lOh/TdHH6dDJ5P48duFwR+nt8mUwzi7wfY4BqnD592lNx5CKpZIkIxMbC7NmMix/K7PjWLI+PAiA62uZc/1Chwt//o4nNY8a6c+aJFDxlyoRjGD7k/Tw+gMt1UM/jIqZChQhMcy/wVx4z1uHj40+pUrnt0fA8p9OHkJCryPt5nIFhbNTz+DIVK1YcWJvHqAX8RHBwKQ8mkouhkiVSlJ0pV/OXB9Ir/iWW0xrCwomJgX797A53tmrVGlGpUl0cjieBcz93lYHDMYmKFWtSq1ZzO+KJ5EvJkqVp3rwHhvFf4Og5oxYwCV/f4rRo0dOGdGKXG27og9NpAE+S/Tz4pwQMYxo33NCL4sUDbUiXu44d78EwPgC25TL6KqZ5mBtvHOTpWF4lOroD8DW5l9kPgD106fKgZ0NJvqlkiRRVsbEQF5e994p+Z5WrgrQH628Oh4P7738Vp/NnDON64GNgK/ApDkdLDGMNw4ZNx+Fw2JxU5PzuvPMZSpRIwzCaAG+Q/Tz+FugCvMWQIf8lICDI1oziWUFBZbj77heAV4HuwPdkPy+mYxhNKFnSQd++T9ma8Vy33PIwYWGRGEZL4FlgM7CK7M+VjaJr15FUrnyNrRkLu2HDZuLvXxJoDUwEfiX7qI3hwEAqVLiam29+wMaEcj4OS+fXPK/k5GSCg4NJmjuXoIAAu+OIuE9s9jtj4+L6Q1TBOzwwL9u3r+Gdd8awbduKnGU1arTgrrumcM01LWxMJpJ/8fG7mDXrEX7+eT6WZQIQFnYN/fpNpEWL221OJ3b58ccPmTPnSRISdgDgcDhp0qQrgwZNpUKFqvaGy0Vy8jHeeedRfvzxI7Kysj8bVKpUJXr0GEWXLg/qTS83OH48gfHjb+KPP7YCrjNLi1GvXivGjVuIr6+vnfGKpNTUZHr3DiYpKYmgoLzfEFPJugCVLPFahbRk/S0hYQ+JiYcoVSqUihWvtjuOyCVJTDxEQsIeAgNDqFTpGr0oFSzL4tdfl3LixBFq1GhKxYqRdke6oJSU4xw4sJ1ixfyoWrVuobiY9vHjCaSkHKd06TBKlMjtDIkFy7Fj8fz88wJ8fPxo1qwHAQEF59DRvCQl/UVy8lFCQipQsmRpu+O4TX5LVsH/LRARyUVoaCShoQX/xYfI+ZQuXZHSpSvaHUMKiA0bvmHOnCfZtSv7ZAfFigUQE9OHfv2eplSpCjany1tgYClq1mxmd4x82bJlBXPmTOT335cB4HT60qJFT/r3f5ry5avYnC5vZcqE0b79ELtj5MuuXRuYPXs8v/zyDWDhcDhp2vRW+vd/mquuqml3PI/RZ7JEREREbLZs2QdMmtSZ3bt9gbnACjIzx7J06Vc8+uj1nDhxxO6Ihd769Qt44om2bNuWArwPrMDlepqVK5cxalQzDh/eZ3PCwm/r1lU89lhLNm36E5gJrMCyXmbduk2MGtWMP/7YYndEj1HJEhEREbHRqVNJvPba/UB/LGsZ0AtoCTyBaa7j6NEkPvxwvL0hC7nMzAxefvkeLKsjpvkT2Rf5bQk8imlu4ORJX95++xGbUxZulmXx8sv3kJXVENNcD9xD9mM8HNPcQHr6VUyfPszmlJ5TaEpWYmIiffv2JSgoiJCQEAYNGkRKSsoF11uzZg1t2rShRIkSBAUFccMNN5CWluaBxCIiIiIXtmLFR2RkpAFT+PdLswhMcxg//DCb9PRUG9J5h/Xr53Py5GEsawr//rRMBUzzUdau/ZLjxw/bEc8r/P77ChISdmBZkwH/c0aDMc1xbNu2ggMHdtgRz+MKTcnq27cvv//+O0uWLGHBggWsWLGCIUPOf2zqmjVr6NChAzfddBOxsbGsX7+e4cOHYxiF5m6LiIiIl4uPj8PprAaE5THjBjIyTpGYeMiTsbzKwYNxGEZp4No8ZtyAZbk4fHivJ2N5lYMH4878K68z/d4AwKFDOz2Sx26F4sQX27ZtY/Hixaxfv55GjRoBMG3aNDp16sSLL75IWFjuf5RGjBjBgw8+yJgxY3KW1ahRwyOZRURERPIjICAYyzoCZAC5nZL7AADFi5f0ZCyvUqJEMJZ1EkgCcjubYPZjrGvUXbr/naUxHrgqlxl/P4+LxmNcKHbprFmzhpCQkJyCBdCuXTsMw2DdunW5rnPkyBHWrVtH+fLlad68ORUqVKBVq1asWrXqvD8rPT2d5OTks24iIiIiV8r119+GaR4HPsxl1IVhTOeaa2IICSnv6Wheo0mTWwETeDOXUQuH41XCw6+lUqVang3mRRo06ICvbyAwLY8ZrxIcHEatWs09Gcs2haJkJSQkUL782X9YfHx8KF26NAkJCbmus2fPHgAmTpzI4MGDWbx4MQ0aNKBt27bs3Jn3bsopU6YQHBycc6tUqZL77oiIiIjIOSpXvpbmzXvicNwPvA2knxnZB/TBstZzxx3jbMvnDcqUCaNjx6E4HGOBV4BTZ0bigXuxrEX06zdR16q7DAEBQXTvPgp4AZhM9l5DgKPAo8B79O07vlBcR80dbC1ZY8aMweFwnPe2ffv2S/repmkCcO+993LXXXdRv359/vvf/1KjRg3efvvtPNcbO3YsSUlJObf9+/df0s8XERERya8RI96lefOuwCAMozxO59VAJP7+3/Loox9Rr14buyMWevfc819uvPFu4GEMI/TMY1yZYsXmMGzYTK6//ja7IxZ6vXuPp3v3R3E4JuBwVMTHpxoORzhO5zQGDHiWDh3utTuix9haJUeNGsXAgQPPOycyMpLQ0FCOHDn7+hBZWVkkJiYSGhqa63oVK2Zf3PGaa645a3mtWrX4888/8/x5fn5++Pn55SO9iIiIiHv4+RXnscc+4sCBCfz00+ekpZ0kPLwGLVr0xN+/hN3xvIKPTzGGD3+D224bw+rVn3DyZCKhoZG0bNn7H58nksthGAYDBz5Hly4PsmLFXJKSjlC27FXccMMdBAWVtTueR9lassqVK0e5cuUuOK9Zs2acOHGCDRs20LBhQwB++OEHTNOkSZMmua5TtWpVwsLC2LHj7NNExsXF0bFjx8sPLyLipVyuLFat+pRvv53F4cN/EBxcljZt+tCmzUACAvTBe3cwTZN1675i8eI3OXBgJyVKBNOqVU9uuukeSpYsbXc8sdFVV9WkZ8/H7Y6Rb1u2rGDRounExW3E19ePJk0606nTfZQrV9nuaHkKDY2gR4/H7I7h1cqUCadbt1F2x7BVofhMVq1atejQoQODBw8mNjaW1atXM3z4cHr37p1zZsGDBw9Ss2ZNYmNjAXA4HDz66KO88sorfPbZZ+zatYtx48axfft2Bg0aZOfdEREpsNLT0xg/viNTp/Zh61YXf/3VjV27KvLmmyN5+OHGHDt20O6IhZ7LlcVzz/ViypTu/Prrcf76qxv79lXn/ffHM3z4dcTHF43TG0vh98EHj/Of/7Tip59+5ciRmzlwoDHz5k3n/vtrs2XLCrvjidiqUJQsgDlz5lCzZk3atm1Lp06daNGiBTNnzswZz8zMZMeOHaSm/u9CfQ8//DBjx45lxIgR1KtXj6VLl7JkyRKuvvpqO+6CSIEzP06XNJCzvf/+WLZsWQ38gGkuA54HvsCyfufIkVReeKGfzQkLv88/f461a78EvsA015D9GH+EZe0iKakETz/dA8uy7A0pcgE//fQFn376DPACprkVmArMwjT3k5HRmKee6kpqqs7QLEWXw9Jf8vNKTk4mODiYpLlzCQoIsDuOyOWLjYW4OMZtvp24Ms2IJ5ywMIiKguhou8OJnVJTT3LnnWFkZIwAnsxlxufAbfzf/20iIqKeh9N5h6ysTAYOrEJyclfg9Vxm/AjE8NRTS3WiAynQHnusFTt2ODDN5bmMxgOVuffe/6Nz52EeTiZyZaWmJtO7dzBJSUkEBeV9za9CsydLRC5TbCzMns385YH02vw4y8vcBmHhxMRAv34qWAJ7924iIyMF6JnHjFtwOHz5/XcdBnSpDh3aRXLyIfJ+jG/A6SzP77//6MlYIhfFNE22bVuJaeb1PA7D4WjBli16HkvRVTROVC9S1M2ezfz4BsQylDiioE44MdpzJef43/VhzneAgwXoOjKXSo+xeAuHw3GBw1p1oJQUbdqTJVJUxLSGmNZExYTr0EDJVUTEdfj5lQQ+zmPGPCwrkzp1YjyYyrtUrFiN4OAw8n6Ml+Ny/aXHWAo0wzCoVesGDCOv5/EBLGs1deq09mgukYJEJUtERAAoXjyQDh0G43BMBb47Z3QbhjGC2rXbUqVKbTvieQWn04euXR/A4ZgFfHLO6B8Yxr1UrlyP2rVb2RFPJN9uvfVhTHMlMAUw/zFyAoejHwEBwcTE6EQ5UnSpZImISI7+/SdTr14M0B7DaAmMwOHoAtQmNDSERx75wN6AXqBbt0e5/vrbgV4YRiNgBHAbDkd1SpXK4PHHP//HYYUiBVPTpl3p3Xs88B+czijgQWAAhlEJP79NjB//ta6rJ0WaPpMlIiI5fH39mTBhPmvXfnnmYsTfEhRUhrZtpxMT0w9//xJ2Ryz0nE4njzwyh9at+7F48UwOHPj2zMWIn6dt24EEBobYHVEkX/r0mUSDBh1YuPA14uKW4uvrR7NmI2nf/l7KlAmzO56IrVSyRETkLE6nD9dffxvXX3+b3VG8lmEYNG7cmcaNO9sdRQqYP/7YwurVn5GWdpLw8BrccMMdBXqPUM2azahZs5ndMS5KfPwuVq6cS0pKIhUqRNKqVR9KlixtdyzxMipZIiIiIjY7ffoUL700gLVrP8cwSmMY5cjK+j9mzXqE4cNn0KpVH7sjFnqZmRm89tpQfvjhHQwjGMMIxeXaw9tvP8o990ylU6f77Y4oXkSfyRIRERGx2UsvDSA2djHwPqaZQFbWdmAf6em38NJL/dm4cYndEQu9mTMfYtmyOcD0nMfYsg6QlXU3M2YMY+XKvM6WKHLxVLJEREREbPTHH1tYu/ZzTPN1oD9Q7MzIVcD7OBxNmDv3afsCeoGjRw/w3XdvYlnPAvcB/mdGygOvAjczZ86TF7j2l0j+qWSJiIiI2Gj16s8wjNJAr1xGDUzzPrZtW8GJE0c8Hc1rrFv3FdkvewflMuoAhhEfv5X9+7d6Nph4LZUsERERERulpZ3E4SgH+OYxIzxnnlya7Me4JBCUx4zsxzg1VY+xuIdKloiIiIiNwsNr4HLtAg7kMWM5vr6BlC6t06JfqvDwGphmIrA5jxnLMQwfQkMjPRlLvJhKloiIiIiNbrihN35+AcAYwDxndBeG8Rpt2/bHz6+4Dem8Q+PGNxMcXBGHYwyQec7oIQzjBZo27UZISHk74okXUskS8WaxsTB7NuPihzJ7eTjLl0NcnN2hRETknwICghg+fAbwIYbREpgDLAMmYBhNKV++LH36TLI3ZCHn41OMhx+ehcOxBMNoArxN9mM8BcNoSFCQyd13v2BzSvEmuk6WiDeKjYW4OObHN2D2sceJL1OXsDCIiYLoaLvDiYjIuVq16kNQUDnmzn2abdv6AeDrG0jbtv3p2/dJgoLK2pyw8GvYsCNTpiznww8n8euv2SfA8PHxp1WrO+jb90nKlr3K5oTiTRyWzlV5XsnJyQQHB5M0dy5BAQF2xxE5v3+Uq1iiWX6sLmF1yhClciVSIP31134SEnYTEBBMREQ9DEMHmAicOHGEtLSTlC4dpkMEr5Dk5KOkpJygVKlQihcPtDuO17Esi/37t5GUdIQyZa4iLKya3ZHcJjU1md69g0lKSiIoKK8TqWhPloj3iYqCqNbExUUTE6NyJVIQHTwYx8yZD7Nx42Ig+73OChWi6NdvIq1a3WFvOLFdSEh5fTboCgsKKqu9g1fIxo1LeOedMezb90vOsho1WnDPPS9So0YTG5N5lt4yExER8aD4+F088sj1/PrrTuAtYAfwPYcP12Lq1D4sXvyGzQlFRC7N+vULmTixI3/8EQh8Tfbft0/YuTONsWNj2L59jc0JPUclS0RExIPef/8/pKUFYpprgbuBKKAtMA+4l7feGsWpU0m2ZhQRuVgul4vp04cBN2FZS4EuZP99ux3TXIXLVZcZMx60N6QHqWSJiIh4SHLyMdaunYdpjgDKnDPqAMaTkXGaVas+sSGdiMil++23Hzh27A8sayL//kSSP5b1BHv2/My+fXldq8y7qGSJiIh4SGJiPKaZBeT1YckwnM6rOHJknwdTiYhcvv/93Wqcx4zG58zzbipZIiIiHlKy5N97r3blMSMZ0zysD+SLSKHzv79vu/OYkb28qPx9U8kSERHxkDJlwrjmmhgM4xUgM5cZM4BMWrTo6eFkIiKXp2HDDhQvXgqYmsuoBUylXLlIoqKKxhkGVbJEREQ8qH//J4FNOBxdgY1nlh4FngTGcvPND1CmTLht+URELoWfXwB9+04g+82iB4H9Z0Z2AgOAeQwYMLnIXA+waNxLERGRAuLaa1sybtxXBAf/BjTAMAKBCjidz9Ct2yjuvvtFuyOKiFySLl0e5O67p+Ln9y5QGcMoCUQRELCQhx56hxtu6G1zQs/RxYhFREQ8rGHDjrzzzj42bPiGQ4d2ERAQTJMmtxSZzyqIiHdyOBzceutIbrppMOvWfUVS0hHKlr2Kxo274OdX3O54HqWSJSIiYgOn04fo6C52x8i3/fu38fXXL/PTT1+RkZFG1ap16Nz5Pm644Y4ic/iPFH7HjsWzYMErLFs2l1OnEilfPoKOHe/hxhvvKXIl4EpJTj7KwoWv8f33H5CcfITSpa/iyJE/6NBhKAEBJe2O5zEqWSIiInJeGzd+x9NP34rLVQrTHAiUIS7uO3bs6Mf69QsZOfIDnE6n3TFFzuvPP7cydmxrTp1KxzT7A1XZv38tb745kmXLPuLpp7+jePFAu2MWakeO/MFjj8Vw/PhfmGYfoAaHDv3Ke++N4/vv3+fZZ5cVmT32eutJRERE8pSamsyUKT3JymqNae4GngUexbKWAJ+xcuXHfPvtGzanFDk/y7J49tlenDpVAdPcCUwDRgGfYlk/sXv3Ft5/f6zNKQu/l14ayPHjDkxzKzCT7Mf4fSxrI/Hxh5kxY7jNCT1HJUtERETytHz5HE6fTsGy3gD8zxntAXTn669fxbIsG9KJ5M+WLT9y4MAWTPP/gHLnjDbGNB9myZJ3SU09aUc8r/DHH1vYunU5pvkcUPmc0VqY5jh++ulzEhMP2RHP41SyREREJE87d8ZiGI2Aq/KYcSvx8dtIS0vxZCyRixIXF4thBAExecy4lYyMFA4c2ObBVN4lLi72zL9uyWPGrZhmFnv2bMxj3LvoM1ki3iI2FuLiGBc/lDjCiQeiouwOJSKFndPpg8ORdp4ZaWfm6TNZUnA5nT5YVhbZFwH3zWVGWs48uTT/e+xOA365zChaj7H2ZIkUdrGxMHs285cHMi5+KMtpDWHhxMRAdLTd4USksLvuuptwuX4Dfstl1MIwPqBWrRvw8wvwdDSRfKtf/yYsKxWYl8eMDwgOrkiVKnU8Gcur1K3bBofDCXyQx4wP8PUNpEaNZp6MZZuiUSVFvNXs2cyPb0AsQ4kjKrtcRalciYj7NG16K+XLX83Ro70xzfnA1WdG0oEnMc0VdO/+lY0JRS6sSpXa1KvXns2bH8A0qwBNz4yYwNvATG69dQo+PsXsC1nIlS17FTfccAcrV/4H06wJtDszYgGf43A8T+fODxaZ07hrT5ZIYRUbC1FRxIZ1Iy4se+9Vv34qWCLiXj4+xZg4cSEhIaeAKByOG4HeGEZl4BkGDHiOJk3y+gyGSMHx6KNzqFq1CtAMw2gG9MHpjAIGc+ONg+jW7VGbExZ+99//OrVqNQJuxDAakv0Y1wZup0mTm+nXb7LNCT3HYel0QOeVnJxMcHAwSXPnEhSgQyGkAImNZX5cDWKj+uUsUsESkSvl9OlT/Pjjh6xd+yWnT6cRGVmHDh2GUqlSLbujieRbVlYm69Z9xY8/fkhyciIVK0Zy0033ULNmMxwOh93xvILL5eKXXxbzww/vc/z4YcqVu4p27e6mbt3WXvEYp6Ym07t3MElJSQQFBeU5TyXrAlSypMBSyRIRERHxqPyWLB0uKCIiIiIi4kYqWSIiIiIiIm6kkiUiIiIiIuJGKlkiIiIiIiJupJIlIiIiIiLiRipZIiIiIiIibqSSJSIiIiIi4kYqWSIiIiIiIm6kkiUiIiIiIuJGPnYHEBERKYosy2LPno3Ex+8kICCYunVbU6yYn92xRETEDVSyREREPGznzvVMmzaUfft+yVlWokRZevd+nFtueQiHw2FjOhERuVyF5nDBxMRE+vbtS1BQECEhIQwaNIiUlJTzrpOQkED//v0JDQ2lRIkSNGjQgM8//9xDiUVERP5t795fGTu2NX/+aQALgCRgM6dOdWfWrBF8+ukUmxOKiMjlKjQlq2/fvvz+++8sWbKEBQsWsGLFCoYMGXLede6880527NjB119/zebNm+nevTs9e/Zk48aNHkotcoXExkJcHJD9nzP/FJFC4P33HycrqzKmuRzoDAQBtYE3gMf46KMnSU4+amdEERG5TIWiZG3bto3Fixfz1ltv0aRJE1q0aMG0adOYO3cu8fHxea73008/8cADDxAdHU1kZCRPPPEEISEhbNiwwYPpRdwoNhZmz2b+8kDGxQ/l+fh+AERFQXS0zdlE5IJOnDjChg2LMM0RQIlcZjyCaZqsXPmxp6OJiIgbFYrPZK1Zs4aQkBAaNWqUs6xdu3YYhsG6devo1q1brus1b96cjz/+mM6dOxMSEsInn3zC6dOniYmJ8VByETeaPZv58Q2IZShxRBFPODExKlcihcmJE4cBC6iTx4yyGEYYiYl5v4EoIiIFX6EoWQkJCZQvX/6sZT4+PpQuXZqEhIQ81/vkk0/o1asXZcqUwcfHh4CAAObNm0e1atXyXCc9PZ309PScr5OTky//DohcrtmzmU8XYsOiiSMKgNH9bM4kIhctOLg84AC2AE1zmXEM0zxEqVIVPRtMRETcytbDBceMGYPD4Tjvbfv27Zf8/ceNG8eJEyf4/vvv+fnnnxk5ciQ9e/Zk8+bNea4zZcoUgoODc26VKlW65J8v4lZRURAV9fd/RKQQKlWqAvXrd8AwXgZSc5nxEoYBLVv28nAyERFxJ1v3ZI0aNYqBAweed05kZCShoaEcOXLkrOVZWVkkJiYSGhqa63q7d+/m1VdfZcuWLVx77bUA1KtXj5UrV/Laa68xY8aMXNcbO3YsI0eOzPk6OTlZRUtERNzmzjsnM3p0CyyrDZY1EWgJ7AemAdPp1etJgoPL2ZpRREQuj60lq1y5cpQrd+H/kTRr1owTJ06wYcMGGjZsCMAPP/yAaZo0adIk13VSU7PfITSMs3fWOZ1OTNPM82f5+fnh56eLQYqIyJVx9dX1mTx5Ka++OpQ//+yYszwgoDS9er3IrbeOPM/aIiJSGBSKz2TVqlWLDh06MHjwYGbMmEFmZibDhw+nd+/ehIWFAXDw4EHatm3L+++/T3R0NDVr1qRatWrce++9vPjii5QpU4Yvv/wy5xTwIiIidqlZsynTpm1k5871HDq0i4CAYOrWbYOfX3G7o3mljIzTOJ3FcDqddkcRkSKiUJQsgDlz5jB8+HDatm2LYRj06NGDV155JWc8MzOTHTt25OzBKlasGIsWLWLMmDF06dKFlJQUqlWrxnvvvUenTp3suhsiIiIAOBwOoqKiiYrSKUKvhIyM08yf/woLF77B0aN7MAwfmjTpSo8eo/WYi8gVV2hKVunSpfnwww/zHK9atSqWZZ21rHr16nz++edXOpqIiIgUIOnpaUyY0Ilt237Csu4AJmKaR1i3bhbr1rVgzJhPadq0q90xRcSLFYqLEYuIiIjk17x5L7Bt2xosaynwLtAfGIVp/opp3sLUqf1JTdUlWkTkylHJEhEREa/hcrlYuPANLGsg0OKc0WLAy6Snp7J8+RzPhxORIkMlS0RERLzGyZPHSEqKBzrkMeMqnM667Nv3qydjiUgRo5IlIiIiXqNYsb8vw3I8jxkWcJxixfw9lEhEiiKVLBEREfEaJUoEU6vWDRjGLLIL1bl+wOXaR3T0LZ6OJiJFiEqWSEEXG5vzz7i47JuIiOTt9tsfwzRXA8OBpDNLLWAVhtGfq6+Opm7d1vYFFBGvV2hO4S5S5MTGQlwc8+MbEMtQlsdHExYGUVEQrUu8iIjkqVGjTtx33+u88cYDwHtANA7HEVyu36lSpSHjx3+Fw+GwO6aIeDGVLJGCaPbsnHIVRxTxhBMTo3IlIpJfHTsOJTr6Fr7//m3+/HMLfn4RNG/+PPXrt8fpdNodT0S8nEqWSEHy994rujCb1sQTTlgYjO5ndzARkcKnTJkwevV6wu4YIlIEqWSJFDRRUUAUEE6MDg0UERERKXR04gsRERERERE3UskSERERERFxI5UsERERERERN1LJEhERERERcSOVLBERERERETdSyRIREREREXEjlSwRERERERE3UskSERERERFxI12MWERERKSASE4+yvr1C0hLO0l4eA3q1m2L0+m0O5aIXCSVLBERERGbuVxZvPfeGObPfxWXKwOHwxfLSqds2QhGjHibOnVi7I4oIhdBhwuKiIiI2GzmzIf48suXcbkeB45gWWnAWo4dq8KECR3ZufNnuyOKyEVQyRIRERGxUULCXr755nXgRWAcUBZwAE2wrG8wzWp8+OFEOyOKyEVSyRIRERGx0YoVH2EYgcCQXEb9Mc3hbNiwiJMnEz0dTUQukUqWiIiIiI1OnjyKwxEOBOQxIwqwVLJEChGd+EKkIIiNhbg45sc3IJZolh+7mrA6docSERFPKFu2Mqa5FzgGlMllxs84nb6EhFTwcDIRuVQqWSJ2mz37TLkaShxRxBNOTA+IjrY7mIiIeEJMTF/effcxXK5ngKnnjP6FYbxCy5a9CAgoaUc8EbkEKlkidjmz92pc/P/KVVgYjO5ndzAREfGk4OBy3HnnM7zzziNAPDAMCAOWYxjPUKJEBn36TLI3pIhcFJUsERvNpwvEtCaK7CPutfdKRKRo6tZtFIGBpfjww6c4dmzumaUOrruuI0OG/B+hoRG25hORi6OSJSIiIl4rMzOdxMRD+PuXIDi4nN1xzuvGG++mTZsB7N69gbS0k4SFVadcucp2x7qgrKxMEhPjKVbMn1Kl9LkxEVDJEhERES906lQSc+c+yXffvUNa2nEAatRoQe/e/6Fhw442p8ub0+kkKqpwHNaQnp7Kp58+w6JFb5KScgSAiIhG9Oz5GNdff5vN6UTspVO4i4iIiFc5dSqJMWNimD//LdLSBgPfAh+wc6eDSZM68f3379gdsdDLyDjNuHEd+Oyzl0hJ6QV8A8xl374yPPfc7cyb96LdEUVspT1ZIiIi4lU+/fQZ9u/fhWmuAWrnLDfNPsAQpk+/n+joWwgKyu106ZIfCxe+yo4da7GsH4FmOcstqycwlnfeGU2zZj30WTIpsrQnS0RERLyGy5XFt9/OwjTv4Z8FK5sBPIPLZbJs2Qc2pPMeixbNxLJ68c+Clc0BjMcwgliy5C0bkokUDCpZIiIi4jWSk49x6tQxoHUeM8pjGLU5cGCbJ2N5FZcri8OHdwIxecwIwLKasn+/HmMpulSyRERExGv4+QWc+dehPGaYwGH8/QM9lMj7GIaTYsWKAwl5znE4DlG8uC6eLEWXSpaIiIh4jYCAktSr1x7DeAPIymXGfFyug1x//e2ejuY1HA4HzZv3wDBmAadzmfETpvmbzjAoRZpKloiIiHiV3r0fx7J+w+HoC+w/s9QFfI5hDKRu3RupUaOJjQkLv+7dH8UwDuFwdAN2nVlqAosxjB5ERDSkYcNONiYUsZdKloiIiHiVa69tyejRc/HzWwxUxcfnWpzOMOA26tZtytixn+JwOOyOWahFRNRl3LivCQhYD1TH6ayF01kJ6Ei1apFMnLgQp9Npd0wR2+gU7iIiIuJ1rr/+NurXb8/KlXP5888t+PmVoFmz7lSv3sjuaF6jfv0beffd/axe/Sm7d/+Cr68/jRt3oVat5iqxUuSpZIl4WmwsxMUxP74BsYSzPB7CwiAqyu5gIiLeJSCgJO3bD7Y7hlfz8ytOmzZ30qbNnXZHESlQVLJEPGn27DPlaihxRBFPODExEB1tdzARERERcReVLBFPOLP3alz8/8pVWBiM7md3MBERERFxN5UsEU+Ii2N+1CiIiiYKiEJ7r0RERES8lc4uKCIiIiIi4kYqWSIiIiIiIm6kkiUiIiIiIuJGKlkiIiIiIiJupJIlIiIiIiLiRipZIiIiIiIibqRTuIuIiIhIkfHXX3+yatWnpKQkUqFCBC1a9CQgIMjuWOJlCs2erMmTJ9O8eXMCAgIICQnJ1zqWZTF+/HgqVqxI8eLFadeuHTt37ryyQUVERESkwHG5snj99WHcc08E7703ni++mMOrr97LnXeGs2TJ23bHEy9TaEpWRkYGt99+O/fdd1++13n++ed55ZVXmDFjBuvWraNEiRK0b9+e06dPX8GkIiIiIlLQzJo1isWLZ2JZL2Cah3G59gH7yMi4nWnTBvHTT1/YHVG8SKEpWZMmTWLEiBHUqVMnX/Mty+Lll1/miSeeoGvXrtStW5f333+f+Ph4vvzyyysbVkREREQKjMTEQyxaNB3LehoYCQSeGakEzMLh6MDs2ROxLMu+kOJVCk3Julh79+4lISGBdu3a5SwLDg6mSZMmrFmzJs/10tPTSU5OPusmIiIiIoXX2rXzsCwHcG8uow4s6wEOHNjMgQPbPR1NvJTXlqyEhAQAKlSocNbyChUq5IzlZsqUKQQHB+fcKlWqdEVzioiIiMiVdepUEoYRBITkMaNSzjwRd7C1ZI0ZMwaHw3He2/btnn1HYezYsSQlJeXc9u/f79GfLyIiIiLuFRZWHZfrGLAtjxkrcTicVKhQ1YOpxJvZegr3UaNGMXDgwPPOiYyMvKTvHRoaCsDhw4epWLFizvLDhw9z3XXX5bmen58ffn5+l/QzRURERKTgiY7uQsmS5UlJGYtlfcbZL4GPYBgvEB3dlVKlQu2KKF7G1pJVrlw5ypUrd0W+d0REBKGhoSxdujSnVCUnJ7Nu3bqLOkOhyGWbPZv58Q2IJYS4M4uiomxNJCIiUqQUK+bHAw/MZMqUHjgcLbGsB4AIYC2G8V9KlMjg7rtfsDumeJFCczHiP//8k8TERP78809cLhebNm0CoFq1agQGZp8hpmbNmkyZMoVu3brhcDh4+OGHefrpp6levToRERGMGzeOsLAwbr31VvvuiBQdsbHMXx5ILEOJI4r4+HBiYiA62u5gIiIiRU/Tpl156qklzJkzkW3b+gJgGMVo3rwHd975DKGhETYnFG9SaErW+PHjee+993K+rl+/PgDLli0jJiYGgB07dpCU9L8PLI4ePZpTp04xZMgQTpw4QYsWLVi8eDH+/v4ezS5FTGwsxMUxbvPtxJVpRjzhhIVBTJQKloiIiJ3q1m1N3bqtOXbsICdPJlK27FUEBpayO5Z4IYelCwKcV3JyMsHBwSTNnUtQQIDdcaSgO1Ow5tOF2fQDsg8NVLkSERERKfxSU5Pp3TuYpKQkgoKC8pzntadwF7FNVFTOh65UsERERESKHpUsERERERERN1LJEhERERERcSOVLBERERERETdSyRIREREREXEjlSwRERERERE3UskSERERERFxI5UsERERERERN1LJEhERERERcSOVLBERERERETdSyRIREREREXEjH7sDiHiVuDjm04VYQuxOIiIiIiI2UckScYfYWOYvDySWocQRRTzhxMRAdLTdwURERETE01SyRC5HbCzExTFu8+3ElWlGPOGEhUFMlAqWiIiISFGlkiVyqf6596pOa0DlSkRERERUskQuT1g4RLUm6syXKlgiIiIiorMLioiIiIiIuJFKloiIiIiIiBupZImIiIiIiLiRSpaIiIiIiIgbqWSJiIiIiIi4kUqWiIiIiIiIG6lkiYiIiIiIuJGuk3UBlmUBkJyaanMSKXDS00nNTCM9PTlnkZ4mIiIiIt4rNTX7dd/fHSEvDutCM4q4AwcOUKlSJbtjiIiIiIhIAbF//36uuuqqPMdVsi7ANE3i4+MpWbIkDofD7jiFTnJyMpUqVWL//v0EBQXZHUfOQ9uq8NC2Kjy0rQoPbavCQ9uqcPDW7WRZFidPniQsLAzDyPuTVzpc8AIMwzhvS5X8CQoK8qpfMG+mbVV4aFsVHtpWhYe2VeGhbVU4eON2Cg4OvuAcnfhCRERERETEjVSyRERERERE3EglS64oPz8/JkyYgJ+fn91R5AK0rQoPbavCQ9uq8NC2Kjy0rQqHor6ddOILERERERERN9KeLBERERERETdSyRIREREREXEjlSwRERERERE3UskSERERERFxI5UscbvExET69u1LUFAQISEhDBo0iJSUlPPOf+CBB6hRowbFixencuXKPPjggyQlJXkwddHw2muvUbVqVfz9/WnSpAmxsbHnnf/pp59Ss2ZN/P39qVOnDosWLfJQUrmYbfXmm2/SsmVLSpUqRalSpWjXrt0Ft624z8X+Xv1t7ty5OBwObr311isbUHJc7LY6ceIEw4YNo2LFivj5+REVFaW/gx5wsdvp5ZdfznkNUalSJUaMGMHp06c9lLboWrFiBV26dCEsLAyHw8GXX355wXWWL19OgwYN8PPzo1q1arz77rtXPKdtLBE369Chg1WvXj1r7dq11sqVK61q1apZd9xxR57zN2/ebHXv3t36+uuvrV27dllLly61qlevbvXo0cODqb3f3LlzLV9fX+vtt9+2fv/9d2vw4MFWSEiIdfjw4Vznr1692nI6ndbzzz9vbd261XriiSesYsWKWZs3b/Zw8qLnYrdVnz59rNdee83auHGjtW3bNmvgwIFWcHCwdeDAAQ8nL3oudlv9be/evVZ4eLjVsmVLq2vXrp4JW8Rd7LZKT0+3GjVqZHXq1MlatWqVtXfvXmv58uXWpk2bPJy8aLnY7TRnzhzLz8/PmjNnjrV3717r22+/tSpWrGiNGDHCw8mLnkWLFlmPP/649cUXX1iANW/evPPO37NnjxUQEGCNHDnS2rp1qzVt2jTL6XRaixcv9kxgD1PJErfaunWrBVjr16/PWfbNN99YDofDOnjwYL6/zyeffGL5+vpamZmZVyJmkRQdHW0NGzYs52uXy2WFhYVZU6ZMyXV+z549rc6dO5+1rEmTJta99957RXPKxW+rc2VlZVklS5a03nvvvSsVUc64lG2VlZVlNW/e3HrrrbesAQMGqGR5yMVuq9dff92KjIy0MjIyPBVRrIvfTsOGDbPatGlz1rKRI0da119//RXNKWfLT8kaPXq0de211561rFevXlb79u2vYDL76HBBcas1a9YQEhJCo0aNcpa1a9cOwzBYt25dvr9PUlISQUFB+Pj4XImYRU5GRgYbNmygXbt2OcsMw6Bdu3asWbMm13XWrFlz1nyA9u3b5zlf3ONSttW5UlNTyczMpHTp0lcqpnDp2+rJJ5+kfPnyDBo0yBMxhUvbVl9//TXNmjVj2LBhVKhQgdq1a/PMM8/gcrk8FbvIuZTt1Lx5czZs2JBzSOGePXtYtGgRnTp18khmyb+i9rpCr2DFrRISEihfvvxZy3x8fChdujQJCQn5+h5Hjx7lqaeeYsiQIVciYpF09OhRXC4XFSpUOGt5hQoV2L59e67rJCQk5Do/v9tRLs2lbKtzPfbYY4SFhf3rf2biXpeyrVatWsWsWbPYtGmTBxLK3y5lW+3Zs4cffviBvn37smjRInbt2sX9999PZmYmEyZM8ETsIudStlOfPn04evQoLVq0wLIssrKyGDp0KP/5z388EVkuQl6vK5KTk0lLS6N48eI2JbsytCdL8mXMmDE4HI7z3vL7AvB8kpOT6dy5M9dccw0TJ068/OAiRcyzzz7L3LlzmTdvHv7+/nbHkX84efIk/fv3580336Rs2bJ2x5ELME2T8uXLM3PmTBo2bEivXr14/PHHmTFjht3R5B+WL1/OM888w/Tp0/nll1/44osvWLhwIU899ZTd0aSI054syZdRo0YxcODA886JjIwkNDSUI0eOnLU8KyuLxMREQkNDz7v+yZMn6dChAyVLlmTevHkUK1bscmPLGWXLlsXpdHL48OGzlh8+fDjP7RIaGnpR88U9LmVb/e3FF1/k2Wef5fvvv6du3bpXMqZw8dtq9+7d7Nu3jy5duuQsM00TyN7jv2PHDq6++uorG7qIupTfq4oVK1KsWDGcTmfOslq1apGQkEBGRga+vr5XNHNRdCnbady4cfTv35977rkHgDp16nDq1CmGDBnC448/jmFof0JBkdfriqCgIK/biwXakyX5VK5cOWrWrHnem6+vL82aNePEiRNs2LAhZ90ffvgB0zRp0qRJnt8/OTmZm266CV9fX77++mu9A+9mvr6+NGzYkKVLl+YsM02TpUuX0qxZs1zXadas2VnzAZYsWZLnfHGPS9lWAM8//zxPPfUUixcvPuszkXLlXOy2qlmzJps3b2bTpk05t1tuuYXWrVuzadMmKlWq5Mn4Rcql/F5df/317Nq1K6cIA8TFxVGxYkUVrCvkUrZTamrqv4rU38XYsqwrF1YuWpF7XWH3mTfE+3To0MGqX7++tW7dOmvVqlVW9erVzzqF+4EDB6waNWpY69atsyzLspKSkqwmTZpYderUsXbt2mUdOnQo55aVlWXX3fA6c+fOtfz8/Kx3333X2rp1qzVkyBArJCTESkhIsCzLsvr372+NGTMmZ/7q1astHx8f68UXX7S2bdtmTZgwQadw95CL3VbPPvus5evra3322Wdn/f6cPHnSrrtQZFzstjqXzi7oORe7rf7880+rZMmS1vDhw60dO3ZYCxYssMqXL289/fTTdt2FIuFit9OECROskiVLWh999JG1Z88e67vvvrOuvvpqq2fPnnbdhSLj5MmT1saNG62NGzdagPXSSy9ZGzdutP744w/LsixrzJgxVv/+/XPm/30K90cffdTatm2b9dprr+kU7iIX49ixY9Ydd9xhBQYGWkFBQdZdd9111ou9vXv3WoC1bNkyy7Isa9myZRaQ623v3r323AkvNW3aNKty5cqWr6+vFR0dba1duzZnrFWrVtaAAQPOmv/JJ59YUVFRlq+vr3XttddaCxcu9HDioutitlWVKlVy/f2ZMGGC54MXQRf7e/VPKlmedbHb6qeffrKaNGli+fn5WZGRkdbkyZP15p8HXMx2yszMtCZOnGhdffXVlr+/v1WpUiXr/vvvt44fP+754EVMXq/f/t4+AwYMsFq1avWvda677jrL19fXioyMtN555x2P5/YUh2VpX6qIiIiIiIi76DNZIiIiIiIibqSSJSIiIiIi4kYqWSIiIiIiIm6kkiUiIiIiIuJGKlkiIiIiIiJupJIlIiIiIiLiRipZIiIiIiIibqSSJSIiIiIi4kYqWSIiUigMHDgQh8Pxr9uuXbvc8v3fffddQkJC3PK9LtWKFSvo0qULYWFhOBwOvvzyS1vziIjIpVHJEhGRQqNDhw4cOnTorFtERITdsf4lMzPzktY7deoU9erV47XXXnNzIhER8SSVLBERKTT8/PwIDQ096+Z0OgH46quvaNCgAf7+/kRGRjJp0iSysrJy1n3ppZeoU6cOJUqUoFKlStx///2kpKQAsHz5cu666y6SkpJy9pBNnDgRINc9SiEhIbz77rsA7Nu3D4fDwccff0yrVq3w9/dnzpw5ALz11lvUqlULf39/atasyfTp0897/zp27MjTTz9Nt27d3PBoiYiIXXzsDiAiInK5Vq5cyZ133skrr7xCy5Yt2b17N0OGDAFgwoQJABiGwSuvvEJERAR79uzh/vvvZ/To0UyfPp3mzZvz8ssvM378eHbs2AFAYGDgRWUYM2YMU6dOpX79+jlFa/z48bz66qvUr1+fjRs3MnjwYEqUKMGAAQPc+wCIiEiBopIlIiKFxoIFC84qPx07duTTTz9l0qRJjBkzJqe8REZG8tRTTzF69OickvXwww/nrFe1alWefvpphg4dyvTp0/H19SU4OBiHw0FoaOglZXv44Yfp3r17ztcTJkxg6tSpOcsiIiLYunUrb7zxhkqWiIiXU8kSEZFCo3Xr1rz++us5X5coUQKAX3/9ldWrVzN58uScMZfLxenTp0lNTSUgIIDvv/+eKVOmsH37dpKTk8nKyjpr/HI1atQo59+nTp1i9+7dDBo0iMGDB+csz8rKIjg4+LJ/loiIFGwqWSIiUmiUKFGCatWq/Wt5SkoKkyZNOmtP0t/8/f3Zt28fN998M/fddx+TJ0+mdOnSrFq1ikGDBpGRkXHekuVwOLAs66xluZ3Y4u/C93cegDfffJMmTZqcNe/vz5CJiIj3UskSEZFCr0GDBuzYsSPXAgawYcMGTNNk6tSpGEb2OZ8++eSTs+b4+vricrn+tW65cuU4dOhQztc7d+4kNTX1vHkqVKhAWFgYe/bsoW/fvhd7d0REpJBTyRIRkUJv/Pjx3HzzzVSuXJnbbrsNwzD49ddf2bJlC08//TTVqlUjMzOTadOm0aVLF1avXs2MGTPO+h5Vq1YlJSWFpUuXUq9ePQICAggICKBNmza8+uqrNGvWDJfLxWOPPUaxYsUumGnSpEk8+OCDBAcH06FDB9LT0/n55585fvw4I0eOzHWdlJSUs677tXfvXjZt2kTp0qWpXLny5T1IIiLiMTqFu4iIFHrt27dnwYIFfPfddzRu3JimTZvy3//+lypVqgBQr149XnrpJZ577jlq167NnDlzmDJlylnfo3nz5gwdOpRevXpRrlw5nn/+eQCmTp1KpUqVaNmyJX369OGRRx7J12e47rnnHt566y3eeecd6tSpQ6tWrXj33XfPe12vn3/+mfr161O/fn0ARo4cSf369Rk/fvylPjQiImIDh3XugeYiIiIiIiJyybQnS0RERERExI1UskRERERERNxIJUtERERERMSNVLJERERERETcSCVLRERERETEjVSyRERERERE3EglS0RERERExI1UskRERERERNxIJUtERERERMSNVLJERERERETcSCVLRERERETEjVSyRERERERE3Oj/AVf0i0gQ/JTFAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADJFElEQVR4nOzdd3xO5//H8dd931mSSMSMoHbsrbRm7K2UqpZSq0Pt0VZLzVaXlqovWi1qt6gatUrpoFJbiwY1G7EliMg45/dHJD+ZEiJ3xvv5eORBznXOfd73ycmd+3Ofc12XxTRNExEREREREUkTVnsHEBERERERyUpUZImIiIiIiKQhFVkiIiIiIiJpSEWWiIiIiIhIGlKRJSIiIiIikoZUZImIiIiIiKQhFVkiIiIiIiJpSEWWiIiIiIhIGlKRJSIiIiIikoZUZIk8oFOnTmGxWJg3b16qtvPz88PPz++RZMrqihUrxosvvmjvGA/k5s2b9O3bF29vbywWC0OGDLF3pEfCYrEwbty4B9o2M/9809qLL75IsWLF7B3jgcybNw+LxcKpU6ceaPvM/NzTQv/+/WnWrJm9Y4gdPPHEE7z++uv2jiFpREWWZFoxf8hjvlxcXPDx8aFFixZ89tln3Lhxw94RM5Rt27bFOV4Wi4XcuXPzxBNPsGjRInvHy/Lee+895s2bx6uvvsqCBQt44YUX2LFjB+PGjeP69evpluPHH3984CJIso7Q0FDGjRvHtm3b7B0lTb333nusWrXK3jEAOHz4MOPGjUtVsXny5EnmzJnDW2+9lWj7kSNHYv/epefrRlZ1/fp1XnrpJfLly4ebmxuNGjVi7969Kd7+888/p1y5cjg7O1OoUCGGDRvGrVu3kt1m0aJFWCwW3N3dE7S98cYbzJgxg6CgoFQ/F8mATJFMau7cuSZgTpgwwVywYIH59ddfm++9957ZvHlz02KxmEWLFjUPHDjwyPZvGIZ5+/ZtMzIyMlXb3blzx7xz584jSpW0n3/+2QTMQYMGmQsWLDAXLFhgTp061XzyySdNwPz888/TPVNqFS1a1OzZs6e9YzyQ2rVrm3Xr1o2z7KOPPjIB8+TJk+mW47XXXjMf5Uv/7du3zYiIiAfaNiwszAwPD0/jRJlTeHi4GRYW9sge/9KlSyZgjh07Ns0fO+a1+UHP6549e5pFixZ9oG3d3NwyzGvEd999ZwLmzz//nOJtBg8ebPr6+ibZ/tZbb5ne3t6ms7Oz+eWXX6ZByuwrKirKrFOnjunm5maOGzfO/Pzzz83y5cubOXPmNAMCAu67/euvv24CZufOnc2ZM2eaAwcONB0cHMzmzZsnuc2NGzdMHx8f083NzXRzc0s0k7e3tzlmzJiHem6SMTjYrboTSSOtWrWiZs2asd+PGjWKrVu30rZtW9q3b8+RI0fIkSNHmu835tPE1HJyckrzLKlRv359OnfuHPv9q6++SokSJVi8eDGvvfaaHZOlr7CwMJycnLBa0+eC/sWLFylfvny67Cs0NBRXV9eHfpzIyEgMw0jVOfsgvxMxnJ2dH3jbrMbR0dHeESSdRUREsGjRIl555ZVE203TZPHixTz//POcPHmSRYsW0bdv33ROmTK3bt3Czc3N3jGStXz5cnbs2MF3330X+zexS5cu+Pr6MnbsWBYvXpzktufPn+eTTz7hhRde4Jtvvold7uvry8CBA1mzZg3t2rVLsN2kSZPImTMnjRo1SvSKq9VqpXPnznzzzTeMHz8ei8Xy8E9U7Ea3C0qW1LhxY8aMGcPp06dZuHBhnLajR4/SuXNncufOjYuLCzVr1mT16tUJHuP69esMHTqUYsWK4ezsTOHChenRoweXL18GEu+TFRQURK9evShcuDDOzs4ULFiQp556Ks7tIon1ybp48SJ9+vShQIECuLi4UKVKFebPnx9nnZj9ffzxx3zxxReULFkSZ2dnHn/8cf78888HPlZOTk54eXnh4BD3M5fIyEgmTpwYu59ixYrx1ltvcefOnTjrJdUHJ37/mpjbO3///XeGDRsWe3tGx44duXTpUpxtTdNk0qRJFC5cGFdXVxo1asTff/+dYB9Xr15lxIgRVKpUCXd3dzw8PGjVqhUHDhyIs17MrZJLly5l9OjRFCpUCFdXV/bv34/FYuHTTz9N8Ng7duzAYrGwZMmSJI9deHg477zzDjVq1MDT0xM3Nzfq16/Pzz//nGDfJ0+eZN26dbG3ar744ouMHDkSgOLFi8cuv/dcWbhwITVq1CBHjhzkzp2brl27cvbs2TgZ/Pz8qFixInv27KFBgwa4uromeavRiy++yIwZMwDi3DYKcc+vqVOnxv7cDx8+nKLnGSP++TBu3DgsFgvHjx/nxRdfJFeuXHh6etKrVy9CQ0PjbPsw54xhGIwbNw4fH5/Yc+bw4cMp7ud169Ythg8fTpEiRXB2dqZMmTJ8/PHHmKaZ4PkNGDCAVatWUbFiRZydnalQoQIbNmy47z5izoVly5bx1ltv4e3tjZubG+3bt0/wc723X1JERAS5c+emV69eCR4zJCQEFxcXRowYEbvsfq8np06dIl++fACxb+Ti/9xS+jr5999/07hxY3LkyEHhwoWZNGkShmHc91jEiDmOLi4uVKxYke+//z7R9T7++GPq1KlDnjx5yJEjBzVq1GD58uVx1rFYLNy6dYv58+fH+T0DOH36NP3796dMmTLkyJGDPHny8MwzzyS4lS8iIoLx48dTunRpXFxcyJMnD/Xq1WPz5s1x1rvf8Zk3bx7PPPMMAI0aNYrNk9ztmb/99huXL1+madOmibb//vvvnDp1iq5du9K1a1d++eUXzp07l2A9wzCYNm0alSpVwsXFhXz58tGyZUt2794dZ72FCxdSq1YtXF1d8fLyokGDBmzatCnO8UzNa/v27dvp378/+fPnp3DhwkDKjzsk/zf35s2buLm5MXjw4ATbnTt3DpvNxuTJk4mIiODo0aOcP38+0WN4r+XLl1OgQAGefvrp2GX58uWjS5cu/PDDDwn+1t1r586dREZG0rVr1zjLY75funRpgm2OHTvGp59+yieffJLg7+29mjVrxunTp9m/f/99n4NkbLqSJVnWCy+8wFtvvcWmTZvo168fEP2GoG7duhQqVIg333wTNzc3vv32Wzp06MCKFSvo2LEjED1IQf369Tly5Ai9e/emevXqXL58mdWrV3Pu3Dny5s2b6D47derE33//zcCBAylWrBgXL15k8+bNnDlzJsmO3Ldv38bPz4/jx48zYMAAihcvznfffceLL77I9evXE/xRWbx4MTdu3ODll1/GYrHw4Ycf8vTTT/Pvv/+m6NPvGzduxBaKV69eZfHixfz111989dVXcdbr27cv8+fPp3PnzgwfPpxdu3YxefJkjhw5kuQboZQYOHAgXl5ejB07llOnTjF16lQGDBjAsmXLYtd55513mDRpEq1bt6Z169bs3buX5s2bEx4eHuex/v33X1atWsUzzzxD8eLFuXDhArNnz6Zhw4YcPnwYHx+fOOtPnDgRJycnRowYwZ07dyhbtix169Zl0aJFDB06NM66ixYtImfOnDz11FNJPpeQkBDmzJnDc889R79+/bhx4wZfffUVLVq0wN/fn6pVq1KuXDkWLFjA0KFDKVy4MMOHDwegUqVKhIeHs2TJEj799NPYcyrmze+7777LmDFj6NKlC3379uXSpUtMnz6dBg0asG/fPnLlyhWb48qVK7Rq1YquXbvSvXt3ChQokGjel19+mcDAQDZv3syCBQsSXWfu3LmEhYXx0ksv4ezsTO7cuVP0PO+nS5cuFC9enMmTJ7N3717mzJlD/vz5+eCDD+67bUrOmVGjRvHhhx/Srl07WrRowYEDB2jRogVhYWH3fXzTNGnfvj0///wzffr0oWrVqmzcuJGRI0fy33//JSjCf/vtN1auXEn//v3JmTMnn332GZ06deLMmTPkyZPnvvt79913sVgsvPHGG1y8eJGpU6fStGlT9u/fn+hVd0dHRzp27MjKlSuZPXt2nCuLq1at4s6dO7Fv7lLyepIvXz5mzpzJq6++SseOHWPfZFauXBlI+etkUFAQjRo1IjIyMna9L774IsV3DmzatIlOnTpRvnx5Jk+ezJUrV2I/pIpv2rRptG/fnm7duhEeHs7SpUt55plnWLt2LW3atAFgwYIF9O3bl1q1avHSSy8BULJkSQD+/PNPduzYQdeuXSlcuDCnTp1i5syZ+Pn5cfjw4dgrv+PGjWPy5MmxjxMSEsLu3bvZu3dv7GAUKTk+DRo0YNCgQXz22We89dZblCtXDiD238TEfLBTrVq1RNsXLVpEyZIlefzxx6lYsSKurq4sWbIk9sOaGH369GHevHm0atWKvn37EhkZya+//soff/wRe9fH+PHjGTduHHXq1GHChAk4OTmxa9cutm7dSvPmzVP084uvf//+5MuXj3feeSe2X1JKj/v9/uZWrVqVjh07smzZMj755BNsNlvsfpcsWYJpmnTr1o3//vuPcuXK0bNnz/sOSrVv3z6qV6+e4G6GWrVq8cUXXxAQEEClSpUS3TamAIt/rsc8nz179iTYZsiQITRq1IjWrVvz7bffJpmrRo0aQHRRndS5IJmEXW9WFHkIMff9//nnn0mu4+npaVarVi32+yZNmpiVKlWK09fBMAyzTp06ZunSpWOXvfPOOyZgrly5MsFjGoZhmqZpnjx50gTMuXPnmqZpmteuXTMB86OPPko2d8OGDc2GDRvGfj916lQTMBcuXBi7LDw83HzyySdNd3d3MyQkJM7+8uTJY169ejV23R9++MEEzDVr1iS735g+WfG/rFar+e6778ZZd//+/SZg9u3bN87yESNGmIC5devW2GUk0a8jfv+pmJ9X06ZNY4+haZrm0KFDTZvNZl6/ft00TdO8ePGi6eTkZLZp0ybOem+99ZYJxHnMsLAwMyoqKs5+T548aTo7O5sTJkxI8NxLlChhhoaGxll/9uzZJmAeOXIkdll4eLiZN2/e+/btiIyMTNC/7tq1a2aBAgXM3r17Jzgebdq0ibMsqT5Zp06dMm02W4Kfy6FDh0wHB4c4yxs2bGgC5qxZs5LNGiOpPlkx55eHh4d58eLFB36e8c+HsWPHmkCC9Tp27GjmyZMnzrIHPWeCgoJMBwcHs0OHDnEeb9y4cQnOmcSsWrXKBMxJkybFWd65c2fTYrGYx48fj/P8nJyc4iw7cOCACZjTp09Pdj8x52GhQoVif69N0zS//fZbEzCnTZsWuyx+v6SNGzcm+nveunVrs0SJErHfp/T1JLk+WSl9nRwyZIgJmLt27YpddvHiRdPT0zNFfbKqVq1qFixYMPbnaJqmuWnTJhNI0Ccr/u9teHi4WbFiRbNx48ZxlifVJyv+9qZpmjt37jQB85tvvoldVqVKlQS/p/Gl9Piktk9W9+7dE/xOxAgPDzfz5Mljvv3227HLnn/+ebNKlSpx1tu6dWts39v4Yn6Hjh07ZlqtVrNjx44JXj/v/T1L7Wt7vXr1EvRRTulxT8nf3JjfgfXr18dpr1y5cuzf1JjXsZT0y3Nzc0vwumSaprlu3ToTMDds2JDktnv27DEBc+LEiXGWb9iwwQRMd3f3OMvXrl1rOjg4mH///bdpmtG/34n1yYrh5ORkvvrqq/d9DpKx6XZBydLc3d1jRxm8evUqW7dupUuXLrFXcy5fvsyVK1do0aIFx44d47///gNgxYoVVKlSJfYT23sldY90jhw5cHJyYtu2bVy7di3FGX/88Ue8vb157rnnYpc5OjoyaNAgbt68yfbt2+Os/+yzz+Ll5RX7ff369YHoqzop8c4777B582Y2b97MsmXLeO6553j77beZNm1anEwAw4YNi7NtzFWYdevWpfj5xffSSy/FOYb169cnKiqK06dPA/DTTz8RHh7OwIED46yX2JDnzs7OsZ9CRkVFceXKFdzd3SlTpkyiI0T17NkzwSePXbp0wcXFJc4Iixs3buTy5ct079492edis9liryoYhsHVq1eJjIykZs2aqRqhKr6VK1diGAZdunSJPU8vX76Mt7c3pUuXTnCbnrOzc6K3kj2ITp06xV5Ni5EWzzN+P5P69etz5coVQkJC7rvt/c6ZLVu2EBkZSf/+/eNsN3DgwBRl+/HHH7HZbAwaNCjO8uHDh2OaJuvXr4+zvGnTprFXSCD6CpCHh0eKfwd79OhBzpw5Y7/v3LkzBQsWjP29S0zjxo3JmzdvnKt3165dY/PmzTz77LNxnktqXk/iS83r5I8//sgTTzxBrVq1YrfPly8f3bp1u+8xOH/+PPv376dnz554enrGLm/WrFmifRfv/b29du0awcHB1K9fP8Xn373bR0REcOXKFUqVKkWuXLniPEauXLn4+++/OXbsWKKPk5rjk1pXrlyJ89p+r/Xr13PlypU4P9fnnnuOAwcOxLmVesWKFVgsFsaOHZvgMWJ+h1atWoVhGLzzzjsJruI8TB+gfv36xbnCBCk/7in5m9u0aVN8fHzivFb/9ddfHDx4MPa1ulixYpimmaKpVW7fvp1oP9CYfqW3b99Octvq1atTu3ZtPvjgA+bOncupU6dYv349L7/8Mo6OjnG2DQ8PZ+jQobzyyisp7pfr5eUVe8eJZF4qsiRLu3nzZuybmePHj2OaJmPGjCFfvnxxvmL+IF28eBGAEydOULFixVTty9nZmQ8++ID169dToEABGjRowIcffnjfoVhPnz5N6dKlE/yxi7mtJOaNZIzHHnsszvcxf5RTWthVqlSJpk2b0rRpU7p06cLChQtp27Ytb775Zmw/l9OnT2O1WilVqlScbb29vcmVK1eCTKlxv/wxj126dOk46+XLly/BGxDDMPj0008pXbo0zs7O5M2bl3z58nHw4EGCg4MT7Lt48eIJluXKlYt27drF6eS8aNEiChUqROPGje/7fObPn0/lypVj+2/ky5ePdevWJbr/lDp27BimaVK6dOkE5+qRI0diz9MYhQoVSrMBVRI7RvDwz/NhztuUnjPxz9fcuXMn+ab1XqdPn8bHxydO4QMp/x2MyZTS38H457bFYqFUqVLJDvXt4OBAp06d4vQVWblyJREREXGKrNS+nsSXmtfJmH3FV6ZMmWT3cW+OlG6/du1annjiCVxcXMidO3fsLY8pPf9u377NO++8E9vnLua14vr163EeY8KECVy/fh1fX18qVarEyJEjOXjwYGx7ao7PgzDj9QGMsXDhQooXL46zszPHjx/n+PHjlCxZEldX1zhFx4kTJ/Dx8SF37txJ7uPEiRNYrdY0H4gnsdeOlB73lPzNtVqtdOvWjVWrVsX251y0aBEuLi6x/d9SI0eOHIn2u4q5xfh+t73GFIa9e/emePHitGvXji5dulCtWrU4w7N/+umnXL58mfHjx6c4m2maGvQiC1CfLMmyzp07R3BwcOwbr5jO2CNGjKBFixaJbhP/TVpqDRkyhHbt2rFq1So2btzImDFjmDx5Mlu3bk2ze6vjf1IYI6k/zinRpEkT1q5di7+/f2z/Bni4TzWjoqISXZ6W+d977z3GjBlD7969mThxIrlz58ZqtTJkyJBEO98n9UezR48efPfdd+zYsYNKlSqxevVq+vfvf9+RBxcuXMiLL75Ihw4dGDlyJPnz54/tgH3ixIlUP58YhmFgsVhYv359oscr/vwqaTl6ZmKPlRbP82F+7o/inH8Y9srTtWtXZs+ezfr16+nQoQPffvstZcuWpUqVKmm2j/R4nUytX3/9lfbt29OgQQP+97//UbBgQRwdHZk7d26yI8Dda+DAgcydO5chQ4bw5JNP4unpicVioWvXrnFeKxo0aMCJEyf44Ycf2LRpE3PmzOHTTz9l1qxZ9O3b95Eenzx58iRaqIeEhLBmzRrCwsISLUoXL14c288vPST12p7Ya0dKj3tK9ejRg48++ohVq1bx3HPPsXjxYtq2bRvnamhKFSxYMNEBMmKWxe/TG1+hQoX47bffOHbsGEFBQZQuXRpvb298fHzw9fUFIDg4mEmTJtG/f39CQkJir9zfvHkT0zQ5deoUrq6u5M+fP85jX79+Pcm+35J5qMiSLCumY3/MH8ISJUoA0bfOJDV6U4ySJUvy119/PdB+S5YsyfDhwxk+fDjHjh2jatWqTJkyJcEohzGKFi3KwYMHMQwjzpv6o0ePxrY/apGRkUD0C3/MPg3D4NixY3E6al+4cIHr16/HyeTl5ZVgUszw8PAUje6UmJjHPnbsWOzPDODSpUsJ3oAsX76cRo0aJRi0I7V/oFq2bEm+fPlYtGgRtWvXJjQ0lBdeeOG+2y1fvpwSJUqwcuXKOG9wErtVJzFJvSkqWbIkpmlSvHjx2D/WaeVB3og97PN81GLOmePHj8f5NP3KlSspurpUtGhRfvrpJ27cuBHnataj+h2MfyuaaZocP348duCJpDRo0ICCBQuybNky6tWrx9atW3n77bfjrJPS15OkzoPUvE4WLVo00dvq/vnnn2S3uzdHSrZfsWIFLi4ubNy4Mc7tXXPnzk2wbVLPa/ny5fTs2ZMpU6bELgsLC0t0Qt+YkRx79erFzZs3adCgAePGjaNv376pOj6p/V0rW7YsixYtIjg4OE7RsHLlSsLCwpg5c2aC17V//vmH0aNH8/vvv1OvXj1KlizJxo0buXr1apJXs0qWLIlhGBw+fDjZQWvS4rU9pcc9pX9zK1asSLVq1Vi0aBGFCxfmzJkzTJ8+PcV57lW1alV+/fXXBL8ru3btwtXVNcWvvaVLl44tfg8fPsz58+djR1+8du0aN2/e5MMPP+TDDz9MsG3x4sV56qmn4gzn/t9//xEeHp7sICmSOeh2QcmStm7dysSJEylevHhs/4D8+fPj5+fH7NmzE/0jce+Q0J06deLAgQOJjqKX1KfVoaGhCUYyK1myJDlz5kx2KNjWrVsTFBQUp69FZGQk06dPx93dnYYNGyb/ZNPA2rVrAWI/EW/dujUAU6dOjbPeJ598AhDnalfJkiX55Zdf4qz3xRdfJPlp5/00bdoUR0dHpk+fHudYx88C0VcU4v88vvvuu1T3iXBwcOC5557j22+/Zd68eVSqVOm+b3hj9g9xz4ldu3axc+fOFO03Zh6Z+G84nn76aWw2G+PHj0/w/EzT5MqVKyl6/NTsMzkP+zwftSZNmuDg4MDMmTPjLP/8889TtH3r1q2JiopKsP6nn36KxWKhVatWaZYV4JtvvontKwrRb0TPnz9/3/3EzKGzZs0aFixYQGRkZJxbBSHlrycxo6DFPw9S8zrZunVr/vjjD/z9/eO033v7WlIKFixI1apVmT9/fpzbxjZv3szhw4fjrGuz2bBYLHFeU06dOpXoPENubm6JntuJvVZMnz49wetU/N8td3d3SpUqFfsanprjk9rftSeffBLTNBOMTLdw4UJKlCjBK6+8QufOneN8jRgxAnd399hj3qlTJ0zTTPTWtJjn36FDB6xWKxMmTEhwNeneY5QWr+0pPe6p+Zv7wgsvsGnTJqZOnUqePHni/N6kZgj3zp07c+HCBVauXBm77PLly3z33Xe0a9cuTkF/4sSJ+161NwyD119/HVdX19g+qPnz5+f7779P8NWoUSNcXFz4/vvvGTVqVJzHifn516lT577PQTI2XcmSTG/9+vUcPXqUyMhILly4wNatW9m8eTNFixZl9erVcSZHnTFjBvXq1aNSpUr069ePEiVKcOHCBXbu3Mm5c+di51caOXIky5cv55lnnqF3797UqFGDq1evsnr1ambNmpXo7TkBAQE0adKELl26UL58eRwcHPj++++5cOFCgrk07vXSSy8xe/ZsXnzxRfbs2UOxYsVYvnw5v//+O1OnTk3QT+Rh/frrr7HFYMxz2r59O127dqVs2bJAdLHVs2dPvvjiC65fv07Dhg3x9/dn/vz5dOjQgUaNGsU+Xt++fXnllVfo1KkTzZo148CBA2zcuPGBb3XIly8fI0aMYPLkybRt25bWrVuzb98+1q9fn+Ax27Zty4QJE+jVqxd16tTh0KFDLFq0KM4VsJTq0aMHn332GT///HOKhhWP2f/KlSvp2LEjbdq04eTJk8yaNYvy5cvHXhVMTsxQvW+//TZdu3bF0dGRdu3aUbJkSSZNmsSoUaM4deoUHTp0IGfOnJw8eZLvv/+el156Kc68SKkRs89BgwbRokULbDZbsudnWjzPR61AgQIMHjyYKVOm0L59e1q2bMmBAwdiz5n7XVFo164djRo14u233+bUqVNUqVKFTZs28cMPPzBkyJA4g1ykhdy5c1OvXj169erFhQsXmDp1KqVKlYqdaiI5zz77LNOnT2fs2LFUqlQpwafdKX09yZEjB+XLl2fZsmX4+vqSO3duKlasSMWKFVP8Ovn666+zYMECWrZsyeDBg2OHcI+5mnY/kydPpk2bNtSrV4/evXtz9epVpk+fToUKFeKcV23atOGTTz6hZcuWPP/881y8eJEZM2ZQqlSpBPupUaMGP/30E5988gk+Pj4UL16c2rVr07ZtWxYsWICnpyfly5dn586d/PTTTwmG3C9fvjx+fn7UqFGD3Llzs3v3bpYvX86AAQNi10np8alatSo2m40PPviA4OBgnJ2dady4cYJbw2LUq1ePPHny8NNPP8X2Bw0MDOTnn39OMChLDGdnZ1q0aMF3333HZ599RqNGjXjhhRf47LPPOHbsGC1btsQwDH799VcaNWrEgAEDKFWqFG+//TYTJ06kfv36PP300zg7O/Pnn3/i4+PD5MmTgbR5bU/pcU/N39znn3+e119/ne+//55XX301ztQlqRnCvXPnzjzxxBP06tWLw4cPkzdvXv73v/8RFRWVoEht0qQJQJx+k4MHDyYsLIyqVasSERHB4sWLY/9OxvTbdHV1pUOHDgn2vWrVKvz9/RNt27x5M4899piGb88K0mMIQ5FHIWbY2JgvJycn09vb22zWrJk5bdq0OEMk3+vEiRNmjx49TG9vb9PR0dEsVKiQ2bZtW3P58uVx1rty5Yo5YMAAs1ChQqaTk5NZuHBhs2fPnubly5dN00w4hPvly5fN1157zSxbtqzp5uZmenp6mrVr1za//fbbOI8bfwh30zTNCxcumL169TLz5s1rOjk5mZUqVYp93Bgx+0tsiHiSGGr3XokN4e7k5GSWLVvWfPfdd83w8PA460dERJjjx483ixcvbjo6OppFihQxR40aFWfYYtM0zaioKPONN94w8+bNa7q6upotWrQwjx8/nuQwv/GH3I/Jde8wx1FRUeb48ePNggULmjly5DD9/PzMv/76K8FjhoWFmcOHD49dr27duubOnTsTHOOYfXz33XfJHqMKFSqYVqvVPHfuXLLrxTAMw3zvvffMokWLms7Ozma1atXMtWvXJhh+2zQTH8LdNE1z4sSJZqFChUyr1Zpg2OsVK1aY9erVM93c3Ew3NzezbNmy5muvvWb+888/ses0bNjQrFChQorymmb0cOwDBw408+XLZ1osltjh3JM7v1LzPOOfizFDuF+6dCnOejHnw73P92HOmcjISHPMmDGmt7e3mSNHDrNx48bmkSNHzDx58pivvPLKfY/LjRs3zKFDh5o+Pj6mo6OjWbp0afOjjz6KM6R1zPN77bXXEmwfP3tiYnIvWbLEHDVqlJk/f34zR44cZps2bczTp0/HWTexY2ua0T+LIkWKJDrkfIyUvJ6Ypmnu2LHDrFGjhunk5JTg55bS18mDBw+aDRs2NF1cXMxChQqZEydONL/66qsUDeFumtHneLly5UxnZ2ezfPny5sqVKxN97l999ZVZunRp09nZ2Sxbtqw5d+7c2HPrXkePHjUbNGhg5siRI85Q3teuXYs9Ju7u7maLFi3Mo0ePJvi5TZo0yaxVq5aZK1cuM0eOHEm+Pqb0+Hz55ZdmiRIlTJvNlqLh3AcNGmSWKlUq9vspU6aYgLlly5Ykt5k3b54JmD/88INpmtG/Cx999JFZtmxZ08nJycyXL5/ZqlUrc8+ePXG2+/rrr81q1aqZzs7OppeXl9mwYUNz8+bNse0P+9pumik/7qZ5/7+592rdurUJmDt27IizPDVDuJumaV69etXs06ePmSdPHtPV1dVs2LBhos+jaNGiCc7JuXPnmlWqVDHd3NzMnDlzmk2aNIkzvUlykhrCPSoqyixYsKA5evToFD2OZGwW07RTz2ERkQymWrVq5M6dmy1bttg7iqSB69ev4+XlxaRJkxL0XbKHbdu20ahRI7777js6d+5s7ziSAf3777+ULVuW9evXx149kYQ6duzIoUOHOH78uL2jpKlVq1bx/PPPc+LECQoWLGjvOPKQ1CdLRATYvXs3+/fvp0ePHvaOIg8gsTltYvrx+fn5pW8YkQdUokQJ+vTpw/vvv2/vKBnW+fPnWbduXYoGJ8psPvjgAwYMGKACK4tQnywRydb++usv9uzZw5QpUyhYsGCCgQQkc1i2bBnz5s2jdevWuLu789tvv7FkyRKaN29O3bp17R1PJMXiD+Ai0U6ePMnvv//OnDlzcHR05OWXX7Z3pDSXUQYTkrShIktEsrXly5czYcIEypQpw5IlS+IMlCKZR+XKlXFwcODDDz8kJCQkdjCMSZMm2TuaiKSB7du306tXLx577DHmz5+Pt7e3vSOJJEt9skRERERERNKQ+mSJiIiIiIikIRVZIiIiIiIiaUhFloiIiIiISBpSkSUiIiIiIpKGVGSJiIiIiIikIRVZIiIiIiIiaUhFloiIiIiISBpSkSUiIiIiIpKGVGSJiIiIiIikIRVZIiIiIiIiaUhFloiIiIiISBpSkSUiIiIiIpKGVGSJiIiIiIikIRVZIiIiIiIiaUhFloiIiIiISBpSkSUiIiIiIpKGVGSJiIiIiIikIRVZIiIiIiIiaUhFloiIiIiISBpSkSUiIiIiIpKGVGSJiIiIiIikIRVZIiIiIiIiaUhFloiIiIiISBpysHeAjM4wDAIDA8mZMycWi8XecURERERExE5M0+TGjRv4+PhgtSZ9vUpF1n0EBgZSpEgRe8cQEREREZEM4uzZsxQuXDjJdhVZ95EzZ04Azn79NR6urnZOIyIiaWrPHtb/6sYeanCcUpzHh4IF4dln7R1MREQyotDQEHr3LhJbIyQl0xVZM2bM4KOPPiIoKIgqVaowffp0atWqdd/tli5dynPPPcdTTz3FqlWrUry/mFsEPVxdVWSJiGQV/v4QEMCawOr89VhHdgb64uMDTX0hBX9SREQkm7tfN6JMNfDFsmXLGDZsGGPHjmXv3r1UqVKFFi1acPHixWS3O3XqFCNGjKB+/frplFRERDI8X1/wawS+0QVW9+4qsEREJG1kqiLrk08+oV+/fvTq1Yvy5csza9YsXF1d+frrr5PcJioqim7dujF+/HhKlCiRjmlFRERERCQ7yjRFVnh4OHv27KFp06axy6xWK02bNmXnzp1JbjdhwgTy589Pnz59UrSfO3fuEBISEudLREREREQkpTJNn6zLly8TFRVFgQIF4iwvUKAAR48eTXSb3377ja+++or9+/eneD+TJ09m/PjxDxNVREREROQBmFitkVgsUWjmoPRnmmCaNgzDAXi4H0CmKbJS68aNG7zwwgt8+eWX5M2bN8XbjRo1imHDhsV+HxISoiHcRUREROSRslrD8fA4T44coSqw7Mg04fZtV0JCCmIYTg/8OJmmyMqbNy82m40LFy7EWX7hwgW8vb0TrH/ixAlOnTpFu3btYpcZhgGAg4MD//zzDyVLlkywnbOzM87OzmmcXkREREQkKQZ5857E3d2Gl5cPDg5OPOyVFHkQJpGR4Vy7dgknp5NcvFiaB+1dlWmKLCcnJ2rUqMGWLVvo0KEDEF00bdmyhQEDBiRYv2zZshw6dCjOstGjR3Pjxg2mTZumq1MiIiIikiHYbOE4OBjkzVsEZ2dNGWRPTk45sNkcCQs7jc0WTlSUywM9TqYpsgCGDRtGz549qVmzJrVq1WLq1KncunWLXr16AdCjRw8KFSrE5MmTcXFxoWLFinG2z5UrF0CC5SIiIiIi9hJze6DFkjZj0lks0V/RfYzS5CGzlZifw8Pctpmpiqxnn32WS5cu8c477xAUFETVqlXZsGFD7GAYZ86cwWrNNAMmioiIiIikCYsFHB3B2RaBzdkxdnnUnQjuRDkSEaGCKz1lqiILYMCAAYneHgiwbdu2ZLedN29e2gcSEREREbEjBwdwc4mM/mbFSli+HK5dAy8vrJ07k6NTJ3I4wa0wByIj7Zs1u8h0RZaIiIiIiERzcAA3VwM2bMLSuzfEGyTOsnw5FCiA+fXXuLVsya1Qq10KLS8vCwsXfk+bNh3Sf+d2oHvrREREREQyIYvl7hWsDRuwtG+foMCKdeFCdPuGDbi5RKb5EPEXLgTx+usDqVq1BAUKOFOhQhG6dm3H9u1b0nZHD8g0Td577x3Kli1IwYI56NChKSdOHHuk+1SRJSIiIiKSCTne7Xpl6d0boqKSXzkqCkufPnG2SwtnzpyiUaMa/PrrViZM+Ijffz/E8uUbqF+/ESNHvpZ2O3oI06Z9yOzZn/HJJ7PYvHkXrq5udOrUgrCwsEe2TxVZIiIiIiKZkLMtAlasSPoKVnxBQbByZfR2aWT48P5YLBZ++smf9u07UaqUL+XKVeC114axefMfSW43duwb1Kzpi4+PK1WrluDdd8cQEfH/uQ4dOkC7do0oUiQnjz3mgZ9fDfbt2w3AmTOn6dq1HcWKeVGokBtPPlmBTZt+THQ/pmkya9ZURowYTevWT1GxYmVmzvyGoKBA1q1blWbHIT71yRIRERERyYDuzj6UDMfoQS5SwbJ8ObYuXcjlnPQ616+n7LGuXbvKli0bGD36Xdzc3BK0e3rmSnLbnDlzMmPGPAoW9OHvvw8xZEg/3N1zMnjw6wC89FI3KleuxpQpM7HZbBw6tB8Hh+hLcCNHvkZERDjr1v2Cm5sbR48exs3NPdH9nD59kgsXgvDza3pPLk9q1KjNn3/upFOnril7sqmkIktEREREJLO6du3Rrp+Mf/89jmma+PqWTfW2I0aMjv3/Y48V4/jxEaxcuTS2yPrvvzMMGjQy9rFLliwdu/65c2do374TFSpUAqBYsRJJ7ufChSAA8uUrEGd5/vwFuHgxKNW5U0pFloiIiIhIBpTcFSWLBTw9AS+v1D3o3fWDgx9+3izzIR5g5cplzJ79GadOneDWrZtERkaSM6dHbHv//sMYNKgvy5YtoGHDpnTo8AzFi5cE4OWXBzF8+Kts3boJP7+mtGvXiYoVKz/ck0lj6pMlIiIiIpLJmGb0RMNm586p265z5+jt0mBi4pIlS2OxWAgIOJqq7fz9d/LSS91o1qw1S5euZfv2fQwf/jbh4eGx67z55jh27vyb5s3b8OuvW3niifKsXfs9AD169GXfvn959tkXOHz4EI0b1+SLL6Ynuq8CBbwBuHQpbr+1ixcvkD+/d6pyp4aKLBERERGRTOhOlCN06gQFCtx/ZQBvb3j66ejt0oCXV24aN27BV1/N4NatWwnag4OvJ7qdv/8OihQpyogRb1OtWk1KlizN2bOnE6xXqpQv/fsPZeXKTbRt+zSLFs2NbStcuAi9e7/CggUree214cyf/2Wi+ypatDgFCnjHGU4+JCSEPXt28fjjT6byGaeciiwRERERkUwoZjA+8+uvwWZLfmWbDfOrr+JslxY+/ngGUVFRNG1ai9WrV3DixDH++ecIs2d/RvPmiRcxJUqU5ty5M6xYsZSTJ08we/ZnsVepAG7fvs3IkQP47bdtnDlzmj/++J19+/7E17ccAKNGDWHLlo2cPn2SAwf28ttvP1OmTLlE92WxWHjllSF8/PEkfvxxNX//fYhXX+2Bt7fPI50YWX2yREREREQyIdOEW2EOuLVsibl6dfQ8WEGJDObg7R1dYLVsya1Qa5rcKhijWLESbNu2lylT3mX06OFcuHCevHnzUaVKDaZMmZnoNq1bt+fVV4fy+usDCA+/Q7NmbRg5cgzvvz8OAJvNxtWrV3jllR5cunSBPHny0rbt04waNR6AqKgoRo58jcDAc+TM6UGTJi15771Pk8w4ePDrhIbeYujQlwgOvs4TT9Rj+fINuLi4pN2BiMdiPkyPtWwgJCQET09PgpcuxcPV1d5xsqUT58+z58QJHKxWGlasSB4Pj/tvJCKSHH9/ANbQDn9qERAA3bvbOZOIZFsODmHkz3+SIkWK4+SU+jf+Dg7g5hIZ/c3KlViWL48eRdDLK7rP1tNPA9EFWWRkWibPmsLDwzh79iQXLxYnMjLuzyM0NISuXT0JDg7GI5n3pLqSJRlW4JUr9PvsM37cty92mbPNRu9mzfikb19cnJzsmE5EREQkY4iMhJBbDjg6gvNTHbF16RLbZtyJ4E64A/eMKSHpQEWWZEhXb9yg4RtvEHb5MvOA9kAosCAqivEbN3L20iV+GDMGq1XdCkVERERME8LDIRxHLGHRQ7ybJphm2gxyIamjd6iSIc1Yt47Ay5fZbhj0BLyAQsCbwFLTZO2ePWw9eNC+IUVEREQyINMEw3j4ebDkwanIkgxp/ubNPGcYJDZ/d3uggtXKvC1bEmkVEREREbEvFVmSIZ2/fp2KSbRZgIqGwfkrV9IzkoiIiIhIiqjIkgypYK5c/JVEmwkcslopmCdPekYSEREREUkRFVmSIb3YvDlLrFb+TaRtNXDYMHixSZP0jiUiIiKS4VksYLVG/yv2oSJLMqTX2rTBJ29eGlitzAWuAueA94CuFgtta9SgceXK9g0pIiIikkFYLODkBDlygKcneHhE/5sjR/RyFVzpS0O4S4bk5e7O9g8+4KXp0+mzdy+97y53cXCgd7NmTOnTR8O3i8iD8feHgADGBL5CAIUIBHx87B1KROTBOTiAy905c1esgHvmIqZzZ+jUKbrQCgtDkxGnExVZkmH55MnD2nHj+DcoiN3Hj+Nos9GgQgXyJDO7tohIku4WV2sCq7PwytsE5qmMjw/4+UKtWvYOJyLyYBwcwNUVNmyA3r3hwoW47cuXQ4EC8PXX0LIlhIbap9Dy8rKwcOH3tGnTIf13bgcqsiTDK+HtTQlvb3vHEJHM6p7iyp9X2HalMj6V8qi4EpFMz2KJvoK1YQO0bw9RUYmvd+FCdPvq1dC8Ody6lbZzaF24EMSUKe+yadM6zp//j7x581OpUlVefXUIDRvavw/9mjUrmTt3Fvv37+Hatav88ss+KlWq+kj3qSJLRESyPl9f/OlIAL74+am4EpGswdEx+t/evZMusGJERUGfPnD2bPR24eFpk+HMmVO0bFkXT89cTJjwEeXLVyIiIoKtWzcycuRr+PsfTZsdPYRbt27xxBP16NChC4MH90uXfapTi4iIZBu+vvZOICKSdmy26D5Y8W8RTEpQEKxcGb1dWhk+vD8Wi4WffvKnfftOlCrlS7lyFXjttWFs3vxHktuNHfsGNWv64uPjStWqJXj33TFERETEth86dIB27RpRpEhOHnvMAz+/GuzbtxuAM2dO07VrO4oV86JQITeefLICmzb9mOS+unZ9gddffwc/v6Zp98TvQ1eyREREREQyoFy57r/O8uWpe8zly6FLF3B2Tnqd69dT9ljXrl1ly5YNjB79Lm5ubgnaPT1zJbltzpw5mTFjHgUL+vD334cYMqQf7u45GTz4dQBeeqkblStXY8qUmdhsNg4d2o+DQ/Slu5EjXyMiIpx1637Bzc2No0cP4+bmnrLQ6URFloiIiIhIJnXt2qNdPzn//nsc0zTx9S2b6m1HjBgd+//HHivG8eMjWLlyaWyR9d9/Zxg0aGTsY5csWTp2/XPnztC+fScqVKgEQLFiJR7maTwSKrJERERERDKg5K4oWSzR82B5eaXuMWPWDw5++MEvzId4gJUrlzF79mecOnWCW7duEhkZSc6c/z+CdP/+wxg0qC/Lli2gYcOmdOjwDMWLlwTg5ZcHMXz4q2zdugk/v6a0a9eJihUz1vyp6pMlIiIiIpLJmCbcuRM9D1ZqdO4cvV1ajC5YsmRpLBYLAQGpG9zC338nL73UjWbNWrN06Vq2b9/H8OFvE37PaBxvvjmOnTv/pnnzNvz661aeeKI8a9d+D0CPHn3Zt+9fnn32BQ4fPkTjxjX54ovpD/+E0pCKLBERERGRTCgqKnqi4QIFUra+tzc8/fT9RyJMKS+v3DRu3IKvvprBrVu3ErQHB19PdDt//x0UKVKUESPeplq1mpQsWZqzZ08nWK9UKV/69x/KypWbaNv2aRYtmhvbVrhwEXr3foUFC1by2mvDmT//y7R5UmlERZaIiIiISCYUMxjf11/ff8RAmw2++irudmnh449nEBUVRdOmtVi9egUnThzjn3+OMHv2ZzRv/mSi25QoUZpz586wYsVSTp48wezZn8VepQK4ffs2I0cO4LfftnHmzGn++ON39u37E1/fcgCMGjWELVs2cvr0SQ4c2Mtvv/1MmTLlksx47dpVDh3az9GjhwE4duwfDh3az4ULQWl3IOJRkSUiIiIikgmZJoSFQcuW0RMNe3snvp63d3R7y5bR66flRMTFipVg27a91KvXiNGjh1OnTkWefroZ27dvYcqUmYlu07p1e159dSivvz6ABg2qsmvXDkaOHBPbbrPZuHr1Cq+80oPHH/eld+8uNG3ailGjxgMQFRXFyJGvUbt2OTp3bknJkr58/PH/ksy4fv1qGjSoxrPPtgGgT5+uNGhQjblzZ6XdgYjHYj5Mj7VsICQkBE9PT4KXLsXD1dXecUREJLX8/QEYE/BC7ERZmoxYRDISB4cw8uc/SZEixXFycnmA7cHl7mYrV0YP037tWvQgF507R98iCNEFVmRkGgbPosLDwzh79iQXLxYnMjLuzyM0NISuXT0JDg7Gw8MjiUfQ6IIiIiIiIplaZCTcugWOjvDUU9HzYMW4cwfCw6O/JP2oyBIRERERyeRM8/8LqbCw6CHeTTNtbw2UlFORJSIiIiKShai4sj8NfCEiIiIiIpKGVGSJiIiIiNhRzFUnjUeXMcT8HB7mx6EiS0RERETEjgzDEcOA8PBQe0cRon8OhhH9c3lQ6pMlIiIiImJHpmnj5s1cXL58EQAnJ1csFoudU2U/pmkSHh7K5csXuXkzF6Z5nxmek6EiS0RERETEzm7ejJ5JODLyIlbda2Y3hgE3b+aK/Xk8KBVZIiIiIiJ2Z+HmzYLcupUfqzUCXchKf6YZfYvgw1zBiqEiK5s5cf487y9fzuWQECoWLcrbXbrg4uRk71giIiIiQvStg1FRD/8mX+xLRVY2ERkZid/bb7PzyBFMwBlYtWsXH373HaOefZZxzz9v74giIiIiIlmC7vjMJuq9+SY7jhzhLSAIuA3sB5qaJhOWLuWTVavsGU9EREREJMtQkZUNHDx5Ev+AAMYBE4H8d5dXAX4AagETFy+2UzoRERERkaxFRVY2MOnbb7EBAxNpcwCGAtfDwvj9yJH0DSYiIiIikgWpyMoGLgUH4wV4JdFe6u6/py5cSKdEIiIiIiJZl4qsbKBkwYJcBs4k0b4bsABVihVLt0wiIiIiIlmViqxsYFL37liBcYAZr+068AHg7elJRRVZIiIiIiIPLdMVWTNmzKBYsWK4uLhQu3Zt/P39k1z3yy+/pH79+nh5eeHl5UXTpk2TXT+r8vbyonvjxswF2gNbgOPAN0QPenEWmDN4sB0Tiog8Iv7+EBDAmoAyAAQE2DmPiIhkC5mqyFq2bBnDhg1j7Nix7N27lypVqtCiRQsuXryY6Prbtm3jueee4+eff2bnzp0UKVKE5s2b899//6VzcvubN2QIQ9q3Z4vNRlOgNNATuO7uzoq336Z1zZp2TigiksYWLmTNNnfGBL7CwsBGBOCLry/UqmXvYCIiktVZTNOMfwdZhlW7dm0ef/xxPv/8cwAMw6BIkSIMHDiQN998877bR0VF4eXlxeeff06PHj1StM+QkBA8PT0JXroUD1fXh8qfERiGwbJff+X8tWvULlOGuuXK2TuSiEja8vdnzTZ3/KlFAL4EUggfH+je3d7BREQkswsNDaFrV0+Cg4Px8PBIcj2HdMz0UMLDw9mzZw+jRo2KXWa1WmnatCk7d+5M0WOEhoYSERFB7ty5k1znzp073LlzJ/b7kJCQBw+dAVmtVp5r2NDeMUREHo2FC1kTWB1/n44E4AuAn65eiYhIOss0twtevnyZqKgoChQoEGd5gQIFCAoKStFjvPHGG/j4+NC0adMk15k8eTKenp6xX0WKFHmo3CIiks78GoFv9K2Buj1QRETsIdMUWQ/r/fffZ+nSpXz//fe4uLgkud6oUaMIDg6O/Tp79mw6phQRERERkcwu09wumDdvXmw2GxfiTZh74cIFvL29k932448/5v333+enn36icuXKya7r7OyMs7PzQ+cVEREREZHsKdNcyXJycqJGjRps2bIldplhGGzZsoUnn3wyye0+/PBDJk6cyIYNG6ipEfREREREROQRyzRXsgCGDRtGz549qVmzJrVq1WLq1KncunWLXr16AdCjRw8KFSrE5MmTAfjggw945513WLx4McWKFYvtu+Xu7o67u7vdnoeIiIiIiGRdmarIevbZZ7l06RLvvPMOQUFBVK1alQ0bNsQOhnHmzBms1v+/ODdz5kzCw8Pp3LlznMcZO3Ys48aNS8/oIiIiIiKSTWSqIgtgwIABDBgwING2bdu2xfn+1KlTjz6QiIiIiIjIPTJNnywREREREZHMQEWWiIiIiIhIGsp0twvKgzt3+TJD5sxhy969REREkNPdnb4tWjC2a1ccHHQqiIiIiIikBV3JyiZ+P3KE0n378v2OHTQIC6NvVBQFg4OZ9O23lOjbl7DwcHtHFBERERHJElRkZQOGYdB6zBjyGQb/AD8AU4G9wHIg8OpV2owfb8+IIiIiIiJZhoqsbODLjRsJCQ/nC6BUvLZOwMvAr4cOcTM0NP3DiYiIiIhkMSqysoEVO3eSE2ieRHtXIALYsHdv+oUSEREREcmiVGRlA6ZpYkmmPeYkMNIjjIiIiIhIFqciKxtoX6sWIcCWJNq/BRyBltWrp18oEREREZEsSkVWNvBamza4OzryMnA6Xts64H/AkxUq4OHqmv7hRERERESyGBVZ2YDVamXNuHEEWiyUAp4F3gDqAG2BfJ6erB871q4ZRURERESyChVZ2YRfpUocmT2bFjVrst7RkelWK8fd3Rn21FOc+uorXF1c7B1RRERERCRLcLB3AEk/xb29WfvOO/aOIRmMYRhs3r+f3w4fxmKx0KhSJfwqVcJiSW64FBERERFJiooskWzsyNmzPD1pEkfPn8fHZiMKmLhsGVUee4zvR4+muLe3vSOKiIiIZDq6XVAkm7oUHEyTt97CduECvwPnoqI4HxXFVuDWuXM0eestQjRBtYiIiEiqqcgSyaa+2LiR6yEhbDYM6gCWu1+NgI2GwZnLl/lm61b7hhQRERHJhFRkiWRT327fTmfTpGAibSWANsCy7dvTOZWIiIhI5qciSySbCr51i8LJtBcBQm7dSq84IiIiIlmGiiyRbMq3cGF+tSb+EmACv1itlC6cXBkmIiIiIolRkSWSTfVr2ZLfDIMfEmlbCBwyDF5q1Sq9Y4mIiIhkehrCXSSbevrJJ3m6dm06+/vTxzR5BjCAJcB8oGejRjSrWtWuGUVSzN8fAgIYE/gKAYGFCAR8fKB7d3sHExGR7EhFlkg2ZbPZWPrGG3y4ciX/W7OG2cHBADyWOzcfPvUUQ596ShMSS8Z3t7haE1idhXxCIIXw8QE/X6hVy97hREQku7KYpmnaO0RGFhISgqenJ8FLl+Lh6mrvOA/NNE2OnjvHtZs3KZY/Pz558tg7kmQAEZGR/BsUhMVioaS3Nzabzd6RRJJ3T3HlTy22XamMT6U8+Kq4EhGRRyg0NISuXT0JDg7Gw8MjyfV0JSsb+eGPP3hnwQIOnj0LgNVioU2NGkzp25fSPj52Tif25OjgQBkNciGZja8v+DYCauEToFsDRUQk49DAF9nEgp9/psN77+F97hxrgUPATNPk8N691Bk+nGOBgfaOKCIiIiKSJajIygZuhYUxcOZMugMbTJM2QEXgJWCXYZDz9m3enDfPrhlFRERERLIKFVnZwIodOwgJC2MiEH8YgzzACMPgh127uHj9evqHExERERHJYlRkZQMnL1zA22ajWBLttYEo0+Ts5cvpmEpEREREJGtSkZUN5M6ZkyuGQXAS7Sdj1nN3T69IIiIiIiJZloqsbKDTk09iWCz8L5G2KGCaxcITpUpR3Ns7vaOJiIiIiGQ5KrKyAZ88eRjYti2jgUnA1bvLjwDPADuACS+8YK94IiIiIiJZiubJyiY+6tULq9XKhNWrGW+a5LRYuGYY5HN357sBA2hWrZq9I4qIiIiIZAkqsrIJm83Gx7178/rTT/P9H39w/dYtSnp7065WLZwdHe0dT0REREQky1CRlc3kz5WLl1u2tHeMFNuwZw+fr13Ln//8g4PNRouaNRncvj1Vihe3dzQRERERkUSpT5ZkWG/On0+r8eMJ3LeP127e5IXgYH7ato2aQ4fy3W+/2TueiIiIiEiiVGRJhrT2zz/5YMUKpgB7DIN3gPeBE1FRPGMYdJ8yhXOa10tEREREMiAVWZIhffbDD9S2WhkGWO5Z7gjMApxMky83bbJPOBERERGRZKjIkgzpj3/+oaNhJNrmATQzDHYeOZK+oUREREREUkBFlmRINquV8GTawwAHmy294oiIiIiIpJiKLMmQmlWrxmKbjcSuZQUBP1ksNK1aNZ1TiYiIiIjcn4osyZCGdujAP1FRvEb0VasYl4AuFgvuOXLwYpMmdkonIiIiIpI0FVmSIT1ZtixfDBjAFxYLha1WugEdgSIWC3/lyMHasWPJnTOnvWOKiIiIiCSgyYglw+rbvDkNK1Zk1vr1+B89iqODAxNq1qR3s2bk9fCwdzwRERERkUSpyJIMraCXF2UKFSI4NBQHmw3fQoXI5eZm71jJOnjyJAu3beNSSAiP5cvHi40bU9zb296xspSA//5j/tatBF69SkEvL3o0bkzZwoXtHUtEREQEUJElGdjmffvo8v77hNy+TXWbjVBg9oYNlPH2Zt348ZQsWNDeEeMIj4ig97RpLPrlFwrYbBQHVpkmE5cu5fVOnZjcowcWi+W+jyNJMwyDwV9+yefr1pHHasUXWAtMXr6cl1u0YMYrr2DTqJMiIiJiZ+qTJRnSkbNneWrSJJ4IC+Mk8GdUFH9HRfEnYFy8SPPRowm9c8feMeMY9tVXfPfrr3wNnI2KYmdUFP8ZBu8CH6xYwdTVq+0dMdObuGwZM9atYypwzjDYYRicMww+B77cuJF3Fi+2c0IRERERFVmSQX36ww94RUWx0jR57J7lNYE1hsG/ly6x7Ndf7RUvgYvXr/PFhg1MME16AY53l7sCo4B+wIfffUdEZKTdMmZ2t8LC+PT77xkGDAZc7i53Bl4D3gA+++EHQkJD7RVRREREBFCRJRnUqh076GEY5EikrQzgZ7GwaufO9I6VpB/37CHCMOiXRPtLQFBICLsCAtIzVpay7dAhgsPCeCmJ9peAm+HhbD14MD1jiYiIiCSgIksypNDwcPIl057PNAkNC0tmjfQVeucONsArifZ896wnDybm2CV1XugYi4iISEaR6YqsGTNmUKxYMVxcXKhduzb+/v7Jrv/dd99RtmxZXFxcqFSpEj/++GM6JZWHUfGxx9icxCARd4BtVisVixdP31DJqFS0KFHAtiTaNwFWi4XyRYqkX6gspmLRogBsTqJ9U8x6jz2WxBoiIiIi6SNTFVnLli1j2LBhjB07lr1791KlShVatGjBxYsXE11/x44dPPfcc/Tp04d9+/bRoUMHOnTowF9//ZXOySW1Xm3Thg2mSfyhIkxgAnDJMHipRQs7JEtcvfLlqVCoEG9YrdyI1xYIvGu10rZmTQrnzWuPeFlCuSJFaFiuHO9YrVyO13YVGGO18mTp0lTOQMW3iIiIZE+Zqsj65JNP6NevH7169aJ8+fLMmjULV1dXvv7660TXnzZtGi1btmTkyJGUK1eOiRMnUr16dT7//PN0Ti6p1d3Pj05PPMHTFgvPA8uAuUBjq5X3gPd79qRcBroqZLFYmDdsGP84OVHJauV9YCUwGqhitRLl6clnL79s55SZ3+yBA7nm5kZlq5XxRB/jiUAlq5WgHDmYM3iwnROKiIiIZKIiKzw8nD179tC0adPYZVarlaZNm7IziQEQdu7cGWd9gBYtWiS5PsCdO3cICQmJ8yXpz2azsfSNN5jSpw+7CxSgK9AbiChdmpWjRvFGp072jphAzdKl2fXJJzRs2JBxDg50Aj5zdqZrq1bs+uQTiubPb++ImV6ZwoXx//RT2jVrxoeOjnQCJjs60rpJE/w//ZTyulVQREREMoBMMxnx5cuXiYqKokCBAnGWFyhQgKNHjya6TVBQUKLrBwUFJbmfyZMnM378+IcPnEFFREby+5EjXLt5k5Le3hn61ioHm43B7dszqF07rt+6haPNhnuOxMYbzDjKFi7M14MG8WKTJpy9dIkyRYpQq3TpDD8J8baDB5m5YQMWi4Vh7dtTq0wZe0dKUtH8+Zn92mt8/vLLhISG4uHqiqNDpnkpk7Tg7w8BAayhHf7kYlsg+PjYO5SIiMj/0zuTeEaNGsWwYcNivw8JCaFIBrot7WF8uXEj4xYuJDA4OHZZrZIlmdG/PzVLl7ZjsuRZLBa83N3tHSNFlv36K6PmzuXk5f/vNVS5SBGmvfIKfpUq2TFZ4v46fZo6I0dyMywM8+6y7379FQ9XV/ZOm0bxeB9SZCSODg7k8fCwdwxJbwsXsiawOv68QgC+BFIIPz+oVcvewURERP5fprldMG/evNhsNi5cuBBn+YULF/D29k50G29v71StD+Ds7IyHh0ecr6xg2urVvDRjBo2Dg/kTuAisAiJPnsRv1Cj2//uvfQNmAQt//pmuH31ElcuX+Z3oY7wB8Dx3juZjxrA9gw24EnT1KjUGDYKwMKYAZ4FTwHvAndBQyr38Mjdv37ZrRpFY/v6s+fAwYwJfYSHd2UYj8CnE66+rwBIRkYwn0xRZTk5O1KhRgy1btsQuMwyDLVu28OSTTya6zZNPPhlnfYDNmzcnuX5Wdf3mTd6aP58BwAKgJtFzCj0F/GIYFIuM5K358+2aMbO7ExHB8C+/5DmiB2OoQ/QxbgH8ZJo8bpqM+PJLu2aMr+N77xFhmmwFhgKFgaLAG8CPwB3DoOtHH9kzoki0u7cH+vt0JMAnurjy84Pu3e0dTEREJHGZpsgCGDZsGF9++SXz58/nyJEjvPrqq9y6dYtevXoB0KNHD0aNGhW7/uDBg9mwYQNTpkzh6NGjjBs3jt27dzNgwAB7PQW7WL5jB3ciIhiVSJsbMMww2LBvH4FXrqR3tCxj/Z49XLx5kzFA/N5XTsCbpsnukyf56/RpO6RL3L5jx2hFdNEdnx/wJPDTvn3pmkkkSb6+sf/4+urqlYiIZGyZqk/Ws88+y6VLl3jnnXcICgqiatWqbNiwIXZwizNnzmC1/n/dWKdOHRYvXszo0aN56623KF26NKtWraJixYr2egp28d+VK+S32fCJikq0vQrR80+dv3YNnzx50jVbVvHflSs4WiyUM81E26vc/ffc5cuxk+ram2maVE2mvTqwN4lzRkRERESSlqmKLIABAwYkeSVq27ZtCZY988wzPPPMM484VcZWIFcuLhkGl4i+hS2+I/esJw/G28uLCNPkOFAqkfYj96yXYVgsHE6iKAT4G8CaqS52i4iIiGQIegeVDTxTty42q5UpibTdAT6xWmlcsSKF8+ZN72hZRusaNcjt6sr7ibRFAR9aLFQuUoQqGWjI/ArFi7Oau8VUPP7ANqBuNrvqKyIiIpIWVGRlA3k8PBjdtSsfAAOB40AEsB1obrFw2GLh3R497Joxs8vh7My7PXvyFfAi0YVLJLALaG+xsA14v3fvDDVf1opRo7ABDYGvgZtAMDALaAY4WSwsHTnSjglFREREMicVWdnE21268OGLL7IwRw5KEz0Ygx9woUABNkyYwBNly9o3YBbwSqtWzO7fnx/d3akIOAJPAIdz52bV22/TqkYNOyeMq3iBAvw0eTKhDg70AXICuYD+QJSjI39OnUo+T0+7ZhQRERHJjCymmUynDCEkJARPT0+Cly7Fw9XV3nEeWuidO2zcu5drN29S2seHeuXLZ6irK1nBnYgINu/fz6XgYB7Llw+/ihWx2Wz2jpWshT//zFebNmGxWhnYti0ds9k0B5LB+fsDMCbghdhRBjW6oIiI2ENoaAhdu3oSHByc7Hy6mW7gC3lwAf/9x0crV7Lsl1+4cecORXPnpl/r1gxu1w73HDnsHS/LcHZ0pO3jj9s7RooYhsHIuXP5euNGroeFAXDwxAn2/fsvE7p1s3M6ERERkcxJRVY28cfRozQfMwaPiAiGGAbFgN+vXmXSokWs/O03tk6ejKebm71jSjp7YuRI/jx2jAbAs0QP0rEoNJSJy5ax8+hRNk+caOeEIiIiIpmP+mRlA1FRUTz3wQdUiojgiGEwAegNfAX8YZqcOHOGtxYssHNKSW8frVzJn8eO8QnRg6D0J3pglJ3AOOCnAweYv2WLHROKiIiIZE4qsrKB9Xv3curKFaYZBjnjtVUBBhsG3/z0EzdCQ+0RT+xk2g8/UA4YEm+5BRgNFAImLVuW3rFEREREMj0VWdnAvhMnyG+zUTOJ9jbAzfBwjp8/n56xxM6uXr9Oe6KLqvhsQDsg6PLl9A0lIiIikgWoyMoGnB0dCTVNwpNoD75nPck+LFZr7M8+MdcBq1UvESIiIiKppXdQ2UDrmjW5aRgsT6L9a6Bk/vyULVw4PWOJnZUrXpzFRE9CHN8V4HugZpky6RtKREREJAtQkZUNVCxalLY1ajDAamUzEDMx2h1gMrAUeL1zZ121yGY+6d2bW0AH4N4bRc8QfatgFDCtXz87JBMRERHJ3PSuOptYMHw4lcqUoTlQwWqlFVDEauUt4K1nnqFfixZ2TijprUHFinzQqxfbgCJAQ6AeUAz4E5j52mtULFbMbvlEREREMivNk5VN5HJ35+fJk/npwAGW/vIL12/domfBgvRt1owyuk0w2xresSOd69Rh2NdfsysgAAvQtUIFPunTB28vL3vHExEREcmUVGRlI1arlebVqtG8WjV7R8myDMNgy4EDLNy2jUvBwTyWPz+9mzbl8dKlsVgSG8fP/sIiIwmLiCAyMhKLxUJYeDh3wpMaJkUeRPCtW3zz889sOXAAwzCoW748vZs2JZ+np72jiYiIyCOgIkskjdwKC+Ppd99l04EDlLfZKB0VxQarldkbNvBi48bMGTgQm81m75hxvPvtt4xduBAr0Jjoflir//iDNX/8wacvvcSAtm3tnDDz23n0KG3HjSPk9m38AAfTZNzu3UxYvJhlb75J28cft3dEERERSWPqkyWSRl6ZMYMdhw6xDvgrKopVwAnD4Cvgm61bmfTtt/YNGM/Wgwd5Z+FCWgCBwAZgM3AWqAsM+eIL9v/7rz0jZnoXr1+n9dixVAgL47Rpstk0WQ+cM02aR0byzOTJ/HPunL1jioiISBpTkSWSBs5dvsziX37hfcOgNf8/wa8N6A0MBj774Qdu37ljt4zxjZw7Fw/gOyDvPcsLEj18uyMwdM4ce0TLMr7avJmwsDBWGgY+9yzPAywxTTwNg8/XrbNXPBEREXlEVGSJpIGNe/dimCY9kmjvCVwNDcX/2LH0jJWsoydP8hzgmkibF/A0sDcgIH1DZTHr/P1pZ5pxitgYLkBXw2DdH3+kdywRERF5xFRkiaSB8MhIbCResADkjFkvIiKdEt2faZqxuRKTk+iBPOTBhUdE4J5Me06izx0RERHJWlRkiaSBmqVLE0V0v6bErAEcrFYqZ6B5p/J4ebGK/5+c+l6RwGrAJ3/+dM2U1dQsU4YNViuJldYmsNpqpaavb3rHEhERkUdMRZZIGqhZqhSPlyjBSKuVi/HaAoD3rFY616lDgQw099Twjh0JAD6Kt9wExgLngXe6dk33XFnJq61acd4weJuExew04KBh0F8jOIqIiGQ5KrJE0oDFYmHBiBFcc3enrNXKUGAm0A+oarGQx9ubz15+2c4p4xry1FPUK1eON4DawKfAFKA68B7QumZNuvn52TFh5lepWDE+7dOHj4AaVisfAVOB+nfPkdefflrz1omIiGRBmidLJI2UKVyY3dOmMW31ahZs2cKlGzd4LE8e3mrRggFt2pDLPbneOfbx6wcfMGbhQmatW8eIW7cAyJszJ+916MCoZ56xc7qsYchTT1GpWDGmrlrF2IMHMUyTOmXKsLJ9ezo88YS942UOAQGsoZ29U4iIiKSYxTTNxLpkyF0hISF4enoSvHQpHq5JDWsgkrn9uHs3y379FYvFwgt+fjSpWtXekUTA3x8CAhgT+AoB+BJIIXx8oHt3ewcTEZHsKjQ0hK5dPQkODsbDwyPJ9XQlSyQb2//vvzQfPZpLN2/GLpu/dSs+np5se/99ShcqZMd0km3dLa7WBFZnIZ/EFld+vlCrlr3DiYiI3J+KLJFsKvDKFeoMH45HVBSLgE6AASwDhgUHU33QIM7On58hb3OULGzhQtYEVsef6KtX+BRScSUiIpmOBr4QyaYGfvEF4VFRbAeeB5yBHMCLwE/AzYgIRs6da8eEkm35NQK/Rvj6FcJXBZaIiGRCKrJEsqmf9uzhKaBMIm3VgSbA9zt2pG8oERERkSxARZZINhUeEUHZZNrLAnfu3EmvOCIiIiJZhooskWwqh7Mzu5Np3w24aURNERERkVRTkSWSTT1Vty6bgZ2JtG0GdgEvNG6cvqFEREREsgAVWSLZ1LR+/fB0caEpMBk4AQQA44F2QD53d97VhEQiIiIiqaYiSySb8nB15e+ZMyni48NooBTRg2BMBHyLFuXorFk4OTnZN6SIiIhIJqR5skQegVthYQTfukXunDlxycCFik+ePBydNYuAc+eYv3UrVquVvs2bUzR/fntHu6+rISGcuniRYvnzkzuZGddFRERE0puKLJE09Nfp00xcupSVO3cSaRi4OjryvJ8f73TtSpF8+ewdLwHDMJi5fj2frVpFwIULAHz/++8M7diR3s2aYbFY7Jwwoa0HD/LS9OmcvHABg+jL8UXz52f2a6/RrFo1e8cTERER0e2CImnlj6NHeXL4cPbu3MmHhsFa4M2ICNZu2ULtYcP4NyjI3hHjME2TPp99xsDZs6l24QLLgWWAb2AgfT//nMFffIFpmvaOGcfqXbtoMXo0ty9c4F1gLdH9ySIuXqT12LEs/+03OycUERERUZElkiZM06TXp59SKTKS/YbBUKANMAbYbxjkuHGDQbNm2TllXGv8/Zm3dSvfAEuBTkAXYKVpMgOYvm4dv/z9t10zxtdzyhRKAn8BbxJ9jF8HDhHdn6zP1Kn2CyciIiJyl4oskTTwy99/c/T8ed43DNzitRUA3jYMfty7lzOXLtkjXqJm//gjtaxWEhs/8FWgjNXKrB9/TO9YSfph1y6uh4XxLuAVry0X8B4QEh7Oku3b0z2biIiIyL1UZImkgb/PnMEBqJ9EexPABI6cPZt+oe7j8OnTNDGMRNssQBPD4PCpU+maKTnbDx0CIKmZu5re/ffXw4fTJY+IiIhIUlRkiaQBN2dnIoErSbRfuPuvu4tLOiW6PzcXl9hcibkAuLu6plec+/J0i75GeDGJ9pgeb7nc4l9LFBEREUlfKrJE0kCbxx/H2WbjiyTaZwE+np7ULlMmPWMl6+n69fnWak20MPwPWGOx8HTduukdK0mvtWmDA9HHMjGzABswqF279AslIiIikggVWSJpIK+HB6+0bs1Yi4WZwJ27y0OAccBcYNSzz+Jgs9krYgKvtmqFc44ctLJauXd4i31AK6uVPB4e9G7WzF7xEsjr4YFflSpMBT4Ebt1dHgp8AnwM1K1QAW+v+D22RERERNKXiiyRNPJRr170bNKE/oCP1Up1m41CViuTLBbGdu3Ka23a2DtiHAVz52bjxImc9/SkIlDeZqOMzUZ14FaePPz07rt4ubvbO2Yc68eOpUapUrxB9IAile/+OxyoXKwYWyZOtGs+EREREQCLmdEmwslgQkJC8PT0JHjpUjwyUP8UybiOnjvHom3buBQSwmN589KjcWMK581r71hJCo+I4Ps//uDXv//GYrHQuHJl2tWqlaGuusX3y19/MW7JEoKuX6eApydjunalceXK9o4laWHhQtb4DsefWrGLatVKZn0REZF0FBoaQteungQHB+Ph4ZHkeg7pmEkkWyhbuDATuyc2MHrGdObSJfwDAvjz6FEsFgvuLi5UL1mSovnz2ztakhpUrMjWd9+1d4wU+2jlSkYvXIgRGYkFMKxWBrZpw6f9+tk7WqIMw2D9nj18tWkTp4OCyJsrF90aNaJLvXq4ODnZO16irl27wKZNX/Lnn+uJiAinTJmatG7dn2LFKtk7moiIZEO6knUfupIlWdmS7dvp8emneADtDIMoYI3Vyh2rlW/ffJN2uoTw0KoMGsRfp07hAnQk+pOtH4BgoICXF+fnz7drvvjCIyJ49oMPWOXvT3WrlccNg+MWC1tMk6pFi7Jp0iTyeXo+ugAPcCXr8OHfGT++LWFhdzDNdoA7Vut6DOM8fftOpX37wY8ur4iIZCspvZKlPlki2dRfp0/T49NPec4wOGcYzAMWAOcMg9aRkXR5/31OXUhukHe5n0++/56/Tp2iFdFDzC8E5gHngV7AhWvXeP6jj+yYMKGxixfz459/sgrYbRjMAn4yTfYCgWfP0vOTT+wbMJ6bN68zYUJ7wsIqY5pngWXAVxjGaWAEc+YM4cCBrXZOKSIi2Y2KLJFs6vN168gPzAFy3LPcHfgGcDEMZq5fb5dsWcWoBQtwAZYAOe9Z7gLMBgoCS3/91R7REhV65w6zfvyRIabJU0RPSh2jGvCpYbB+374MNan21q3zuX07BNNcCuS5p8UR+BCrtSqrVn1qp3QiIpJdqcgSyaa27t1LZ8MgsR42bkAHw2DL3r3pHStLMSIj6UDcAiuGA9CNjNUxdt+JE1y/fZvnk2jvBDhaLGw9eDA9YyXr4MGtmGYjokvW+CwYxnMcPKgrWSIikr4yTZF19epVunXrhoeHB7ly5aJPnz7cvHkz2fUHDhxImTJlyJEjB4899hiDBg0iODg4HVOLZFyGYeCYTLvD3XXkwVlIvojKSAUWgHG3i25SuWxEPycjA3XljT5Hkz+TTVPnsYiIpK9MU2R169aNv//+m82bN7N27Vp++eUXXnrppSTXDwwMJDAwkI8//pi//vqLefPmsWHDBvr06ZOOqUUyrjoVK7LSaiWxt5/hwGqrlbqVNDLbwzCtVlYDYYm1Ed17KCp9IyWrcrFiuDo6sjKJ9nVAuGlSt1y59IyVrHLl6mCxbAWuJtputa6gXLm66RtKRESyvUxRZB05coQNGzYwZ84cateuTb169Zg+fTpLly4lMDAw0W0qVqzIihUraNeuHSVLlqRx48a8++67rFmzhsjIyHR+BiIZz4C2bTlpGLwOcQqtKGAgcNk06d+6tX3CZRHDnnqKYOBV4N5XHQN4G/gXaJSB5vfydHPjxWbN+NBqZWe8ttPAUKuVur6+VC9Z0h7xEtWsWR8cHKxYLH2IW86awBQMYwft2g20UzoREcmuMkWRtXPnTnLlykXNmjVjlzVt2hSr1cquXbtS/DgxQy06OCR9k86dO3cICQmJ8yWSFdXy9WVav35MAcrYbLwJjARKWq3MsViYM3Ag5YoUsXPKzO2DXr0omDs384HHgBHAKKA0MBlwd3Hhp0mT7BkxgQ9ffJFqvr7UBdpaLIwDugNlLBbInZtFr79u34Dx5MqVnzffXIbNtgGrtRgwBBiN1VoVGEHnzqN44omn7BlRRESyoYzWJSBRQUFB5I83MaqDgwO5c+cmKCgoRY9x+fJlJk6cmOwthgCTJ09m/PjxD5xVJDMZ1K4dtUqX5vO1a1ly6BAWi4VGVasyqF07qmWgqxWZ2X/z5tFtyhSWbN/O9LvLIoFmVaqwaeJEe0ZLlJuLC5vffZeFP//M15s2MefCBfJ4eDChcWP6tWiBl7v7o9mxvz8EBLAmsDoLAwsRCPj4gK/v/Td9/PG2fPbZftat+5xdu9YQGRmOr29N2radQtWqTR9NXhERkWTYdTLiN998kw8++CDZdY4cOcLKlSuZP38+//zzT5y2/PnzM378eF599dVkHyMkJIRmzZqRO3duVq9ejaNj0p2k79y5w507d+JsW6RIEU1GLFmWaZr88vff/Hb4MBaib197okwZLBbLfbe1l2s3b/Ldb79x/to1vL28eKZuXXLnTGwMv4zBNE38AwLYevAghmlSp2xZ/CpVytDHOF0tXMiawOr4U4sAfMGnEL6+95+EWEREJL2ldDJiu17JGj58OC+++GKy65QoUQJvb28uXrwYZ3lkZCRXr17F29s72e1v3LhBy5YtyZkzJ99//32yBRaAs7Mzzs7OKcovktkdDwyk83vvceDMGbysVkzg7YULqV2qFN+NGkWRfPnsHTEO0zT5ZNUqxixcSHhEBPltNi4ZBkO++IKxzz/PG506ZbjC5b8rV+gyeTI7AgLwtFqxAaMNg4qFC7P8rbcoU7iwvSPaj78/a7a5488rBOBLIIXw81NxJSIimZ9d+2Tly5ePsmXLJvvl5OTEk08+yfXr19mzZ0/stlu3bsUwDGrXrp3k44eEhNC8eXOcnJxYvXo1Li4u6fG0RDKFqzdu0HjUKG6fO8dPwBXD4IphsA4I+vdfmrz1Fjdv37Z3zDhmrV/PiLlzeTkignNAYFQU50yTAZGRjPrmGz5bs8beEeMIvXOHZm+/zZnjx1lD9DG+bBj8DBiBgTQeNYpL2XVaibu3B+LXiACfRuCjAktERLKOTDHwRbly5WjZsiX9+vXD39+f33//nQEDBtC1a1d8fHwA+O+//yhbtiz+/v7A/xdYt27d4quvviIkJISgoCCCgoKIispIgyaL2McXGzdy8fp1fjIMmhA9/5EVaA1sMgxOXLjAgp9/tm/Ie4RHRDB+0SJ6AZ8CMdewCwAfAS8DE5csISw83F4RE1iyfTtHAwPZaBi05f/nmfIDfjIMrt+4waz16+2a0a7u6XCl2wNFRCQryRRFFsCiRYsoW7YsTZo0oXXr1tSrV48vvvgitj0iIoJ//vmH0NBQAPbu3cuuXbs4dOgQpUqVomDBgrFfZ8+etdfTEMkwlm3bRifTJLHxA32B1hYLS7dvT+9YSdr+119cuHGDwUm0Dwau3LrFlgMH0jNWspZu304zi4XyibQVBJ41DJZu25bOqURERORRyxSjCwLkzp2bxYsXJ9lerFgx7h3Dw8/PDzuO6SGS4V27eZNiybQXNU1+vXEjveLc17VbtwAomkR7zPLrd9fLCK7duEH1ZF6HigIbb95Mv0AiIiKSLjLNlSwRSVslfXz43Zr4S4AJ7LBaKVmoUPqGSkbJu4Pc7EiifUe89TKCUoULs/PugCKJ2WGxUPLuLc8iIiKSdajIEsmm+rVsyXbDILEeQd8B+wyDfi1bpnesJFUvWZJqRYsy3mIhNF5bGDDWYqFi4cLULlPGHvES1a9FC/4yDBYl0rYF2GSa9M1Ax1hERETShooskWyqc926tK1Rgw4WC0OA34Ffgf7A80DXevVoWb26PSPGYbFYmDlgAH85OPCE1co8YA/wDfCE1cpem42ZAwZkqCHcG1euzAt+fvQkemCO7URfcRsOtLFYaFGlCs81aGDXjCIiIpL2VGSJZFMONhsr3nqLkc88w0I3N+oBDYCVOXMyrls3FgwfnqEKFoDaZcrwywcfULBSJXoBNYGeQL4KFdj+/vvUK5/YEBP2Y7FYmDt4MO/26MEaT0/8gLrAPFdXhj79ND+88w6ODpmma6yIiIikkMXU6BDJCgkJwdPTk+ClS/FwdbV3HMkkzl66xOWQEHxy56aAl5e949zXnYgIjp47hwUoW7gwTveZtDsj2Lh3L7uPH6d6iRK0qlnT3nHu6/adO2zYu5cow6BplSrkcne3d6T7unj9Ov9duUIeDw8eS+uJqe9Ot7GGdiwMqKUh3EVEJFMIDQ2ha1dPgoOD8fDwSHK9VH2Eevv2bfbs2UPu3LkpH+8T47CwML799lt69OjxYIlFsoDfDh9m9Pz5bD9yBACrxUKbGjV4/8UXKf/YY3ZOlzRnR0eqFC9u7xgpsmT7dgbPns2le0bly+vmxpR+/ejRuLEdkyUuKiqKj1et4rNVqwi8O/FwHjc3XmrVirHPPYdzBixoj547x6h581j9558Ydz+Hq1emDBN79MCvUiU7pxMREcn4Uny7YEBAAOXKlaNBgwZUqlSJhg0bcv78+dj24OBgevXq9UhCimQGG/fupfFbbxF69CiLgT+BmabJP3v3UmfECA6ePGnviJneV5s3033KFPLevMlcYDcwH/C+dYteU6cy88cf7ZwwLtM06T1tGm/Nn0/b4GC2Ab8BPW/d4pMVK+gwcSKRGWxy9CNnz1JnxAj+2r2bGabJbmApEBkQQLMxY1j355/2jigiIpLhpbjIeuONN6hYsSIXL17kn3/+IWfOnNStW5czZ848ynwimUJUVBQvT59OI9Pkd9PkOaL7C70E/GkYFAkPZ/Ds2XZOmbkZhsHQWbOoTnRx9SJQA+hBdEFbCxg5Zw6GYdgvZDxbDx7km23bmAfMBhoS3SdrCrDONNmwfz+LM9CEzwBDvviCAmFh/GkYvEL0MX4W+NU0aWGavDx9eoYrDEVERDKaFBdZO3bsYPLkyeTNm5dSpUqxZs0aWrRoQf369fn3338fZUaRDO+nAwc4feUKE02T+Dd/eQBvGQbbDh/meGCgPeJlCUt++YUbERGMA+L3jnQBJgC3IiP5evPmdM+WlC83bqSC1Ur3RNqaAM0sFuZs2JDesZJ0+uJFNh04wJuGQa54bQ7AJNPkv+vXWb9njx3SiYiIZB4pLrJu376Nwz2jYFksFmbOnEm7du1o2LAhAQEBjySgSGZw/Px5HIi+mpKYunf/PREUlE6Jsp7dx48D/38s44tZvjcDfehz/Nw56hgGSY3RWNc0OZGBCu9/756fSR3jqoCrxcKJe24VFxERkYRSPPBF2bJl2b17N+XKlYuz/PPPPwegffv2aZtMJBPxcncnEggEfBJpP33PevJg8nt6AnAGElxlgf8/xjHrZQReOXNyxmKBJAZxPQ0ZapTBXG5uQPQxLpVI+0XgtmlmqMwiIiIZUYqvZHXs2JElS5Yk2vb555/z3HPPodHgJbtqU7Mmro6OfJZImwl8BpTIl4+apRJ76yopMbBNGxyBaUm0fwY4AkMy0Ac+zzZsyCbT5EgibUHAMouFZ/380jlV0qqWKIFvgQJMI/q8je9zwNnBgfYaa11ERCRZKS6yRo0axY/JjNz1v//9L0N1OBdJT55ubozs1IkPgXHA1bvLzwH9geXAuO7dsVo1//eDcnd1pUPdunwNDAcu3F1+EXgDmAW0rl07Q11leb5hQ8oULEgLq5V1QBTRxct2oKnVSi4PD15p2dK+Ie9hsViY0KMHq4ketOXs3eXXgEl3v4Z26EDunDntFVFERCRTSNU8WSKStHe6diUiKor3VqxgsmmS12rlQlQUOZycmNG7Ny80amTviJne0pEjuXXnDlN372YakJvogtYEmlWtyspRo+wbMB5XZ2d+eu89nnnvPdoeO0YuqxUHi4XLUVFUKFiQLW+/Tf5cuewdM45n69cnJDSU4XPm8PWdO3jbbFw2DEyLhRFPPcWk7okN4yEiIiL3spi6xy9ZISEheHp6Erx0KR6u8cc0E0no4vXrfPvbb1wKCeGxvHl5pl49nTtp7GRQEKMXLeLc5csUypOH8c89R+lChewdK0mmabLrn3/YcvAghmFQp1w5GleujMWS1JAY9ncjNJTlO3Zw+uJF8nh48Ezdunh7eaXdDvz9AVhDOxYG1MLXF3QXooiIZHShoSF07epJcHAwHh4eSa6nK1kiaSx/rlwMaNvW3jGyrNA7d1i/dy/Hzp4l8MoVboWGsmHfPgrmzo17jhz2jpcoi8XCE2XL8kTZsvaOkmI5XV3p1bSpvWNkWbdv32by5A4cPLj97q32FvLn92Ho0PlUqNDA3vFEROQhqYOIiGQaV2/coO6IEQyaNYvCJ0/SJziYYidPMuzLL6kzYgSXgoPtHVHkvkJCrtKtWx7279+EYdQG3gSe5+LFIEaNasKPP860d0QREXlIKrJEJNPo/7//cfbsWfYCK02T8UQPKrLfNLnw33+8fHdKCZGMbNiwGkRGRgA/Ej0MygRgLnASKM2sWYMJDw+3Z0QREXlID1RkLViwgLp16+Lj48Pp09Gz00ydOpUffvghTcOJiMT478oVlu/YwXjDoHK8tgrAJMNg1a5dnL540R7xRFIkJOQqFy+eA14GWsVr9Qa+ACKYNevVdM8mIiJpJ9VF1syZMxk2bBitW7fm+vXrREVFAZArVy6mTp2a1vlERADY9c8/RJkmnZNo70z0KIM7jx5Nx1QiqfPbb8uASEjyTK4L5OHAgZ/SL5SIiKS5VBdZ06dP58svv+Ttt9/GZrPFLq9ZsyaHDh1K03AiIjFi5hiLTKI9Mt56IhmRzRYz3lRSZ7IJRGGx6DwWEcnMUv0qfvLkSapVq5ZgubOzM7du3UqTUCIi8dUpWxYnm40lSbQvARysVuqVK5eesURSpUGD54ge2HdxEmtsBa5Tu/ZT6RdKRETSXKqLrOLFi7N///4Eyzds2EA5vbkRkUckf65cdPfzY7zVyrZ4bb8BY6xWutavj0+ePHZIJ5IyOXK4U7hwKWAe8A3RV65iHAN6Y7E40bv3FHvEExGRNJLqebKGDRvGa6+9RlhYGKZp4u/vz5IlS5g8eTJz5sx5FBlFRACY9tJL/BsURKO//6au1Uolw+Avq5XfDIN6pUvzv1c1WIBkfFOnHqB793yEhfUE3gP8gDPABsCBN95YEud2fBERyXxSXWT17duXHDlyMHr0aEJDQ3n++efx8fFh2rRpdO3a9VFkFBEBwD1HDjZPmsSqP/5g3k8/sevSJQrmzcuypk3p+MQTODpofnXJ+JycnFiy5CozZ77Ktm2LCA+fh9UKJUrUYOTIpRQsWNLeEUVE5CGl6h1JZGQkixcvpkWLFnTr1o3Q0FBu3rxJ/vz5H1U+EZE4HGw2OtetS+e6de0dJcXCw8MZv2wZP+7ejWGaNKxYkfe6d8fd1dXe0cRObDYbHTsOJzj4IufPHydHjpy0bTtIBVYau3UrmO3bF3HmzN84O7vx5JMdKVPmCSwWi72jiUgWZzFN07z/av/P1dWVI0eOULRo0UeVKUMJCQnB09OT4KVL8dAbIhFJpY1799Jx4kRuR0VRDHAkuueNk8XCF4MG0bNJE/sGtJeFC1lDO/ypRQC++PpCrVr2DpV+Pv74eX75ZRnRXaPLAoHAVXLl8uHzzw/g4ZHXvgGzgF9/Xca0aX2IiLiD1VoBuERUVCAVKzbhrbe+w93dy94RRSQTCg0NoWtXT4KDg/Hw8EhyvVQPfFGrVi327dv3UOFERLKDc5cv89T48RSJisIfOAkEAH8DVUyTvtOm8WdAgH1Dpjd/f1i4kDGBr7AwsBHbAn2B7FVgzZv3Br/8soToCYnPA4eAC8Airl+/yuDBNeyaLyv466/tfPzx84SHt8c0TxMVtZ+oqLPADxw+vI/33utMKj9jFhFJlVR3YOjfvz/Dhw/n3Llz1KhRAzc3tzjtlStXTrNwIiKZ2dA5c4g0TTYCxe5ZXh7YCDwGDP7yS3Z89JE94qUvf38ICGBNYHUWXnmbwDyV8fEBv2x2BcswDNas+R/QFJgBxNy25gA8D9zhypXe7Nmznho1WtkrZqa3bNl7WCzVMM0FQMwgIlagPYYxj7/+as/RozspV66OHVOKSFaW6iIrZnCLQYMGxS6zWCyYponFYiEqKirt0omIZGJb9++nFXELrBheQHfgm2PH0jWTXdwtsMYEvkIAvlCpULYrrmIcPvwbERE3gf78f4F1r+eAAaxePU1F1gMKDb3BgQObgNn8f4F1rzbYbIXZsWOFiiwReWRSXWSdPHnyUeQQEclyIiMi8E6mvQAQlV1uWfL1BQrh61sIyJ4FFsCNG1fu/q9AEmu4AJ6Ehd1Mp0RZz507oXf/l9RvnxXIr2MsIo9Uqous7DLghYjIw8qXOzebL1zAIPEOsJuAnBpQJ1vx9a1N9NmwFUjsKkoAcJ7ixTuma66sxMMjD+7u+bh5cwvQPpE1LmAYhyhSpEd6RxORbCTVRdY333yTbHuPHnrREhEBGPn007wycybTgcHx2pYDO4FhTZumfzCxmzx5fPDxKU1g4CdE3xp475DtEcBwwJHu3d+1S76swGZzoGXLvqxc+RmG0Quoek+rAbyJg4MDjRvr/YqIPDqpLrIGD477ViEiIoLQ0FCcnJxwdXVVkSUictfLrVrx5aZNDDlxgi1E98FyJLrAWgIUzZePD3r2tGtGSX9vv/09gwbVICqqOtF9s+oDZ4HPgb959tnRuLvnsmfETK9z51Hs2bOJ06frYxh9iR5o5CJW6xcYxi4GDJivIdxF5JFK9RDu165di/N18+ZN/vnnH+rVq8eSJUseRUYRkUzLf8oUejVtylYHB54FngZWWq08Vbs2ATNn4uCQ6s+6JJMrUqQcn3++j+LFSwAfA22AV/DwuMSrr86kW7cJdk6Y+bm65mTy5K107Pgabm4LgLZAb8qVy8GECZto1OgFe0cUkSwu1ZMRJ2X37t10796do0ePpsXDZRiajFhE0kLwrVus2LGDyKgonqpdmwJe2ehTdH9/AMYEvHB3AIxHM/DFnTuhBAT4ExkZTrFiVfDySmpwiYwjNPQmgYFH8fTMT758j9k7zn1FRITzzz9/EB5+m8ceq0DevIXtHem+AgOPExCwC3f33FSt2hQHB0d7RxKRTCylkxGn2UeoDg4OBAYGptXDiYhkCXciIhj1zTfMWr+J2+G3ARgwew7d/RowtV9ffXiTBqKioli2bALrfpjKjdshANisNurW6Uy/l6fj6ZnPzgmT5urqTqlSNe0d475M0+T77z9m+fKPuXnzIgAWi5WaNdvyyiufky9fETsnTCgo6CSzZg1g7971QPTnyR4eBenS5Q3atRuExZLYEPoiImkj1UXW6tWr43xvmibnz5/n888/p27dumkWTEQkszMMg6ffe58New9imK8TPdmsAxFRK/nm53c5dPosv77/Li5OTvaOmmmZpsn0z3qz/ecFDMGkJ+AOrDWimLhjOW//u4/3P96lPk4Pae7ckaxaNQV4BegH5ME0N7FnzyRGjqzHp5/uwssruQkL0telS2cZObIeN244A18BTYCLhITMZs6cIYSEXKZ794l2TikiWVmqi6wOHTrE+d5isZAvXz4aN27MlClT0iqXiEim9+OePfy4509gLdH9bmK8TpTRmD3Ha/PN1q281LKlnRJmfv/8s4utP3/DXODFe5YPBJobUVQ7f5wff5xBly5v2ydgFhAYeOxugfURMOKeln4YRiuuX6/KihUf0Lfvp3ZKmNC3307ixo0oDGMH/z9f1mNATeAxvvtuHC1a9MsUt2iKSOaU6oEvDMOI8xUVFUVQUBCLFy+mYMGCjyKjiEimNGfTT9isNYhbYMWoCZY2fLFxS3rHylJ++ulritkcSGxc2zJAV9Ngy4bZ6R0rS9myZR5Wa25gQCKthTGMvmzePI+oqKj0jpaoiIg7bN26EMN4lcQnJB6KxeLG1q3JT0kjIvIwUl1kTZgwgdDQ0ATLb9++zYQJGhFJRCTGyQuXiTKqJ9lumjU4felyOibKei5fOkO1qMgk/5jVAC5eVX/hh3H58lmgPOCSxBrVuX37Ordv30jHVEm7efMaERGhQFK/e+5YLL5cunQmPWOJSDaT6iJr/Pjx3Lx5M8Hy0NBQxo8fnyahRESyAu9cHlitAcmsEUB+z6RHJpL788yVn3+sNpIaJjcAyOWeOz0jZTkeHvmwWP4FIpNYIwBHxxzkyOGenrGS5OrqidXqSPRPPzF3MM1TGXpAFBHJ/FJdZJmmmeiIPAcOHCB3bv0hExGJ0bOJH4axHfBPpPVfrJbl9Grql86pshY/v+4cNqJYn0hbEDDfaqNh017pHStL8fPrRlRUILA4kdZgrNbZNGz4HDZbxpjzzdk5B3XqdMJq/R+Q8ENhmIdhXMHPr3t6RxORbCTFRZaXlxe5c+fGYrHg6+tL7ty5Y788PT1p1qwZXbp0eZRZRUQylc516lC9hC82ayvgayAUCAe+xcHqx2P58tK3WTP7hszkqlRpSrXKTehitTEDuAFEAWuAhlYbDjlz0779ELtmzOxKlqxO/frPYbH0Az4ErgIGsBmrtTHOzjfp3PlN+4aMp2vXMTg6XsJqbQL8TPQQ7peBd7FYBtC4cS+KFCln35AikqWleDLi+fPnY5omvXv3ZurUqXh6esa2OTk5UaxYMZ588slHFtReNBmxiDyMqzdu8OK06az134WJCVgAkwYVKrNo+BAK581r74iP3iOejDgs7BYzZ7zML78sIco0sBJdApQpVYOhI5bg41M67XaWTUVEhDNnzlA2bvwSw4iAu0e5SJHKDBs2j5Ilq9k7YgIBAf588kkvAgMPAzYgCpvNmdatX6VXrw81KbGIPJCUTkac4iIrxvbt26lTpw6OjtnjxUlFloikhRPnz/PzoUMYhkGdcuWoWLSovSOln0dcZMW4fPkc+/ZtIjIynNKlH6dUqRppv5Ns7vr1i+zZs57w8NsUK1aZsmWfzNCT+pqmyeHDv3H69F+4uLhRs2ZrPDyywQcbIvLIpLTISvUN1A0bNoz9f1hYGOHh4XHak9uZiEh29PPBg0xZtZotBw5imAZPli3H0PZteOqJJ+wdLVEhoaHMWLeOrzZs4PSVK+R1d6db48YMad8+Q195y5u3MM2a9bZ3jBS5c+c2GzbMZv36LwgKOkaOHJ40bPgsTz01jIIFS9o7XqJ+++1b5s9/iwsXTgEGTk7u1Kv3NP37f4FTBpxQOzIygp9++pq1a2fx339/4+TkxqFD2+jYcTiPPVbB3vHETi5ePM0PP3zKzz8vITT0KvnylaBVq760bt0fFxc3e8dLwDRNdu5cyQ8/fMaxY7uwWGxUq9acjh2HUaFCfXvHk2Sk+kpWaGgor7/+Ot9++y1XrlxJ0J5R5slIK7qSJSIP47M1axj85ZfYrJWJMroBDtisK4gydvBmp05M7tnT3hHjuHrjBo3efJOAc+foapo8DhwH5lutOLi5se399ylXpEjqHjSdrmRlFmFhtxgzpgUBAbswzc5APeAsVus8nJxuM2nSZnx9M9YBWrToHZYtexfwAfoAeYANwHq8vHz48svjODklNcR7+ouMjGDSpI7s3bsei6U9ptkEuIjNNh+r9RKjR/9AtWrqD5ndnDx5gFGjGhMWZsUwXgSKAX9gsXxLsWKVeO+9Lbi5eSb/IOnINE3mzBnKmjXTsFobYhgdgDCs1kUYxt/07z+Lli1fsnfMbCelV7JSPbrgyJEj2bp1KzNnzsTZ2Zk5c+Ywfvx4fHx8+OYbTewnIhLjr9OnGfzll8Bwooz9wOvAMKKM34EpvL9iBZv37bNrxviGzZnDf//9x27TZC7QH/gEOGoY5L91i+c//JBUfjYn8SxZMo5jx/Zjmr8CS4DXgPcxjADCwysyeXIXoqKSGi49/V26dIZly94D2gIngHHAQGAd8APXrp1nypRudkyY0A8/fMK+fZuAHzHN74meSHkCUVH/EBnZkA8+eJawsFt2TinpyTAM3n+/K2FhxTCMAOAjon/3FmCauzh9+jjz52esAVz8/dewZs00YAaGsQ0YAryJYRwA+jNz5qsEBh6zZ0RJRqqLrDVr1vC///2PTp064eDgQP369Rk9ejTvvfceixYtehQZRUQypZnr1+Ng9QYmEz3gxb2G4mCtzPS1P9ohWeKuhISw5JdfeNMwiH8zVT5gimGw//Rpdhw5Yo94WUL0bYJzMIzXgPi3i3pgGNO5cuU0f/65zh7xEvXVV8Pv/m8WEP+2wHbAM/j7r8cwjPQNlgTDMFiz5n+YZnegRbxWF0xzJqGh1/nllyX2iCd2cujQz5w/fxTDmAp4xWutimEMY8uWbwgNDbFDusStXTsDq/UJoj/uupcV+BiLJRfr18+yQzJJiVQXWVevXqVEiRJAdP+rq1evAlCvXj1++eWXtE0Xb7/dunXDw8ODXLly0adPn0QnRU6MaZq0atUKi8XCqlWrHllGEZF77Th6nEijFZDYQEEWIo327Ao4kd6xkvTXmTOER0XRNon2poCzxcLu48fTM1aWcuHCv9y+fR2SPMrVsdkKcfz47nRMlbx//90HVAcKJrFGe6KibnP1amA6pkpaSMhlrl49Q3QBmJhi2GyVM9Qxlkfv+PHdWK2eRN+em5h2RESEcvZsxvkQ6dix3RhGUq8VLhhGCwICdB5nVKkuskqUKMHJkycBKFu2LN9++y0QfYUrV65caRruXt26dePvv/9m8+bNrF27ll9++YWXXkrZfahTp07N0KMfiUjW5OLoQOKToca4iVMGGkbaySF6LKSkEocBkaYZu56knoNDzJWgpI5yFKYZes969mezORI9A1lSop+Lk1PG6Ld8/2NsAjcz1DGWR8/BwQnTDCd6rsLE3IxdL6Ow2ZxI/m/IDRwdM05eiSvVRVavXr04cOAAAG+++SYzZszAxcWFoUOHMnLkyDQPCHDkyBE2bNjAnDlzqF27NvXq1WP69OksXbqUwMDkPznbv38/U6ZM4euvv34k2UREktLu8epYLWuBhIMEQRgOtiU8VTvjzC9UvWRJ8rm7Mz+J9sVEzz/Vonr1dEyVtXh7lyR//lKQ5FFeg2Fco2bN1ukZK1m1a7cHjgJ7E2k1ga9xdc2Dh0fu9A2WBHf3XJQq9QQWyzyi88W3g6ioE9SokXGOsTx61au3xDRvA8uTWGM+uXIVolixSukZK1m1arXCZlsMRCTSeh6LZSOPP67zOKNKdZE1dOhQBg0aBEDTpk05evQoixcvZt++fQwePDjNAwLs3LmTXLlyUbNmzdhlTZs2xWq1smvXriS3Cw0N5fnnn2fGjBl4e3unaF937twhJCQkzpeIyIPo27w5bi42rJYOwL0fCF3FYumKhWsMaJvUrSDpz9nRkcEdOvA/4AsgZqxYE9gEDLda6fzkk5RI4eupJGS1WunceSSwDPiQuG+edmK1vkyFCo0y1Bxfzz8/HpstB9AZOHxPSygwHNjFU08NtEu2pHTuPBLT3Aq8RfQ12BgHsVq7U6RIZapVa26ndGIPRYqUo0aNtlitA4Ft97REAtOBr3j66WHYbBnnSn379oMxzfPAC8D1e1rOYrV2xNXVk8aNM9YItfL/Ul1k3SssLIyiRYvy9NNPU7ly5bTKlEBQUBD58+ePs8zBwYHcuXMTFBSU5HZDhw6lTp06PPXUUyne1+TJk/H09Iz9KpLaoYpFRO7KnysXG8aNIWeOg1gsRbHQDGiD1VIIZ4eNrHzrDcoWLmzvmHGM6tyZPs2a8TJQwmbj/9q77/Aoqr6N49+dDUlIQhJ6CNICBFCKFBNAOihFEQQfQIqgCKKgj4BSXpUizQLKI4qIFQTFitJEEUFAaSIoSAm9hYAQSAgJaTPvH8EomgWCyw7Z3J/r2usic85s7t3ZLPvbM3NOJ6CWYdAaqFutGm9doy/T8pPWrfvRufNwYDiGURa4G8OoBzSkXLkyjBjxkc0JL+br68+zzy7BMI4BNwENgY5AGPAyDRp04t57R9sZ8R8aNuxEnz4vAM9jGDcAHTGMhkAtSpb0Z8yYhRjGv/oIJHnQ0KGzqVz5RqA5hlEbuBunswLwGHfcMYgOHQbbnPBiFSrUYtiwD/Hx+RKHIxy4E4ejFVCBgIB9PPvsVxQqdH2MIMs/5XqdrMzMTCZOnMiMGTM4fvw4MTExRERE8Mwzz1C+fHn69u17xfc1YsQInn/++Uv22bFjB59//jmzZs1i165dF7WVKFGCsWPH8vDDD/9jvwULFjB06FA2b95MUFAQAA6Hg/nz59OxY0eXvy81NZXU1NTsnxMTEylTpozWyRKRq3YmKYnZK1aw/JdfyDQtbq1Wlb633UaJa3gd67+1cfdu3lm2jIMnTlA0OJgeTZtye+3aV/fBVOtk5ejAga18882bxMbuITAwhEaNuhAV1f66+ib9r5KSzjBr1gg2blxERkY6YWEVuO++idSs2cLuaC7Fxu7m669ncvDgb/j7B9KgQScaNuxEgQJ+dkcTm2RmZvLzz1+xatWHJCbGU6pUBLfd1peKFa/f06BPn47jm2/eYufOdfj4+HDzzbfRvHkvAgJcr9Ek186VrpOV63fyCRMmMGvWLF544QX69euXvb169epMnTo1V0XW0KFD6dOnzyX7REREEBYWxokTJy7anpGRQXx8vMvTAL/77jv27t37j8k4OnfuTOPGjVm5cmWO+/n5+eHnpzdfEXGf0KAgHmvfnsfau5rt7PpzS+XK3FK5st0xvFr58jXo3/8Vu2NcsaCgUAYOzFvTRRco4IefXwD+/gH4+QXg51cQw3DaHUtsZBgGvr4FL7wuzuPrWxBf34J2x7qkwoXD6Nr1abtjSC7leiSrUqVKvPHGG7Rs2ZJChQrxyy+/EBERwc6dO2nQoAGnT592e8gdO3Zw44038tNPP1G3btZ56t988w1t2rThyJEjhIeH/2OfuLg4Tp48edG2GjVq8L///Y/27dtToUKFK/rdiYmJhISEaCRLRCS3NmyAmBgWxtZhzqm2xBatSXh41mCWRrLkWlu06FXefPNxHI4ALKsBDsdxTPMXypatxbPPfkWRIq6mpBdvlZx8lgkT7mbr1uU4nZGYZgUcjp8xzd/p1GkYvXs/p9mo5bKu2UjW0aNHqVSp0j+2m6ZJenpOs5/8e9WqVaNNmzb069ePGTNmkJ6ezqBBg+jWrVt2gXX06FFatmzJ7NmziYqKIiwsLMdRrrJly15xgSUiIldpzhwWxtZhAwOIIRJqlKaZiivxkI0bFzFz5qPAY1jWBCCIrK+U13HkyD2MHXsXU6du0AfqfGbq1Pv57beNwGIyM9sCDiwrFfgfn38+nOLFy3LHHQNtTineItdF1o033sjq1aspV67cRds//fRTate+dlMRz507l0GDBtGyZUsMw6Bz58688sqfp1mkp6eza9cukpOTr1kGERG5jA0bWLgyKLu4iqU0zZqpuBLP+vjj5zGMxpjmVOCvhVR9THMO+/c355dflnPzza1sSiiedvRoDOvWfQa8C/x12nM/YBjwG59++iJt2gzA6dQppfLv5brIGjVqFL179+bo0aOYpsnnn3/Orl27mD17NosWLboWGQEoUqQIH3zwgcv28uXLc7kzH3N5ZqSIiORWTAw0GwpEEQlEogJLPOvcuQR27VpD1ofpnEaqmuJ0VmDjxkUqsvKRn35agsPhj2V1c9HjAU6dms2hQ9uoUKGWR7OJd8r1NFEdOnRg4cKFfPvttwQGBjJq1Ch27NjBwoULue22265FRhEREZErkp7+xwzBoS56OIAQ0tPPu2gXb5SRkYrD4U/WyFVOQgBIS9PrQtzjikey9u3bR4UKFXA4HDRu3Jhly5Zdy1wiIiIiuRYcXIzQ0NKcObOErPW8/u4wmZm/EhExwMPJxE4VKtyMaZ4B1gENcuixBB8ff0qXruLZYOK1rngkq3Llyvz+++/ZP3ft2pXjx49fk1AiIiIiV8MwDO64YwAOxyzg+7+1puFwPIq/fxBNmnS3I57Y5Oabb6NEiUoYxmAg8W+t2zGMKTRr1oOgoFAb0ok3uuIi6+/XMy1ZsoRz5865PZCIiIjIv9Gp05NUr94Yh6MV0B14B3gOw6iOYXzFk0/OJSCgkM0pxZMMw2D48A/x9d2JYVQDRpF13d5DGMYtlC5dmvvvf8HmlOJNrs9l5UVERESuUoECfowZs5glS6azaNEMjh//EB8fP+rXv5vOnedRsWIduyOKDSpXrsfUqRuZP38yK1a8TFpaEoUL30CbNsO4667HCQwMsTuieJErLrIcDsc/1pPQ+hIiIiL5R1LSGbZsWUZaWgrly9ckIuJmuyO5VKCAHx06DKZDh8FkZmZgGE59bhHCwyvTr9//qFu3HYmJvxMeHslNNzXWa0Pc7oqLLMuy6NOnD35+WbOynD9/ngEDBhAYGHhRv88//9y9CUVERMRWmZkZzJo1gsWLp5OenpK9vVKlaB5//G3Klr3JxnSX53TqxB3J+iy7YMH/+PDDcSQnx2dvL1kykkGDXqdWrRY2phNvc8XXZPXu3ZsSJUoQEhJCSEgIPXv2JDw8PPvnP24iIiLiXaZN68eXX/6P9PRhwBEgBfiSffuSGD68KXFx+21OKHJ58+dP5u23B5Oc3AXYBaQC33PiRGlGj27D9u1rbE4o3uSKv9p59913r2UOERERuQ7t3/8r3333HvAm8OBfWu7CNBuRklKdzz57joED37AnoMgVSEo6w9y5Y4AhwJS/tDTBspYCjXnvvf/jhRdW2ZJPvE+uFyMWERGR/GPlyvdxOsOA3jm0FsE0+7NixVwyMzM8HU3kiq1d+/mFBaifyKHVF8saws6dqzUqK26jIktERERcOnPmOJZVGSjgoseNpKWdIyUlyZOxRHLlzJnjOJ2FgVIuetx4oV+cxzKJd1ORJSIiIi4VKVIah2MnWdev5ORX/PwKUbCg1p2S61fRoqXJzIwHDrvo8SsARYqEeyyTeDcVWSIiIuJSixb3kZn5OzAzh9bjGMZMWra8D6fT6eloIlesfv278fUNBCbl0JqCYUymevUWlChRztPRxEupyBIRERGXypSpRrt2A4H/AkOBncDvwBwM41YKFfLhnntG2JpR5HICAgpx//3PAa8DPYGfgFPAYhyO5jiduy60i7iHFo4QERGRS+rf/xVCQ0swf/7LpKS8lL29evXbGDjwdYoVu8HGdCJX5o47BlKggD9z5ozmzJm52dvLlavDI48sp3LlW2xMJ95GRZaIiIhckmEYdOs2irvvfoJt21aRlpZCuXLVCQ+vbHc0r5SWdp60tBQCAkIwDJ105E63396Xli1788svyzl9+hhly1anUqW6OBwOu6OJl1GRJSIiIlfEzy+AunXb2B3Da8XEbOCjjyby008LsSyTQoVK0rbtg3TqNIyAgGC743mFAwe28vHHE/nxx88wzXQKFixM69YPcM89IwgOLmZ3PPEi+npERERExGYbNy5i2LBGbNq0B8t6GfiEs2f/w6efTmX48GacO5dgd8Q8b/v2NQwdWp8ff9yIaU4EPiEl5QEWLHiboUMbcvr0cbsjihdRkSUiIiJio9TUZKZMuQ/LaodpbgYeA+4BpmGaP3L48B7mzRtrc8q8LTMzkxdf7ElGxi2Y5q9kLUp8DzAZ09zE778n8O67T9qcUryJiiwRERERG61Z8zHJyWewrJf456LPNTHNAXzzzbukpZ23I55X+PnnpZw6dRDLmgIE/K01AtN8gtWrPyIx8ZQd8cQLqcgSERERsdGBA1txOisDES56tCYl5Qzx8bGejOVVDh7cimEUBuq66HE7mZlpHDu2x5OxxIupyBIRERGxkZ9fAHAayHTR43cAfH0LeiqS1/HzC8CykoFkFz1OAnqOxX1UZImIiIjYqH79jmRm/g58kUOrhcPxJhUrRlGkSCkPJ/Met9zSHstKA9530WMmJUpUpFy56p6MJV5MRZaIiIiIjSpVqkutWq0xjH7AYsC80HIaeBTL+o6uXf/PvoBeICysAk2adMcwhgAf8eeo4VngaeBjunQZqXXJxG20TpaIiIiIzYYPn8eECZ347bc7cTrLY1mlsKwtOBwZ9O//GvXrd7A7Yp736KMzSUlJYuPGbjidpbGsssA2LOsc3buP4/bb+9odUbyIiiwRERERmwUFhTJx4nK2b1/DDz98QkrKWUqXvouWLftQuHCY3fG8gp9fAM888wW7d29k1aoPOXs2nrCwNrRs2YfixcvaHU+8jIosERFxjzlzWBhbhw2EEnNhU2SkrYmua1999Qbz50/mzJmT+Pr6Eh19F/ff/yJBQaF2RxObpKWlEBu7m6NH95CcfBaHw8nvvx9SkeVmlSvfQuXKt9gdQ7ycw7Isy+4Q17PExERCQkJImDeP4IC/r6sgIiJs2MDClUFsIIoYIomlNOHh0LOn3cGuT6Zp8thjtTh0aBtQFmgGHABW4XQG8OKLq6lUqY6dEcUGJ04c5OmnbycubjcORwssKxzDWIVpHqRDhyE88MBkHA6H3TFF8r3k5ES6dQshISGB4OBgl/00kiUiIldnwwaIiWFhbB3m0DO7uGoWCVFRdoe7fj3//H8uFFjTgYf4cw6qrWRmtmbkyBZ89FG8LsDPRyzLYty4uzlxIg34DcuqBoBpZgLT+PLLwdxwQ1Vat+5na04RuXJ6BxcRkdz7o8CiPXPCh0N4aZo1yxq9UoHlWlpaGuvXLwZ6Ag9z8X/DNYC3SE1NYNmyt2zJJ/b49dcVHDy4GdN8B6j2lxYn8DhwD599NgWdfCSSd6jIEhGRqxMZmX3RVaRGr67I1q3LMc1UoJeLHm2AEFatmufBVGK3LVu+weksTdapoznpSVzcLk6ePOLBVCLyb6jIEhER8ZCMjPQL//J30cMB+JKZmeGhRHI9yDot0I+s45+TrNeLXhcieYeKLBEREQ+pUaMZUACY76LHBuB3atVq6bFMYr8qVeqTmbkP+NVFj88JCQmnePEynowlIv+CiiwREREPCQgIpmrVW8ia9GLF31pPAQ9hGP507jzS8+HENlFRd1GkSFkMoz9w5m+tS3E43uXOOx/G6dR8ZSJ5hYosERERDxo1ajGBgcFAS6At8BwwECgPbOeJJ2bh6+trY0LxNB+fAjz11Gf4+cVgGBHAY8BzOBxtgLbUqdOazp2H25xSRHJDX4mIiIh4UFBQKO++e5A33hjI6tXzSUtbjmE4qVz5Zh56aBqVKtWzO6LYoHLlerz66hYWLZrG999/wvnzZyldugrt2r1Hs2Y9NIolksfoL1ZE8pyklBTmr1tHbHw8pQoX5u769SmkxcIlD/H3D+CRR94gKuouYmNjCAwMJTq6I4ULl7Q7mtioePGy3HXXYEqWjCAlJavIuuWWO67rAss0TbZuXcHevT9ToIAf9erdQalSFe2O5VVM02Tp0hn89NMSnE4fWrW6n+joDnbHksu4fv9qRURy8NrixQx7732SU1PwMULIMBMY4PsGE3t15/EO+k9H8oYNGxbyyiv9SUyMwzBCsawkZsx4lDvuGMgDD7x4XX+olmsjIyOdN998nK+/nollgcMRhGmeITS0NI8//jZ16rS2O+I/7N37M88/3524uF0YRjCWlcqbb/6XBg3+w3//+zYBAYXsjpjnbdr0FRMndiE9PQkoCGSyfv2XBAWV4MUXV1G6dBW7I4oLuiZLRPKMt775hkFvvEFy6n3AATLM08AhUtL6Mvjtt3l9yRK7I4pc1tatK5kw4W7Onr0F2IppnsayTmCaY1m4cBpvvTXE7ohig+nTH2bp0jcxzUlY1klM8zSwhYSE6owbdxc7d661O+JFjh3by//9X0tOnAgGVmOaZ7Cs08DbrF//NRMmdNLiyf/S/v2/8uyzHUlPDweWAUnAWeBDkpIy+O9/byE5OcnekOKSiiwRyRPSMzL4v9kfAj2B14GyF1puAKYBD/D0nI9ITU93dRci14U5c0YD9bCsz4HqF7YWBkYCz7FkyWtadDafiY3dw7ffvo1lvQw8AYRcaKmFZS3AsqrxwQfP2pjwn+bPn0xqakFMcxnQiKw1vgoCD2CaH7J167ds3brSzoh53owZA7EsH+B7oBVZH9t9gW7AEtLSzvLBB8/YGVEuQUWWiOQJ32/bxu+JpwBX3/IPJj7pNN/96mqdGRH7nTp1lB07VmFZj5HzGfsPAX6sWfOxh5OJnVavnodhBAMP5NDqi2kOYsuWpSQmnvJ0tBxZlsXKlR9gmn35syD8q7Y4nVVYteoDT0fzKrt2/QT0AsJyaI0G6rNq1UeeDSVXTEWWiOQJ8Ul/nBJRwUWPCABOJSZ6JI/I1Th7Nv7Cv1y9jgthGMU5e/b6+DAtnpGUFI/DUYqskaCcRFzod9pjmS7FNDM5fz4R169jB5mZFa6bojCvMs0MXD/HAJU4f/68p+JILqnIEpE8oULJP2Zd2+Cix/q/9RO5/hQtWhrD8MH16/gImZlHKVnyUh+sxNuULFkB09wP/O6ix3p8fPwpXDinEQ3Pczp9CA29Adev4zQMY7Nex/9SgQIFgXUuWi3gR0JCCnswkeSGiiwRyRPqVarEjWUqYDjGAql/a03DcIyhUqkyNKxWzY54IlekUKEiNGzYGcN4GTj5t1YLGIuvb0EaNepiQzqxS5Mm3XE6DeBZsl4HfxWHYUyjSZOuFCwYZEO6nLVt+yCG8T6wI4fWVzHN49x2W19Px/IqUVFtgAXkXMy+D+yjffvHPBtKrpiKLBHJExwOBzMe6Y/T+ROG0RD4CNgOfILhaIRhrGXmwIdwOBw2JxW5tPvum0hgYAqGEQ28Qdbr+GugPfAW/fu/TEBAsK0ZxbOCg4vywAMvAq8CnYBvyXpdTMcwoilUyEGPHuNszfh3d931OOHhERhGY+A5YCuwhqzryobSocMQypa90daMed3AgTPx9y8ENAfGAL+QddbGIKAPJUtW5M47H7UxoVyKiiwRyTMa33QT308cT4MqaWTNrnQT0IXoyGRWTBhH85o1bU4ocnlhYRG8+OIP1K1bA4fjEbJex20ID9/PsGEfc/vtD9odUWxw552DGDp0LmFhO4DbgJtwOB4jKqoekyf/QPHiZeyOeJHAwBCee24lzZvfhY/PWKAm0JjChb/lwQen8sADk+2OmOcFBYXyxhs7KVeuIjAeuBmoD8ykVq2WvPbadgxDH+WvVw5LixhcUmJiIiEhISTMm0dwQIDdcUTkgn1xcRyLjyescGEqlipld5z8Z0PW6SsLac+cmCgiIyEqyuZMeVB8/DHi4vYRFBRKmTI3aiRWsCyLX35ZzpkzJ6hSpT6lSkXYHemykpJOc+TITgoU8KN8+Zp5YjHt06fjSEo6TZEi4QQG5jRD4vXl1KlYfvppET4+fjRo0JmAgOvn1FFXEhJ+JzHxJKGhJSlUqIjdcdwmOTmRbt1CSEhIIDjY9VkH1/9fgYhIDiLCwogIuz4uAhe5WkWKlKJIEX1JIFk2bfqKuXOfZc+erMkOChQIoFmz7vTsOZ7Cha/fSX2CggpTtWoDu2NckW3bVjF37hh++20FAE6nL40adaFXr/GUKFHO5nSuFS0aTuvW/e2OcUX27NnEnDmj+PnnrwALh8NJ/fod6dVrPDfcUNXueB6jMUYRERERm61Y8T5jx97B3r2+wDxgFenpI1m+/EuefPJWzpw5YXfEPG/jxkU8/XRLduxIAmYDq8jMHM/q1SsYOrQBx48fsDlh3rd9+xqGD2/Mli2HgJnAKixrKuvXb2Ho0AYcPLjN7ogeoyJLRERExEbnziXw2muPAL2wrBVAV6Ax8DSmuZ6TJxP44INR9obM49LT05g69UEsqy2m+SNZi/w2Bp7ENDdx9qwv77zzhM0p8zbLspg69UEyMupimhuBB8l6jgdhmptITb2B6dMH2pzSc/JMkRUfH0+PHj0IDg4mNDSUvn37kpS9OKlra9eupUWLFgQGBhIcHEyTJk1ISUnxQGIRERGRy1u16kPS0lKASfzzo1kFTHMg3303h9TUZBvSeYeNGxdy9uxxLGsS/7xapiSm+STr1n3B6dPH7YjnFX77bRVxcbuwrAmA/99aQzDNZ9ixYxVHjuyyI57H5Zkiq0ePHvz2228sW7aMRYsWsWrVKvr3v/S5qWvXrqVNmzbcfvvtbNiwgY0bNzJo0CDNxCIiIiLXjdjYGJzOSkC4ix5NSEs7R3z8MU/G8ipHj8ZgGEXIms0zJ02wrEyOH9/vyVhe5ejRmAv/auSiRxMAjh3b7ZE8dssTE1/s2LGDpUuXsnHjRurVqwfAtGnTaNeuHZMnTyY8POc3pcGDB/PYY48xYsSI7G1VqlTxSGYRERGRKxEQEIJlnQDSAN8cehwBoGDBQp6M5VUCA0OwrLNAApDTbIJZz7HWqLt6f87SGAvckEOPP17H+eM5zhNDOmvXriU0NDS7wAJo1aoVhmGwfv36HPc5ceIE69evp0SJEjRs2JCSJUvStGlT1qxZc8nflZqaSmJi4kU3ERERkWvl1lvvwTRPAx/k0JqJYUznxhubERpawtPRvEZ0dEfABN7ModXC4XiV0qVvokyZap4N5kXq1GmDr28QMM1Fj1cJCQmnWrWGnoxlmzxRZMXFxVGixMVvLD4+PhQpUoS4uLgc99m3bx8AY8aMoV+/fixdupQ6derQsmVLdu92PUw5adIkQkJCsm9lylxfi/+JiIiIdylb9iYaNuxyYXHqd4DUCy0HgO5Y1kbuvfcZ2/J5g6JFw2nbdgAOx0jgFeDchZZY4CEsawk9e47RWnX/QkBAMJ06DQVeBCaQNWoIcBJ4EphFjx6j8sQ6au5ga5E1YsQIHA7HJW87d+68qvs2TROAhx56iPvvv5/atWvz8ssvU6VKFd555x2X+40cOZKEhITs2+HDh6/q94uIiIhcqcGD36Nhww5AXwyjBE5nRSACf/+vefLJD6lVq4XdEfO8Bx98mdtuewB4HMMIu/Acl6VAgbkMHDiTW2+9x+6IeV63bqPo1OlJHI7ROByl8PGphMNRGqdzGr17P0ebNg/ZHdFjbC0lhw4dSp8+fS7ZJyIigrCwME6cuHh9iIyMDOLj4wlzsRhpqVJZizveeOONF22vVq0ahw4dcvn7/Pz88PPzu4L0IiIiIu7h51eQ4cM/5MiR0fz442ekpJyldOkqNGrUBX//QLvjeQUfnwIMGvQG99wzgh9++JizZ+MJC4ugceNuf7meSP4NwzDo0+d52rd/jFWr5pGQcIJixW6gSZN7CQ4uZnc8j7K1yCpevDjFixe/bL8GDRpw5swZNm3aRN26dQH47rvvME2T6OjoHPcpX7484eHh7Np18TSRMTExtG3b9t+HFxHxUhmZmXyyZg0zv/6WfcdPUiKkEPe1aEKfFi0oFBBgdzyvYJom69d/ydKlb3LkyG4CA0No2rQLt9/+IIUKFbE7ntjohhuq0qXLU3bHuGLbtq1iyZLpxMRsxtfXj+joO2jX7mGKFy9rdzSXwsIq0LnzcLtjeLWiRUtz991D7Y5hqzxxUmS1atVo06YN/fr1Y8aMGaSnpzNo0CC6deuWPbPg0aNHadmyJbNnzyYqKgqHw8GTTz7J6NGjqVWrFjfffDOzZs1i586dfPrppzY/IhGR61NKaip3PDuBFVu3YBhNMc3bOfz7bjbtfYf/LVjC95PGUbpoUbtj5mmZmRm88MK9rF37KYZRH9O8m99/P8zBg6NYsOBVJk1aTnh4ZbtjilzW++8/xSefTMQwqmKadwJniI2dzqJFrzF69CKqV29id0QR2+SJiS8A5s6dS9WqVWnZsiXt2rWjUaNGzJw5M7s9PT2dXbt2kZz850J9jz/+OCNHjmTw4MHUqlWL5cuXs2zZMipWrGjHQxARue6NnD2b77ftAr7DNFcCL2AxH8v6jYMn4N4XX7qo/4aYUBtS5m2fffY869Z9AXyOaa4FXgA+xLL2kJAQyPjxnbEsy96QIpfx44+f88knE4EXMc3twBTgbUzzMGlptzBuXAeSkzVDs+RfDkvv5JeUmJhISEgICfPmEazTZETEi51NTqbkffeTkvYE8GwOPT4D7mHL7bdzKLkFc061JbZoTcLDITISoqI8HDgPyshIp0+fciQmdgBez6HH90Azxo1brokO5Lo2fHhTdu1yXPgy5u9igbI89ND/uOOOgR5OJnJtJScn0q1bCAkJCQQHu17zK8+MZImIyLW1Zf9+UtJSgC4uetyFA1+G74lkDj2hRk2aNYOePVVgXaljx/aQmHgM189xE5zOEvz22/eejCWSK6ZpsmPHakzT1es4HIejEdu26XUs+VeeuCZLRESuvT/Xh3F9goOFxW6qUC+8ND17eiaXN7mS5zirTWv1yPXN4XBc5rRWnSgl+ZtGskREBICbK1QgwC8A+MhFj/lAOq1aNVOBdZVKlapESEg4rp/jlWRm/k6NGs08mEokdwzDoFq1JhiGq9fxESzrB2rUaO7RXCLXExVZIiICQFDBggxocxuGYwrwzd9ad+BwDKZcuZaUKFHdjnhewen0oUOHR3E43gY+/lvrQQzjIcqWrUX16k3tiCdyxTp2fBzTXA1MAsy/tJzB4ehJQEAIzZrp2xjJv1RkiYhItgm9etGq1k1Aa5xGI2AwDu4EqlO4cCgdO75vc8K87+67n+TWW/8DdMUw6gGDgXtwOCpTuHAaTz312V9OKxS5PtWv34Fu3UYB/4fTGQk8BvTGMMrg57eFUaMWEBBQyOaUIvbR7IKXodkFRSS/ycjM5It16y4sRvw7JQwHtcNaENRyGr6+gYAmuvi3TNNk06avWLp05l8WI+5Ky5Z9CAoKtTueyBXbuXMtixe/lr0YcYMG7Wnd+iGKFg23O5rINXGlswuqyLoMFVkiku9t2MDCmCpsiPzz1B8VWSLXxsGD2/jhh09JSTlL6dJVaNLkXo0IuVls7B5Wr55HUlI8JUtG0LRpdwoVKmJ3LMkjrrTI0uyCIiIiIjY7f/4cL73Um3XrPsMwimAYxcnI+B9vv/0EgwbNoGnT7nZHzPPS09N47bUBfPfduxhGCIYRRmbmPt5550kefHAK7do9YndE8SK6JktERETEZi+91JsNG5YCszHNODIydgIHSE29i5de6sXmzcvsjpjnzZz5X1asmAtMz36OLesIGRkPMGPGQFavdjVbokjuqcgSERERsdHBg9tYt+4zTPN1oBdQ4ELLDcBsHI5o5s0bb19AL3Dy5BG++eZNLOs54GHA/0JLCeBV4E7mzn32Mmt/iVw5FVkiIiIiNvrhh08xjCJA1xxaDUzzYXbsWMWZMyc8Hc1rrF//JVkfe/vm0OoABhIbu53Dh7d7Nph4LRVZIiIiIjZKSTmLw1Ec8HXRo3R2P7k6Wc9xIcDVRAVZz3Fysp5jcQ8VWSIiIiI2Kl26CpmZe4AjLnqsxNc3iCJFNC361SpdugqmGQ9sddFjJYbhQ1hYhCdjiRdTkSUiIiJioyZNuuHnFwCMAMy/te7BMF6jZcte+PkVtCGdd7jlljsJCSmFwzECSP9b6zEM40Xq17+b0NASdsQTL6QiS0RERMRGAQHBDBo0A/gAw2gMzAVWAKMxjPqUKFGM7t3H2hsyj/PxKcDjj7+Nw7EMw4gG3iHrOZ6EYdQlONjkgQdetDmleBMVWSIiIiI2a9q0O2PHfk2VKj5AT6AFvr4v0bp1FyZP/oGQkOJ2R8zz6tZty6RJK6lRozhZE2C0wMfnWZo3b8NLL62jRIlydkcUL6LFiEVERGzy+++HiYvbS0BACBUq1MIw9N1nfla79m3Urn0bZ86cICXlLEWKhOsUQTerVq0h48Z9TWLiSZKSzlC4cBgFCwbZHcvrWJbF4cM7SEg4QdGiNxAeXsnuSB6nIktERMTDjh6NYebMx9m8eSmQtS5PyZKR9Ow5hqZN77U3nNguNLSErg26xoKDixEcXMzuGF5p8+ZlvPvuCA4c+Dl7W5UqjXjwwclUqRJtYzLP0ldmIiIiHhQbu4cnnriVX37ZDbwF7AK+5fjxakyZ0p2lS9+wOaGIyNXZuHExY8a05eDBIGABWe9vH7N7dwojRzZj5861Nif0HBVZIiIiHjR79v+RkhKEaa4DHgAigZbAfOAh3nprKOfOJdiaUUQktzIzM5k+fSBwO5a1HGhP1vvbfzDNNWRm1mTGjMfsDelBKrJEREQ8JDHxFOvWzcc0BwNF/9bqAEaRlnaeNWs+tiGdiMjV+/XX7zh16iCWNYZ/XpHkj2U9zb59P3HggKu1yryLiiwREREPiY+PxTQzgCgXPcJxOm/gxIkDHkwlIvLv/fm+dYuLHrf8rZ93U5ElIiLiIYUK/TF6tcdFj0RM87guyBeRPOfP97e9Lnpkbc8v728qskRERDykaNFwbryxGYbxCpCeQ48ZQDqNGnXxcDIRkX+nbt02FCxYGJiSQ6sFTKF48QgiI/PHDIMqskRERDyoV69ngS04HB2AzRe2ngSeBUZy552PUrRoadvyiYhcDT+/AHr0GE3Wl0WPAYcvtOwGegPz6d17Qr5ZDzB/PEoREZHrxE03NeaZZ74kJORXoA6GEQSUxOmcyN13D+WBBybbHVFE5Kq0b/8YDzwwBT+/94CyGEYhIJKAgMX897/v0qRJN5sTeo4WIxYREfGwunXb8u67B9i06SuOHdtDQEAI0dF35ZtrFUTEOzkcDjp2HMLtt/dj/fovSUg4QbFiN3DLLe3x8ytodzyPUpElIiJiA6fTh6io9nbHuGKHD+9gwYKp/Pjjl6SlpVC+fA3uuONhmjS5N9+c/iN536lTsSxa9AorVszj3Ll4SpSoQNu2D3LbbQ/muyLgWklMPMnixa/x7bfvk5h4giJFbuDEiYO0aTOAgIBCdsfzGBVZIiIickmbN3/D+PEdycwsjGn2AYoSE/MNu3b1ZOPGxQwZ8j5Op9PumCKXdOjQdkaObM65c6mYZi+gPIcPr+PNN4ewYsWHjB//DQULBtkdM087ceIgw4c34/Tp3zHN7kAVjh37hVmznuHbb2fz3HMr8s2Ivb56EhER1+bMYeHKIDbEliYmBmJi7A4knpacnMikSV3IyGiOae4FngOexLKWAZ+yevVHfP31GzanFLk0y7J47rmunDtXEtPcDUwDhgKfYFk/snfvNmbPHmlzyrzvpZf6cPq0A9PcDswk6zmejWVtJjb2ODNmDLI5oeeoyBIRkX/asIGFL2znmdgBzKEnK2kOQM+eEOVqHV3xSitXzuX8+SQs6w3A/2+tnYFOLFjwKpZl2ZBO5Mps2/Y9R45swzT/BxT/W+stmObjLFv2HsnJZ+2I5xUOHtzG9u0rMc3ngbJ/a62GaT7Djz9+Rnz8MTvieZyKLBER+dOGDdmjV9nFVXhpmjXLKrAk/9m9ewOGUQ+4wUWPjsTG7iAlJcmTsURyJSZmA4YRDDRz0aMjaWlJHDmyw4OpvEtMzIYL/7rLRY+OmGYG+/ZtdtHuXXRNloiI/CkmhoW0Z0OznkQCkWjkKr9zOn1wOFIu0SPlQj9dkyXXL6fTB8vKIGsRcN8ceqRk95Or8+dzdx7wy6FH/nqONZIlIiIXi4y0O4FcR26++XYyM38Ffs2h1cIw3qdatSb4+QV4OprIFatd+3YsKxmY76LH+4SElKJcuRqejOVVatZsgcPhBN530eN9fH2DqFKlgSdj2UZFloiIiLhUv35HSpSoiGF0A/b+pSUVeBrTXEWnTkNtSidyZcqVq06tWq0xjEeBdX9pMYG3gJl07PhffHwK2BPQCxQrdsOFJR3+D/j2Ly0W8CkOxwvccUf+mcZdRZaIiIi45ONTgDFjFhMaeg6IxOG4DeiGYZQFJtK79/NER7u6BkPk+vHkk3MpX74c0ADDaAB0x+mMBPpx2219ufvuJ21OmPc98sjrVKtWD7gNw6hL1nNcHfgP0dF30rPnBJsTek7+OClSRERErtoNN1RhxoztfP/9B6xb9wXnz58gIqIbbdoMoEyZanbHE7kiwcFFmTz5R9av/5Lvv/+AxMRYSpVqwu23z6Zq1QY4HA67I+Z5BQsGMX78Mn7+eSnffTeb06djKV68Nq1aTaNmzeb56jl2WJpz9ZISExMJCQkhYd48ggN0vrmIeLk5c1gYOZQN/DnbhSa+EBERyZKcnEi3biEkJCQQHBzssp9OFxQREREREXEjFVkiIiIiIiJupCJLRERERETEjVRkiYiIiIiIuJGKLBERERERETdSkSUiIiIiIuJGKrJERERERETcSEWWiIiIiIiIG6nIEhERERERcSMfuwOIiIjkR5ZlsW/fZmJjdxMQEELNms0pUMDP7lgiIuIGKrJEREQ8bPfujUybNoADB37O3hYYWIxu3Z7irrv+i8PhsDGdiIj8W3nmdMH4+Hh69OhBcHAwoaGh9O3bl6SkpEvuExcXR69evQgLCyMwMJA6derw2WefeSixiIjIP+3f/wsjRzbn0CEDWAQkAFs5d64Tb789mE8+mWRzQhER+bfyTJHVo0cPfvvtN5YtW8aiRYtYtWoV/fv3v+Q+9913H7t27WLBggVs3bqVTp060aVLFzZv3uyh1CIiIhebPfspMjLKYporgTuAYKA68AYwnA8/fJbExJN2RhQRkX8pTxRZO3bsYOnSpbz11ltER0fTqFEjpk2bxrx584iNjXW5348//sijjz5KVFQUERERPP3004SGhrJp0yYPphcREcly5swJNm1agmkOBgJz6PEEpmmyevVHno4mIiJulCeKrLVr1xIaGkq9evWyt7Vq1QrDMFi/fr3L/Ro2bMhHH31EfHw8pmkyb948zp8/T7NmzTyQWkRE5GJnzhwHLKCGix7FMIxw4uNdf4EoIiLXvzwx8UVcXBwlSpS4aJuPjw9FihQhLi7O5X4ff/wxXbt2pWjRovj4+BAQEMD8+fOpVKmSy31SU1NJTU3N/jkxMfHfPwAREREgJKQE4AC2AfVz6HEK0zxG4cKlPBtMRETcytaRrBEjRuBwOC5527lz51Xf/zPPPMOZM2f49ttv+emnnxgyZAhdunRh69atLveZNGkSISEh2bcyZcpc9e8XERH5q8KFS1K7dhsMYyqQnEOPlzAMaNy4q4eTiYiIO9k6kjV06FD69OlzyT4RERGEhYVx4sSJi7ZnZGQQHx9PWFhYjvvt3buXV199lW3btnHTTTcBUKtWLVavXs1rr73GjBkzctxv5MiRDBkyJPvnxMREFVoiIuI29903gWHDGmFZLbCsMUBj4DAwDZhO167PEhJS3NaMIiLy79haZBUvXpzixS//H0mDBg04c+YMmzZtom7dugB89913mKZJdHR0jvskJ2d9Q2gYFw/WOZ1OTNN0+bv8/Pzw89NikCIicm1UrFibCROW8+qrAzh0qG329oCAInTtOpmOHYdcYm8REckL8sQ1WdWqVaNNmzb069ePGTNmkJ6ezqBBg+jWrRvh4eEAHD16lJYtWzJ79myioqKoWrUqlSpV4qGHHmLy5MkULVqUL774InsKeBEREbtUrVqfadM2s3v3Ro4d20NAQAg1a7bAz6+g3dG8UlraeZzOAjidTrujiEg+kSeKLIC5c+cyaNAgWrZsiWEYdO7cmVdeeSW7PT09nV27dmWPYBUoUIAlS5YwYsQI2rdvT1JSEpUqVWLWrFm0a9fOrochIiICgMPhIDIyisjIKLujeKW0tPMsXPgKixe/wcmT+zAMH6KjO9C58zA95yJyzTksy7LsDnE9S0xMJCQkhIR58wgOCLA7jojItbNhA8TE8AzjiCESgMhIiNLnUcljUlNTGD26HTt2/Ihl3Qu0BE5gGG8Dexgx4hPq1+9gc0oRyYuSkxPp1i2EhIQEgoODXfbLMyNZIiJyjVworhbG1mHOqaeILRpJeLgKLMm75s9/kR071mJZy4FG2dtN8zHgXqZM6cWsWUcICHD9AUlE5N9QkSUikl/9pbjawABWnqpJeI2iNFNxJXlYZmYmixe/gWX14a8FVpYCwFRSU8uzcuVc2rV72PMBRSRfUJElIpIf/VFg0Z45NCeW0jTrrOJK8r6zZ0+RkBALtHHR4waczpocOPCLJ2OJSD6jIktEJL+KjAQigdIavRKvUaDAH8uwnHbRwwJOU6CAv4cSiUh+ZFy+i4iIiEjeEBgYQrVqTS5McpHT3F7fkZl5gKiouzwdTUTyERVZIiIi4lX+85/hmOYPwCAg4cJWC1iDYfSiYsUoatZsbl9AEfF6KrJERETEq9Sr146HH34dw5iJYZTGMFrgdNYAGlOuXDijRn2Jw+GwO6aIeDFdkyUiIiJep23bAURF3cW3377DoUPb8POrQMOGL1C7dmucTqfd8UTEy6nIEhEREa9UtGg4Xbs+bXcMEcmHdLqgiIiIiIiIG6nIEhERERERcSMVWSIiIiIiIm6kIktERERERMSNVGSJiIiIiIi4kYosERERERERN1KRJSIiIiIi4kYqskRERERERNxIRZaIiIiIiIgb+dgdQERERESyJCaeZOPGRaSknKV06SrUrNkSp9NpdywRySUVWSIiIiI2y8zMYNasESxc+CqZmWk4HL5YVirFilVg8OB3qFGjmd0RRSQXdLqgiIiIiM1mzvwvX3wxlczMp4ATWFYKsI5Tp8oxenRbdu/+ye6IIpILKrJEREREbBQXt5+vvnodmAw8AxQDHEA0lvUVplmJDz4YY2dEEcklFVkiIiIiNlq16kMMIwjon0OrP6Y5iE2blnD2bLyno4nIVVKRJSIiImKjs2dP4nCUBgJc9IgELBVZInmIiiwRERERGxUrVhbT3A+cctHjJ5xOX0JDS3oyloj8CyqyRERERGzUrFkPDMMCJubQ+juG8QqNG3clIKCQp6OJyFVSkSUiIiJio5CQ4tx330TgJeBeYA2wD3gHw2hAYGAa3buPtTWjiOSO1skSERERsdnddw8lKKgwH3wwjlOn5l3Y6uDmm9vSv///CAurYGs+EckdFVkiIiLitdLTU4mPP4a/fyAhIcXtjnNJt932AC1a9Gbv3k2kpJwlPLwyxYuXtTvWZWVkpBMfH0uBAv4ULqzrxkRARZaIiIh4oXPnEpg371m++eZdUlJOA1ClSiO6dfs/6tZta3M615xOJ5GRUXbHuCKpqcl88slElix5k6SkEwBUqFCPLl2Gc+ut99icTsReuiZLREREvMq5cwmMGNGMhQvfIiWlH/A18D67dzsYO7Yd3377rt0R87y0tPM880wbPv30JZKSugJfAfM4cKAozz//H+bPn2x3RBFbaSRLREREvMonn0zk8OE9mOZaoHr2dtPsDvRn+vRHiIq6i+DgorZlzOsWL36VXbvWYVnfAw2yt1tWF2Ak7747jAYNOutaMsm3NJIlIiIiXiMzM4Ovv34b03yQvxZYWQxgIpmZJitWvG9DOu+xZMlMLKsrfy2wsjiAURhGMMuWvWVDMpHrg0ayRETymzlzWBhbhw1EEUNpYoHISLtDibhHYuIpzp07BTR30aMEhlGdI0d2eDKWV8nMzOD48d3AcBc9ArCs+hw+rOdY8i8VWSIi+cWGDSxcGcQGBhBDJLGUJjwchvW0O5iI+/j5BVz41zEXPUzgOP7+QR5K5H0Mw0mBAgVJT49z2cfhOEbBgjd7LpTIdUanC4qIeLsNG7JGr1YGMYeerKQ5hJemWTPoqQJLvExAQCFq1WqNYbwBZOTQYyGZmUe59db/eDqa13A4HDRs2BnDeBs4n0OPHzHNXzXDoORrKrJERPKBhbRnQ/jdRDb7s7iKyhuzRIvkWrduT2FZv+Jw9AAOX9iaCXyGYfShZs3bqFIl2saEeV+nTk9iGMdwOO4G9lzYagJLMYzOVKhQl7p129mYUMReKrJERPILXXgl+cRNNzVm2LB5+PktBcrj43MTTmc4cA81a9Zn5MhPcDgcdsfM0ypUqMkzzywgIGAjUBmnsxpOZxmgLZUqRTBmzGKcTqfdMUVso2uyRERExOvceus91K7dmtWr53Ho0Db8/AJp0KATlSvXszua16hd+zbee+8wP/zwCXv3/oyvrz+33NKeatUaqoiVfE9FloiIiHilgIBCtG7dz+4YXs3PryAtWtxHixb32R1F5Lqi0wVFRERERETcSEWWiIiIiIiIG6nIEhERERERcSMVWSIiIiIiIm6kIktERERERMSNVGSJiIiIiIi4kYosERERERERN1KRJSIiIiIi4kYqskRERERERNzIx+4AIiIiIiKe8vvvh1iz5hOSkuIpWbICjRp1ISAg2O5Y4mXyzEjWhAkTaNiwIQEBAYSGhl7RPpZlMWrUKEqVKkXBggVp1aoVu3fvvrZBRUREROS6k5mZweuvD+TBByswa9YoPv98Lq+++hD33VeaZcvesTueeJk8U2SlpaXxn//8h4cffviK93nhhRd45ZVXmDFjBuvXrycwMJDWrVtz/vz5a5hURERERK43b789lKVLZ2JZL2Kax8nMPAAcIC3tP0yb1pcff/zc7ojiRfJMkTV27FgGDx5MjRo1rqi/ZVlMnTqVp59+mg4dOlCzZk1mz55NbGwsX3zxxbUNKyIiIiLXjfj4YyxZMh3LGg8MAYIutJQB3sbhaMOcOWOwLMu+kOJV8kyRlVv79+8nLi6OVq1aZW8LCQkhOjqatWvXutwvNTWVxMTEi24iIiIiknetWzcfy3IAD+XQ6sCyHuXIka0cObLT09HES3ltkRUXFwdAyZIlL9pesmTJ7LacTJo0iZCQkOxbmTJlrmlOEREREbm2zp1LwDCCgVAXPcpk9xNxB1uLrBEjRuBwOC5527nTs98ojBw5koSEhOzb4cOHPfr7RURERMS9wsMrk5l5CtjhosdqHA4nJUuW92Aq8Wa2TuE+dOhQ+vTpc8k+ERERV3XfYWFhABw/fpxSpUplbz9+/Dg333yzy/38/Pzw8/O7qt8pIiIiItefqKj2FCpUgqSkkVjWp1z8EfgEhvEiUVEdKFw4zK6I4mVsLbKKFy9O8eLFr8l9V6hQgbCwMJYvX55dVCUmJrJ+/fpczVAoIiIiInlbgQJ+PProTCZN6ozD0RjLehSoAKzDMF4mMDCNBx540e6Y4kXyzDVZhw4dYsuWLRw6dIjMzEy2bNnCli1bSEpKyu5TtWpV5s+fD4DD4eDxxx9n/PjxLFiwgK1bt3LfffcRHh5Ox44dbXoUIiIiImKH+vU7MG7cMqpW9QV6AA0xjOE0bHgrU6asJSzs6s6eEsmJrSNZuTFq1ChmzZqV/XPt2rUBWLFiBc2aNQNg165dJCT8ecHisGHDOHfuHP379+fMmTM0atSIpUuX4u/v79HsIiIiImK/mjWbU7Nmc06dOsrZs/EUK3YDQUGF7Y4lXshhaUGAS0pMTCQkJISEefMIDgiwO46ISO5t2MDCmCpsiOyZvSkqysY8IiIieVRyciLduoWQkJBAcHCwy3555nRBERERERGRvEBFloiIiIiIiBupyBIR8WYbNkBMDBtiSxMTAzExdgcSERHxfnlm4gsREcmFC8XVwtg6zDn1FLFFaxIOREbqeiwREZFrTUWWiIg3+UtxtYEBrDxVk/AaRWmm4kpERMRjVGSJiHiTmBgW0p4N4VHEEEmzZiquREREPE1FloiIt4mMBCKJtDuHiIhIPqWJL0RERERERNxIRZaIiIiIiIgbqcgSERERERFxIxVZIiIiIiIibqQiS0RERERExI1UZImIiIiIiLiRiiwRERERERE3UpElIiIiIiLiRiqyRERERERE3EhFloiIiIiIiBupyBIREREREXEjFVkiIiIiIiJupCJLRERERETEjVRkiYiIiIiIuJGKLBERERERETdSkSUiIiIiIuJGPnYHuN5ZlgVAYnKyzUlERK5AejrJqUmkkpi9SW9fIiIi7pGcnPX/6x81gisO63I98rkjR45QpkwZu2OIiIiIiMh14vDhw9xwww0u21VkXYZpmsTGxlKoUCEcDofdcfKcxMREypQpw+HDhwkODrY7jlyCjlXeoWOVd+hY5R06VnmHjlXe4K3HybIszp49S3h4OIbh+sornS54GYZhXLJKlSsTHBzsVX9g3kzHKu/Qsco7dKzyDh2rvEPHKm/wxuMUEhJy2T6a+EJERERERMSNVGSJiIiIiIi4kYosuab8/PwYPXo0fn5+dkeRy9Cxyjt0rPIOHau8Q8cq79Cxyhvy+3HSxBciIiIiIiJupJEsERERERERN1KRJSIiIiIi4kYqskRERERERNxIRZaIiIiIiIgbqcgSt4uPj6dHjx4EBwcTGhpK3759SUpKumT/Rx99lCpVqlCwYEHKli3LY489RkJCggdT5w+vvfYa5cuXx9/fn+joaDZs2HDJ/p988glVq1bF39+fGjVqsGTJEg8lldwcqzfffJPGjRtTuHBhChcuTKtWrS57bMV9cvt39Yd58+bhcDjo2LHjtQ0o2XJ7rM6cOcPAgQMpVaoUfn5+REZG6n3QA3J7nKZOnZr9GaJMmTIMHjyY8+fPeyht/rVq1Srat29PeHg4DoeDL7744rL7rFy5kjp16uDn50elSpV47733rnlO21gibtamTRurVq1a1rp166zVq1dblSpVsu69916X/bdu3Wp16tTJWrBggbVnzx5r+fLlVuXKla3OnTt7MLX3mzdvnuXr62u988471m+//Wb169fPCg0NtY4fP55j/x9++MFyOp3WCy+8YG3fvt16+umnrQIFClhbt271cPL8J7fHqnv37tZrr71mbd682dqxY4fVp08fKyQkxDpy5IiHk+c/uT1Wf9i/f79VunRpq3HjxlaHDh08Ezafy+2xSk1NterVq2e1a9fOWrNmjbV//35r5cqV1pYtWzycPH/J7XGaO3eu5efnZ82dO9fav3+/9fXXX1ulSpWyBg8e7OHk+c+SJUusp556yvr8888twJo/f/4l++/bt88KCAiwhgwZYm3fvt2aNm2a5XQ6raVLl3omsIepyBK32r59uwVYGzduzN721VdfWQ6Hwzp69OgV38/HH39s+fr6Wunp6dciZr4UFRVlDRw4MPvnzMxMKzw83Jo0aVKO/bt06WLdcccdF22Ljo62HnrooWuaU3J/rP4uIyPDKlSokDVr1qxrFVEuuJpjlZGRYTVs2NB66623rN69e6vI8pDcHqvXX3/dioiIsNLS0jwVUazcH6eBAwdaLVq0uGjbkCFDrFtvvfWa5pSLXUmRNWzYMOumm266aFvXrl2t1q1bX8Nk9tHpguJWa9euJTQ0lHr16mVva9WqFYZhsH79+iu+n4SEBIKDg/Hx8bkWMfOdtLQ0Nm3aRKtWrbK3GYZBq1atWLt2bY77rF279qL+AK1bt3bZX9zjao7V3yUnJ5Oenk6RIkWuVUzh6o/Vs88+S4kSJejbt68nYgpXd6wWLFhAgwYNGDhwICVLlqR69epMnDiRzMxMT8XOd67mODVs2JBNmzZln1K4b98+lixZQrt27TySWa5cfvtcoU+w4lZxcXGUKFHiom0+Pj4UKVKEuLi4K7qPkydPMm7cOPr3738tIuZLJ0+eJDMzk5IlS160vWTJkuzcuTPHfeLi4nLsf6XHUa7O1Ryrvxs+fDjh4eH/+M9M3OtqjtWaNWt4++232bJliwcSyh+u5ljt27eP7777jh49erBkyRL27NnDI488Qnp6OqNHj/ZE7Hznao5T9+7dOXnyJI0aNcKyLDIyMhgwYAD/93//54nIkguuPlckJiaSkpJCwYIFbUp2bWgkS67IiBEjcDgcl7xd6QfAS0lMTOSOO+7gxhtvZMyYMf8+uEg+89xzzzFv3jzmz5+Pv7+/3XHkL86ePUuvXr148803KVasmN1x5DJM06REiRLMnDmTunXr0rVrV5566ilmzJhhdzT5i5UrVzJx4kSmT5/Ozz//zOeff87ixYsZN26c3dEkn9NIllyRoUOH0qdPn0v2iYiIICwsjBMnTly0PSMjg/j4eMLCwi65/9mzZ2nTpg2FChVi/vz5FChQ4N/GlguKFSuG0+nk+PHjF20/fvy4y+MSFhaWq/7iHldzrP4wefJknnvuOb799ltq1qx5LWMKuT9We/fu5cCBA7Rv3z57m2maQNaI/65du6hYseK1DZ1PXc3fValSpShQoABOpzN7W7Vq1YiLiyMtLQ1fX99rmjk/uprj9Mwzz9CrVy8efPBBAGrUqMG5c+fo378/Tz31FIah8YTrhavPFcHBwV43igUayZIrVLx4capWrXrJm6+vLw0aNODMmTNs2rQpe9/vvvsO0zSJjo52ef+JiYncfvvt+Pr6smDBAn0D72a+vr7UrVuX5cuXZ28zTZPly5fToEGDHPdp0KDBRf0Bli1b5rK/uMfVHCuAF154gXHjxrF06dKLromUaye3x6pq1aps3bqVLVu2ZN/uuusumjdvzpYtWyhTpown4+crV/N3deutt7Jnz57sQhggJiaGUqVKqcC6Rq7mOCUnJ/+jkPqjMLYs69qFlVzLd58r7J55Q7xPmzZtrNq1a1vr16+31qxZY1WuXPmiKdyPHDliValSxVq/fr1lWZaVkJBgRUdHWzVq1LD27NljHTt2LPuWkZFh18PwOvPmzbP8/Pys9957z9q+fbvVv39/KzQ01IqLi7Msy7J69epljRgxIrv/Dz/8YPn4+FiTJ0+2duzYYY0ePVpTuHtIbo/Vc889Z/n6+lqffvrpRX8/Z8+etesh5Bu5PVZ/p9kFPSe3x+rQoUNWoUKFrEGDBlm7du2yFi1aZJUoUcIaP368XQ8hX8jtcRo9erRVqFAh68MPP7T27dtnffPNN1bFihWtLl262PUQ8o2zZ89amzdvtjZv3mwB1ksvvWRt3rzZOnjwoGVZljVixAirV69e2f3/mML9ySeftHbs2GG99tprmsJdJDdOnTpl3XvvvVZQUJAVHBxs3X///Rd92Nu/f78FWCtWrLAsy7JWrFhhATne9u/fb8+D8FLTpk2zypYta/n6+lpRUVHWunXrstuaNm1q9e7d+6L+H3/8sRUZGWn5+vpaN910k7V48WIPJ86/cnOsypUrl+Pfz+jRoz0fPB/K7d/VX6nI8qzcHqsff/zRio6Otvz8/KyIiAhrwoQJ+vLPA3JznNLT060xY8ZYFStWtPz9/a0yZcpYjzzyiHX69GnPB89nXH1+++P49O7d22ratOk/9rn55pstX19fKyIiwnr33Xc9nttTHJalsVQRERERERF30TVZIiIiIiIibqQiS0RERERExI1UZImIiIiIiLiRiiwRERERERE3UpElIiIiIiLiRiqyRERERERE3EhFloiIiIiIiBupyBIREREREXEjFVkiIpIn9OnTB4fD8Y/bnj173HL/7733HqGhoW65r6u1atUq2rdvT3h4OA6Hgy+++MLWPCIicnVUZImISJ7Rpk0bjh07dtGtQoUKdsf6h/T09Kva79y5c9SqVYvXXnvNzYlERMSTVGSJiEie4efnR1hY2EU3p9MJwJdffkmdOnXw9/cnIiKCsWPHkpGRkb3vSy+9RI0aNQgMDKRMmTI88sgjJCUlAbBy5Uruv/9+EhISskfIxowZA5DjiFJoaCjvvfceAAcOHMDhcPDRRx/RtGlT/P39mTt3LgBvvfUW1apVw9/fn6pVqzJ9+vRLPr62bdsyfvx47r77bjc8WyIiYhcfuwOIiIj8W6tXr+a+++7jlVdeoXHjxuzdu5f+/fsDMHr0aAAMw+CVV16hQoUK7Nu3j0ceeYRhw4Yxffp0GjZsyNSpUxk1ahS7du0CICgoKFcZRowYwZQpU6hdu3Z2oTVq1CheffVVateuzebNm+nXrx+BgYH07t3bvU+AiIhcV1RkiYhInrFo0aKLip+2bdvyySefMHbsWEaMGJFdvERERDBu3DiGDRuWXWQ9/vjj2fuVL1+e8ePHM2DAAKZPn46vry8hISE4HA7CwsKuKtvjjz9Op06dsn8ePXo0U6ZMyd5WoUIFtm/fzhtvvKEiS0TEy6nIEhGRPKN58+a8/vrr2T8HBgYC8Msvv/DDDz8wYcKE7LbMzEzOnz9PcnIyAQEBfPvtt0yaNImdO3eSmJhIRkbGRe3/Vr169bL/fe7cOfbu3Uvfvn3p169f9vaMjAxCQkL+9e8SEZHrm4osERHJMwIDA6lUqdI/ticlJTF27NiLRpL+4O/vz4EDB7jzzjt5+OGHmTBhAkWKFGHNmjX07duXtLS0SxZZDocDy7Iu2pbTxBZ/FHx/5AF48803iY6OvqjfH9eQiYiI91KRJSIieV6dOnXYtWtXjgUYwKZNmzBNkylTpmAYWXM+ffzxxxf18fX1JTMz8x/7Fi9enGPHjmX/vHv3bpKTky+Zp2TJkoSHh7Nv3z569OiR24cjIiJ5nIosERHJ80aNGsWdd95J2bJlueeeezAMg19++YVt27Yxfvx4KlWqRHp6OtOmTaN9+/b88MMPzJgx46L7KF++PElJSSxfvpxatWoREBBAQEAALVq04NVXX6VBgwZkZmYyfPhwChQocNlMY8eO5bHHHiMkJIQ2bdqQmprKTz/9xOnTpxkyZEiO+yQlJV207tf+/fvZsmULRYoUoWzZsv/uSRIREY/RFO4iIpLntW7dmkWLFvHNN99wyy23UL9+fV5++WXKlSsHQK1atXjppZd4/vnnqV69OnPnzmXSpEkX3UfDhg0ZMGAAXbt2pXjx4rzwwgsATJkyhTJlytC4cWO6d+/OE088cUXXcD344IO89dZbvPvuu9SoUYOmTZvy3nvvXXJdr59++onatWtTu3ZtAIYMGULt2rUZNWrU1T41IiJiA4f19xPNRURERERE5KppJEtERERERMSNVGSJiIiIiIi4kYosERERERERN1KRJSIiIiIi4kYqskRERERERNxIRZaIiIiIiIgbqcgSERERERFxIxVZIiIiIiIibqQiS0RERERExI1UZImIiIiIiLiRiiwRERERERE3UpElIiIiIiLiRv8PaQlX230CbuEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -714,7 +850,7 @@ " batch_size,\n", " fhe_client,\n", " fhe_server,\n", - " serialized_evaluation_key,\n", + " serialized_evaluation_keys,\n", " weights,\n", " bias,\n", " n_epochs=2,\n", @@ -731,6 +867,16 @@ ")" ] }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Clean the temporary directories and their content\n", + "deployment_dir.cleanup()" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/poetry.lock b/poetry.lock index 49db0b354..442689a79 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.6.1 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand. [[package]] name = "absl-py" @@ -134,24 +134,25 @@ files = [ [[package]] name = "anyio" -version = "3.7.1" +version = "4.4.0" description = "High level compatibility layer for multiple asynchronous event loop implementations" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "anyio-3.7.1-py3-none-any.whl", hash = "sha256:91dee416e570e92c64041bd18b900d1d6fa78dff7048769ce5ac5ddad004fbb5"}, - {file = "anyio-3.7.1.tar.gz", hash = "sha256:44a3c9aba0f5defa43261a8b3efb97891f2bd7d804e0e1f56419befa1adfc780"}, + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, ] [package.dependencies] -exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} idna = ">=2.8" sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} [package.extras] -doc = ["Sphinx", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme (>=1.2.2)", "sphinxcontrib-jquery"] -test = ["anyio[trio]", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (<0.22)"] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.23)"] [[package]] name = "appnope" @@ -351,13 +352,13 @@ tomli = {version = "*", markers = "python_version < \"3.11\""} [[package]] name = "babel" -version = "2.14.0" +version = "2.15.0" description = "Internationalization utilities" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "Babel-2.14.0-py3-none-any.whl", hash = "sha256:efb1a25b7118e67ce3a259bed20545c29cb68be8ad2c784c83689981b7a57287"}, - {file = "Babel-2.14.0.tar.gz", hash = "sha256:6919867db036398ba21eb5c7a0f6b28ab8cbc3ae7a73a44ebe34ae74a4e7d363"}, + {file = "Babel-2.15.0-py3-none-any.whl", hash = "sha256:08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb"}, + {file = "babel-2.15.0.tar.gz", hash = "sha256:8daf0e265d05768bc6c7a314cf1321e9a123afc328cc635c18622a2f30a04413"}, ] [package.dependencies] @@ -379,18 +380,18 @@ files = [ [[package]] name = "backports-tarfile" -version = "1.1.0" +version = "1.2.0" description = "Backport of CPython tarfile module" optional = false python-versions = ">=3.8" files = [ - {file = "backports.tarfile-1.1.0-py3-none-any.whl", hash = "sha256:b2f4df351db942d094db94588bbf2c6938697a5f190f44c934acc697da56008b"}, - {file = "backports_tarfile-1.1.0.tar.gz", hash = "sha256:91d59138ea401ee2a95e8b839c1e2f51f3e9ca76bdba8b6a29f8d773564686a8"}, + {file = "backports.tarfile-1.2.0-py3-none-any.whl", hash = "sha256:77e284d754527b01fb1e6fa8a1afe577858ebe4e9dad8919e34c862cb399bc34"}, + {file = "backports_tarfile-1.2.0.tar.gz", hash = "sha256:d75e02c268746e1b8144c278978b6e98e85de6ad16f8e4b0844a154557eca991"}, ] [package.extras] docs = ["furo", "jaraco.packaging (>=9.3)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["jaraco.test", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)"] +testing = ["jaraco.test", "pytest (!=8.0.*)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)"] [[package]] name = "beautifulsoup4" @@ -415,33 +416,33 @@ lxml = ["lxml"] [[package]] name = "black" -version = "24.4.0" +version = "24.4.2" description = "The uncompromising code formatter." optional = false python-versions = ">=3.8" files = [ - {file = "black-24.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6ad001a9ddd9b8dfd1b434d566be39b1cd502802c8d38bbb1ba612afda2ef436"}, - {file = "black-24.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e3a3a092b8b756c643fe45f4624dbd5a389f770a4ac294cf4d0fce6af86addaf"}, - {file = "black-24.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dae79397f367ac8d7adb6c779813328f6d690943f64b32983e896bcccd18cbad"}, - {file = "black-24.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:71d998b73c957444fb7c52096c3843875f4b6b47a54972598741fe9a7f737fcb"}, - {file = "black-24.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8e5537f456a22cf5cfcb2707803431d2feeb82ab3748ade280d6ccd0b40ed2e8"}, - {file = "black-24.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64e60a7edd71fd542a10a9643bf369bfd2644de95ec71e86790b063aa02ff745"}, - {file = "black-24.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cd5b4f76056cecce3e69b0d4c228326d2595f506797f40b9233424e2524c070"}, - {file = "black-24.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:64578cf99b6b46a6301bc28bdb89f9d6f9b592b1c5837818a177c98525dbe397"}, - {file = "black-24.4.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f95cece33329dc4aa3b0e1a771c41075812e46cf3d6e3f1dfe3d91ff09826ed2"}, - {file = "black-24.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4396ca365a4310beef84d446ca5016f671b10f07abdba3e4e4304218d2c71d33"}, - {file = "black-24.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44d99dfdf37a2a00a6f7a8dcbd19edf361d056ee51093b2445de7ca09adac965"}, - {file = "black-24.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:21f9407063ec71c5580b8ad975653c66508d6a9f57bd008bb8691d273705adcd"}, - {file = "black-24.4.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:652e55bb722ca026299eb74e53880ee2315b181dfdd44dca98e43448620ddec1"}, - {file = "black-24.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7f2966b9b2b3b7104fca9d75b2ee856fe3fdd7ed9e47c753a4bb1a675f2caab8"}, - {file = "black-24.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bb9ca06e556a09f7f7177bc7cb604e5ed2d2df1e9119e4f7d2f1f7071c32e5d"}, - {file = "black-24.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:d4e71cdebdc8efeb6deaf5f2deb28325f8614d48426bed118ecc2dcaefb9ebf3"}, - {file = "black-24.4.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6644f97a7ef6f401a150cca551a1ff97e03c25d8519ee0bbc9b0058772882665"}, - {file = "black-24.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:75a2d0b4f5eb81f7eebc31f788f9830a6ce10a68c91fbe0fade34fff7a2836e6"}, - {file = "black-24.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eb949f56a63c5e134dfdca12091e98ffb5fd446293ebae123d10fc1abad00b9e"}, - {file = "black-24.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:7852b05d02b5b9a8c893ab95863ef8986e4dda29af80bbbda94d7aee1abf8702"}, - {file = "black-24.4.0-py3-none-any.whl", hash = "sha256:74eb9b5420e26b42c00a3ff470dc0cd144b80a766128b1771d07643165e08d0e"}, - {file = "black-24.4.0.tar.gz", hash = "sha256:f07b69fda20578367eaebbd670ff8fc653ab181e1ff95d84497f9fa20e7d0641"}, + {file = "black-24.4.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dd1b5a14e417189db4c7b64a6540f31730713d173f0b63e55fabd52d61d8fdce"}, + {file = "black-24.4.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e537d281831ad0e71007dcdcbe50a71470b978c453fa41ce77186bbe0ed6021"}, + {file = "black-24.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaea3008c281f1038edb473c1aa8ed8143a5535ff18f978a318f10302b254063"}, + {file = "black-24.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:7768a0dbf16a39aa5e9a3ded568bb545c8c2727396d063bbaf847df05b08cd96"}, + {file = "black-24.4.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:257d724c2c9b1660f353b36c802ccece186a30accc7742c176d29c146df6e474"}, + {file = "black-24.4.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bdde6f877a18f24844e381d45e9947a49e97933573ac9d4345399be37621e26c"}, + {file = "black-24.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e151054aa00bad1f4e1f04919542885f89f5f7d086b8a59e5000e6c616896ffb"}, + {file = "black-24.4.2-cp311-cp311-win_amd64.whl", hash = "sha256:7e122b1c4fb252fd85df3ca93578732b4749d9be076593076ef4d07a0233c3e1"}, + {file = "black-24.4.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:accf49e151c8ed2c0cdc528691838afd217c50412534e876a19270fea1e28e2d"}, + {file = "black-24.4.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:88c57dc656038f1ab9f92b3eb5335ee9b021412feaa46330d5eba4e51fe49b04"}, + {file = "black-24.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be8bef99eb46d5021bf053114442914baeb3649a89dc5f3a555c88737e5e98fc"}, + {file = "black-24.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:415e686e87dbbe6f4cd5ef0fbf764af7b89f9057b97c908742b6008cc554b9c0"}, + {file = "black-24.4.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bf10f7310db693bb62692609b397e8d67257c55f949abde4c67f9cc574492cc7"}, + {file = "black-24.4.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:98e123f1d5cfd42f886624d84464f7756f60ff6eab89ae845210631714f6db94"}, + {file = "black-24.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48a85f2cb5e6799a9ef05347b476cce6c182d6c71ee36925a6c194d074336ef8"}, + {file = "black-24.4.2-cp38-cp38-win_amd64.whl", hash = "sha256:b1530ae42e9d6d5b670a34db49a94115a64596bc77710b1d05e9801e62ca0a7c"}, + {file = "black-24.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:37aae07b029fa0174d39daf02748b379399b909652a806e5708199bd93899da1"}, + {file = "black-24.4.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:da33a1a5e49c4122ccdfd56cd021ff1ebc4a1ec4e2d01594fef9b6f267a9e741"}, + {file = "black-24.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef703f83fc32e131e9bcc0a5094cfe85599e7109f896fe8bc96cc402f3eb4b6e"}, + {file = "black-24.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:b9176b9832e84308818a99a561e90aa479e73c523b3f77afd07913380ae2eab7"}, + {file = "black-24.4.2-py3-none-any.whl", hash = "sha256:d36ed1124bb81b32f8614555b34cc4259c3fbc7eec17870e8ff8ded335b58d8c"}, + {file = "black-24.4.2.tar.gz", hash = "sha256:c872b53057f000085da66a19c55d68f6f8ddcac2642392ad3a355878406fbd4d"}, ] [package.dependencies] @@ -552,13 +553,13 @@ files = [ [[package]] name = "certifi" -version = "2023.7.22" +version = "2024.6.2" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2023.7.22-py3-none-any.whl", hash = "sha256:92d6037539857d8206b8f6ae472e8b77db8058fec5937a1ef3f54304089edbb9"}, - {file = "certifi-2023.7.22.tar.gz", hash = "sha256:539cc1d13202e33ca466e88b2807e29f4c13049d6d87031a3c110744495cb082"}, + {file = "certifi-2024.6.2-py3-none-any.whl", hash = "sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56"}, + {file = "certifi-2024.6.2.tar.gz", hash = "sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516"}, ] [[package]] @@ -799,23 +800,23 @@ test = ["pytest"] [[package]] name = "concrete-python" -version = "2.6.2.dev20240529" +version = "2.6.2.dev20240605" description = "A state-of-the-art homomorphic encryption framework" optional = false python-versions = ">=3.8" files = [ - {file = "concrete_python-2.6.2.dev20240529-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:30acd7190a6ea61db33316f32a35ae62d62f7a2bb500c0a18c3f74350749a467"}, - {file = "concrete_python-2.6.2.dev20240529-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:a83342eb80cdd94b1e9a8d0ec6f356812d17bccfeaae465880eb6532e8a6a5a3"}, - {file = "concrete_python-2.6.2.dev20240529-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:98789d63b33acc2137e474d2175d0ed7fe5202a3f249d01afd56d50c70ab9a71"}, - {file = "concrete_python-2.6.2.dev20240529-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f3e95ee88abad82de7235a181c901295f59834d6855a9316a12b0f19dd31a285"}, - {file = "concrete_python-2.6.2.dev20240529-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:7ed25ceb0e8b3726e77d5b7c2feadda6ca013b44c000a6cd8071ff709eda839f"}, - {file = "concrete_python-2.6.2.dev20240529-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:822536f80417d818b9f0454a785e4454139cc16dc063cb67855f8452d181004d"}, - {file = "concrete_python-2.6.2.dev20240529-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:91372abb39ced27e7ddcb2a05332221d04d77f775f774a76c3177d3cfb8287ea"}, - {file = "concrete_python-2.6.2.dev20240529-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:1f9f97cd8f407792eb4cd595d2295c38f0de3848feb2794bf980487fc7549c82"}, - {file = "concrete_python-2.6.2.dev20240529-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:3a45f1078ef07f5f4e6ee24ec103e5b118b261a4a0a2d969298dfae8889642c8"}, - {file = "concrete_python-2.6.2.dev20240529-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f84bda6bbe452dcf40fc34f8587ee0872cde57b2c2cfc734906577be3b6db1de"}, - {file = "concrete_python-2.6.2.dev20240529-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:a228db190ad8d0aa7a53d81ef969f71442d8d90f11dba2137d998deece42a978"}, - {file = "concrete_python-2.6.2.dev20240529-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:14ee4622ed8ff0abd4491f1f76bad4009f5251e6214499bb466f0647e128def5"}, + {file = "concrete_python-2.6.2.dev20240605-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7e7cf4e29e3cd18102b4e8864ccfa931fe94edf38676f352d72c93b6e1cf6b63"}, + {file = "concrete_python-2.6.2.dev20240605-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:d953eb27d1bb51857c4e5a4f54947e516323a4de1ca076ff77a45811585df4cd"}, + {file = "concrete_python-2.6.2.dev20240605-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:755f196531cd0944afcd071bc19aa4e6f34afbc47c0d1ec9026133197769a0eb"}, + {file = "concrete_python-2.6.2.dev20240605-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:df670e196f1c158f8467af101d620fdf84ddf62ef01dbdd4d67c8fdaee031326"}, + {file = "concrete_python-2.6.2.dev20240605-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:9a2849815a0db6df780b3d00936b937a016076107cc14b69e858872f59913f83"}, + {file = "concrete_python-2.6.2.dev20240605-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:db0b8969ffe13deb5c58179164e7a07910eefd8798b6db06db9e186c2da5b86e"}, + {file = "concrete_python-2.6.2.dev20240605-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:020052389c8cf4850a72f8ef2dc679485eb061ddf55942fa81b59f42851928f8"}, + {file = "concrete_python-2.6.2.dev20240605-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:8ac91266fccddb276af9931d76fbf8a044e0cad65d2ed244c08de4ddeab97347"}, + {file = "concrete_python-2.6.2.dev20240605-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:b0c611200d2c0d0ccc3a486db66014159aab47d7eefd377e4d2c8e2f859465a3"}, + {file = "concrete_python-2.6.2.dev20240605-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1ffe28461ae5655d92c9fec14e00aa9c224acea20cce2ec87f4497dca0336fbd"}, + {file = "concrete_python-2.6.2.dev20240605-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:8eafab99e8bfba64ac107445cb305c52014f450955aa58b6edb9021e247641a1"}, + {file = "concrete_python-2.6.2.dev20240605-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:e126bcaa31b783a699c74581e35549fc41f2ba9504802819599df1d507be21f2"}, ] [package.dependencies] @@ -828,7 +829,7 @@ torch = ">=1.13" z3-solver = ">=4.12" [package.extras] -dev = ["auditwheel (==5.3.0)", "black (==24.4.0)", "delocate (==0.10.4)", "isort (==5.12.0)", "matplotlib (>=3.7)", "mypy (==1.1.1)", "pillow (>=10.2)", "pybind11 (==2.10.4)", "pydocstyle (==6.3.0)", "pygraphviz (>=1.11)", "pylint (==2.17.1)", "pytest (==7.2.2)", "pytest-cov (==4.0.0)", "pytest-randomly (==3.15.0)", "pytest-xdist (==3.2.1)", "ruff (==0.0.259)", "wheel (==0.40.0)"] +dev = ["auditwheel (==5.3.0)", "black (==24.4.0)", "delocate (==0.10.4)", "isort (==5.12.0)", "matplotlib (>=3.7)", "mypy (==1.10.0)", "pillow (>=10.2)", "pybind11 (==2.10.4)", "pydocstyle (==6.3.0)", "pygraphviz (>=1.11)", "pylint (==2.17.1)", "pytest (==7.2.2)", "pytest-cov (==4.0.0)", "pytest-randomly (==3.15.0)", "pytest-xdist (==3.2.1)", "ruff (==0.0.259)", "wheel (==0.40.0)"] full = ["matplotlib (>=3.7)", "pillow (>=10.2)", "pygraphviz (>=1.11)"] [package.source] @@ -909,63 +910,63 @@ test-no-images = ["pytest", "pytest-cov", "wurlitzer"] [[package]] name = "coverage" -version = "7.4.4" +version = "7.5.3" description = "Code coverage measurement for Python" optional = false python-versions = ">=3.8" files = [ - {file = "coverage-7.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e0be5efd5127542ef31f165de269f77560d6cdef525fffa446de6f7e9186cfb2"}, - {file = "coverage-7.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ccd341521be3d1b3daeb41960ae94a5e87abe2f46f17224ba5d6f2b8398016cf"}, - {file = "coverage-7.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09fa497a8ab37784fbb20ab699c246053ac294d13fc7eb40ec007a5043ec91f8"}, - {file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1a93009cb80730c9bca5d6d4665494b725b6e8e157c1cb7f2db5b4b122ea562"}, - {file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:690db6517f09336559dc0b5f55342df62370a48f5469fabf502db2c6d1cffcd2"}, - {file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:09c3255458533cb76ef55da8cc49ffab9e33f083739c8bd4f58e79fecfe288f7"}, - {file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ce1415194b4a6bd0cdcc3a1dfbf58b63f910dcb7330fe15bdff542c56949f87"}, - {file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b91cbc4b195444e7e258ba27ac33769c41b94967919f10037e6355e998af255c"}, - {file = "coverage-7.4.4-cp310-cp310-win32.whl", hash = "sha256:598825b51b81c808cb6f078dcb972f96af96b078faa47af7dfcdf282835baa8d"}, - {file = "coverage-7.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:09ef9199ed6653989ebbcaacc9b62b514bb63ea2f90256e71fea3ed74bd8ff6f"}, - {file = "coverage-7.4.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f9f50e7ef2a71e2fae92774c99170eb8304e3fdf9c8c3c7ae9bab3e7229c5cf"}, - {file = "coverage-7.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:623512f8ba53c422fcfb2ce68362c97945095b864cda94a92edbaf5994201083"}, - {file = "coverage-7.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0513b9508b93da4e1716744ef6ebc507aff016ba115ffe8ecff744d1322a7b63"}, - {file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40209e141059b9370a2657c9b15607815359ab3ef9918f0196b6fccce8d3230f"}, - {file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a2b2b78c78293782fd3767d53e6474582f62443d0504b1554370bde86cc8227"}, - {file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:73bfb9c09951125d06ee473bed216e2c3742f530fc5acc1383883125de76d9cd"}, - {file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f384c3cc76aeedce208643697fb3e8437604b512255de6d18dae3f27655a384"}, - {file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:54eb8d1bf7cacfbf2a3186019bcf01d11c666bd495ed18717162f7eb1e9dd00b"}, - {file = "coverage-7.4.4-cp311-cp311-win32.whl", hash = "sha256:cac99918c7bba15302a2d81f0312c08054a3359eaa1929c7e4b26ebe41e9b286"}, - {file = "coverage-7.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:b14706df8b2de49869ae03a5ccbc211f4041750cd4a66f698df89d44f4bd30ec"}, - {file = "coverage-7.4.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:201bef2eea65e0e9c56343115ba3814e896afe6d36ffd37bab783261db430f76"}, - {file = "coverage-7.4.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:41c9c5f3de16b903b610d09650e5e27adbfa7f500302718c9ffd1c12cf9d6818"}, - {file = "coverage-7.4.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d898fe162d26929b5960e4e138651f7427048e72c853607f2b200909794ed978"}, - {file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ea79bb50e805cd6ac058dfa3b5c8f6c040cb87fe83de10845857f5535d1db70"}, - {file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce4b94265ca988c3f8e479e741693d143026632672e3ff924f25fab50518dd51"}, - {file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:00838a35b882694afda09f85e469c96367daa3f3f2b097d846a7216993d37f4c"}, - {file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:fdfafb32984684eb03c2d83e1e51f64f0906b11e64482df3c5db936ce3839d48"}, - {file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:69eb372f7e2ece89f14751fbcbe470295d73ed41ecd37ca36ed2eb47512a6ab9"}, - {file = "coverage-7.4.4-cp312-cp312-win32.whl", hash = "sha256:137eb07173141545e07403cca94ab625cc1cc6bc4c1e97b6e3846270e7e1fea0"}, - {file = "coverage-7.4.4-cp312-cp312-win_amd64.whl", hash = "sha256:d71eec7d83298f1af3326ce0ff1d0ea83c7cb98f72b577097f9083b20bdaf05e"}, - {file = "coverage-7.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d5ae728ff3b5401cc320d792866987e7e7e880e6ebd24433b70a33b643bb0384"}, - {file = "coverage-7.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc4f1358cb0c78edef3ed237ef2c86056206bb8d9140e73b6b89fbcfcbdd40e1"}, - {file = "coverage-7.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8130a2aa2acb8788e0b56938786c33c7c98562697bf9f4c7d6e8e5e3a0501e4a"}, - {file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf271892d13e43bc2b51e6908ec9a6a5094a4df1d8af0bfc360088ee6c684409"}, - {file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4cdc86d54b5da0df6d3d3a2f0b710949286094c3a6700c21e9015932b81447e"}, - {file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ae71e7ddb7a413dd60052e90528f2f65270aad4b509563af6d03d53e979feafd"}, - {file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:38dd60d7bf242c4ed5b38e094baf6401faa114fc09e9e6632374388a404f98e7"}, - {file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa5b1c1bfc28384f1f53b69a023d789f72b2e0ab1b3787aae16992a7ca21056c"}, - {file = "coverage-7.4.4-cp38-cp38-win32.whl", hash = "sha256:dfa8fe35a0bb90382837b238fff375de15f0dcdb9ae68ff85f7a63649c98527e"}, - {file = "coverage-7.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:b2991665420a803495e0b90a79233c1433d6ed77ef282e8e152a324bbbc5e0c8"}, - {file = "coverage-7.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b799445b9f7ee8bf299cfaed6f5b226c0037b74886a4e11515e569b36fe310d"}, - {file = "coverage-7.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b4d33f418f46362995f1e9d4f3a35a1b6322cb959c31d88ae56b0298e1c22357"}, - {file = "coverage-7.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aadacf9a2f407a4688d700e4ebab33a7e2e408f2ca04dbf4aef17585389eff3e"}, - {file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c95949560050d04d46b919301826525597f07b33beba6187d04fa64d47ac82e"}, - {file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff7687ca3d7028d8a5f0ebae95a6e4827c5616b31a4ee1192bdfde697db110d4"}, - {file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5fc1de20b2d4a061b3df27ab9b7c7111e9a710f10dc2b84d33a4ab25065994ec"}, - {file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c74880fc64d4958159fbd537a091d2a585448a8f8508bf248d72112723974cbd"}, - {file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:742a76a12aa45b44d236815d282b03cfb1de3b4323f3e4ec933acfae08e54ade"}, - {file = "coverage-7.4.4-cp39-cp39-win32.whl", hash = "sha256:d89d7b2974cae412400e88f35d86af72208e1ede1a541954af5d944a8ba46c57"}, - {file = "coverage-7.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:9ca28a302acb19b6af89e90f33ee3e1906961f94b54ea37de6737b7ca9d8827c"}, - {file = "coverage-7.4.4-pp38.pp39.pp310-none-any.whl", hash = "sha256:b2c5edc4ac10a7ef6605a966c58929ec6c1bd0917fb8c15cb3363f65aa40e677"}, - {file = "coverage-7.4.4.tar.gz", hash = "sha256:c901df83d097649e257e803be22592aedfd5182f07b3cc87d640bbb9afd50f49"}, + {file = "coverage-7.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a6519d917abb15e12380406d721e37613e2a67d166f9fb7e5a8ce0375744cd45"}, + {file = "coverage-7.5.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aea7da970f1feccf48be7335f8b2ca64baf9b589d79e05b9397a06696ce1a1ec"}, + {file = "coverage-7.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:923b7b1c717bd0f0f92d862d1ff51d9b2b55dbbd133e05680204465f454bb286"}, + {file = "coverage-7.5.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62bda40da1e68898186f274f832ef3e759ce929da9a9fd9fcf265956de269dbc"}, + {file = "coverage-7.5.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8b7339180d00de83e930358223c617cc343dd08e1aa5ec7b06c3a121aec4e1d"}, + {file = "coverage-7.5.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:25a5caf742c6195e08002d3b6c2dd6947e50efc5fc2c2205f61ecb47592d2d83"}, + {file = "coverage-7.5.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:05ac5f60faa0c704c0f7e6a5cbfd6f02101ed05e0aee4d2822637a9e672c998d"}, + {file = "coverage-7.5.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:239a4e75e09c2b12ea478d28815acf83334d32e722e7433471fbf641c606344c"}, + {file = "coverage-7.5.3-cp310-cp310-win32.whl", hash = "sha256:a5812840d1d00eafae6585aba38021f90a705a25b8216ec7f66aebe5b619fb84"}, + {file = "coverage-7.5.3-cp310-cp310-win_amd64.whl", hash = "sha256:33ca90a0eb29225f195e30684ba4a6db05dbef03c2ccd50b9077714c48153cac"}, + {file = "coverage-7.5.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f81bc26d609bf0fbc622c7122ba6307993c83c795d2d6f6f6fd8c000a770d974"}, + {file = "coverage-7.5.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7cec2af81f9e7569280822be68bd57e51b86d42e59ea30d10ebdbb22d2cb7232"}, + {file = "coverage-7.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55f689f846661e3f26efa535071775d0483388a1ccfab899df72924805e9e7cd"}, + {file = "coverage-7.5.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:50084d3516aa263791198913a17354bd1dc627d3c1639209640b9cac3fef5807"}, + {file = "coverage-7.5.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:341dd8f61c26337c37988345ca5c8ccabeff33093a26953a1ac72e7d0103c4fb"}, + {file = "coverage-7.5.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ab0b028165eea880af12f66086694768f2c3139b2c31ad5e032c8edbafca6ffc"}, + {file = "coverage-7.5.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5bc5a8c87714b0c67cfeb4c7caa82b2d71e8864d1a46aa990b5588fa953673b8"}, + {file = "coverage-7.5.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:38a3b98dae8a7c9057bd91fbf3415c05e700a5114c5f1b5b0ea5f8f429ba6614"}, + {file = "coverage-7.5.3-cp311-cp311-win32.whl", hash = "sha256:fcf7d1d6f5da887ca04302db8e0e0cf56ce9a5e05f202720e49b3e8157ddb9a9"}, + {file = "coverage-7.5.3-cp311-cp311-win_amd64.whl", hash = "sha256:8c836309931839cca658a78a888dab9676b5c988d0dd34ca247f5f3e679f4e7a"}, + {file = "coverage-7.5.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:296a7d9bbc598e8744c00f7a6cecf1da9b30ae9ad51c566291ff1314e6cbbed8"}, + {file = "coverage-7.5.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:34d6d21d8795a97b14d503dcaf74226ae51eb1f2bd41015d3ef332a24d0a17b3"}, + {file = "coverage-7.5.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e317953bb4c074c06c798a11dbdd2cf9979dbcaa8ccc0fa4701d80042d4ebf1"}, + {file = "coverage-7.5.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:705f3d7c2b098c40f5b81790a5fedb274113373d4d1a69e65f8b68b0cc26f6db"}, + {file = "coverage-7.5.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1196e13c45e327d6cd0b6e471530a1882f1017eb83c6229fc613cd1a11b53cd"}, + {file = "coverage-7.5.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:015eddc5ccd5364dcb902eaecf9515636806fa1e0d5bef5769d06d0f31b54523"}, + {file = "coverage-7.5.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:fd27d8b49e574e50caa65196d908f80e4dff64d7e592d0c59788b45aad7e8b35"}, + {file = "coverage-7.5.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:33fc65740267222fc02975c061eb7167185fef4cc8f2770267ee8bf7d6a42f84"}, + {file = "coverage-7.5.3-cp312-cp312-win32.whl", hash = "sha256:7b2a19e13dfb5c8e145c7a6ea959485ee8e2204699903c88c7d25283584bfc08"}, + {file = "coverage-7.5.3-cp312-cp312-win_amd64.whl", hash = "sha256:0bbddc54bbacfc09b3edaec644d4ac90c08ee8ed4844b0f86227dcda2d428fcb"}, + {file = "coverage-7.5.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f78300789a708ac1f17e134593f577407d52d0417305435b134805c4fb135adb"}, + {file = "coverage-7.5.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b368e1aee1b9b75757942d44d7598dcd22a9dbb126affcbba82d15917f0cc155"}, + {file = "coverage-7.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f836c174c3a7f639bded48ec913f348c4761cbf49de4a20a956d3431a7c9cb24"}, + {file = "coverage-7.5.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:244f509f126dc71369393ce5fea17c0592c40ee44e607b6d855e9c4ac57aac98"}, + {file = "coverage-7.5.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4c2872b3c91f9baa836147ca33650dc5c172e9273c808c3c3199c75490e709d"}, + {file = "coverage-7.5.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:dd4b3355b01273a56b20c219e74e7549e14370b31a4ffe42706a8cda91f19f6d"}, + {file = "coverage-7.5.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:f542287b1489c7a860d43a7d8883e27ca62ab84ca53c965d11dac1d3a1fab7ce"}, + {file = "coverage-7.5.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:75e3f4e86804023e991096b29e147e635f5e2568f77883a1e6eed74512659ab0"}, + {file = "coverage-7.5.3-cp38-cp38-win32.whl", hash = "sha256:c59d2ad092dc0551d9f79d9d44d005c945ba95832a6798f98f9216ede3d5f485"}, + {file = "coverage-7.5.3-cp38-cp38-win_amd64.whl", hash = "sha256:fa21a04112c59ad54f69d80e376f7f9d0f5f9123ab87ecd18fbb9ec3a2beed56"}, + {file = "coverage-7.5.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f5102a92855d518b0996eb197772f5ac2a527c0ec617124ad5242a3af5e25f85"}, + {file = "coverage-7.5.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d1da0a2e3b37b745a2b2a678a4c796462cf753aebf94edcc87dcc6b8641eae31"}, + {file = "coverage-7.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8383a6c8cefba1b7cecc0149415046b6fc38836295bc4c84e820872eb5478b3d"}, + {file = "coverage-7.5.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9aad68c3f2566dfae84bf46295a79e79d904e1c21ccfc66de88cd446f8686341"}, + {file = "coverage-7.5.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e079c9ec772fedbade9d7ebc36202a1d9ef7291bc9b3a024ca395c4d52853d7"}, + {file = "coverage-7.5.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bde997cac85fcac227b27d4fb2c7608a2c5f6558469b0eb704c5726ae49e1c52"}, + {file = "coverage-7.5.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:990fb20b32990b2ce2c5f974c3e738c9358b2735bc05075d50a6f36721b8f303"}, + {file = "coverage-7.5.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3d5a67f0da401e105753d474369ab034c7bae51a4c31c77d94030d59e41df5bd"}, + {file = "coverage-7.5.3-cp39-cp39-win32.whl", hash = "sha256:e08c470c2eb01977d221fd87495b44867a56d4d594f43739a8028f8646a51e0d"}, + {file = "coverage-7.5.3-cp39-cp39-win_amd64.whl", hash = "sha256:1d2a830ade66d3563bb61d1e3c77c8def97b30ed91e166c67d0632c018f380f0"}, + {file = "coverage-7.5.3-pp38.pp39.pp310-none-any.whl", hash = "sha256:3538d8fb1ee9bdd2e2692b3b18c22bb1c19ffbefd06880f5ac496e42d7bb3884"}, + {file = "coverage-7.5.3.tar.gz", hash = "sha256:04aefca5190d1dc7a53a4c1a5a7f8568811306d7a8ee231c42fb69215571944f"}, ] [package.dependencies] @@ -976,43 +977,43 @@ toml = ["tomli"] [[package]] name = "cryptography" -version = "42.0.5" +version = "42.0.8" description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers." optional = false python-versions = ">=3.7" files = [ - {file = "cryptography-42.0.5-cp37-abi3-macosx_10_12_universal2.whl", hash = "sha256:a30596bae9403a342c978fb47d9b0ee277699fa53bbafad14706af51fe543d16"}, - {file = "cryptography-42.0.5-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:b7ffe927ee6531c78f81aa17e684e2ff617daeba7f189f911065b2ea2d526dec"}, - {file = "cryptography-42.0.5-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2424ff4c4ac7f6b8177b53c17ed5d8fa74ae5955656867f5a8affaca36a27abb"}, - {file = "cryptography-42.0.5-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329906dcc7b20ff3cad13c069a78124ed8247adcac44b10bea1130e36caae0b4"}, - {file = "cryptography-42.0.5-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:b03c2ae5d2f0fc05f9a2c0c997e1bc18c8229f392234e8a0194f202169ccd278"}, - {file = "cryptography-42.0.5-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f8837fe1d6ac4a8052a9a8ddab256bc006242696f03368a4009be7ee3075cdb7"}, - {file = "cryptography-42.0.5-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:0270572b8bd2c833c3981724b8ee9747b3ec96f699a9665470018594301439ee"}, - {file = "cryptography-42.0.5-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:b8cac287fafc4ad485b8a9b67d0ee80c66bf3574f655d3b97ef2e1082360faf1"}, - {file = "cryptography-42.0.5-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:16a48c23a62a2f4a285699dba2e4ff2d1cff3115b9df052cdd976a18856d8e3d"}, - {file = "cryptography-42.0.5-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:2bce03af1ce5a5567ab89bd90d11e7bbdff56b8af3acbbec1faded8f44cb06da"}, - {file = "cryptography-42.0.5-cp37-abi3-win32.whl", hash = "sha256:b6cd2203306b63e41acdf39aa93b86fb566049aeb6dc489b70e34bcd07adca74"}, - {file = "cryptography-42.0.5-cp37-abi3-win_amd64.whl", hash = "sha256:98d8dc6d012b82287f2c3d26ce1d2dd130ec200c8679b6213b3c73c08b2b7940"}, - {file = "cryptography-42.0.5-cp39-abi3-macosx_10_12_universal2.whl", hash = "sha256:5e6275c09d2badf57aea3afa80d975444f4be8d3bc58f7f80d2a484c6f9485c8"}, - {file = "cryptography-42.0.5-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4985a790f921508f36f81831817cbc03b102d643b5fcb81cd33df3fa291a1a1"}, - {file = "cryptography-42.0.5-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7cde5f38e614f55e28d831754e8a3bacf9ace5d1566235e39d91b35502d6936e"}, - {file = "cryptography-42.0.5-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:7367d7b2eca6513681127ebad53b2582911d1736dc2ffc19f2c3ae49997496bc"}, - {file = "cryptography-42.0.5-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:cd2030f6650c089aeb304cf093f3244d34745ce0cfcc39f20c6fbfe030102e2a"}, - {file = "cryptography-42.0.5-cp39-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:a2913c5375154b6ef2e91c10b5720ea6e21007412f6437504ffea2109b5a33d7"}, - {file = "cryptography-42.0.5-cp39-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:c41fb5e6a5fe9ebcd58ca3abfeb51dffb5d83d6775405305bfa8715b76521922"}, - {file = "cryptography-42.0.5-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:3eaafe47ec0d0ffcc9349e1708be2aaea4c6dd4978d76bf6eb0cb2c13636c6fc"}, - {file = "cryptography-42.0.5-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:1b95b98b0d2af784078fa69f637135e3c317091b615cd0905f8b8a087e86fa30"}, - {file = "cryptography-42.0.5-cp39-abi3-win32.whl", hash = "sha256:1f71c10d1e88467126f0efd484bd44bca5e14c664ec2ede64c32f20875c0d413"}, - {file = "cryptography-42.0.5-cp39-abi3-win_amd64.whl", hash = "sha256:a011a644f6d7d03736214d38832e030d8268bcff4a41f728e6030325fea3e400"}, - {file = "cryptography-42.0.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:9481ffe3cf013b71b2428b905c4f7a9a4f76ec03065b05ff499bb5682a8d9ad8"}, - {file = "cryptography-42.0.5-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:ba334e6e4b1d92442b75ddacc615c5476d4ad55cc29b15d590cc6b86efa487e2"}, - {file = "cryptography-42.0.5-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:ba3e4a42397c25b7ff88cdec6e2a16c2be18720f317506ee25210f6d31925f9c"}, - {file = "cryptography-42.0.5-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:111a0d8553afcf8eb02a4fea6ca4f59d48ddb34497aa8706a6cf536f1a5ec576"}, - {file = "cryptography-42.0.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cd65d75953847815962c84a4654a84850b2bb4aed3f26fadcc1c13892e1e29f6"}, - {file = "cryptography-42.0.5-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:e807b3188f9eb0eaa7bbb579b462c5ace579f1cedb28107ce8b48a9f7ad3679e"}, - {file = "cryptography-42.0.5-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f12764b8fffc7a123f641d7d049d382b73f96a34117e0b637b80643169cec8ac"}, - {file = "cryptography-42.0.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:37dd623507659e08be98eec89323469e8c7b4c1407c85112634ae3dbdb926fdd"}, - {file = "cryptography-42.0.5.tar.gz", hash = "sha256:6fe07eec95dfd477eb9530aef5bead34fec819b3aaf6c5bd6d20565da607bfe1"}, + {file = "cryptography-42.0.8-cp37-abi3-macosx_10_12_universal2.whl", hash = "sha256:81d8a521705787afe7a18d5bfb47ea9d9cc068206270aad0b96a725022e18d2e"}, + {file = "cryptography-42.0.8-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:961e61cefdcb06e0c6d7e3a1b22ebe8b996eb2bf50614e89384be54c48c6b63d"}, + {file = "cryptography-42.0.8-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e3ec3672626e1b9e55afd0df6d774ff0e953452886e06e0f1eb7eb0c832e8902"}, + {file = "cryptography-42.0.8-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e599b53fd95357d92304510fb7bda8523ed1f79ca98dce2f43c115950aa78801"}, + {file = "cryptography-42.0.8-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:5226d5d21ab681f432a9c1cf8b658c0cb02533eece706b155e5fbd8a0cdd3949"}, + {file = "cryptography-42.0.8-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:6b7c4f03ce01afd3b76cf69a5455caa9cfa3de8c8f493e0d3ab7d20611c8dae9"}, + {file = "cryptography-42.0.8-cp37-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:2346b911eb349ab547076f47f2e035fc8ff2c02380a7cbbf8d87114fa0f1c583"}, + {file = "cryptography-42.0.8-cp37-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:ad803773e9df0b92e0a817d22fd8a3675493f690b96130a5e24f1b8fabbea9c7"}, + {file = "cryptography-42.0.8-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:2f66d9cd9147ee495a8374a45ca445819f8929a3efcd2e3df6428e46c3cbb10b"}, + {file = "cryptography-42.0.8-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:d45b940883a03e19e944456a558b67a41160e367a719833c53de6911cabba2b7"}, + {file = "cryptography-42.0.8-cp37-abi3-win32.whl", hash = "sha256:a0c5b2b0585b6af82d7e385f55a8bc568abff8923af147ee3c07bd8b42cda8b2"}, + {file = "cryptography-42.0.8-cp37-abi3-win_amd64.whl", hash = "sha256:57080dee41209e556a9a4ce60d229244f7a66ef52750f813bfbe18959770cfba"}, + {file = "cryptography-42.0.8-cp39-abi3-macosx_10_12_universal2.whl", hash = "sha256:dea567d1b0e8bc5764b9443858b673b734100c2871dc93163f58c46a97a83d28"}, + {file = "cryptography-42.0.8-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4783183f7cb757b73b2ae9aed6599b96338eb957233c58ca8f49a49cc32fd5e"}, + {file = "cryptography-42.0.8-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0608251135d0e03111152e41f0cc2392d1e74e35703960d4190b2e0f4ca9c70"}, + {file = "cryptography-42.0.8-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:dc0fdf6787f37b1c6b08e6dfc892d9d068b5bdb671198c72072828b80bd5fe4c"}, + {file = "cryptography-42.0.8-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:9c0c1716c8447ee7dbf08d6db2e5c41c688544c61074b54fc4564196f55c25a7"}, + {file = "cryptography-42.0.8-cp39-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:fff12c88a672ab9c9c1cf7b0c80e3ad9e2ebd9d828d955c126be4fd3e5578c9e"}, + {file = "cryptography-42.0.8-cp39-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:cafb92b2bc622cd1aa6a1dce4b93307792633f4c5fe1f46c6b97cf67073ec961"}, + {file = "cryptography-42.0.8-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:31f721658a29331f895a5a54e7e82075554ccfb8b163a18719d342f5ffe5ecb1"}, + {file = "cryptography-42.0.8-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:b297f90c5723d04bcc8265fc2a0f86d4ea2e0f7ab4b6994459548d3a6b992a14"}, + {file = "cryptography-42.0.8-cp39-abi3-win32.whl", hash = "sha256:2f88d197e66c65be5e42cd72e5c18afbfae3f741742070e3019ac8f4ac57262c"}, + {file = "cryptography-42.0.8-cp39-abi3-win_amd64.whl", hash = "sha256:fa76fbb7596cc5839320000cdd5d0955313696d9511debab7ee7278fc8b5c84a"}, + {file = "cryptography-42.0.8-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:ba4f0a211697362e89ad822e667d8d340b4d8d55fae72cdd619389fb5912eefe"}, + {file = "cryptography-42.0.8-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:81884c4d096c272f00aeb1f11cf62ccd39763581645b0812e99a91505fa48e0c"}, + {file = "cryptography-42.0.8-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:c9bb2ae11bfbab395bdd072985abde58ea9860ed84e59dbc0463a5d0159f5b71"}, + {file = "cryptography-42.0.8-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:7016f837e15b0a1c119d27ecd89b3515f01f90a8615ed5e9427e30d9cdbfed3d"}, + {file = "cryptography-42.0.8-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5a94eccb2a81a309806027e1670a358b99b8fe8bfe9f8d329f27d72c094dde8c"}, + {file = "cryptography-42.0.8-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dec9b018df185f08483f294cae6ccac29e7a6e0678996587363dc352dc65c842"}, + {file = "cryptography-42.0.8-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:343728aac38decfdeecf55ecab3264b015be68fc2816ca800db649607aeee648"}, + {file = "cryptography-42.0.8-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:013629ae70b40af70c9a7a5db40abe5d9054e6f4380e50ce769947b73bf3caad"}, + {file = "cryptography-42.0.8.tar.gz", hash = "sha256:8d09d05439ce7baa8e9e95b07ec5b6c886f548deb7e0f69ef25f64b3bce842f2"}, ] [package.dependencies] @@ -1045,19 +1046,19 @@ tests = ["pytest", "pytest-cov", "pytest-xdist"] [[package]] name = "cyclonedx-python-lib" -version = "6.4.4" +version = "7.4.0" description = "Python library for CycloneDX" optional = false -python-versions = ">=3.8,<4.0" +python-versions = "<4.0,>=3.8" files = [ - {file = "cyclonedx_python_lib-6.4.4-py3-none-any.whl", hash = "sha256:c366619cc4effd528675f1f7a7a00be30b6695ff03f49c64880ad15acbebc341"}, - {file = "cyclonedx_python_lib-6.4.4.tar.gz", hash = "sha256:1b6f9109b6b9e91636dff822c2de90a05c0c8af120317713c1b879dbfdebdff8"}, + {file = "cyclonedx_python_lib-7.4.0-py3-none-any.whl", hash = "sha256:fc423e7f46d772e5ded29a48cb0743233e692e5853c49b829efc0f59014efde1"}, + {file = "cyclonedx_python_lib-7.4.0.tar.gz", hash = "sha256:09b10736a7f440262578fa40f470b448de1ebf3c7a71e2ff0a4af0781d3a3b42"}, ] [package.dependencies] license-expression = ">=30,<31" packageurl-python = ">=0.11,<2" -py-serializable = ">=0.16,<2" +py-serializable = ">=1.0.3,<2" sortedcontainers = ">=2.4.0,<3.0.0" [package.extras] @@ -1255,13 +1256,13 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc [[package]] name = "filelock" -version = "3.13.4" +version = "3.14.0" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.13.4-py3-none-any.whl", hash = "sha256:404e5e9253aa60ad457cae1be07c0f0ca90a63931200a47d9b6a6af84fd7b45f"}, - {file = "filelock-3.13.4.tar.gz", hash = "sha256:d13f466618bfde72bd2c18255e269f72542c6e70e7bac83a0232d6b1cc5c8cf4"}, + {file = "filelock-3.14.0-py3-none-any.whl", hash = "sha256:43339835842f110ca7ae60f1e1c160714c5a6afd15a2873419ab185334975c0f"}, + {file = "filelock-3.14.0.tar.gz", hash = "sha256:6ea72da3be9b8c82afd3edcf99f2fffbb5076335a5ae4d03248bb5b6c3eae78a"}, ] [package.extras] @@ -1316,53 +1317,53 @@ files = [ [[package]] name = "fonttools" -version = "4.51.0" +version = "4.53.0" description = "Tools to manipulate font files" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:84d7751f4468dd8cdd03ddada18b8b0857a5beec80bce9f435742abc9a851a74"}, - {file = "fonttools-4.51.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8b4850fa2ef2cfbc1d1f689bc159ef0f45d8d83298c1425838095bf53ef46308"}, - {file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5b48a1121117047d82695d276c2af2ee3a24ffe0f502ed581acc2673ecf1037"}, - {file = "fonttools-4.51.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:180194c7fe60c989bb627d7ed5011f2bef1c4d36ecf3ec64daec8302f1ae0716"}, - {file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:96a48e137c36be55e68845fc4284533bda2980f8d6f835e26bca79d7e2006438"}, - {file = "fonttools-4.51.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:806e7912c32a657fa39d2d6eb1d3012d35f841387c8fc6cf349ed70b7c340039"}, - {file = "fonttools-4.51.0-cp310-cp310-win32.whl", hash = "sha256:32b17504696f605e9e960647c5f64b35704782a502cc26a37b800b4d69ff3c77"}, - {file = "fonttools-4.51.0-cp310-cp310-win_amd64.whl", hash = "sha256:c7e91abdfae1b5c9e3a543f48ce96013f9a08c6c9668f1e6be0beabf0a569c1b"}, - {file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a8feca65bab31479d795b0d16c9a9852902e3a3c0630678efb0b2b7941ea9c74"}, - {file = "fonttools-4.51.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ac27f436e8af7779f0bb4d5425aa3535270494d3bc5459ed27de3f03151e4c2"}, - {file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e19bd9e9964a09cd2433a4b100ca7f34e34731e0758e13ba9a1ed6e5468cc0f"}, - {file = "fonttools-4.51.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2b92381f37b39ba2fc98c3a45a9d6383bfc9916a87d66ccb6553f7bdd129097"}, - {file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5f6bc991d1610f5c3bbe997b0233cbc234b8e82fa99fc0b2932dc1ca5e5afec0"}, - {file = "fonttools-4.51.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9696fe9f3f0c32e9a321d5268208a7cc9205a52f99b89479d1b035ed54c923f1"}, - {file = "fonttools-4.51.0-cp311-cp311-win32.whl", hash = "sha256:3bee3f3bd9fa1d5ee616ccfd13b27ca605c2b4270e45715bd2883e9504735034"}, - {file = "fonttools-4.51.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f08c901d3866a8905363619e3741c33f0a83a680d92a9f0e575985c2634fcc1"}, - {file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:4060acc2bfa2d8e98117828a238889f13b6f69d59f4f2d5857eece5277b829ba"}, - {file = "fonttools-4.51.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1250e818b5f8a679ad79660855528120a8f0288f8f30ec88b83db51515411fcc"}, - {file = "fonttools-4.51.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76f1777d8b3386479ffb4a282e74318e730014d86ce60f016908d9801af9ca2a"}, - {file = "fonttools-4.51.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b5ad456813d93b9c4b7ee55302208db2b45324315129d85275c01f5cb7e61a2"}, - {file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:68b3fb7775a923be73e739f92f7e8a72725fd333eab24834041365d2278c3671"}, - {file = "fonttools-4.51.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8e2f1a4499e3b5ee82c19b5ee57f0294673125c65b0a1ff3764ea1f9db2f9ef5"}, - {file = "fonttools-4.51.0-cp312-cp312-win32.whl", hash = "sha256:278e50f6b003c6aed19bae2242b364e575bcb16304b53f2b64f6551b9c000e15"}, - {file = "fonttools-4.51.0-cp312-cp312-win_amd64.whl", hash = "sha256:b3c61423f22165541b9403ee39874dcae84cd57a9078b82e1dce8cb06b07fa2e"}, - {file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:1621ee57da887c17312acc4b0e7ac30d3a4fb0fec6174b2e3754a74c26bbed1e"}, - {file = "fonttools-4.51.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e9d9298be7a05bb4801f558522adbe2feea1b0b103d5294ebf24a92dd49b78e5"}, - {file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee1af4be1c5afe4c96ca23badd368d8dc75f611887fb0c0dac9f71ee5d6f110e"}, - {file = "fonttools-4.51.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c18b49adc721a7d0b8dfe7c3130c89b8704baf599fb396396d07d4aa69b824a1"}, - {file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:de7c29bdbdd35811f14493ffd2534b88f0ce1b9065316433b22d63ca1cd21f14"}, - {file = "fonttools-4.51.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cadf4e12a608ef1d13e039864f484c8a968840afa0258b0b843a0556497ea9ed"}, - {file = "fonttools-4.51.0-cp38-cp38-win32.whl", hash = "sha256:aefa011207ed36cd280babfaa8510b8176f1a77261833e895a9d96e57e44802f"}, - {file = "fonttools-4.51.0-cp38-cp38-win_amd64.whl", hash = "sha256:865a58b6e60b0938874af0968cd0553bcd88e0b2cb6e588727117bd099eef836"}, - {file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:60a3409c9112aec02d5fb546f557bca6efa773dcb32ac147c6baf5f742e6258b"}, - {file = "fonttools-4.51.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f7e89853d8bea103c8e3514b9f9dc86b5b4120afb4583b57eb10dfa5afbe0936"}, - {file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56fc244f2585d6c00b9bcc59e6593e646cf095a96fe68d62cd4da53dd1287b55"}, - {file = "fonttools-4.51.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d145976194a5242fdd22df18a1b451481a88071feadf251221af110ca8f00ce"}, - {file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:c5b8cab0c137ca229433570151b5c1fc6af212680b58b15abd797dcdd9dd5051"}, - {file = "fonttools-4.51.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:54dcf21a2f2d06ded676e3c3f9f74b2bafded3a8ff12f0983160b13e9f2fb4a7"}, - {file = "fonttools-4.51.0-cp39-cp39-win32.whl", hash = "sha256:0118ef998a0699a96c7b28457f15546815015a2710a1b23a7bf6c1be60c01636"}, - {file = "fonttools-4.51.0-cp39-cp39-win_amd64.whl", hash = "sha256:599bdb75e220241cedc6faebfafedd7670335d2e29620d207dd0378a4e9ccc5a"}, - {file = "fonttools-4.51.0-py3-none-any.whl", hash = "sha256:15c94eeef6b095831067f72c825eb0e2d48bb4cea0647c1b05c981ecba2bf39f"}, - {file = "fonttools-4.51.0.tar.gz", hash = "sha256:dc0673361331566d7a663d7ce0f6fdcbfbdc1f59c6e3ed1165ad7202ca183c68"}, + {file = "fonttools-4.53.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:52a6e0a7a0bf611c19bc8ec8f7592bdae79c8296c70eb05917fd831354699b20"}, + {file = "fonttools-4.53.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:099634631b9dd271d4a835d2b2a9e042ccc94ecdf7e2dd9f7f34f7daf333358d"}, + {file = "fonttools-4.53.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e40013572bfb843d6794a3ce076c29ef4efd15937ab833f520117f8eccc84fd6"}, + {file = "fonttools-4.53.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:715b41c3e231f7334cbe79dfc698213dcb7211520ec7a3bc2ba20c8515e8a3b5"}, + {file = "fonttools-4.53.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:74ae2441731a05b44d5988d3ac2cf784d3ee0a535dbed257cbfff4be8bb49eb9"}, + {file = "fonttools-4.53.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:95db0c6581a54b47c30860d013977b8a14febc206c8b5ff562f9fe32738a8aca"}, + {file = "fonttools-4.53.0-cp310-cp310-win32.whl", hash = "sha256:9cd7a6beec6495d1dffb1033d50a3f82dfece23e9eb3c20cd3c2444d27514068"}, + {file = "fonttools-4.53.0-cp310-cp310-win_amd64.whl", hash = "sha256:daaef7390e632283051e3cf3e16aff2b68b247e99aea916f64e578c0449c9c68"}, + {file = "fonttools-4.53.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a209d2e624ba492df4f3bfad5996d1f76f03069c6133c60cd04f9a9e715595ec"}, + {file = "fonttools-4.53.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4f520d9ac5b938e6494f58a25c77564beca7d0199ecf726e1bd3d56872c59749"}, + {file = "fonttools-4.53.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eceef49f457253000e6a2d0f7bd08ff4e9fe96ec4ffce2dbcb32e34d9c1b8161"}, + {file = "fonttools-4.53.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1f3e34373aa16045484b4d9d352d4c6b5f9f77ac77a178252ccbc851e8b2ee"}, + {file = "fonttools-4.53.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:28d072169fe8275fb1a0d35e3233f6df36a7e8474e56cb790a7258ad822b6fd6"}, + {file = "fonttools-4.53.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4a2a6ba400d386e904fd05db81f73bee0008af37799a7586deaa4aef8cd5971e"}, + {file = "fonttools-4.53.0-cp311-cp311-win32.whl", hash = "sha256:bb7273789f69b565d88e97e9e1da602b4ee7ba733caf35a6c2affd4334d4f005"}, + {file = "fonttools-4.53.0-cp311-cp311-win_amd64.whl", hash = "sha256:9fe9096a60113e1d755e9e6bda15ef7e03391ee0554d22829aa506cdf946f796"}, + {file = "fonttools-4.53.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d8f191a17369bd53a5557a5ee4bab91d5330ca3aefcdf17fab9a497b0e7cff7a"}, + {file = "fonttools-4.53.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:93156dd7f90ae0a1b0e8871032a07ef3178f553f0c70c386025a808f3a63b1f4"}, + {file = "fonttools-4.53.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bff98816cb144fb7b85e4b5ba3888a33b56ecef075b0e95b95bcd0a5fbf20f06"}, + {file = "fonttools-4.53.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:973d030180eca8255b1bce6ffc09ef38a05dcec0e8320cc9b7bcaa65346f341d"}, + {file = "fonttools-4.53.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c4ee5a24e281fbd8261c6ab29faa7fd9a87a12e8c0eed485b705236c65999109"}, + {file = "fonttools-4.53.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:bd5bc124fae781a4422f61b98d1d7faa47985f663a64770b78f13d2c072410c2"}, + {file = "fonttools-4.53.0-cp312-cp312-win32.whl", hash = "sha256:a239afa1126b6a619130909c8404070e2b473dd2b7fc4aacacd2e763f8597fea"}, + {file = "fonttools-4.53.0-cp312-cp312-win_amd64.whl", hash = "sha256:45b4afb069039f0366a43a5d454bc54eea942bfb66b3fc3e9a2c07ef4d617380"}, + {file = "fonttools-4.53.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:93bc9e5aaa06ff928d751dc6be889ff3e7d2aa393ab873bc7f6396a99f6fbb12"}, + {file = "fonttools-4.53.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2367d47816cc9783a28645bc1dac07f8ffc93e0f015e8c9fc674a5b76a6da6e4"}, + {file = "fonttools-4.53.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:907fa0b662dd8fc1d7c661b90782ce81afb510fc4b7aa6ae7304d6c094b27bce"}, + {file = "fonttools-4.53.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e0ad3c6ea4bd6a289d958a1eb922767233f00982cf0fe42b177657c86c80a8f"}, + {file = "fonttools-4.53.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:73121a9b7ff93ada888aaee3985a88495489cc027894458cb1a736660bdfb206"}, + {file = "fonttools-4.53.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ee595d7ba9bba130b2bec555a40aafa60c26ce68ed0cf509983e0f12d88674fd"}, + {file = "fonttools-4.53.0-cp38-cp38-win32.whl", hash = "sha256:fca66d9ff2ac89b03f5aa17e0b21a97c21f3491c46b583bb131eb32c7bab33af"}, + {file = "fonttools-4.53.0-cp38-cp38-win_amd64.whl", hash = "sha256:31f0e3147375002aae30696dd1dc596636abbd22fca09d2e730ecde0baad1d6b"}, + {file = "fonttools-4.53.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7d6166192dcd925c78a91d599b48960e0a46fe565391c79fe6de481ac44d20ac"}, + {file = "fonttools-4.53.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ef50ec31649fbc3acf6afd261ed89d09eb909b97cc289d80476166df8438524d"}, + {file = "fonttools-4.53.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f193f060391a455920d61684a70017ef5284ccbe6023bb056e15e5ac3de11d1"}, + {file = "fonttools-4.53.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba9f09ff17f947392a855e3455a846f9855f6cf6bec33e9a427d3c1d254c712f"}, + {file = "fonttools-4.53.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0c555e039d268445172b909b1b6bdcba42ada1cf4a60e367d68702e3f87e5f64"}, + {file = "fonttools-4.53.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5a4788036201c908079e89ae3f5399b33bf45b9ea4514913f4dbbe4fac08efe0"}, + {file = "fonttools-4.53.0-cp39-cp39-win32.whl", hash = "sha256:d1a24f51a3305362b94681120c508758a88f207fa0a681c16b5a4172e9e6c7a9"}, + {file = "fonttools-4.53.0-cp39-cp39-win_amd64.whl", hash = "sha256:1e677bfb2b4bd0e5e99e0f7283e65e47a9814b0486cb64a41adf9ef110e078f2"}, + {file = "fonttools-4.53.0-py3-none-any.whl", hash = "sha256:6b4f04b1fbc01a3569d63359f2227c89ab294550de277fd09d8fca6185669fa4"}, + {file = "fonttools-4.53.0.tar.gz", hash = "sha256:c93ed66d32de1559b6fc348838c7572d5c0ac1e4a258e76763a5caddd8944002"}, ] [package.extras] @@ -1478,13 +1479,13 @@ files = [ [[package]] name = "fsspec" -version = "2024.3.1" +version = "2024.6.0" description = "File-system specification" optional = false python-versions = ">=3.8" files = [ - {file = "fsspec-2024.3.1-py3-none-any.whl", hash = "sha256:918d18d41bf73f0e2b261824baeb1b124bcf771767e3a26425cd7dec3332f512"}, - {file = "fsspec-2024.3.1.tar.gz", hash = "sha256:f39780e282d7d117ffb42bb96992f8a90795e4d0fb0f661a70ca39fe9c43ded9"}, + {file = "fsspec-2024.6.0-py3-none-any.whl", hash = "sha256:58d7122eb8a1a46f7f13453187bfea4972d66bf01618d37366521b1998034cee"}, + {file = "fsspec-2024.6.0.tar.gz", hash = "sha256:f579960a56e6d8038a9efc8f9c77279ec12e6299aa86b0769a7e9c46b94527c2"}, ] [package.extras] @@ -1492,7 +1493,8 @@ abfs = ["adlfs"] adl = ["adlfs"] arrow = ["pyarrow (>=1)"] dask = ["dask", "distributed"] -devel = ["pytest", "pytest-cov"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] dropbox = ["dropbox", "dropboxdrivefs", "requests"] full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] fuse = ["fusepy"] @@ -1509,6 +1511,9 @@ s3 = ["s3fs"] sftp = ["paramiko"] smb = ["smbprotocol"] ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] tqdm = ["tqdm"] [[package]] @@ -1538,20 +1543,21 @@ smmap = ">=3.0.1,<6" [[package]] name = "gitpython" -version = "3.1.41" +version = "3.1.43" description = "GitPython is a Python library used to interact with Git repositories" optional = false python-versions = ">=3.7" files = [ - {file = "GitPython-3.1.41-py3-none-any.whl", hash = "sha256:c36b6634d069b3f719610175020a9aed919421c87552185b085e04fbbdb10b7c"}, - {file = "GitPython-3.1.41.tar.gz", hash = "sha256:ed66e624884f76df22c8e16066d567aaa5a37d5b5fa19db2c6df6f7156db9048"}, + {file = "GitPython-3.1.43-py3-none-any.whl", hash = "sha256:eec7ec56b92aad751f9912a73404bc02ba212a23adb2c7098ee668417051a1ff"}, + {file = "GitPython-3.1.43.tar.gz", hash = "sha256:35f314a9f878467f5453cc1fee295c3e18e52f1b99f10f6cf5b1682e968a9e7c"}, ] [package.dependencies] gitdb = ">=4.0.1,<5" [package.extras] -test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest (>=7.3.1)", "pytest-cov", "pytest-instafail", "pytest-mock", "pytest-sugar", "sumtypes"] +doc = ["sphinx (==4.3.2)", "sphinx-autodoc-typehints", "sphinx-rtd-theme", "sphinxcontrib-applehelp (>=1.0.2,<=1.0.4)", "sphinxcontrib-devhelp (==1.0.2)", "sphinxcontrib-htmlhelp (>=2.0.0,<=2.0.1)", "sphinxcontrib-qthelp (==1.0.3)", "sphinxcontrib-serializinghtml (==1.1.5)"] +test = ["coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest (>=7.3.1)", "pytest-cov", "pytest-instafail", "pytest-mock", "pytest-sugar", "typing-extensions"] [[package]] name = "google-auth" @@ -1611,69 +1617,61 @@ six = "*" [[package]] name = "grpcio" -version = "1.62.2" +version = "1.64.1" description = "HTTP/2-based RPC framework" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "grpcio-1.62.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:66344ea741124c38588a664237ac2fa16dfd226964cca23ddc96bd4accccbde5"}, - {file = "grpcio-1.62.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:5dab7ac2c1e7cb6179c6bfad6b63174851102cbe0682294e6b1d6f0981ad7138"}, - {file = "grpcio-1.62.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:3ad00f3f0718894749d5a8bb0fa125a7980a2f49523731a9b1fabf2b3522aa43"}, - {file = "grpcio-1.62.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2e72ddfee62430ea80133d2cbe788e0d06b12f865765cb24a40009668bd8ea05"}, - {file = "grpcio-1.62.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53d3a59a10af4c2558a8e563aed9f256259d2992ae0d3037817b2155f0341de1"}, - {file = "grpcio-1.62.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a1511a303f8074f67af4119275b4f954189e8313541da7b88b1b3a71425cdb10"}, - {file = "grpcio-1.62.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b94d41b7412ef149743fbc3178e59d95228a7064c5ab4760ae82b562bdffb199"}, - {file = "grpcio-1.62.2-cp310-cp310-win32.whl", hash = "sha256:a75af2fc7cb1fe25785be7bed1ab18cef959a376cdae7c6870184307614caa3f"}, - {file = "grpcio-1.62.2-cp310-cp310-win_amd64.whl", hash = "sha256:80407bc007754f108dc2061e37480238b0dc1952c855e86a4fc283501ee6bb5d"}, - {file = "grpcio-1.62.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:c1624aa686d4b36790ed1c2e2306cc3498778dffaf7b8dd47066cf819028c3ad"}, - {file = "grpcio-1.62.2-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:1c1bb80299bdef33309dff03932264636450c8fdb142ea39f47e06a7153d3063"}, - {file = "grpcio-1.62.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:db068bbc9b1fa16479a82e1ecf172a93874540cb84be69f0b9cb9b7ac3c82670"}, - {file = "grpcio-1.62.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e2cc8a308780edbe2c4913d6a49dbdb5befacdf72d489a368566be44cadaef1a"}, - {file = "grpcio-1.62.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0695ae31a89f1a8fc8256050329a91a9995b549a88619263a594ca31b76d756"}, - {file = "grpcio-1.62.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:88b4f9ee77191dcdd8810241e89340a12cbe050be3e0d5f2f091c15571cd3930"}, - {file = "grpcio-1.62.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2a0204532aa2f1afd467024b02b4069246320405bc18abec7babab03e2644e75"}, - {file = "grpcio-1.62.2-cp311-cp311-win32.whl", hash = "sha256:6e784f60e575a0de554ef9251cbc2ceb8790914fe324f11e28450047f264ee6f"}, - {file = "grpcio-1.62.2-cp311-cp311-win_amd64.whl", hash = "sha256:112eaa7865dd9e6d7c0556c8b04ae3c3a2dc35d62ad3373ab7f6a562d8199200"}, - {file = "grpcio-1.62.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:65034473fc09628a02fb85f26e73885cf1ed39ebd9cf270247b38689ff5942c5"}, - {file = "grpcio-1.62.2-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:d2c1771d0ee3cf72d69bb5e82c6a82f27fbd504c8c782575eddb7839729fbaad"}, - {file = "grpcio-1.62.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:3abe6838196da518863b5d549938ce3159d809218936851b395b09cad9b5d64a"}, - {file = "grpcio-1.62.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5ffeb269f10cedb4f33142b89a061acda9f672fd1357331dbfd043422c94e9e"}, - {file = "grpcio-1.62.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:404d3b4b6b142b99ba1cff0b2177d26b623101ea2ce51c25ef6e53d9d0d87bcc"}, - {file = "grpcio-1.62.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:262cda97efdabb20853d3b5a4c546a535347c14b64c017f628ca0cc7fa780cc6"}, - {file = "grpcio-1.62.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:17708db5b11b966373e21519c4c73e5a750555f02fde82276ea2a267077c68ad"}, - {file = "grpcio-1.62.2-cp312-cp312-win32.whl", hash = "sha256:b7ec9e2f8ffc8436f6b642a10019fc513722858f295f7efc28de135d336ac189"}, - {file = "grpcio-1.62.2-cp312-cp312-win_amd64.whl", hash = "sha256:aa787b83a3cd5e482e5c79be030e2b4a122ecc6c5c6c4c42a023a2b581fdf17b"}, - {file = "grpcio-1.62.2-cp37-cp37m-linux_armv7l.whl", hash = "sha256:cfd23ad29bfa13fd4188433b0e250f84ec2c8ba66b14a9877e8bce05b524cf54"}, - {file = "grpcio-1.62.2-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:af15e9efa4d776dfcecd1d083f3ccfb04f876d613e90ef8432432efbeeac689d"}, - {file = "grpcio-1.62.2-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:f4aa94361bb5141a45ca9187464ae81a92a2a135ce2800b2203134f7a1a1d479"}, - {file = "grpcio-1.62.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82af3613a219512a28ee5c95578eb38d44dd03bca02fd918aa05603c41018051"}, - {file = "grpcio-1.62.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55ddaf53474e8caeb29eb03e3202f9d827ad3110475a21245f3c7712022882a9"}, - {file = "grpcio-1.62.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c79b518c56dddeec79e5500a53d8a4db90da995dfe1738c3ac57fe46348be049"}, - {file = "grpcio-1.62.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a5eb4844e5e60bf2c446ef38c5b40d7752c6effdee882f716eb57ae87255d20a"}, - {file = "grpcio-1.62.2-cp37-cp37m-win_amd64.whl", hash = "sha256:aaae70364a2d1fb238afd6cc9fcb10442b66e397fd559d3f0968d28cc3ac929c"}, - {file = "grpcio-1.62.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:1bcfe5070e4406f489e39325b76caeadab28c32bf9252d3ae960c79935a4cc36"}, - {file = "grpcio-1.62.2-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:da6a7b6b938c15fa0f0568e482efaae9c3af31963eec2da4ff13a6d8ec2888e4"}, - {file = "grpcio-1.62.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:41955b641c34db7d84db8d306937b72bc4968eef1c401bea73081a8d6c3d8033"}, - {file = "grpcio-1.62.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c772f225483905f675cb36a025969eef9712f4698364ecd3a63093760deea1bc"}, - {file = "grpcio-1.62.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07ce1f775d37ca18c7a141300e5b71539690efa1f51fe17f812ca85b5e73262f"}, - {file = "grpcio-1.62.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:26f415f40f4a93579fd648f48dca1c13dfacdfd0290f4a30f9b9aeb745026811"}, - {file = "grpcio-1.62.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:db707e3685ff16fc1eccad68527d072ac8bdd2e390f6daa97bc394ea7de4acea"}, - {file = "grpcio-1.62.2-cp38-cp38-win32.whl", hash = "sha256:589ea8e75de5fd6df387de53af6c9189c5231e212b9aa306b6b0d4f07520fbb9"}, - {file = "grpcio-1.62.2-cp38-cp38-win_amd64.whl", hash = "sha256:3c3ed41f4d7a3aabf0f01ecc70d6b5d00ce1800d4af652a549de3f7cf35c4abd"}, - {file = "grpcio-1.62.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:162ccf61499c893831b8437120600290a99c0bc1ce7b51f2c8d21ec87ff6af8b"}, - {file = "grpcio-1.62.2-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:f27246d7da7d7e3bd8612f63785a7b0c39a244cf14b8dd9dd2f2fab939f2d7f1"}, - {file = "grpcio-1.62.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:2507006c8a478f19e99b6fe36a2464696b89d40d88f34e4b709abe57e1337467"}, - {file = "grpcio-1.62.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a90ac47a8ce934e2c8d71e317d2f9e7e6aaceb2d199de940ce2c2eb611b8c0f4"}, - {file = "grpcio-1.62.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99701979bcaaa7de8d5f60476487c5df8f27483624f1f7e300ff4669ee44d1f2"}, - {file = "grpcio-1.62.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:af7dc3f7a44f10863b1b0ecab4078f0a00f561aae1edbd01fd03ad4dcf61c9e9"}, - {file = "grpcio-1.62.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:fa63245271920786f4cb44dcada4983a3516be8f470924528cf658731864c14b"}, - {file = "grpcio-1.62.2-cp39-cp39-win32.whl", hash = "sha256:c6ad9c39704256ed91a1cffc1379d63f7d0278d6a0bad06b0330f5d30291e3a3"}, - {file = "grpcio-1.62.2-cp39-cp39-win_amd64.whl", hash = "sha256:16da954692fd61aa4941fbeda405a756cd96b97b5d95ca58a92547bba2c1624f"}, - {file = "grpcio-1.62.2.tar.gz", hash = "sha256:c77618071d96b7a8be2c10701a98537823b9c65ba256c0b9067e0594cdbd954d"}, -] - -[package.extras] -protobuf = ["grpcio-tools (>=1.62.2)"] + {file = "grpcio-1.64.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:55697ecec192bc3f2f3cc13a295ab670f51de29884ca9ae6cd6247df55df2502"}, + {file = "grpcio-1.64.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:3b64ae304c175671efdaa7ec9ae2cc36996b681eb63ca39c464958396697daff"}, + {file = "grpcio-1.64.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:bac71b4b28bc9af61efcdc7630b166440bbfbaa80940c9a697271b5e1dabbc61"}, + {file = "grpcio-1.64.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c024ffc22d6dc59000faf8ad781696d81e8e38f4078cb0f2630b4a3cf231a90"}, + {file = "grpcio-1.64.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7cd5c1325f6808b8ae31657d281aadb2a51ac11ab081ae335f4f7fc44c1721d"}, + {file = "grpcio-1.64.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:0a2813093ddb27418a4c99f9b1c223fab0b053157176a64cc9db0f4557b69bd9"}, + {file = "grpcio-1.64.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2981c7365a9353f9b5c864595c510c983251b1ab403e05b1ccc70a3d9541a73b"}, + {file = "grpcio-1.64.1-cp310-cp310-win32.whl", hash = "sha256:1262402af5a511c245c3ae918167eca57342c72320dffae5d9b51840c4b2f86d"}, + {file = "grpcio-1.64.1-cp310-cp310-win_amd64.whl", hash = "sha256:19264fc964576ddb065368cae953f8d0514ecc6cb3da8903766d9fb9d4554c33"}, + {file = "grpcio-1.64.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:58b1041e7c870bb30ee41d3090cbd6f0851f30ae4eb68228955d973d3efa2e61"}, + {file = "grpcio-1.64.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:bbc5b1d78a7822b0a84c6f8917faa986c1a744e65d762ef6d8be9d75677af2ca"}, + {file = "grpcio-1.64.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:5841dd1f284bd1b3d8a6eca3a7f062b06f1eec09b184397e1d1d43447e89a7ae"}, + {file = "grpcio-1.64.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8caee47e970b92b3dd948371230fcceb80d3f2277b3bf7fbd7c0564e7d39068e"}, + {file = "grpcio-1.64.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73819689c169417a4f978e562d24f2def2be75739c4bed1992435d007819da1b"}, + {file = "grpcio-1.64.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:6503b64c8b2dfad299749cad1b595c650c91e5b2c8a1b775380fcf8d2cbba1e9"}, + {file = "grpcio-1.64.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1de403fc1305fd96cfa75e83be3dee8538f2413a6b1685b8452301c7ba33c294"}, + {file = "grpcio-1.64.1-cp311-cp311-win32.whl", hash = "sha256:d4d29cc612e1332237877dfa7fe687157973aab1d63bd0f84cf06692f04c0367"}, + {file = "grpcio-1.64.1-cp311-cp311-win_amd64.whl", hash = "sha256:5e56462b05a6f860b72f0fa50dca06d5b26543a4e88d0396259a07dc30f4e5aa"}, + {file = "grpcio-1.64.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:4657d24c8063e6095f850b68f2d1ba3b39f2b287a38242dcabc166453e950c59"}, + {file = "grpcio-1.64.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:62b4e6eb7bf901719fce0ca83e3ed474ae5022bb3827b0a501e056458c51c0a1"}, + {file = "grpcio-1.64.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:ee73a2f5ca4ba44fa33b4d7d2c71e2c8a9e9f78d53f6507ad68e7d2ad5f64a22"}, + {file = "grpcio-1.64.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:198908f9b22e2672a998870355e226a725aeab327ac4e6ff3a1399792ece4762"}, + {file = "grpcio-1.64.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b9d0acaa8d835a6566c640f48b50054f422d03e77e49716d4c4e8e279665a1"}, + {file = "grpcio-1.64.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:5e42634a989c3aa6049f132266faf6b949ec2a6f7d302dbb5c15395b77d757eb"}, + {file = "grpcio-1.64.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b1a82e0b9b3022799c336e1fc0f6210adc019ae84efb7321d668129d28ee1efb"}, + {file = "grpcio-1.64.1-cp312-cp312-win32.whl", hash = "sha256:55260032b95c49bee69a423c2f5365baa9369d2f7d233e933564d8a47b893027"}, + {file = "grpcio-1.64.1-cp312-cp312-win_amd64.whl", hash = "sha256:c1a786ac592b47573a5bb7e35665c08064a5d77ab88a076eec11f8ae86b3e3f6"}, + {file = "grpcio-1.64.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:a011ac6c03cfe162ff2b727bcb530567826cec85eb8d4ad2bfb4bd023287a52d"}, + {file = "grpcio-1.64.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4d6dab6124225496010bd22690f2d9bd35c7cbb267b3f14e7a3eb05c911325d4"}, + {file = "grpcio-1.64.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:a5e771d0252e871ce194d0fdcafd13971f1aae0ddacc5f25615030d5df55c3a2"}, + {file = "grpcio-1.64.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2c3c1b90ab93fed424e454e93c0ed0b9d552bdf1b0929712b094f5ecfe7a23ad"}, + {file = "grpcio-1.64.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20405cb8b13fd779135df23fabadc53b86522d0f1cba8cca0e87968587f50650"}, + {file = "grpcio-1.64.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:0cc79c982ccb2feec8aad0e8fb0d168bcbca85bc77b080d0d3c5f2f15c24ea8f"}, + {file = "grpcio-1.64.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:a3a035c37ce7565b8f4f35ff683a4db34d24e53dc487e47438e434eb3f701b2a"}, + {file = "grpcio-1.64.1-cp38-cp38-win32.whl", hash = "sha256:1257b76748612aca0f89beec7fa0615727fd6f2a1ad580a9638816a4b2eb18fd"}, + {file = "grpcio-1.64.1-cp38-cp38-win_amd64.whl", hash = "sha256:0a12ddb1678ebc6a84ec6b0487feac020ee2b1659cbe69b80f06dbffdb249122"}, + {file = "grpcio-1.64.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:75dbbf415026d2862192fe1b28d71f209e2fd87079d98470db90bebe57b33179"}, + {file = "grpcio-1.64.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e3d9f8d1221baa0ced7ec7322a981e28deb23749c76eeeb3d33e18b72935ab62"}, + {file = "grpcio-1.64.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:5f8b75f64d5d324c565b263c67dbe4f0af595635bbdd93bb1a88189fc62ed2e5"}, + {file = "grpcio-1.64.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c84ad903d0d94311a2b7eea608da163dace97c5fe9412ea311e72c3684925602"}, + {file = "grpcio-1.64.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:940e3ec884520155f68a3b712d045e077d61c520a195d1a5932c531f11883489"}, + {file = "grpcio-1.64.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f10193c69fc9d3d726e83bbf0f3d316f1847c3071c8c93d8090cf5f326b14309"}, + {file = "grpcio-1.64.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ac15b6c2c80a4d1338b04d42a02d376a53395ddf0ec9ab157cbaf44191f3ffdd"}, + {file = "grpcio-1.64.1-cp39-cp39-win32.whl", hash = "sha256:03b43d0ccf99c557ec671c7dede64f023c7da9bb632ac65dbc57f166e4970040"}, + {file = "grpcio-1.64.1-cp39-cp39-win_amd64.whl", hash = "sha256:ed6091fa0adcc7e4ff944090cf203a52da35c37a130efa564ded02b7aff63bcd"}, + {file = "grpcio-1.64.1.tar.gz", hash = "sha256:8d51dd1c59d5fa0f34266b80a3805ec29a1f26425c2a54736133f6d87fc4968a"}, +] + +[package.extras] +protobuf = ["grpcio-tools (>=1.64.1)"] [[package]] name = "h11" @@ -1787,13 +1785,13 @@ socks = ["socksio (==1.*)"] [[package]] name = "huggingface-hub" -version = "0.22.2" +version = "0.23.3" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" optional = false python-versions = ">=3.8.0" files = [ - {file = "huggingface_hub-0.22.2-py3-none-any.whl", hash = "sha256:3429e25f38ccb834d310804a3b711e7e4953db5a9e420cc147a5e194ca90fd17"}, - {file = "huggingface_hub-0.22.2.tar.gz", hash = "sha256:32e9a9a6843c92f253ff9ca16b9985def4d80a93fb357af5353f770ef74a81be"}, + {file = "huggingface_hub-0.23.3-py3-none-any.whl", hash = "sha256:22222c41223f1b7c209ae5511d2d82907325a0e3cdbce5f66949d43c598ff3bc"}, + {file = "huggingface_hub-0.23.3.tar.gz", hash = "sha256:1a1118a0b3dea3bab6c325d71be16f5ffe441d32f3ac7c348d6875911b694b5b"}, ] [package.dependencies] @@ -1806,16 +1804,16 @@ tqdm = ">=4.42.1" typing-extensions = ">=3.7.4.3" [package.extras] -all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] cli = ["InquirerPy (==0.3.4)"] -dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] +dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "mypy (==1.5.1)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "ruff (>=0.3.0)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)", "urllib3 (<2.0)"] fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"] hf-transfer = ["hf-transfer (>=0.1.4)"] inference = ["aiohttp", "minijinja (>=1.0)"] quality = ["mypy (==1.5.1)", "ruff (>=0.3.0)"] tensorflow = ["graphviz", "pydot", "tensorflow"] tensorflow-testing = ["keras (<3.0)", "tensorflow"] -testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] +testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gradio", "jedi", "minijinja (>=1.0)", "numpy", "pytest", "pytest-asyncio", "pytest-cov", "pytest-env", "pytest-rerunfailures", "pytest-vcr", "pytest-xdist", "soundfile", "urllib3 (<2.0)"] torch = ["safetensors", "torch"] typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"] @@ -2019,21 +2017,21 @@ test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pa [[package]] name = "ipywidgets" -version = "8.1.2" +version = "8.1.3" description = "Jupyter interactive widgets" optional = false python-versions = ">=3.7" files = [ - {file = "ipywidgets-8.1.2-py3-none-any.whl", hash = "sha256:bbe43850d79fb5e906b14801d6c01402857996864d1e5b6fa62dd2ee35559f60"}, - {file = "ipywidgets-8.1.2.tar.gz", hash = "sha256:d0b9b41e49bae926a866e613a39b0f0097745d2b9f1f3dd406641b4a57ec42c9"}, + {file = "ipywidgets-8.1.3-py3-none-any.whl", hash = "sha256:efafd18f7a142248f7cb0ba890a68b96abd4d6e88ddbda483c9130d12667eaf2"}, + {file = "ipywidgets-8.1.3.tar.gz", hash = "sha256:f5f9eeaae082b1823ce9eac2575272952f40d748893972956dc09700a6392d9c"}, ] [package.dependencies] comm = ">=0.1.3" ipython = ">=6.1.0" -jupyterlab-widgets = ">=3.0.10,<3.1.0" +jupyterlab-widgets = ">=3.0.11,<3.1.0" traitlets = ">=4.3.1" -widgetsnbextension = ">=4.0.10,<4.1.0" +widgetsnbextension = ">=4.0.11,<4.1.0" [package.extras] test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] @@ -2156,13 +2154,13 @@ trio = ["async_generator", "trio"] [[package]] name = "jinja2" -version = "3.1.3" +version = "3.1.4" description = "A very fast and expressive template engine." optional = false python-versions = ">=3.7" files = [ - {file = "Jinja2-3.1.3-py3-none-any.whl", hash = "sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa"}, - {file = "Jinja2-3.1.3.tar.gz", hash = "sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90"}, + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, ] [package.dependencies] @@ -2173,13 +2171,13 @@ i18n = ["Babel (>=2.7)"] [[package]] name = "joblib" -version = "1.4.0" +version = "1.4.2" description = "Lightweight pipelining with Python functions" optional = false python-versions = ">=3.8" files = [ - {file = "joblib-1.4.0-py3-none-any.whl", hash = "sha256:42942470d4062537be4d54c83511186da1fc14ba354961a2114da91efa9a4ed7"}, - {file = "joblib-1.4.0.tar.gz", hash = "sha256:1eb0dc091919cd384490de890cb5dfd538410a6d4b3b54eef09fb8c50b409b1c"}, + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, ] [[package]] @@ -2222,13 +2220,13 @@ files = [ [[package]] name = "jsonschema" -version = "4.21.1" +version = "4.22.0" description = "An implementation of JSON Schema validation for Python" optional = false python-versions = ">=3.8" files = [ - {file = "jsonschema-4.21.1-py3-none-any.whl", hash = "sha256:7996507afae316306f9e2290407761157c6f78002dcf7419acb99822143d1c6f"}, - {file = "jsonschema-4.21.1.tar.gz", hash = "sha256:85727c00279f5fa6bedbe6238d2aa6403bedd8b4864ab11207d07df3cc1b2ee5"}, + {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"}, + {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"}, ] [package.dependencies] @@ -2288,13 +2286,13 @@ qtconsole = "*" [[package]] name = "jupyter-client" -version = "8.6.1" +version = "8.6.2" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.1-py3-none-any.whl", hash = "sha256:3b7bd22f058434e3b9a7ea4b1500ed47de2713872288c0d511d19926f99b459f"}, - {file = "jupyter_client-8.6.1.tar.gz", hash = "sha256:e842515e2bab8e19186d89fdfea7abd15e39dd581f94e399f00e2af5a1652d3f"}, + {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, + {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, ] [package.dependencies] @@ -2307,7 +2305,7 @@ traitlets = ">=5.3" [package.extras] docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] [[package]] name = "jupyter-console" @@ -2395,13 +2393,13 @@ jupyter-server = ">=1.1.2" [[package]] name = "jupyter-server" -version = "2.14.0" +version = "2.14.1" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_server-2.14.0-py3-none-any.whl", hash = "sha256:fb6be52c713e80e004fac34b35a0990d6d36ba06fd0a2b2ed82b899143a64210"}, - {file = "jupyter_server-2.14.0.tar.gz", hash = "sha256:659154cea512083434fd7c93b7fe0897af7a2fd0b9dd4749282b42eaac4ae677"}, + {file = "jupyter_server-2.14.1-py3-none-any.whl", hash = "sha256:16f7177c3a4ea8fe37784e2d31271981a812f0b2874af17339031dc3510cc2a5"}, + {file = "jupyter_server-2.14.1.tar.gz", hash = "sha256:12558d158ec7a0653bf96cc272bc7ad79e0127d503b982ed144399346694f726"}, ] [package.dependencies] @@ -2426,7 +2424,7 @@ traitlets = ">=5.6.0" websocket-client = ">=1.7" [package.extras] -docs = ["ipykernel", "jinja2", "jupyter-client", "jupyter-server", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] +docs = ["ipykernel", "jinja2", "jupyter-client", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0,<9)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.7)", "pytest-timeout", "requests"] [[package]] @@ -2450,13 +2448,13 @@ test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (> [[package]] name = "jupyterlab" -version = "4.1.6" +version = "4.2.1" description = "JupyterLab computational environment" optional = false python-versions = ">=3.8" files = [ - {file = "jupyterlab-4.1.6-py3-none-any.whl", hash = "sha256:cf3e862bc10dbf4331e4eb37438634f813c238cfc62c71c640b3b3b2caa089a8"}, - {file = "jupyterlab-4.1.6.tar.gz", hash = "sha256:7935f36ba26eb615183a4f5c2bbca5791b5108ce2a00b5505f8cfd100d53648e"}, + {file = "jupyterlab-4.2.1-py3-none-any.whl", hash = "sha256:6ac6e3827b3c890e6e549800e8a4f4aaea6a69321e2240007902aa7a0c56a8e4"}, + {file = "jupyterlab-4.2.1.tar.gz", hash = "sha256:a10fb71085a6900820c62d43324005046402ffc8f0fde696103e37238a839507"}, ] [package.dependencies] @@ -2469,7 +2467,7 @@ jinja2 = ">=3.0.3" jupyter-core = "*" jupyter-lsp = ">=2.0.0" jupyter-server = ">=2.4.0,<3" -jupyterlab-server = ">=2.19.0,<3" +jupyterlab-server = ">=2.27.1,<3" notebook-shim = ">=0.2" packaging = "*" tomli = {version = ">=1.2.2", markers = "python_version < \"3.11\""} @@ -2477,11 +2475,11 @@ tornado = ">=6.2.0" traitlets = "*" [package.extras] -dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.2.0)"] +dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.3.5)"] docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<7.3.0)", "sphinx-copybutton"] -docs-screenshots = ["altair (==5.2.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.1)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.0.post6)", "matplotlib (==3.8.2)", "nbconvert (>=7.0.0)", "pandas (==2.2.0)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] +docs-screenshots = ["altair (==5.3.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.2)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.1.post2)", "matplotlib (==3.8.3)", "nbconvert (>=7.0.0)", "pandas (==2.2.1)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] -upgrade-extension = ["copier (>=8.0,<9.0)", "jinja2-time (<0.3)", "pydantic (<2.0)", "pyyaml-include (<2.0)", "tomli-w (<2.0)"] +upgrade-extension = ["copier (>=8,<10)", "jinja2-time (<0.3)", "pydantic (<2.0)", "pyyaml-include (<2.0)", "tomli-w (<2.0)"] [[package]] name = "jupyterlab-pygments" @@ -2496,13 +2494,13 @@ files = [ [[package]] name = "jupyterlab-server" -version = "2.26.0" +version = "2.27.2" description = "A set of server components for JupyterLab and JupyterLab like applications." optional = false python-versions = ">=3.8" files = [ - {file = "jupyterlab_server-2.26.0-py3-none-any.whl", hash = "sha256:54622cbd330526a385ee0c1fdccdff3a1e7219bf3e864a335284a1270a1973df"}, - {file = "jupyterlab_server-2.26.0.tar.gz", hash = "sha256:9b3ba91cf2837f7f124fca36d63f3ca80ace2bed4898a63dd47e6598c1ab006f"}, + {file = "jupyterlab_server-2.27.2-py3-none-any.whl", hash = "sha256:54aa2d64fd86383b5438d9f0c032f043c4d8c0264b8af9f60bd061157466ea43"}, + {file = "jupyterlab_server-2.27.2.tar.gz", hash = "sha256:15cbb349dc45e954e09bacf81b9f9bcb10815ff660fb2034ecd7417db3a7ea27"}, ] [package.dependencies] @@ -2522,23 +2520,23 @@ test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-v [[package]] name = "jupyterlab-widgets" -version = "3.0.10" +version = "3.0.11" description = "Jupyter interactive widgets for JupyterLab" optional = false python-versions = ">=3.7" files = [ - {file = "jupyterlab_widgets-3.0.10-py3-none-any.whl", hash = "sha256:dd61f3ae7a5a7f80299e14585ce6cf3d6925a96c9103c978eda293197730cb64"}, - {file = "jupyterlab_widgets-3.0.10.tar.gz", hash = "sha256:04f2ac04976727e4f9d0fa91cdc2f1ab860f965e504c29dbd6a65c882c9d04c0"}, + {file = "jupyterlab_widgets-3.0.11-py3-none-any.whl", hash = "sha256:78287fd86d20744ace330a61625024cf5521e1c012a352ddc0a3cdc2348becd0"}, + {file = "jupyterlab_widgets-3.0.11.tar.gz", hash = "sha256:dd5ac679593c969af29c9bed054c24f26842baa51352114736756bc035deee27"}, ] [[package]] name = "kaggle" -version = "1.6.12" +version = "1.6.14" description = "Kaggle API" optional = false python-versions = "*" files = [ - {file = "kaggle-1.6.12.tar.gz", hash = "sha256:f12a05b82d2afb10a74adc69a5f8a736c64bd9934d0b5acfb4fe4f97357530b4"}, + {file = "kaggle-1.6.14.tar.gz", hash = "sha256:583532bdeca3c9e0cafc4931112c6737b5e68f187ab59ee77dffdf09fdf9dbd9"}, ] [package.dependencies] @@ -2564,13 +2562,13 @@ files = [ [[package]] name = "keyring" -version = "25.1.0" +version = "25.2.1" description = "Store and access your passwords safely." optional = false python-versions = ">=3.8" files = [ - {file = "keyring-25.1.0-py3-none-any.whl", hash = "sha256:26fc12e6a329d61d24aa47b22a7c5c3f35753df7d8f2860973cf94f4e1fb3427"}, - {file = "keyring-25.1.0.tar.gz", hash = "sha256:7230ea690525133f6ad536a9b5def74a4bd52642abe594761028fc044d7c7893"}, + {file = "keyring-25.2.1-py3-none-any.whl", hash = "sha256:2458681cdefc0dbc0b7eb6cf75d0b98e59f9ad9b2d4edd319d18f68bdca95e50"}, + {file = "keyring-25.2.1.tar.gz", hash = "sha256:daaffd42dbda25ddafb1ad5fec4024e5bbcfe424597ca1ca452b299861e49f1b"}, ] [package.dependencies] @@ -2586,7 +2584,7 @@ SecretStorage = {version = ">=3.2", markers = "sys_platform == \"linux\""} [package.extras] completion = ["shtab (>=1.1.0)"] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +testing = ["pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)"] [[package]] name = "kiwisolver" @@ -2771,7 +2769,6 @@ description = "Clang Python Bindings, mirrored from the official LLVM repo: http optional = false python-versions = "*" files = [ - {file = "libclang-18.1.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:6f14c3f194704e5d09769108f03185fce7acaf1d1ae4bbb2f30a72c2400cb7c5"}, {file = "libclang-18.1.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:83ce5045d101b669ac38e6da8e58765f12da2d3aafb3b9b98d88b286a60964d8"}, {file = "libclang-18.1.1-py2.py3-none-manylinux2010_x86_64.whl", hash = "sha256:c533091d8a3bbf7460a00cb6c1a71da93bffe148f172c7d03b1c31fbf8aa2a0b"}, {file = "libclang-18.1.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:54dda940a4a0491a9d1532bf071ea3ef26e6dbaf03b5000ed94dd7174e8f9592"}, @@ -2836,13 +2833,13 @@ tests = ["pytest"] [[package]] name = "mako" -version = "1.3.3" +version = "1.3.5" description = "A super-fast templating language that borrows the best ideas from the existing templating languages." optional = false python-versions = ">=3.8" files = [ - {file = "Mako-1.3.3-py3-none-any.whl", hash = "sha256:5324b88089a8978bf76d1629774fcc2f1c07b82acdf00f4c5dd8ceadfffc4b40"}, - {file = "Mako-1.3.3.tar.gz", hash = "sha256:e16c01d9ab9c11f7290eef1cfefc093fb5a45ee4a3da09e2fec2e4d1bae54e73"}, + {file = "Mako-1.3.5-py3-none-any.whl", hash = "sha256:260f1dbc3a519453a9c856dedfe4beb4e50bd5a26d96386cb6c80856556bb91a"}, + {file = "Mako-1.3.5.tar.gz", hash = "sha256:48dbc20568c1d276a2698b36d968fa76161bf127194907ea6fc594fa81f943bc"}, ] [package.dependencies] @@ -3392,38 +3389,38 @@ files = [ [[package]] name = "mypy" -version = "1.9.0" +version = "1.10.0" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" files = [ - {file = "mypy-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f8a67616990062232ee4c3952f41c779afac41405806042a8126fe96e098419f"}, - {file = "mypy-1.9.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d357423fa57a489e8c47b7c85dfb96698caba13d66e086b412298a1a0ea3b0ed"}, - {file = "mypy-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49c87c15aed320de9b438ae7b00c1ac91cd393c1b854c2ce538e2a72d55df150"}, - {file = "mypy-1.9.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:48533cdd345c3c2e5ef48ba3b0d3880b257b423e7995dada04248725c6f77374"}, - {file = "mypy-1.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:4d3dbd346cfec7cb98e6cbb6e0f3c23618af826316188d587d1c1bc34f0ede03"}, - {file = "mypy-1.9.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:653265f9a2784db65bfca694d1edd23093ce49740b2244cde583aeb134c008f3"}, - {file = "mypy-1.9.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3a3c007ff3ee90f69cf0a15cbcdf0995749569b86b6d2f327af01fd1b8aee9dc"}, - {file = "mypy-1.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2418488264eb41f69cc64a69a745fad4a8f86649af4b1041a4c64ee61fc61129"}, - {file = "mypy-1.9.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:68edad3dc7d70f2f17ae4c6c1b9471a56138ca22722487eebacfd1eb5321d612"}, - {file = "mypy-1.9.0-cp311-cp311-win_amd64.whl", hash = "sha256:85ca5fcc24f0b4aeedc1d02f93707bccc04733f21d41c88334c5482219b1ccb3"}, - {file = "mypy-1.9.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aceb1db093b04db5cd390821464504111b8ec3e351eb85afd1433490163d60cd"}, - {file = "mypy-1.9.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0235391f1c6f6ce487b23b9dbd1327b4ec33bb93934aa986efe8a9563d9349e6"}, - {file = "mypy-1.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4d5ddc13421ba3e2e082a6c2d74c2ddb3979c39b582dacd53dd5d9431237185"}, - {file = "mypy-1.9.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:190da1ee69b427d7efa8aa0d5e5ccd67a4fb04038c380237a0d96829cb157913"}, - {file = "mypy-1.9.0-cp312-cp312-win_amd64.whl", hash = "sha256:fe28657de3bfec596bbeef01cb219833ad9d38dd5393fc649f4b366840baefe6"}, - {file = "mypy-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e54396d70be04b34f31d2edf3362c1edd023246c82f1730bbf8768c28db5361b"}, - {file = "mypy-1.9.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5e6061f44f2313b94f920e91b204ec600982961e07a17e0f6cd83371cb23f5c2"}, - {file = "mypy-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81a10926e5473c5fc3da8abb04119a1f5811a236dc3a38d92015cb1e6ba4cb9e"}, - {file = "mypy-1.9.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b685154e22e4e9199fc95f298661deea28aaede5ae16ccc8cbb1045e716b3e04"}, - {file = "mypy-1.9.0-cp38-cp38-win_amd64.whl", hash = "sha256:5d741d3fc7c4da608764073089e5f58ef6352bedc223ff58f2f038c2c4698a89"}, - {file = "mypy-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:587ce887f75dd9700252a3abbc9c97bbe165a4a630597845c61279cf32dfbf02"}, - {file = "mypy-1.9.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f88566144752999351725ac623471661c9d1cd8caa0134ff98cceeea181789f4"}, - {file = "mypy-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61758fabd58ce4b0720ae1e2fea5cfd4431591d6d590b197775329264f86311d"}, - {file = "mypy-1.9.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e49499be624dead83927e70c756970a0bc8240e9f769389cdf5714b0784ca6bf"}, - {file = "mypy-1.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:571741dc4194b4f82d344b15e8837e8c5fcc462d66d076748142327626a1b6e9"}, - {file = "mypy-1.9.0-py3-none-any.whl", hash = "sha256:a260627a570559181a9ea5de61ac6297aa5af202f06fd7ab093ce74e7181e43e"}, - {file = "mypy-1.9.0.tar.gz", hash = "sha256:3cc5da0127e6a478cddd906068496a97a7618a21ce9b54bde5bf7e539c7af974"}, + {file = "mypy-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:da1cbf08fb3b851ab3b9523a884c232774008267b1f83371ace57f412fe308c2"}, + {file = "mypy-1.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:12b6bfc1b1a66095ab413160a6e520e1dc076a28f3e22f7fb25ba3b000b4ef99"}, + {file = "mypy-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e36fb078cce9904c7989b9693e41cb9711e0600139ce3970c6ef814b6ebc2b2"}, + {file = "mypy-1.10.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2b0695d605ddcd3eb2f736cd8b4e388288c21e7de85001e9f85df9187f2b50f9"}, + {file = "mypy-1.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:cd777b780312ddb135bceb9bc8722a73ec95e042f911cc279e2ec3c667076051"}, + {file = "mypy-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3be66771aa5c97602f382230165b856c231d1277c511c9a8dd058be4784472e1"}, + {file = "mypy-1.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8b2cbaca148d0754a54d44121b5825ae71868c7592a53b7292eeb0f3fdae95ee"}, + {file = "mypy-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ec404a7cbe9fc0e92cb0e67f55ce0c025014e26d33e54d9e506a0f2d07fe5de"}, + {file = "mypy-1.10.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e22e1527dc3d4aa94311d246b59e47f6455b8729f4968765ac1eacf9a4760bc7"}, + {file = "mypy-1.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:a87dbfa85971e8d59c9cc1fcf534efe664d8949e4c0b6b44e8ca548e746a8d53"}, + {file = "mypy-1.10.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a781f6ad4bab20eef8b65174a57e5203f4be627b46291f4589879bf4e257b97b"}, + {file = "mypy-1.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b808e12113505b97d9023b0b5e0c0705a90571c6feefc6f215c1df9381256e30"}, + {file = "mypy-1.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f55583b12156c399dce2df7d16f8a5095291354f1e839c252ec6c0611e86e2e"}, + {file = "mypy-1.10.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4cf18f9d0efa1b16478c4c129eabec36148032575391095f73cae2e722fcf9d5"}, + {file = "mypy-1.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:bc6ac273b23c6b82da3bb25f4136c4fd42665f17f2cd850771cb600bdd2ebeda"}, + {file = "mypy-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9fd50226364cd2737351c79807775136b0abe084433b55b2e29181a4c3c878c0"}, + {file = "mypy-1.10.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f90cff89eea89273727d8783fef5d4a934be2fdca11b47def50cf5d311aff727"}, + {file = "mypy-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fcfc70599efde5c67862a07a1aaf50e55bce629ace26bb19dc17cece5dd31ca4"}, + {file = "mypy-1.10.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:075cbf81f3e134eadaf247de187bd604748171d6b79736fa9b6c9685b4083061"}, + {file = "mypy-1.10.0-cp38-cp38-win_amd64.whl", hash = "sha256:3f298531bca95ff615b6e9f2fc0333aae27fa48052903a0ac90215021cdcfa4f"}, + {file = "mypy-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fa7ef5244615a2523b56c034becde4e9e3f9b034854c93639adb667ec9ec2976"}, + {file = "mypy-1.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3236a4c8f535a0631f85f5fcdffba71c7feeef76a6002fcba7c1a8e57c8be1ec"}, + {file = "mypy-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a2b5cdbb5dd35aa08ea9114436e0d79aceb2f38e32c21684dcf8e24e1e92821"}, + {file = "mypy-1.10.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92f93b21c0fe73dc00abf91022234c79d793318b8a96faac147cd579c1671746"}, + {file = "mypy-1.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:28d0e038361b45f099cc086d9dd99c15ff14d0188f44ac883010e172ce86c38a"}, + {file = "mypy-1.10.0-py3-none-any.whl", hash = "sha256:f8c083976eb530019175aabadb60921e73b4f45736760826aa1689dda8208aee"}, + {file = "mypy-1.10.0.tar.gz", hash = "sha256:3d087fcbec056c4ee34974da493a826ce316947485cef3901f511848e687c131"}, ] [package.dependencies] @@ -3497,13 +3494,13 @@ test = ["black", "check-manifest", "flake8", "ipykernel", "ipython", "ipywidgets [[package]] name = "nbconvert" -version = "7.16.3" +version = "7.16.4" description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)." optional = false python-versions = ">=3.8" files = [ - {file = "nbconvert-7.16.3-py3-none-any.whl", hash = "sha256:ddeff14beeeedf3dd0bc506623e41e4507e551736de59df69a91f86700292b3b"}, - {file = "nbconvert-7.16.3.tar.gz", hash = "sha256:a6733b78ce3d47c3f85e504998495b07e6ea9cf9bf6ec1c98dda63ec6ad19142"}, + {file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"}, + {file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"}, ] [package.dependencies] @@ -3525,9 +3522,9 @@ tinycss2 = "*" traitlets = ">=5.1" [package.extras] -all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] +all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"] docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] -qtpdf = ["nbconvert[qtpng]"] +qtpdf = ["pyqtwebengine (>=5.15)"] qtpng = ["pyqtwebengine (>=5.15)"] serve = ["tornado (>=6.1)"] test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"] @@ -3556,13 +3553,13 @@ test = ["pep440", "pre-commit", "pytest", "testpath"] [[package]] name = "nbmake" -version = "1.5.3" +version = "1.5.4" description = "Pytest plugin for testing notebooks" optional = false -python-versions = ">=3.8.0,<4.0.0" +python-versions = "<4.0.0,>=3.8.0" files = [ - {file = "nbmake-1.5.3-py3-none-any.whl", hash = "sha256:6cfa2b926d335e9c6dce7e8543d01b2398b0a56c03131c5c0bce2b1722116212"}, - {file = "nbmake-1.5.3.tar.gz", hash = "sha256:0b76b829e8b128eb1895539bacf515a1ee85e5b7b492cdfe76e3a12f804e069e"}, + {file = "nbmake-1.5.4-py3-none-any.whl", hash = "sha256:8e440a61a7d4ab303064aa86b8d2c088177c89960e2b4a0f91a768dc9f68382b"}, + {file = "nbmake-1.5.4.tar.gz", hash = "sha256:56417fe80d50069671122955532df6e26369a23f68b9c6e2191ae9cfef19abb2"}, ] [package.dependencies] @@ -3648,26 +3645,26 @@ files = [ [[package]] name = "notebook" -version = "7.1.3" +version = "7.2.0" description = "Jupyter Notebook - A web-based notebook environment for interactive computing" optional = false python-versions = ">=3.8" files = [ - {file = "notebook-7.1.3-py3-none-any.whl", hash = "sha256:919b911e59f41f6e3857ce93c9d93535ba66bb090059712770e5968c07e1004d"}, - {file = "notebook-7.1.3.tar.gz", hash = "sha256:41fcebff44cf7bb9377180808bcbae066629b55d8c7722f1ebbe75ca44f9cfc1"}, + {file = "notebook-7.2.0-py3-none-any.whl", hash = "sha256:b4752d7407d6c8872fc505df0f00d3cae46e8efb033b822adacbaa3f1f3ce8f5"}, + {file = "notebook-7.2.0.tar.gz", hash = "sha256:34a2ba4b08ad5d19ec930db7484fb79746a1784be9e1a5f8218f9af8656a141f"}, ] [package.dependencies] jupyter-server = ">=2.4.0,<3" -jupyterlab = ">=4.1.1,<4.2" -jupyterlab-server = ">=2.22.1,<3" +jupyterlab = ">=4.2.0,<4.3" +jupyterlab-server = ">=2.27.1,<3" notebook-shim = ">=0.2,<0.3" tornado = ">=6.2.0" [package.extras] dev = ["hatch", "pre-commit"] docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] -test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.22.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] +test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] [[package]] name = "notebook-shim" @@ -4265,18 +4262,18 @@ pip = "*" [[package]] name = "pip-audit" -version = "2.7.2" +version = "2.7.3" description = "A tool for scanning Python environments for known vulnerabilities" optional = false python-versions = ">=3.8" files = [ - {file = "pip_audit-2.7.2-py3-none-any.whl", hash = "sha256:49907430115baacb8bb7ffc1a2b689acfeac9d8534a43bffad3c73f8d8b32d52"}, - {file = "pip_audit-2.7.2.tar.gz", hash = "sha256:a12905e42dd452f43a2dbf895606d59c35348deed27b8cbaff8516423576fdfb"}, + {file = "pip_audit-2.7.3-py3-none-any.whl", hash = "sha256:46a11faee3323f76adf7987de8171daeb660e8f57d8088cc27fb1c1e5c7747b0"}, + {file = "pip_audit-2.7.3.tar.gz", hash = "sha256:08891bbf179bffe478521f150818112bae998424f58bf9285c0078965aef38bc"}, ] [package.dependencies] CacheControl = {version = ">=0.13.0", extras = ["filecache"]} -cyclonedx-python-lib = ">=5,<7" +cyclonedx-python-lib = ">=5,<8" html5lib = ">=1.1" packaging = ">=23.0.0" pip-api = ">=0.0.28" @@ -4288,7 +4285,7 @@ toml = ">=0.10" [package.extras] dev = ["build", "bump (>=1.3.2)", "pip-audit[doc,lint,test]"] doc = ["pdoc"] -lint = ["interrogate", "mypy", "ruff (<0.2.3)", "types-html5lib", "types-requests", "types-toml"] +lint = ["interrogate", "mypy", "ruff (<0.4.3)", "setuptools", "types-html5lib", "types-requests", "types-toml"] test = ["coverage[toml] (>=7.0,!=7.3.3,<8.0)", "pretend", "pytest", "pytest-cov"] [[package]] @@ -4312,13 +4309,13 @@ testing = ["aboutcode-toolkit (>=6.0.0)", "black", "pytest (>=6,!=7.0.0)", "pyte [[package]] name = "pkginfo" -version = "1.10.0" +version = "1.11.0" description = "Query metadata from sdists / bdists / installed packages." optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "pkginfo-1.10.0-py3-none-any.whl", hash = "sha256:889a6da2ed7ffc58ab5b900d888ddce90bce912f2d2de1dc1c26f4cb9fe65097"}, - {file = "pkginfo-1.10.0.tar.gz", hash = "sha256:5df73835398d10db79f8eecd5cd86b1f6d29317589ea70796994d49399af6297"}, + {file = "pkginfo-1.11.0-py3-none-any.whl", hash = "sha256:6d4998d1cd42c297af72cc0eab5f5bab1d356fb8a55b828fa914173f8bc1ba05"}, + {file = "pkginfo-1.11.0.tar.gz", hash = "sha256:dba885aa82e31e80d615119874384923f4e011c2a39b0c4b7104359e36cb7087"}, ] [package.extras] @@ -4337,18 +4334,19 @@ files = [ [[package]] name = "platformdirs" -version = "4.2.0" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +version = "4.2.2" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.0-py3-none-any.whl", hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068"}, - {file = "platformdirs-4.2.0.tar.gz", hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768"}, + {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, + {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, ] [package.extras] docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] +type = ["mypy (>=1.8)"] [[package]] name = "pluggy" @@ -4381,13 +4379,13 @@ twisted = ["twisted"] [[package]] name = "prompt-toolkit" -version = "3.0.43" +version = "3.0.46" description = "Library for building powerful interactive command lines in Python" optional = false python-versions = ">=3.7.0" files = [ - {file = "prompt_toolkit-3.0.43-py3-none-any.whl", hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6"}, - {file = "prompt_toolkit-3.0.43.tar.gz", hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d"}, + {file = "prompt_toolkit-3.0.46-py3-none-any.whl", hash = "sha256:45abe60a8300f3c618b23c16c4bb98c6fc80af8ce8b17c7ae92db48db3ee63c1"}, + {file = "prompt_toolkit-3.0.46.tar.gz", hash = "sha256:869c50d682152336e23c4db7f74667639b5047494202ffe7670817053fd57795"}, ] [package.dependencies] @@ -4596,17 +4594,16 @@ files = [ [[package]] name = "pygments" -version = "2.17.2" +version = "2.18.0" description = "Pygments is a syntax highlighting package written in Python." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pygments-2.17.2-py3-none-any.whl", hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c"}, - {file = "pygments-2.17.2.tar.gz", hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367"}, + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, ] [package.extras] -plugins = ["importlib-metadata"] windows-terminal = ["colorama (>=0.4.6)"] [[package]] @@ -4804,18 +4801,18 @@ pytest = ">=7.0" [[package]] name = "pytest-xdist" -version = "3.5.0" +version = "3.6.1" description = "pytest xdist plugin for distributed testing, most importantly across multiple CPUs" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "pytest-xdist-3.5.0.tar.gz", hash = "sha256:cbb36f3d67e0c478baa57fa4edc8843887e0f6cfc42d677530a36d7472b32d8a"}, - {file = "pytest_xdist-3.5.0-py3-none-any.whl", hash = "sha256:d075629c7e00b611df89f490a5063944bee7a4362a5ff11c7cc7824a03dfce24"}, + {file = "pytest_xdist-3.6.1-py3-none-any.whl", hash = "sha256:9ed4adfb68a016610848639bb7e02c9352d5d9f03d04809919e2dafc3be4cca7"}, + {file = "pytest_xdist-3.6.1.tar.gz", hash = "sha256:ead156a4db231eec769737f57668ef58a2084a34b2e55c4a8fa20d861107300d"}, ] [package.dependencies] -execnet = ">=1.1" -pytest = ">=6.2.0" +execnet = ">=2.1" +pytest = ">=7.0.0" [package.extras] psutil = ["psutil (>=3.0)"] @@ -5035,99 +5032,99 @@ files = [ [[package]] name = "pyzmq" -version = "26.0.2" +version = "26.0.3" description = "Python bindings for 0MQ" optional = false python-versions = ">=3.7" files = [ - {file = "pyzmq-26.0.2-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:1a60a03b01e8c9c58932ec0cca15b1712d911c2800eb82d4281bc1ae5b6dad50"}, - {file = "pyzmq-26.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:949067079e14ea1973bd740255e0840118c163d4bce8837f539d749f145cf5c3"}, - {file = "pyzmq-26.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37e7edfa6cf96d036a403775c96afa25058d1bb940a79786a9a2fc94a783abe3"}, - {file = "pyzmq-26.0.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:903cc7a84a7d4326b43755c368780800e035aa3d711deae84a533fdffa8755b0"}, - {file = "pyzmq-26.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6cb2e41af165e5f327d06fbdd79a42a4e930267fade4e9f92d17f3ccce03f3a7"}, - {file = "pyzmq-26.0.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:55353b8189adcfc4c125fc4ce59d477744118e9c0ec379dd0999c5fa120ac4f5"}, - {file = "pyzmq-26.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:f961423ff6236a752ced80057a20e623044df95924ed1009f844cde8b3a595f9"}, - {file = "pyzmq-26.0.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:ba77fe84fe4f5f3dc0ef681a6d366685c8ffe1c8439c1d7530997b05ac06a04b"}, - {file = "pyzmq-26.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:52589f0a745ef61b9c75c872cf91f8c1f7c0668eb3dd99d7abd639d8c0fb9ca7"}, - {file = "pyzmq-26.0.2-cp310-cp310-win32.whl", hash = "sha256:b7b6d2a46c7afe2ad03ec8faf9967090c8ceae85c4d8934d17d7cae6f9062b64"}, - {file = "pyzmq-26.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:86531e20de249d9204cc6d8b13d5a30537748c78820215161d8a3b9ea58ca111"}, - {file = "pyzmq-26.0.2-cp310-cp310-win_arm64.whl", hash = "sha256:f26a05029ecd2bd306b941ff8cb80f7620b7901421052bc429d238305b1cbf2f"}, - {file = "pyzmq-26.0.2-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:70770e296a9cb03d955540c99360aab861cbb3cba29516abbd106a15dbd91268"}, - {file = "pyzmq-26.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2740fd7161b39e178554ebf21aa5667a1c9ef0cd2cb74298fd4ef017dae7aec4"}, - {file = "pyzmq-26.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5e3706c32dea077faa42b1c92d825b7f86c866f72532d342e0be5e64d14d858"}, - {file = "pyzmq-26.0.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0fa1416876194927f7723d6b7171b95e1115602967fc6bfccbc0d2d51d8ebae1"}, - {file = "pyzmq-26.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ef9a79a48794099c57dc2df00340b5d47c5caa1792f9ddb8c7a26b1280bd575"}, - {file = "pyzmq-26.0.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1c60fcdfa3229aeee4291c5d60faed3a813b18bdadb86299c4bf49e8e51e8605"}, - {file = "pyzmq-26.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e943c39c206b04df2eb5d71305761d7c3ca75fd49452115ea92db1b5b98dbdef"}, - {file = "pyzmq-26.0.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8da0ed8a598693731c76659880a668f4748b59158f26ed283a93f7f04d47447e"}, - {file = "pyzmq-26.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:7bf51970b11d67096bede97cdbad0f4333f7664f4708b9b2acb352bf4faa3140"}, - {file = "pyzmq-26.0.2-cp311-cp311-win32.whl", hash = "sha256:6f8e6bd5d066be605faa9fe5ec10aa1a46ad9f18fc8646f2b9aaefc8fb575742"}, - {file = "pyzmq-26.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:6d03da3a0ae691b361edcb39530075461202f699ce05adbb15055a0e1c9bcaa4"}, - {file = "pyzmq-26.0.2-cp311-cp311-win_arm64.whl", hash = "sha256:f84e33321b68ff00b60e9dbd1a483e31ab6022c577c8de525b8e771bd274ce68"}, - {file = "pyzmq-26.0.2-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:44c33ebd1c62a01db7fbc24e18bdda569d6639217d13d5929e986a2b0f69070d"}, - {file = "pyzmq-26.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ac04f904b4fce4afea9cdccbb78e24d468cb610a839d5a698853e14e2a3f9ecf"}, - {file = "pyzmq-26.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2133de5ba9adc5f481884ccb699eac9ce789708292945c05746880f95b241c0"}, - {file = "pyzmq-26.0.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7753c67c570d7fc80c2dc59b90ca1196f1224e0e2e29a548980c95fe0fe27fc1"}, - {file = "pyzmq-26.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d4e51632e6b12e65e8d9d7612446ecda2eda637a868afa7bce16270194650dd"}, - {file = "pyzmq-26.0.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d6c38806f6ecd0acf3104b8d7e76a206bcf56dadd6ce03720d2fa9d9157d5718"}, - {file = "pyzmq-26.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:48f496bbe14686b51cec15406323ae6942851e14022efd7fc0e2ecd092c5982c"}, - {file = "pyzmq-26.0.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e84a3161149c75bb7a7dc8646384186c34033e286a67fec1ad1bdedea165e7f4"}, - {file = "pyzmq-26.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:dabf796c67aa9f5a4fcc956d47f0d48b5c1ed288d628cf53aa1cf08e88654343"}, - {file = "pyzmq-26.0.2-cp312-cp312-win32.whl", hash = "sha256:3eee4c676af1b109f708d80ef0cf57ecb8aaa5900d1edaf90406aea7e0e20e37"}, - {file = "pyzmq-26.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:26721fec65846b3e4450dad050d67d31b017f97e67f7e0647b5f98aa47f828cf"}, - {file = "pyzmq-26.0.2-cp312-cp312-win_arm64.whl", hash = "sha256:653955c6c233e90de128a1b8e882abc7216f41f44218056bd519969c8c413a15"}, - {file = "pyzmq-26.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:becd8d8fb068fbb5a52096efd83a2d8e54354383f691781f53a4c26aee944542"}, - {file = "pyzmq-26.0.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:7a15e5465e7083c12517209c9dd24722b25e9b63c49a563922922fc03554eb35"}, - {file = "pyzmq-26.0.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e8158ac8616941f874841f9fa0f6d2f1466178c2ff91ea08353fdc19de0d40c2"}, - {file = "pyzmq-26.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea2c6a53e28c7066ea7db86fcc0b71d78d01b818bb11d4a4341ec35059885295"}, - {file = "pyzmq-26.0.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:bdbc7dab0b0e9c62c97b732899c4242e3282ba803bad668e03650b59b165466e"}, - {file = "pyzmq-26.0.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:e74b6d5ef57bb65bf1b4a37453d8d86d88550dde3fb0f23b1f1a24e60c70af5b"}, - {file = "pyzmq-26.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ed4c6ee624ecbc77b18aeeb07bf0700d26571ab95b8f723f0d02e056b5bce438"}, - {file = "pyzmq-26.0.2-cp37-cp37m-win32.whl", hash = "sha256:8a98b3cb0484b83c19d8fb5524c8a469cd9f10e743f5904ac285d92678ee761f"}, - {file = "pyzmq-26.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:aa5f95d71b6eca9cec28aa0a2f8310ea53dea313b63db74932879ff860c1fb8d"}, - {file = "pyzmq-26.0.2-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:5ff56c76ce77b9805378a7a73032c17cbdb1a5b84faa1df03c5d3e306e5616df"}, - {file = "pyzmq-26.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bab697fc1574fee4b81da955678708567c43c813c84c91074e452bda5346c921"}, - {file = "pyzmq-26.0.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0c0fed8aa9ba0488ee1cbdaa304deea92d52fab43d373297002cfcc69c0a20c5"}, - {file = "pyzmq-26.0.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:606b922699fcec472ed814dda4dc3ff7c748254e0b26762a0ba21a726eb1c107"}, - {file = "pyzmq-26.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45f0fd82bad4d199fa993fbf0ac586a7ac5879addbe436a35a389df7e0eb4c91"}, - {file = "pyzmq-26.0.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:166c5e41045939a52c01e6f374e493d9a6a45dfe677360d3e7026e38c42e8906"}, - {file = "pyzmq-26.0.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d566e859e8b8d5bca08467c093061774924b3d78a5ba290e82735b2569edc84b"}, - {file = "pyzmq-26.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:264ee0e72b72ca59279dc320deab5ae0fac0d97881aed1875ce4bde2e56ffde0"}, - {file = "pyzmq-26.0.2-cp38-cp38-win32.whl", hash = "sha256:3152bbd3a4744cbdd83dfb210ed701838b8b0c9065cef14671d6d91df12197d0"}, - {file = "pyzmq-26.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:bf77601d75ca692c179154b7e5943c286a4aaffec02c491afe05e60493ce95f2"}, - {file = "pyzmq-26.0.2-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:c770a7545b3deca2db185b59175e710a820dd4ed43619f4c02e90b0e227c6252"}, - {file = "pyzmq-26.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d47175f0a380bfd051726bc5c0054036ae4a5d8caf922c62c8a172ccd95c1a2a"}, - {file = "pyzmq-26.0.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9bce298c1ce077837e110367c321285dc4246b531cde1abfc27e4a5bbe2bed4d"}, - {file = "pyzmq-26.0.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c40b09b7e184d6e3e1be1c8af2cc320c0f9f610d8a5df3dd866e6e6e4e32b235"}, - {file = "pyzmq-26.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d420d856bf728713874cefb911398efe69e1577835851dd297a308a78c14c249"}, - {file = "pyzmq-26.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d792d3cab987058451e55c70c5926e93e2ceb68ca5a2334863bb903eb860c9cb"}, - {file = "pyzmq-26.0.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:83ec17729cf6d3464dab98a11e98294fcd50e6b17eaabd3d841515c23f6dbd3a"}, - {file = "pyzmq-26.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47c17d5ebfa88ae90f08960c97b49917098665b8cd8be31f2c24e177bcf37a0f"}, - {file = "pyzmq-26.0.2-cp39-cp39-win32.whl", hash = "sha256:d509685d1cd1d018705a811c5f9d5bc237790936ead6d06f6558b77e16cc7235"}, - {file = "pyzmq-26.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:c7cc8cc009e8f6989a6d86c96f87dae5f5fb07d6c96916cdc7719d546152c7db"}, - {file = "pyzmq-26.0.2-cp39-cp39-win_arm64.whl", hash = "sha256:3ada31cb879cd7532f4a85b501f4255c747d4813ab76b35c49ed510ce4865b45"}, - {file = "pyzmq-26.0.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0a6ceaddc830dd3ca86cb8451cf373d1f05215368e11834538c2902ed5205139"}, - {file = "pyzmq-26.0.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a967681463aa7a99eb9a62bb18229b653b45c10ff0947b31cc0837a83dfb86f"}, - {file = "pyzmq-26.0.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6472a73bc115bc40a2076609a90894775abe6faf19a78375675a2f889a613071"}, - {file = "pyzmq-26.0.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d6aea92bcccfe5e5524d3c70a6f16ffdae548390ddad26f4207d55c55a40593"}, - {file = "pyzmq-26.0.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:e025f6351e49d48a5aa2f5a09293aa769b0ee7369c25bed551647234b7fa0c75"}, - {file = "pyzmq-26.0.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:40bd7ebe4dbb37d27f0c56e2a844f360239343a99be422085e13e97da13f73f9"}, - {file = "pyzmq-26.0.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1dd40d586ad6f53764104df6e01810fe1b4e88fd353774629a5e6fe253813f79"}, - {file = "pyzmq-26.0.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f2aca15e9ad8c8657b5b3d7ae3d1724dc8c1c1059c06b4b674c3aa36305f4930"}, - {file = "pyzmq-26.0.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:450ec234736732eb0ebeffdb95a352450d4592f12c3e087e2a9183386d22c8bf"}, - {file = "pyzmq-26.0.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:f43be2bebbd09360a2f23af83b243dc25ffe7b583ea8c722e6df03e03a55f02f"}, - {file = "pyzmq-26.0.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:867f55e54aff254940bcec5eec068e7c0ac1e6bf360ab91479394a8bf356b0e6"}, - {file = "pyzmq-26.0.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b4dbc033c5ad46f8c429bf238c25a889b8c1d86bfe23a74e1031a991cb3f0000"}, - {file = "pyzmq-26.0.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6e8dd2961462e337e21092ec2da0c69d814dcb1b6e892955a37444a425e9cfb8"}, - {file = "pyzmq-26.0.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35391e72df6c14a09b697c7b94384947c1dd326aca883ff98ff137acdf586c33"}, - {file = "pyzmq-26.0.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:1c3d3c92fa54eda94ab369ca5b8d35059987c326ba5e55326eb068862f64b1fc"}, - {file = "pyzmq-26.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e7aa61a9cc4f0523373e31fc9255bf4567185a099f85ca3598e64de484da3ab2"}, - {file = "pyzmq-26.0.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee53a8191271f144cc20b12c19daa9f1546adc84a2f33839e3338039b55c373c"}, - {file = "pyzmq-26.0.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ac60a980f07fa988983f7bfe6404ef3f1e4303f5288a01713bc1266df6d18783"}, - {file = "pyzmq-26.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88896b1b4817d7b2fe1ec7205c4bbe07bf5d92fb249bf2d226ddea8761996068"}, - {file = "pyzmq-26.0.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:18dfffe23751edee917764ffa133d5d3fef28dfd1cf3adebef8c90bc854c74c4"}, - {file = "pyzmq-26.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:6926dd14cfe6967d3322640b6d5c3c3039db71716a5e43cca6e3b474e73e0b36"}, - {file = "pyzmq-26.0.2.tar.gz", hash = "sha256:f0f9bb370449158359bb72a3e12c658327670c0ffe6fbcd1af083152b64f9df0"}, + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:44dd6fc3034f1eaa72ece33588867df9e006a7303725a12d64c3dff92330f625"}, + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:acb704195a71ac5ea5ecf2811c9ee19ecdc62b91878528302dd0be1b9451cc90"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dbb9c997932473a27afa93954bb77a9f9b786b4ccf718d903f35da3232317de"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6bcb34f869d431799c3ee7d516554797f7760cb2198ecaa89c3f176f72d062be"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ece17ec5f20d7d9b442e5174ae9f020365d01ba7c112205a4d59cf19dc38ee"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ba6e5e6588e49139a0979d03a7deb9c734bde647b9a8808f26acf9c547cab1bf"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3bf8b000a4e2967e6dfdd8656cd0757d18c7e5ce3d16339e550bd462f4857e59"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2136f64fbb86451dbbf70223635a468272dd20075f988a102bf8a3f194a411dc"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8918973fbd34e7814f59143c5f600ecd38b8038161239fd1a3d33d5817a38b8"}, + {file = "pyzmq-26.0.3-cp310-cp310-win32.whl", hash = "sha256:0aaf982e68a7ac284377d051c742610220fd06d330dcd4c4dbb4cdd77c22a537"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:f1a9b7d00fdf60b4039f4455afd031fe85ee8305b019334b72dcf73c567edc47"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:80b12f25d805a919d53efc0a5ad7c0c0326f13b4eae981a5d7b7cc343318ebb7"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:a72a84570f84c374b4c287183debc776dc319d3e8ce6b6a0041ce2e400de3f32"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ca684ee649b55fd8f378127ac8462fb6c85f251c2fb027eb3c887e8ee347bcd"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e222562dc0f38571c8b1ffdae9d7adb866363134299264a1958d077800b193b7"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17cde1db0754c35a91ac00b22b25c11da6eec5746431d6e5092f0cd31a3fea9"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7c0c0b3244bb2275abe255d4a30c050d541c6cb18b870975553f1fb6f37527"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ac97a21de3712afe6a6c071abfad40a6224fd14fa6ff0ff8d0c6e6cd4e2f807a"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:88b88282e55fa39dd556d7fc04160bcf39dea015f78e0cecec8ff4f06c1fc2b5"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72b67f966b57dbd18dcc7efbc1c7fc9f5f983e572db1877081f075004614fcdd"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f4b6cecbbf3b7380f3b61de3a7b93cb721125dc125c854c14ddc91225ba52f83"}, + {file = "pyzmq-26.0.3-cp311-cp311-win32.whl", hash = "sha256:eed56b6a39216d31ff8cd2f1d048b5bf1700e4b32a01b14379c3b6dde9ce3aa3"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:3191d312c73e3cfd0f0afdf51df8405aafeb0bad71e7ed8f68b24b63c4f36500"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:b6907da3017ef55139cf0e417c5123a84c7332520e73a6902ff1f79046cd3b94"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"}, + {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c0991f5a96a8e620f7691e61178cd8f457b49e17b7d9cfa2067e2a0a89fc1d5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dbf012d8fcb9f2cf0643b65df3b355fdd74fc0035d70bb5c845e9e30a3a4654b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:01fbfbeb8249a68d257f601deb50c70c929dc2dfe683b754659569e502fbd3aa"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c8eb19abe87029c18f226d42b8a2c9efdd139d08f8bf6e085dd9075446db450"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5344b896e79800af86ad643408ca9aa303a017f6ebff8cee5a3163c1e9aec987"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:204e0f176fd1d067671157d049466869b3ae1fc51e354708b0dc41cf94e23a3a"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a42db008d58530efa3b881eeee4991146de0b790e095f7ae43ba5cc612decbc5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win32.whl", hash = "sha256:8d7a498671ca87e32b54cb47c82a92b40130a26c5197d392720a1bce1b3c77cf"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:3b4032a96410bdc760061b14ed6a33613ffb7f702181ba999df5d16fb96ba16a"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2cc4e280098c1b192c42a849de8de2c8e0f3a84086a76ec5b07bfee29bda7d18"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bde86a2ed3ce587fa2b207424ce15b9a83a9fa14422dcc1c5356a13aed3df9d"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:34106f68e20e6ff253c9f596ea50397dbd8699828d55e8fa18bd4323d8d966e6"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ebbbd0e728af5db9b04e56389e2299a57ea8b9dd15c9759153ee2455b32be6ad"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b1d1c631e5940cac5a0b22c5379c86e8df6a4ec277c7a856b714021ab6cfad"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e891ce81edd463b3b4c3b885c5603c00141151dd9c6936d98a680c8c72fe5c67"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9b273ecfbc590a1b98f014ae41e5cf723932f3b53ba9367cfb676f838038b32c"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b32bff85fb02a75ea0b68f21e2412255b5731f3f389ed9aecc13a6752f58ac97"}, + {file = "pyzmq-26.0.3-cp38-cp38-win32.whl", hash = "sha256:f6c21c00478a7bea93caaaef9e7629145d4153b15a8653e8bb4609d4bc70dbfc"}, + {file = "pyzmq-26.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:3401613148d93ef0fd9aabdbddb212de3db7a4475367f49f590c837355343972"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:2ed8357f4c6e0daa4f3baf31832df8a33334e0fe5b020a61bc8b345a3db7a606"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c1c8f2a2ca45292084c75bb6d3a25545cff0ed931ed228d3a1810ae3758f975f"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b63731993cdddcc8e087c64e9cf003f909262b359110070183d7f3025d1c56b5"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b3cd31f859b662ac5d7f4226ec7d8bd60384fa037fc02aee6ff0b53ba29a3ba8"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:115f8359402fa527cf47708d6f8a0f8234f0e9ca0cab7c18c9c189c194dbf620"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:715bdf952b9533ba13dfcf1f431a8f49e63cecc31d91d007bc1deb914f47d0e4"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:e1258c639e00bf5e8a522fec6c3eaa3e30cf1c23a2f21a586be7e04d50c9acab"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15c59e780be8f30a60816a9adab900c12a58d79c1ac742b4a8df044ab2a6d920"}, + {file = "pyzmq-26.0.3-cp39-cp39-win32.whl", hash = "sha256:d0cdde3c78d8ab5b46595054e5def32a755fc028685add5ddc7403e9f6de9879"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:ce828058d482ef860746bf532822842e0ff484e27f540ef5c813d516dd8896d2"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:788f15721c64109cf720791714dc14afd0f449d63f3a5487724f024345067381"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"}, + {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"}, ] [package.dependencies] @@ -5135,13 +5132,13 @@ cffi = {version = "*", markers = "implementation_name == \"pypy\""} [[package]] name = "qtconsole" -version = "5.5.1" +version = "5.5.2" description = "Jupyter Qt console" optional = false -python-versions = ">= 3.8" +python-versions = ">=3.8" files = [ - {file = "qtconsole-5.5.1-py3-none-any.whl", hash = "sha256:8c75fa3e9b4ed884880ff7cea90a1b67451219279ec33deaee1d59e3df1a5d2b"}, - {file = "qtconsole-5.5.1.tar.gz", hash = "sha256:a0e806c6951db9490628e4df80caec9669b65149c7ba40f9bf033c025a5b56bc"}, + {file = "qtconsole-5.5.2-py3-none-any.whl", hash = "sha256:42d745f3d05d36240244a04e1e1ec2a86d5d9b6edb16dbdef582ccb629e87e0b"}, + {file = "qtconsole-5.5.2.tar.gz", hash = "sha256:6b5fb11274b297463706af84dcbbd5c92273b1f619e6d25d08874b0a88516989"}, ] [package.dependencies] @@ -5196,13 +5193,13 @@ md = ["cmarkgfm (>=0.8.0)"] [[package]] name = "referencing" -version = "0.34.0" +version = "0.35.1" description = "JSON Referencing + Python" optional = false python-versions = ">=3.8" files = [ - {file = "referencing-0.34.0-py3-none-any.whl", hash = "sha256:d53ae300ceddd3169f1ffa9caf2cb7b769e92657e4fafb23d34b93679116dfd4"}, - {file = "referencing-0.34.0.tar.gz", hash = "sha256:5773bd84ef41799a5a8ca72dc34590c041eb01bf9aa02632b4a973fb0181a844"}, + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, ] [package.dependencies] @@ -5211,115 +5208,101 @@ rpds-py = ">=0.7.0" [[package]] name = "regex" -version = "2024.4.16" +version = "2024.5.15" description = "Alternative regular expression module, to replace re." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "regex-2024.4.16-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:fb83cc090eac63c006871fd24db5e30a1f282faa46328572661c0a24a2323a08"}, - {file = "regex-2024.4.16-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8c91e1763696c0eb66340c4df98623c2d4e77d0746b8f8f2bee2c6883fd1fe18"}, - {file = "regex-2024.4.16-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:10188fe732dec829c7acca7422cdd1bf57d853c7199d5a9e96bb4d40db239c73"}, - {file = "regex-2024.4.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:956b58d692f235cfbf5b4f3abd6d99bf102f161ccfe20d2fd0904f51c72c4c66"}, - {file = "regex-2024.4.16-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a70b51f55fd954d1f194271695821dd62054d949efd6368d8be64edd37f55c86"}, - {file = "regex-2024.4.16-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c02fcd2bf45162280613d2e4a1ca3ac558ff921ae4e308ecb307650d3a6ee51"}, - {file = "regex-2024.4.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4ed75ea6892a56896d78f11006161eea52c45a14994794bcfa1654430984b22"}, - {file = "regex-2024.4.16-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd727ad276bb91928879f3aa6396c9a1d34e5e180dce40578421a691eeb77f47"}, - {file = "regex-2024.4.16-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7cbc5d9e8a1781e7be17da67b92580d6ce4dcef5819c1b1b89f49d9678cc278c"}, - {file = "regex-2024.4.16-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:78fddb22b9ef810b63ef341c9fcf6455232d97cfe03938cbc29e2672c436670e"}, - {file = "regex-2024.4.16-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:445ca8d3c5a01309633a0c9db57150312a181146315693273e35d936472df912"}, - {file = "regex-2024.4.16-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:95399831a206211d6bc40224af1c635cb8790ddd5c7493e0bd03b85711076a53"}, - {file = "regex-2024.4.16-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:7731728b6568fc286d86745f27f07266de49603a6fdc4d19c87e8c247be452af"}, - {file = "regex-2024.4.16-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4facc913e10bdba42ec0aee76d029aedda628161a7ce4116b16680a0413f658a"}, - {file = "regex-2024.4.16-cp310-cp310-win32.whl", hash = "sha256:911742856ce98d879acbea33fcc03c1d8dc1106234c5e7d068932c945db209c0"}, - {file = "regex-2024.4.16-cp310-cp310-win_amd64.whl", hash = "sha256:e0a2df336d1135a0b3a67f3bbf78a75f69562c1199ed9935372b82215cddd6e2"}, - {file = "regex-2024.4.16-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:1210365faba7c2150451eb78ec5687871c796b0f1fa701bfd2a4a25420482d26"}, - {file = "regex-2024.4.16-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9ab40412f8cd6f615bfedea40c8bf0407d41bf83b96f6fc9ff34976d6b7037fd"}, - {file = "regex-2024.4.16-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fd80d1280d473500d8086d104962a82d77bfbf2b118053824b7be28cd5a79ea5"}, - {file = "regex-2024.4.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bb966fdd9217e53abf824f437a5a2d643a38d4fd5fd0ca711b9da683d452969"}, - {file = "regex-2024.4.16-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:20b7a68444f536365af42a75ccecb7ab41a896a04acf58432db9e206f4e525d6"}, - {file = "regex-2024.4.16-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b74586dd0b039c62416034f811d7ee62810174bb70dffcca6439f5236249eb09"}, - {file = "regex-2024.4.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c8290b44d8b0af4e77048646c10c6e3aa583c1ca67f3b5ffb6e06cf0c6f0f89"}, - {file = "regex-2024.4.16-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2d80a6749724b37853ece57988b39c4e79d2b5fe2869a86e8aeae3bbeef9eb0"}, - {file = "regex-2024.4.16-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:3a1018e97aeb24e4f939afcd88211ace472ba566efc5bdf53fd8fd7f41fa7170"}, - {file = "regex-2024.4.16-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8d015604ee6204e76569d2f44e5a210728fa917115bef0d102f4107e622b08d5"}, - {file = "regex-2024.4.16-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:3d5ac5234fb5053850d79dd8eb1015cb0d7d9ed951fa37aa9e6249a19aa4f336"}, - {file = "regex-2024.4.16-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:0a38d151e2cdd66d16dab550c22f9521ba79761423b87c01dae0a6e9add79c0d"}, - {file = "regex-2024.4.16-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:159dc4e59a159cb8e4e8f8961eb1fa5d58f93cb1acd1701d8aff38d45e1a84a6"}, - {file = "regex-2024.4.16-cp311-cp311-win32.whl", hash = "sha256:ba2336d6548dee3117520545cfe44dc28a250aa091f8281d28804aa8d707d93d"}, - {file = "regex-2024.4.16-cp311-cp311-win_amd64.whl", hash = "sha256:8f83b6fd3dc3ba94d2b22717f9c8b8512354fd95221ac661784df2769ea9bba9"}, - {file = "regex-2024.4.16-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:80b696e8972b81edf0af2a259e1b2a4a661f818fae22e5fa4fa1a995fb4a40fd"}, - {file = "regex-2024.4.16-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d61ae114d2a2311f61d90c2ef1358518e8f05eafda76eaf9c772a077e0b465ec"}, - {file = "regex-2024.4.16-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8ba6745440b9a27336443b0c285d705ce73adb9ec90e2f2004c64d95ab5a7598"}, - {file = "regex-2024.4.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6295004b2dd37b0835ea5c14a33e00e8cfa3c4add4d587b77287825f3418d310"}, - {file = "regex-2024.4.16-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4aba818dcc7263852aabb172ec27b71d2abca02a593b95fa79351b2774eb1d2b"}, - {file = "regex-2024.4.16-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0800631e565c47520aaa04ae38b96abc5196fe8b4aa9bd864445bd2b5848a7a"}, - {file = "regex-2024.4.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:08dea89f859c3df48a440dbdcd7b7155bc675f2fa2ec8c521d02dc69e877db70"}, - {file = "regex-2024.4.16-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eeaa0b5328b785abc344acc6241cffde50dc394a0644a968add75fcefe15b9d4"}, - {file = "regex-2024.4.16-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:4e819a806420bc010489f4e741b3036071aba209f2e0989d4750b08b12a9343f"}, - {file = "regex-2024.4.16-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:c2d0e7cbb6341e830adcbfa2479fdeebbfbb328f11edd6b5675674e7a1e37730"}, - {file = "regex-2024.4.16-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:91797b98f5e34b6a49f54be33f72e2fb658018ae532be2f79f7c63b4ae225145"}, - {file = "regex-2024.4.16-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:d2da13568eff02b30fd54fccd1e042a70fe920d816616fda4bf54ec705668d81"}, - {file = "regex-2024.4.16-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:370c68dc5570b394cbaadff50e64d705f64debed30573e5c313c360689b6aadc"}, - {file = "regex-2024.4.16-cp312-cp312-win32.whl", hash = "sha256:904c883cf10a975b02ab3478bce652f0f5346a2c28d0a8521d97bb23c323cc8b"}, - {file = "regex-2024.4.16-cp312-cp312-win_amd64.whl", hash = "sha256:785c071c982dce54d44ea0b79cd6dfafddeccdd98cfa5f7b86ef69b381b457d9"}, - {file = "regex-2024.4.16-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e2f142b45c6fed48166faeb4303b4b58c9fcd827da63f4cf0a123c3480ae11fb"}, - {file = "regex-2024.4.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e87ab229332ceb127a165612d839ab87795972102cb9830e5f12b8c9a5c1b508"}, - {file = "regex-2024.4.16-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:81500ed5af2090b4a9157a59dbc89873a25c33db1bb9a8cf123837dcc9765047"}, - {file = "regex-2024.4.16-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b340cccad138ecb363324aa26893963dcabb02bb25e440ebdf42e30963f1a4e0"}, - {file = "regex-2024.4.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c72608e70f053643437bd2be0608f7f1c46d4022e4104d76826f0839199347a"}, - {file = "regex-2024.4.16-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a01fe2305e6232ef3e8f40bfc0f0f3a04def9aab514910fa4203bafbc0bb4682"}, - {file = "regex-2024.4.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:03576e3a423d19dda13e55598f0fd507b5d660d42c51b02df4e0d97824fdcae3"}, - {file = "regex-2024.4.16-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:549c3584993772e25f02d0656ac48abdda73169fe347263948cf2b1cead622f3"}, - {file = "regex-2024.4.16-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:34422d5a69a60b7e9a07a690094e824b66f5ddc662a5fc600d65b7c174a05f04"}, - {file = "regex-2024.4.16-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:5f580c651a72b75c39e311343fe6875d6f58cf51c471a97f15a938d9fe4e0d37"}, - {file = "regex-2024.4.16-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:3399dd8a7495bbb2bacd59b84840eef9057826c664472e86c91d675d007137f5"}, - {file = "regex-2024.4.16-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8d1f86f3f4e2388aa3310b50694ac44daefbd1681def26b4519bd050a398dc5a"}, - {file = "regex-2024.4.16-cp37-cp37m-win32.whl", hash = "sha256:dd5acc0a7d38fdc7a3a6fd3ad14c880819008ecb3379626e56b163165162cc46"}, - {file = "regex-2024.4.16-cp37-cp37m-win_amd64.whl", hash = "sha256:ba8122e3bb94ecda29a8de4cf889f600171424ea586847aa92c334772d200331"}, - {file = "regex-2024.4.16-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:743deffdf3b3481da32e8a96887e2aa945ec6685af1cfe2bcc292638c9ba2f48"}, - {file = "regex-2024.4.16-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7571f19f4a3fd00af9341c7801d1ad1967fc9c3f5e62402683047e7166b9f2b4"}, - {file = "regex-2024.4.16-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:df79012ebf6f4efb8d307b1328226aef24ca446b3ff8d0e30202d7ebcb977a8c"}, - {file = "regex-2024.4.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e757d475953269fbf4b441207bb7dbdd1c43180711b6208e129b637792ac0b93"}, - {file = "regex-2024.4.16-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4313ab9bf6a81206c8ac28fdfcddc0435299dc88cad12cc6305fd0e78b81f9e4"}, - {file = "regex-2024.4.16-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d83c2bc678453646f1a18f8db1e927a2d3f4935031b9ad8a76e56760461105dd"}, - {file = "regex-2024.4.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9df1bfef97db938469ef0a7354b2d591a2d438bc497b2c489471bec0e6baf7c4"}, - {file = "regex-2024.4.16-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62120ed0de69b3649cc68e2965376048793f466c5a6c4370fb27c16c1beac22d"}, - {file = "regex-2024.4.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c2ef6f7990b6e8758fe48ad08f7e2f66c8f11dc66e24093304b87cae9037bb4a"}, - {file = "regex-2024.4.16-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8fc6976a3395fe4d1fbeb984adaa8ec652a1e12f36b56ec8c236e5117b585427"}, - {file = "regex-2024.4.16-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:03e68f44340528111067cecf12721c3df4811c67268b897fbe695c95f860ac42"}, - {file = "regex-2024.4.16-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:ec7e0043b91115f427998febaa2beb82c82df708168b35ece3accb610b91fac1"}, - {file = "regex-2024.4.16-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:c21fc21a4c7480479d12fd8e679b699f744f76bb05f53a1d14182b31f55aac76"}, - {file = "regex-2024.4.16-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:12f6a3f2f58bb7344751919a1876ee1b976fe08b9ffccb4bbea66f26af6017b9"}, - {file = "regex-2024.4.16-cp38-cp38-win32.whl", hash = "sha256:479595a4fbe9ed8f8f72c59717e8cf222da2e4c07b6ae5b65411e6302af9708e"}, - {file = "regex-2024.4.16-cp38-cp38-win_amd64.whl", hash = "sha256:0534b034fba6101611968fae8e856c1698da97ce2efb5c2b895fc8b9e23a5834"}, - {file = "regex-2024.4.16-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a7ccdd1c4a3472a7533b0a7aa9ee34c9a2bef859ba86deec07aff2ad7e0c3b94"}, - {file = "regex-2024.4.16-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6f2f017c5be19984fbbf55f8af6caba25e62c71293213f044da3ada7091a4455"}, - {file = "regex-2024.4.16-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:803b8905b52de78b173d3c1e83df0efb929621e7b7c5766c0843704d5332682f"}, - {file = "regex-2024.4.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:684008ec44ad275832a5a152f6e764bbe1914bea10968017b6feaecdad5736e0"}, - {file = "regex-2024.4.16-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65436dce9fdc0aeeb0a0effe0839cb3d6a05f45aa45a4d9f9c60989beca78b9c"}, - {file = "regex-2024.4.16-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ea355eb43b11764cf799dda62c658c4d2fdb16af41f59bb1ccfec517b60bcb07"}, - {file = "regex-2024.4.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98c1165f3809ce7774f05cb74e5408cd3aa93ee8573ae959a97a53db3ca3180d"}, - {file = "regex-2024.4.16-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cccc79a9be9b64c881f18305a7c715ba199e471a3973faeb7ba84172abb3f317"}, - {file = "regex-2024.4.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:00169caa125f35d1bca6045d65a662af0202704489fada95346cfa092ec23f39"}, - {file = "regex-2024.4.16-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6cc38067209354e16c5609b66285af17a2863a47585bcf75285cab33d4c3b8df"}, - {file = "regex-2024.4.16-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:23cff1b267038501b179ccbbd74a821ac4a7192a1852d1d558e562b507d46013"}, - {file = "regex-2024.4.16-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:b9d320b3bf82a39f248769fc7f188e00f93526cc0fe739cfa197868633d44701"}, - {file = "regex-2024.4.16-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:89ec7f2c08937421bbbb8b48c54096fa4f88347946d4747021ad85f1b3021b3c"}, - {file = "regex-2024.4.16-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4918fd5f8b43aa7ec031e0fef1ee02deb80b6afd49c85f0790be1dc4ce34cb50"}, - {file = "regex-2024.4.16-cp39-cp39-win32.whl", hash = "sha256:684e52023aec43bdf0250e843e1fdd6febbe831bd9d52da72333fa201aaa2335"}, - {file = "regex-2024.4.16-cp39-cp39-win_amd64.whl", hash = "sha256:e697e1c0238133589e00c244a8b676bc2cfc3ab4961318d902040d099fec7483"}, - {file = "regex-2024.4.16.tar.gz", hash = "sha256:fa454d26f2e87ad661c4f0c5a5fe4cf6aab1e307d1b94f16ffdfcb089ba685c0"}, + {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a81e3cfbae20378d75185171587cbf756015ccb14840702944f014e0d93ea09f"}, + {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b59138b219ffa8979013be7bc85bb60c6f7b7575df3d56dc1e403a438c7a3f6"}, + {file = "regex-2024.5.15-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0bd000c6e266927cb7a1bc39d55be95c4b4f65c5be53e659537537e019232b1"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5eaa7ddaf517aa095fa8da0b5015c44d03da83f5bd49c87961e3c997daed0de7"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba68168daedb2c0bab7fd7e00ced5ba90aebf91024dea3c88ad5063c2a562cca"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6e8d717bca3a6e2064fc3a08df5cbe366369f4b052dcd21b7416e6d71620dca1"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1337b7dbef9b2f71121cdbf1e97e40de33ff114801263b275aafd75303bd62b5"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9ebd0a36102fcad2f03696e8af4ae682793a5d30b46c647eaf280d6cfb32796"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9efa1a32ad3a3ea112224897cdaeb6aa00381627f567179c0314f7b65d354c62"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1595f2d10dff3d805e054ebdc41c124753631b6a471b976963c7b28543cf13b0"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b802512f3e1f480f41ab5f2cfc0e2f761f08a1f41092d6718868082fc0d27143"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:a0981022dccabca811e8171f913de05720590c915b033b7e601f35ce4ea7019f"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:19068a6a79cf99a19ccefa44610491e9ca02c2be3305c7760d3831d38a467a6f"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1b5269484f6126eee5e687785e83c6b60aad7663dafe842b34691157e5083e53"}, + {file = "regex-2024.5.15-cp310-cp310-win32.whl", hash = "sha256:ada150c5adfa8fbcbf321c30c751dc67d2f12f15bd183ffe4ec7cde351d945b3"}, + {file = "regex-2024.5.15-cp310-cp310-win_amd64.whl", hash = "sha256:ac394ff680fc46b97487941f5e6ae49a9f30ea41c6c6804832063f14b2a5a145"}, + {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f5b1dff3ad008dccf18e652283f5e5339d70bf8ba7c98bf848ac33db10f7bc7a"}, + {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c6a2b494a76983df8e3d3feea9b9ffdd558b247e60b92f877f93a1ff43d26656"}, + {file = "regex-2024.5.15-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a32b96f15c8ab2e7d27655969a23895eb799de3665fa94349f3b2fbfd547236f"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10002e86e6068d9e1c91eae8295ef690f02f913c57db120b58fdd35a6bb1af35"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec54d5afa89c19c6dd8541a133be51ee1017a38b412b1321ccb8d6ddbeb4cf7d"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10e4ce0dca9ae7a66e6089bb29355d4432caed736acae36fef0fdd7879f0b0cb"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e507ff1e74373c4d3038195fdd2af30d297b4f0950eeda6f515ae3d84a1770f"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1f059a4d795e646e1c37665b9d06062c62d0e8cc3c511fe01315973a6542e40"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0721931ad5fe0dda45d07f9820b90b2148ccdd8e45bb9e9b42a146cb4f695649"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:833616ddc75ad595dee848ad984d067f2f31be645d603e4d158bba656bbf516c"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:287eb7f54fc81546346207c533ad3c2c51a8d61075127d7f6d79aaf96cdee890"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:19dfb1c504781a136a80ecd1fff9f16dddf5bb43cec6871778c8a907a085bb3d"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:119af6e56dce35e8dfb5222573b50c89e5508d94d55713c75126b753f834de68"}, + {file = "regex-2024.5.15-cp311-cp311-win32.whl", hash = "sha256:1c1c174d6ec38d6c8a7504087358ce9213d4332f6293a94fbf5249992ba54efa"}, + {file = "regex-2024.5.15-cp311-cp311-win_amd64.whl", hash = "sha256:9e717956dcfd656f5055cc70996ee2cc82ac5149517fc8e1b60261b907740201"}, + {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:632b01153e5248c134007209b5c6348a544ce96c46005d8456de1d552455b014"}, + {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e64198f6b856d48192bf921421fdd8ad8eb35e179086e99e99f711957ffedd6e"}, + {file = "regex-2024.5.15-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68811ab14087b2f6e0fc0c2bae9ad689ea3584cad6917fc57be6a48bbd012c49"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ec0c2fea1e886a19c3bee0cd19d862b3aa75dcdfb42ebe8ed30708df64687a"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0c0c0003c10f54a591d220997dd27d953cd9ccc1a7294b40a4be5312be8797b"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2431b9e263af1953c55abbd3e2efca67ca80a3de8a0437cb58e2421f8184717a"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a605586358893b483976cffc1723fb0f83e526e8f14c6e6614e75919d9862cf"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:391d7f7f1e409d192dba8bcd42d3e4cf9e598f3979cdaed6ab11288da88cb9f2"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9ff11639a8d98969c863d4617595eb5425fd12f7c5ef6621a4b74b71ed8726d5"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4eee78a04e6c67e8391edd4dad3279828dd66ac4b79570ec998e2155d2e59fd5"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:8fe45aa3f4aa57faabbc9cb46a93363edd6197cbc43523daea044e9ff2fea83e"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:d0a3d8d6acf0c78a1fff0e210d224b821081330b8524e3e2bc5a68ef6ab5803d"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c486b4106066d502495b3025a0a7251bf37ea9540433940a23419461ab9f2a80"}, + {file = "regex-2024.5.15-cp312-cp312-win32.whl", hash = "sha256:c49e15eac7c149f3670b3e27f1f28a2c1ddeccd3a2812cba953e01be2ab9b5fe"}, + {file = "regex-2024.5.15-cp312-cp312-win_amd64.whl", hash = "sha256:673b5a6da4557b975c6c90198588181029c60793835ce02f497ea817ff647cb2"}, + {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:87e2a9c29e672fc65523fb47a90d429b70ef72b901b4e4b1bd42387caf0d6835"}, + {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c3bea0ba8b73b71b37ac833a7f3fd53825924165da6a924aec78c13032f20850"}, + {file = "regex-2024.5.15-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bfc4f82cabe54f1e7f206fd3d30fda143f84a63fe7d64a81558d6e5f2e5aaba9"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5bb9425fe881d578aeca0b2b4b3d314ec88738706f66f219c194d67179337cb"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64c65783e96e563103d641760664125e91bd85d8e49566ee560ded4da0d3e704"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cf2430df4148b08fb4324b848672514b1385ae3807651f3567871f130a728cc3"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5397de3219a8b08ae9540c48f602996aa6b0b65d5a61683e233af8605c42b0f2"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:455705d34b4154a80ead722f4f185b04c4237e8e8e33f265cd0798d0e44825fa"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b2b6f1b3bb6f640c1a92be3bbfbcb18657b125b99ecf141fb3310b5282c7d4ed"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3ad070b823ca5890cab606c940522d05d3d22395d432f4aaaf9d5b1653e47ced"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5b5467acbfc153847d5adb21e21e29847bcb5870e65c94c9206d20eb4e99a384"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e6662686aeb633ad65be2a42b4cb00178b3fbf7b91878f9446075c404ada552f"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2b4c884767504c0e2401babe8b5b7aea9148680d2e157fa28f01529d1f7fcf67"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3cd7874d57f13bf70078f1ff02b8b0aa48d5b9ed25fc48547516c6aba36f5741"}, + {file = "regex-2024.5.15-cp38-cp38-win32.whl", hash = "sha256:e4682f5ba31f475d58884045c1a97a860a007d44938c4c0895f41d64481edbc9"}, + {file = "regex-2024.5.15-cp38-cp38-win_amd64.whl", hash = "sha256:d99ceffa25ac45d150e30bd9ed14ec6039f2aad0ffa6bb87a5936f5782fc1569"}, + {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:13cdaf31bed30a1e1c2453ef6015aa0983e1366fad2667657dbcac7b02f67133"}, + {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cac27dcaa821ca271855a32188aa61d12decb6fe45ffe3e722401fe61e323cd1"}, + {file = "regex-2024.5.15-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7dbe2467273b875ea2de38ded4eba86cbcbc9a1a6d0aa11dcf7bd2e67859c435"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64f18a9a3513a99c4bef0e3efd4c4a5b11228b48aa80743be822b71e132ae4f5"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d347a741ea871c2e278fde6c48f85136c96b8659b632fb57a7d1ce1872547600"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1878b8301ed011704aea4c806a3cadbd76f84dece1ec09cc9e4dc934cfa5d4da"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4babf07ad476aaf7830d77000874d7611704a7fcf68c9c2ad151f5d94ae4bfc4"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35cb514e137cb3488bce23352af3e12fb0dbedd1ee6e60da053c69fb1b29cc6c"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cdd09d47c0b2efee9378679f8510ee6955d329424c659ab3c5e3a6edea696294"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:72d7a99cd6b8f958e85fc6ca5b37c4303294954eac1376535b03c2a43eb72629"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:a094801d379ab20c2135529948cb84d417a2169b9bdceda2a36f5f10977ebc16"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c0c18345010870e58238790a6779a1219b4d97bd2e77e1140e8ee5d14df071aa"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:16093f563098448ff6b1fa68170e4acbef94e6b6a4e25e10eae8598bb1694b5d"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e38a7d4e8f633a33b4c7350fbd8bad3b70bf81439ac67ac38916c4a86b465456"}, + {file = "regex-2024.5.15-cp39-cp39-win32.whl", hash = "sha256:71a455a3c584a88f654b64feccc1e25876066c4f5ef26cd6dd711308aa538694"}, + {file = "regex-2024.5.15-cp39-cp39-win_amd64.whl", hash = "sha256:cab12877a9bdafde5500206d1020a584355a97884dfd388af3699e9137bf7388"}, + {file = "regex-2024.5.15.tar.gz", hash = "sha256:d3ee02d9e5f482cc8309134a91eeaacbdd2261ba111b0fef3748eeb4913e6a2c"}, ] [[package]] name = "requests" -version = "2.32.2" +version = "2.32.3" description = "Python HTTP for Humans." optional = false python-versions = ">=3.8" files = [ - {file = "requests-2.32.2-py3-none-any.whl", hash = "sha256:fc06670dd0ed212426dfeb94fc1b983d917c4f9847c863f313c9dfaaffb7c23c"}, - {file = "requests-2.32.2.tar.gz", hash = "sha256:dd951ff5ecf3e3b3aa26b40703ba77495dab41da839ae72ef3c8e5d8e2433289"}, + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, ] [package.dependencies] @@ -5424,110 +5407,110 @@ jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "rpds-py" -version = "0.18.0" +version = "0.18.1" description = "Python bindings to Rust's persistent data structures (rpds)" optional = false python-versions = ">=3.8" files = [ - {file = "rpds_py-0.18.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:5b4e7d8d6c9b2e8ee2d55c90b59c707ca59bc30058269b3db7b1f8df5763557e"}, - {file = "rpds_py-0.18.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c463ed05f9dfb9baebef68048aed8dcdc94411e4bf3d33a39ba97e271624f8f7"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:01e36a39af54a30f28b73096dd39b6802eddd04c90dbe161c1b8dbe22353189f"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d62dec4976954a23d7f91f2f4530852b0c7608116c257833922a896101336c51"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dd18772815d5f008fa03d2b9a681ae38d5ae9f0e599f7dda233c439fcaa00d40"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:923d39efa3cfb7279a0327e337a7958bff00cc447fd07a25cddb0a1cc9a6d2da"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39514da80f971362f9267c600b6d459bfbbc549cffc2cef8e47474fddc9b45b1"}, - {file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a34d557a42aa28bd5c48a023c570219ba2593bcbbb8dc1b98d8cf5d529ab1434"}, - {file = "rpds_py-0.18.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:93df1de2f7f7239dc9cc5a4a12408ee1598725036bd2dedadc14d94525192fc3"}, - {file = "rpds_py-0.18.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:34b18ba135c687f4dac449aa5157d36e2cbb7c03cbea4ddbd88604e076aa836e"}, - {file = "rpds_py-0.18.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:c0b5dcf9193625afd8ecc92312d6ed78781c46ecbf39af9ad4681fc9f464af88"}, - {file = "rpds_py-0.18.0-cp310-none-win32.whl", hash = "sha256:c4325ff0442a12113a6379af66978c3fe562f846763287ef66bdc1d57925d337"}, - {file = "rpds_py-0.18.0-cp310-none-win_amd64.whl", hash = "sha256:7223a2a5fe0d217e60a60cdae28d6949140dde9c3bcc714063c5b463065e3d66"}, - {file = "rpds_py-0.18.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:3a96e0c6a41dcdba3a0a581bbf6c44bb863f27c541547fb4b9711fd8cf0ffad4"}, - {file = "rpds_py-0.18.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30f43887bbae0d49113cbaab729a112251a940e9b274536613097ab8b4899cf6"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fcb25daa9219b4cf3a0ab24b0eb9a5cc8949ed4dc72acb8fa16b7e1681aa3c58"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d68c93e381010662ab873fea609bf6c0f428b6d0bb00f2c6939782e0818d37bf"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b34b7aa8b261c1dbf7720b5d6f01f38243e9b9daf7e6b8bc1fd4657000062f2c"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2e6d75ab12b0bbab7215e5d40f1e5b738aa539598db27ef83b2ec46747df90e1"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b8612cd233543a3781bc659c731b9d607de65890085098986dfd573fc2befe5"}, - {file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aec493917dd45e3c69d00a8874e7cbed844efd935595ef78a0f25f14312e33c6"}, - {file = "rpds_py-0.18.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:661d25cbffaf8cc42e971dd570d87cb29a665f49f4abe1f9e76be9a5182c4688"}, - {file = "rpds_py-0.18.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:1df3659d26f539ac74fb3b0c481cdf9d725386e3552c6fa2974f4d33d78e544b"}, - {file = "rpds_py-0.18.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a1ce3ba137ed54f83e56fb983a5859a27d43a40188ba798993812fed73c70836"}, - {file = "rpds_py-0.18.0-cp311-none-win32.whl", hash = "sha256:69e64831e22a6b377772e7fb337533c365085b31619005802a79242fee620bc1"}, - {file = "rpds_py-0.18.0-cp311-none-win_amd64.whl", hash = "sha256:998e33ad22dc7ec7e030b3df701c43630b5bc0d8fbc2267653577e3fec279afa"}, - {file = "rpds_py-0.18.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:7f2facbd386dd60cbbf1a794181e6aa0bd429bd78bfdf775436020172e2a23f0"}, - {file = "rpds_py-0.18.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1d9a5be316c15ffb2b3c405c4ff14448c36b4435be062a7f578ccd8b01f0c4d8"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd5bf1af8efe569654bbef5a3e0a56eca45f87cfcffab31dd8dde70da5982475"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5417558f6887e9b6b65b4527232553c139b57ec42c64570569b155262ac0754f"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:56a737287efecafc16f6d067c2ea0117abadcd078d58721f967952db329a3e5c"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8f03bccbd8586e9dd37219bce4d4e0d3ab492e6b3b533e973fa08a112cb2ffc9"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4457a94da0d5c53dc4b3e4de1158bdab077db23c53232f37a3cb7afdb053a4e3"}, - {file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0ab39c1ba9023914297dd88ec3b3b3c3f33671baeb6acf82ad7ce883f6e8e157"}, - {file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9d54553c1136b50fd12cc17e5b11ad07374c316df307e4cfd6441bea5fb68496"}, - {file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0af039631b6de0397ab2ba16eaf2872e9f8fca391b44d3d8cac317860a700a3f"}, - {file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:84ffab12db93b5f6bad84c712c92060a2d321b35c3c9960b43d08d0f639d60d7"}, - {file = "rpds_py-0.18.0-cp312-none-win32.whl", hash = "sha256:685537e07897f173abcf67258bee3c05c374fa6fff89d4c7e42fb391b0605e98"}, - {file = "rpds_py-0.18.0-cp312-none-win_amd64.whl", hash = "sha256:e003b002ec72c8d5a3e3da2989c7d6065b47d9eaa70cd8808b5384fbb970f4ec"}, - {file = "rpds_py-0.18.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:08f9ad53c3f31dfb4baa00da22f1e862900f45908383c062c27628754af2e88e"}, - {file = "rpds_py-0.18.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c0013fe6b46aa496a6749c77e00a3eb07952832ad6166bd481c74bda0dcb6d58"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e32a92116d4f2a80b629778280103d2a510a5b3f6314ceccd6e38006b5e92dcb"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e541ec6f2ec456934fd279a3120f856cd0aedd209fc3852eca563f81738f6861"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bed88b9a458e354014d662d47e7a5baafd7ff81c780fd91584a10d6ec842cb73"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2644e47de560eb7bd55c20fc59f6daa04682655c58d08185a9b95c1970fa1e07"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e8916ae4c720529e18afa0b879473049e95949bf97042e938530e072fde061d"}, - {file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:465a3eb5659338cf2a9243e50ad9b2296fa15061736d6e26240e713522b6235c"}, - {file = "rpds_py-0.18.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ea7d4a99f3b38c37eac212dbd6ec42b7a5ec51e2c74b5d3223e43c811609e65f"}, - {file = "rpds_py-0.18.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:67071a6171e92b6da534b8ae326505f7c18022c6f19072a81dcf40db2638767c"}, - {file = "rpds_py-0.18.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:41ef53e7c58aa4ef281da975f62c258950f54b76ec8e45941e93a3d1d8580594"}, - {file = "rpds_py-0.18.0-cp38-none-win32.whl", hash = "sha256:fdea4952db2793c4ad0bdccd27c1d8fdd1423a92f04598bc39425bcc2b8ee46e"}, - {file = "rpds_py-0.18.0-cp38-none-win_amd64.whl", hash = "sha256:7cd863afe7336c62ec78d7d1349a2f34c007a3cc6c2369d667c65aeec412a5b1"}, - {file = "rpds_py-0.18.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:5307def11a35f5ae4581a0b658b0af8178c65c530e94893345bebf41cc139d33"}, - {file = "rpds_py-0.18.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:77f195baa60a54ef9d2de16fbbfd3ff8b04edc0c0140a761b56c267ac11aa467"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39f5441553f1c2aed4de4377178ad8ff8f9d733723d6c66d983d75341de265ab"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9a00312dea9310d4cb7dbd7787e722d2e86a95c2db92fbd7d0155f97127bcb40"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8f2fc11e8fe034ee3c34d316d0ad8808f45bc3b9ce5857ff29d513f3ff2923a1"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:586f8204935b9ec884500498ccc91aa869fc652c40c093bd9e1471fbcc25c022"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddc2f4dfd396c7bfa18e6ce371cba60e4cf9d2e5cdb71376aa2da264605b60b9"}, - {file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5ddcba87675b6d509139d1b521e0c8250e967e63b5909a7e8f8944d0f90ff36f"}, - {file = "rpds_py-0.18.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:7bd339195d84439cbe5771546fe8a4e8a7a045417d8f9de9a368c434e42a721e"}, - {file = "rpds_py-0.18.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:d7c36232a90d4755b720fbd76739d8891732b18cf240a9c645d75f00639a9024"}, - {file = "rpds_py-0.18.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6b0817e34942b2ca527b0e9298373e7cc75f429e8da2055607f4931fded23e20"}, - {file = "rpds_py-0.18.0-cp39-none-win32.whl", hash = "sha256:99f70b740dc04d09e6b2699b675874367885217a2e9f782bdf5395632ac663b7"}, - {file = "rpds_py-0.18.0-cp39-none-win_amd64.whl", hash = "sha256:6ef687afab047554a2d366e112dd187b62d261d49eb79b77e386f94644363294"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:ad36cfb355e24f1bd37cac88c112cd7730873f20fb0bdaf8ba59eedf8216079f"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:36b3ee798c58ace201289024b52788161e1ea133e4ac93fba7d49da5fec0ef9e"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8a2f084546cc59ea99fda8e070be2fd140c3092dc11524a71aa8f0f3d5a55ca"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e4461d0f003a0aa9be2bdd1b798a041f177189c1a0f7619fe8c95ad08d9a45d7"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8db715ebe3bb7d86d77ac1826f7d67ec11a70dbd2376b7cc214199360517b641"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:793968759cd0d96cac1e367afd70c235867831983f876a53389ad869b043c948"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66e6a3af5a75363d2c9a48b07cb27c4ea542938b1a2e93b15a503cdfa8490795"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ef0befbb5d79cf32d0266f5cff01545602344eda89480e1dd88aca964260b18"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d4acf42190d449d5e89654d5c1ed3a4f17925eec71f05e2a41414689cda02d1"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:a5f446dd5055667aabaee78487f2b5ab72e244f9bc0b2ffebfeec79051679984"}, - {file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:9dbbeb27f4e70bfd9eec1be5477517365afe05a9b2c441a0b21929ee61048124"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:22806714311a69fd0af9b35b7be97c18a0fc2826e6827dbb3a8c94eac6cf7eeb"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b34ae4636dfc4e76a438ab826a0d1eed2589ca7d9a1b2d5bb546978ac6485461"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c8370641f1a7f0e0669ddccca22f1da893cef7628396431eb445d46d893e5cd"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c8362467a0fdeccd47935f22c256bec5e6abe543bf0d66e3d3d57a8fb5731863"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11a8c85ef4a07a7638180bf04fe189d12757c696eb41f310d2426895356dcf05"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b316144e85316da2723f9d8dc75bada12fa58489a527091fa1d5a612643d1a0e"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf1ea2e34868f6fbf070e1af291c8180480310173de0b0c43fc38a02929fc0e3"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e546e768d08ad55b20b11dbb78a745151acbd938f8f00d0cfbabe8b0199b9880"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4901165d170a5fde6f589acb90a6b33629ad1ec976d4529e769c6f3d885e3e80"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:618a3d6cae6ef8ec88bb76dd80b83cfe415ad4f1d942ca2a903bf6b6ff97a2da"}, - {file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:ed4eb745efbff0a8e9587d22a84be94a5eb7d2d99c02dacf7bd0911713ed14dd"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c81e5f372cd0dc5dc4809553d34f832f60a46034a5f187756d9b90586c2c307"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:43fbac5f22e25bee1d482c97474f930a353542855f05c1161fd804c9dc74a09d"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d7faa6f14017c0b1e69f5e2c357b998731ea75a442ab3841c0dbbbfe902d2c4"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:08231ac30a842bd04daabc4d71fddd7e6d26189406d5a69535638e4dcb88fe76"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:044a3e61a7c2dafacae99d1e722cc2d4c05280790ec5a05031b3876809d89a5c"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3f26b5bd1079acdb0c7a5645e350fe54d16b17bfc5e71f371c449383d3342e17"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:482103aed1dfe2f3b71a58eff35ba105289b8d862551ea576bd15479aba01f66"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1374f4129f9bcca53a1bba0bb86bf78325a0374577cf7e9e4cd046b1e6f20e24"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:635dc434ff724b178cb192c70016cc0ad25a275228f749ee0daf0eddbc8183b1"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:bc362ee4e314870a70f4ae88772d72d877246537d9f8cb8f7eacf10884862432"}, - {file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:4832d7d380477521a8c1644bbab6588dfedea5e30a7d967b5fb75977c45fd77f"}, - {file = "rpds_py-0.18.0.tar.gz", hash = "sha256:42821446ee7a76f5d9f71f9e33a4fb2ffd724bb3e7f93386150b61a43115788d"}, + {file = "rpds_py-0.18.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d31dea506d718693b6b2cffc0648a8929bdc51c70a311b2770f09611caa10d53"}, + {file = "rpds_py-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:732672fbc449bab754e0b15356c077cc31566df874964d4801ab14f71951ea80"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a98a1f0552b5f227a3d6422dbd61bc6f30db170939bd87ed14f3c339aa6c7c9"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f1944ce16401aad1e3f7d312247b3d5de7981f634dc9dfe90da72b87d37887d"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38e14fb4e370885c4ecd734f093a2225ee52dc384b86fa55fe3f74638b2cfb09"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08d74b184f9ab6289b87b19fe6a6d1a97fbfea84b8a3e745e87a5de3029bf944"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d70129cef4a8d979caa37e7fe957202e7eee8ea02c5e16455bc9808a59c6b2f0"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ce0bb20e3a11bd04461324a6a798af34d503f8d6f1aa3d2aa8901ceaf039176d"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:81c5196a790032e0fc2464c0b4ab95f8610f96f1f2fa3d4deacce6a79852da60"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:f3027be483868c99b4985fda802a57a67fdf30c5d9a50338d9db646d590198da"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d44607f98caa2961bab4fa3c4309724b185b464cdc3ba6f3d7340bac3ec97cc1"}, + {file = "rpds_py-0.18.1-cp310-none-win32.whl", hash = "sha256:c273e795e7a0f1fddd46e1e3cb8be15634c29ae8ff31c196debb620e1edb9333"}, + {file = "rpds_py-0.18.1-cp310-none-win_amd64.whl", hash = "sha256:8352f48d511de5f973e4f2f9412736d7dea76c69faa6d36bcf885b50c758ab9a"}, + {file = "rpds_py-0.18.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6b5ff7e1d63a8281654b5e2896d7f08799378e594f09cf3674e832ecaf396ce8"}, + {file = "rpds_py-0.18.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8927638a4d4137a289e41d0fd631551e89fa346d6dbcfc31ad627557d03ceb6d"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:154bf5c93d79558b44e5b50cc354aa0459e518e83677791e6adb0b039b7aa6a7"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:07f2139741e5deb2c5154a7b9629bc5aa48c766b643c1a6750d16f865a82c5fc"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c7672e9fba7425f79019db9945b16e308ed8bc89348c23d955c8c0540da0a07"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:489bdfe1abd0406eba6b3bb4fdc87c7fa40f1031de073d0cfb744634cc8fa261"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c20f05e8e3d4fc76875fc9cb8cf24b90a63f5a1b4c5b9273f0e8225e169b100"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:967342e045564cef76dfcf1edb700b1e20838d83b1aa02ab313e6a497cf923b8"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2cc7c1a47f3a63282ab0f422d90ddac4aa3034e39fc66a559ab93041e6505da7"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f7afbfee1157e0f9376c00bb232e80a60e59ed716e3211a80cb8506550671e6e"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9e6934d70dc50f9f8ea47081ceafdec09245fd9f6032669c3b45705dea096b88"}, + {file = "rpds_py-0.18.1-cp311-none-win32.whl", hash = "sha256:c69882964516dc143083d3795cb508e806b09fc3800fd0d4cddc1df6c36e76bb"}, + {file = "rpds_py-0.18.1-cp311-none-win_amd64.whl", hash = "sha256:70a838f7754483bcdc830444952fd89645569e7452e3226de4a613a4c1793fb2"}, + {file = "rpds_py-0.18.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:3dd3cd86e1db5aadd334e011eba4e29d37a104b403e8ca24dcd6703c68ca55b3"}, + {file = "rpds_py-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:05f3d615099bd9b13ecf2fc9cf2d839ad3f20239c678f461c753e93755d629ee"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35b2b771b13eee8729a5049c976197ff58a27a3829c018a04341bcf1ae409b2b"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ee17cd26b97d537af8f33635ef38be873073d516fd425e80559f4585a7b90c43"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b646bf655b135ccf4522ed43d6902af37d3f5dbcf0da66c769a2b3938b9d8184"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19ba472b9606c36716062c023afa2484d1e4220548751bda14f725a7de17b4f6"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e30ac5e329098903262dc5bdd7e2086e0256aa762cc8b744f9e7bf2a427d3f8"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d58ad6317d188c43750cb76e9deacf6051d0f884d87dc6518e0280438648a9ac"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e1735502458621921cee039c47318cb90b51d532c2766593be6207eec53e5c4c"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f5bab211605d91db0e2995a17b5c6ee5edec1270e46223e513eaa20da20076ac"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2fc24a329a717f9e2448f8cd1f960f9dac4e45b6224d60734edeb67499bab03a"}, + {file = "rpds_py-0.18.1-cp312-none-win32.whl", hash = "sha256:1805d5901779662d599d0e2e4159d8a82c0b05faa86ef9222bf974572286b2b6"}, + {file = "rpds_py-0.18.1-cp312-none-win_amd64.whl", hash = "sha256:720edcb916df872d80f80a1cc5ea9058300b97721efda8651efcd938a9c70a72"}, + {file = "rpds_py-0.18.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:c827576e2fa017a081346dce87d532a5310241648eb3700af9a571a6e9fc7e74"}, + {file = "rpds_py-0.18.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:aa3679e751408d75a0b4d8d26d6647b6d9326f5e35c00a7ccd82b78ef64f65f8"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0abeee75434e2ee2d142d650d1e54ac1f8b01e6e6abdde8ffd6eeac6e9c38e20"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed402d6153c5d519a0faf1bb69898e97fb31613b49da27a84a13935ea9164dfc"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:338dee44b0cef8b70fd2ef54b4e09bb1b97fc6c3a58fea5db6cc083fd9fc2724"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7750569d9526199c5b97e5a9f8d96a13300950d910cf04a861d96f4273d5b104"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:607345bd5912aacc0c5a63d45a1f73fef29e697884f7e861094e443187c02be5"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:207c82978115baa1fd8d706d720b4a4d2b0913df1c78c85ba73fe6c5804505f0"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6d1e42d2735d437e7e80bab4d78eb2e459af48c0a46e686ea35f690b93db792d"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5463c47c08630007dc0fe99fb480ea4f34a89712410592380425a9b4e1611d8e"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:06d218939e1bf2ca50e6b0ec700ffe755e5216a8230ab3e87c059ebb4ea06afc"}, + {file = "rpds_py-0.18.1-cp38-none-win32.whl", hash = "sha256:312fe69b4fe1ffbe76520a7676b1e5ac06ddf7826d764cc10265c3b53f96dbe9"}, + {file = "rpds_py-0.18.1-cp38-none-win_amd64.whl", hash = "sha256:9437ca26784120a279f3137ee080b0e717012c42921eb07861b412340f85bae2"}, + {file = "rpds_py-0.18.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:19e515b78c3fc1039dd7da0a33c28c3154458f947f4dc198d3c72db2b6b5dc93"}, + {file = "rpds_py-0.18.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a7b28c5b066bca9a4eb4e2f2663012debe680f097979d880657f00e1c30875a0"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:673fdbbf668dd958eff750e500495ef3f611e2ecc209464f661bc82e9838991e"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d960de62227635d2e61068f42a6cb6aae91a7fe00fca0e3aeed17667c8a34611"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:352a88dc7892f1da66b6027af06a2e7e5d53fe05924cc2cfc56495b586a10b72"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4e0ee01ad8260184db21468a6e1c37afa0529acc12c3a697ee498d3c2c4dcaf3"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4c39ad2f512b4041343ea3c7894339e4ca7839ac38ca83d68a832fc8b3748ab"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aaa71ee43a703c321906813bb252f69524f02aa05bf4eec85f0c41d5d62d0f4c"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6cd8098517c64a85e790657e7b1e509b9fe07487fd358e19431cb120f7d96338"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:4adec039b8e2928983f885c53b7cc4cda8965b62b6596501a0308d2703f8af1b"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:32b7daaa3e9389db3695964ce8e566e3413b0c43e3394c05e4b243a4cd7bef26"}, + {file = "rpds_py-0.18.1-cp39-none-win32.whl", hash = "sha256:2625f03b105328729f9450c8badda34d5243231eef6535f80064d57035738360"}, + {file = "rpds_py-0.18.1-cp39-none-win_amd64.whl", hash = "sha256:bf18932d0003c8c4d51a39f244231986ab23ee057d235a12b2684ea26a353590"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cbfbea39ba64f5e53ae2915de36f130588bba71245b418060ec3330ebf85678e"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a3d456ff2a6a4d2adcdf3c1c960a36f4fd2fec6e3b4902a42a384d17cf4e7a65"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7700936ef9d006b7ef605dc53aa364da2de5a3aa65516a1f3ce73bf82ecfc7ae"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:51584acc5916212e1bf45edd17f3a6b05fe0cbb40482d25e619f824dccb679de"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:942695a206a58d2575033ff1e42b12b2aece98d6003c6bc739fbf33d1773b12f"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b906b5f58892813e5ba5c6056d6a5ad08f358ba49f046d910ad992196ea61397"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f8e3fecca256fefc91bb6765a693d96692459d7d4c644660a9fff32e517843"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7732770412bab81c5a9f6d20aeb60ae943a9b36dcd990d876a773526468e7163"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bd1105b50ede37461c1d51b9698c4f4be6e13e69a908ab7751e3807985fc0346"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:618916f5535784960f3ecf8111581f4ad31d347c3de66d02e728de460a46303c"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:17c6d2155e2423f7e79e3bb18151c686d40db42d8645e7977442170c360194d4"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c4c4c3f878df21faf5fac86eda32671c27889e13570645a9eea0a1abdd50922"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:fab6ce90574645a0d6c58890e9bcaac8d94dff54fb51c69e5522a7358b80ab64"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531796fb842b53f2695e94dc338929e9f9dbf473b64710c28af5a160b2a8927d"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:740884bc62a5e2bbb31e584f5d23b32320fd75d79f916f15a788d527a5e83644"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:998125738de0158f088aef3cb264a34251908dd2e5d9966774fdab7402edfab7"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e2be6e9dd4111d5b31ba3b74d17da54a8319d8168890fbaea4b9e5c3de630ae5"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0cee71bc618cd93716f3c1bf56653740d2d13ddbd47673efa8bf41435a60daa"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2c3caec4ec5cd1d18e5dd6ae5194d24ed12785212a90b37f5f7f06b8bedd7139"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:27bba383e8c5231cd559affe169ca0b96ec78d39909ffd817f28b166d7ddd4d8"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:a888e8bdb45916234b99da2d859566f1e8a1d2275a801bb8e4a9644e3c7e7909"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:6031b25fb1b06327b43d841f33842b383beba399884f8228a6bb3df3088485ff"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48c2faaa8adfacefcbfdb5f2e2e7bdad081e5ace8d182e5f4ade971f128e6bb3"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:d85164315bd68c0806768dc6bb0429c6f95c354f87485ee3593c4f6b14def2bd"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6afd80f6c79893cfc0574956f78a0add8c76e3696f2d6a15bca2c66c415cf2d4"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fa242ac1ff583e4ec7771141606aafc92b361cd90a05c30d93e343a0c2d82a89"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21be4770ff4e08698e1e8e0bce06edb6ea0626e7c8f560bc08222880aca6a6f"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c45a639e93a0c5d4b788b2613bd637468edd62f8f95ebc6fcc303d58ab3f0a8"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910e71711d1055b2768181efa0a17537b2622afeb0424116619817007f8a2b10"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b9bb1f182a97880f6078283b3505a707057c42bf55d8fca604f70dedfdc0772a"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d54f74f40b1f7aaa595a02ff42ef38ca654b1469bef7d52867da474243cc633"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8d2e182c9ee01135e11e9676e9a62dfad791a7a467738f06726872374a83db49"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:636a15acc588f70fda1661234761f9ed9ad79ebed3f2125d44be0862708b666e"}, + {file = "rpds_py-0.18.1.tar.gz", hash = "sha256:dc48b479d540770c811fbd1eb9ba2bb66951863e448efec2e2c102625328e92f"}, ] [[package]] @@ -6211,17 +6194,17 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "sympy" -version = "1.12" +version = "1.12.1" description = "Computer algebra system (CAS) in Python" optional = false python-versions = ">=3.8" files = [ - {file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"}, - {file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"}, + {file = "sympy-1.12.1-py3-none-any.whl", hash = "sha256:9b2cbc7f1a640289430e13d2a56f02f867a1da0190f2f99d8968c2f74da0e515"}, + {file = "sympy-1.12.1.tar.gz", hash = "sha256:2877b03f998cd8c08f07cd0de5b767119cd3ef40d09f41c30d722f6686b0fb88"}, ] [package.dependencies] -mpmath = ">=0.19" +mpmath = ">=1.1.0,<1.4.0" [[package]] name = "tabulate" @@ -6484,24 +6467,24 @@ six = "*" [[package]] name = "threadpoolctl" -version = "3.4.0" +version = "3.5.0" description = "threadpoolctl" optional = false python-versions = ">=3.8" files = [ - {file = "threadpoolctl-3.4.0-py3-none-any.whl", hash = "sha256:8f4c689a65b23e5ed825c8436a92b818aac005e0f3715f6a1664d7c7ee29d262"}, - {file = "threadpoolctl-3.4.0.tar.gz", hash = "sha256:f11b491a03661d6dd7ef692dd422ab34185d982466c49c8f98c8f716b5c93196"}, + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, ] [[package]] name = "tinycss2" -version = "1.2.1" +version = "1.3.0" description = "A tiny CSS parser" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, - {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, + {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"}, + {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"}, ] [package.dependencies] @@ -6509,7 +6492,7 @@ webencodings = ">=0.4" [package.extras] doc = ["sphinx", "sphinx_rtd_theme"] -test = ["flake8", "isort", "pytest"] +test = ["pytest", "ruff"] [[package]] name = "tokenize-rt" @@ -6772,13 +6755,13 @@ files = [ [[package]] name = "tqdm" -version = "4.66.2" +version = "4.66.4" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.2-py3-none-any.whl", hash = "sha256:1ee4f8a893eb9bef51c6e35730cebf234d5d0b6bd112b0271e10ed7c24a02bd9"}, - {file = "tqdm-4.66.2.tar.gz", hash = "sha256:6cd52cdf0fef0e0f543299cfc96fec90d7b8a7e88745f411ec33eb44d5ed3531"}, + {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, + {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, ] [package.dependencies] @@ -6807,18 +6790,18 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0, [[package]] name = "transformers" -version = "4.40.0" +version = "4.41.2" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" optional = false python-versions = ">=3.8.0" files = [ - {file = "transformers-4.40.0-py3-none-any.whl", hash = "sha256:92797ec3368ed4476a053529a4039a12ad09167d9e371981dda4afb4bdf590ac"}, - {file = "transformers-4.40.0.tar.gz", hash = "sha256:fdb01dfe6a492bd34e3fa2aefffa470b1d8a2341db47a932f83ed33839d96b03"}, + {file = "transformers-4.41.2-py3-none-any.whl", hash = "sha256:05555d20e43f808de1ef211ab64803cdb513170cef70d29a888b589caebefc67"}, + {file = "transformers-4.41.2.tar.gz", hash = "sha256:80a4db216533d573e9cc7388646c31ed9480918feb7c55eb211249cb23567f87"}, ] [package.dependencies] filelock = "*" -huggingface-hub = ">=0.19.3,<1.0" +huggingface-hub = ">=0.23.0,<1.0" numpy = ">=1.17" packaging = ">=20.0" pyyaml = ">=5.1" @@ -6831,17 +6814,15 @@ tqdm = ">=4.27" [package.extras] accelerate = ["accelerate (>=0.21.0)"] agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] -all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] +all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] codecarbon = ["codecarbon (==1.2.0)"] deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"] -deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.19,<0.20)", "urllib3 (<2.0.0)"] -dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -docs = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "hf-doc-builder", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] -docs-specific = ["hf-doc-builder"] -flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)"] +deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.19,<0.20)", "urllib3 (<2.0.0)"] +dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)", "scipy (<1.13.0)"] flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] ftfy = ["ftfy"] integrations = ["optuna", "ray[tune] (>=2.7.0)", "sigopt"] @@ -6851,7 +6832,7 @@ natten = ["natten (>=0.14.6,<0.15.0)"] onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] optuna = ["optuna"] -quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (==0.1.5)", "urllib3 (<2.0.0)"] +quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "ruff (==0.1.5)", "urllib3 (<2.0.0)"] ray = ["ray[tune] (>=2.7.0)"] retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] sagemaker = ["sagemaker (>=2.31.0)"] @@ -6860,16 +6841,16 @@ serving = ["fastapi", "pydantic", "starlette", "uvicorn"] sigopt = ["sigopt"] sklearn = ["scikit-learn"] speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] -testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] -tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] +testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] +tf-cpu = ["keras (>2.9,<2.16)", "keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>2.9,<2.16)", "tensorflow-probability (<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] timm = ["timm"] tokenizers = ["tokenizers (>=0.19,<0.20)"] torch = ["accelerate (>=0.21.0)", "torch"] torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] -torchhub = ["filelock", "huggingface-hub (>=0.19.3,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.19,<0.20)", "torch", "tqdm (>=4.27)"] +torchhub = ["filelock", "huggingface-hub (>=0.23.0,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.19,<0.20)", "torch", "tqdm (>=4.27)"] video = ["av (==9.2.0)", "decord (==0.6.0)"] vision = ["Pillow (>=10.0.1,<=15.0)"] @@ -6926,13 +6907,13 @@ files = [ [[package]] name = "types-requests" -version = "2.32.0.20240523" +version = "2.32.0.20240602" description = "Typing stubs for requests" optional = false python-versions = ">=3.8" files = [ - {file = "types-requests-2.32.0.20240523.tar.gz", hash = "sha256:26b8a6de32d9f561192b9942b41c0ab2d8010df5677ca8aa146289d11d505f57"}, - {file = "types_requests-2.32.0.20240523-py3-none-any.whl", hash = "sha256:f19ed0e2daa74302069bbbbf9e82902854ffa780bc790742a810a9aaa52f65ec"}, + {file = "types-requests-2.32.0.20240602.tar.gz", hash = "sha256:3f98d7bbd0dd94ebd10ff43a7fbe20c3b8528acace6d8efafef0b6a184793f06"}, + {file = "types_requests-2.32.0.20240602-py3-none-any.whl", hash = "sha256:ed3946063ea9fbc6b5fc0c44fa279188bae42d582cb63760be6cb4b9d06c3de8"}, ] [package.dependencies] @@ -7004,18 +6985,18 @@ files = [ [[package]] name = "webcolors" -version = "1.13" +version = "24.6.0" description = "A library for working with the color formats defined by HTML and CSS." optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "webcolors-1.13-py3-none-any.whl", hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf"}, - {file = "webcolors-1.13.tar.gz", hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a"}, + {file = "webcolors-24.6.0-py3-none-any.whl", hash = "sha256:8cf5bc7e28defd1d48b9e83d5fc30741328305a8195c29a8e668fa45586568a1"}, + {file = "webcolors-24.6.0.tar.gz", hash = "sha256:1d160d1de46b3e81e58d0a280d0c78b467dc80f47294b91b1ad8029d2cedb55b"}, ] [package.extras] docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] -tests = ["pytest", "pytest-cov"] +tests = ["coverage[toml]"] [[package]] name = "webencodings" @@ -7030,29 +7011,29 @@ files = [ [[package]] name = "websocket-client" -version = "1.7.0" +version = "1.8.0" description = "WebSocket client for Python with low level API options" optional = false python-versions = ">=3.8" files = [ - {file = "websocket-client-1.7.0.tar.gz", hash = "sha256:10e511ea3a8c744631d3bd77e61eb17ed09304c413ad42cf6ddfa4c7787e8fe6"}, - {file = "websocket_client-1.7.0-py3-none-any.whl", hash = "sha256:f4c3d22fec12a2461427a29957ff07d35098ee2d976d3ba244e688b8b4057588"}, + {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"}, + {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"}, ] [package.extras] -docs = ["Sphinx (>=6.0)", "sphinx-rtd-theme (>=1.1.0)"] +docs = ["Sphinx (>=6.0)", "myst-parser (>=2.0.0)", "sphinx-rtd-theme (>=1.1.0)"] optional = ["python-socks", "wsaccel"] test = ["websockets"] [[package]] name = "werkzeug" -version = "3.0.2" +version = "3.0.3" description = "The comprehensive WSGI web application library." optional = false python-versions = ">=3.8" files = [ - {file = "werkzeug-3.0.2-py3-none-any.whl", hash = "sha256:3aac3f5da756f93030740bc235d3e09449efcf65f2f55e3602e1d851b8f48795"}, - {file = "werkzeug-3.0.2.tar.gz", hash = "sha256:e39b645a6ac92822588e7b39a692e7828724ceae0b0d702ef96701f90e70128d"}, + {file = "werkzeug-3.0.3-py3-none-any.whl", hash = "sha256:fc9645dc43e03e4d630d23143a04a7f947a9a3b5727cd535fdfe155a17cc48c8"}, + {file = "werkzeug-3.0.3.tar.gz", hash = "sha256:097e5bfda9f0aba8da6b8545146def481d06aa7d3266e7448e2cccf67dd8bd18"}, ] [package.dependencies] @@ -7077,13 +7058,13 @@ test = ["pytest (>=6.0.0)", "setuptools (>=65)"] [[package]] name = "widgetsnbextension" -version = "4.0.10" +version = "4.0.11" description = "Jupyter interactive widgets for Jupyter Notebook" optional = false python-versions = ">=3.7" files = [ - {file = "widgetsnbextension-4.0.10-py3-none-any.whl", hash = "sha256:d37c3724ec32d8c48400a435ecfa7d3e259995201fbefa37163124a9fcb393cc"}, - {file = "widgetsnbextension-4.0.10.tar.gz", hash = "sha256:64196c5ff3b9a9183a8e699a4227fb0b7002f252c814098e66c4d1cd0644688f"}, + {file = "widgetsnbextension-4.0.11-py3-none-any.whl", hash = "sha256:55d4d6949d100e0d08b94948a42efc3ed6dfdc0e9468b2c4b128c9a2ce3a7a36"}, + {file = "widgetsnbextension-4.0.11.tar.gz", hash = "sha256:8b22a8f1910bfd188e596fe7fc05dcbd87e810c8a4ba010bdb3da86637398474"}, ] [[package]] @@ -7315,20 +7296,20 @@ importlib-resources = {version = "*", markers = "python_version < \"3.9\""} [[package]] name = "zipp" -version = "3.18.1" +version = "3.19.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"}, - {file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"}, + {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, + {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, ] [package.extras] -docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] [metadata] lock-version = "2.0" python-versions = ">=3.8.1,<3.11" -content-hash = "ee77335ca48ef88399b17fdcab7614e3c12fbbd4505533ad608360e6eca4fecf" +content-hash = "02981d101fb6afbef309228023c885ad188ed2caefb0467a20607ef131e9e9a1" diff --git a/pyproject.toml b/pyproject.toml index 288e8e71f..b8f3921e9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -34,8 +34,7 @@ readme = "README.md" # Investigate if it is better to fix specific versions or use lower and upper bounds # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/2665 python = ">=3.8.1,<3.11" -concrete-python = {version="==2.6.2.dev20240529", source = "zama-pypi"} -# concrete-python = ">=2.6.2.dev20240523,<3.0" +concrete-python = {version="==2.6.2.dev20240605", source = "zama-pypi"} setuptools = "65.6.3" skops = {version = "0.5.0"} xgboost = "1.6.2" diff --git a/src/concrete/ml/common/utils.py b/src/concrete/ml/common/utils.py index 494ee1644..903ce214f 100644 --- a/src/concrete/ml/common/utils.py +++ b/src/concrete/ml/common/utils.py @@ -562,12 +562,15 @@ def all_values_are_floats(*values: Any) -> bool: return all(_is_of_dtype(value, SUPPORTED_FLOAT_TYPES) for value in values) -def all_values_are_of_dtype(*values: Any, dtypes: Union[str, List[str]]) -> bool: +def all_values_are_of_dtype( + *values: Any, dtypes: Union[str, List[str]], allow_none: bool = False +) -> bool: """Indicate if all unpacked values are of the specified dtype(s). Args: *values (Any): The values to consider. dtypes (Union[str, List[str]]): The dtype(s) to consider. + allow_none (bool): Indicate if the values can be None. Returns: bool: Whether all values are of the specified dtype(s) or not. @@ -587,6 +590,12 @@ def all_values_are_of_dtype(*values: Any, dtypes: Union[str, List[str]]) -> bool supported_dtypes[dtype] = supported_dtype + # If the values can be None, only check the other values + if allow_none: + return all( + _is_of_dtype(value, supported_dtypes) if value is not None else True for value in values + ) + return all(_is_of_dtype(value, supported_dtypes) for value in values) diff --git a/src/concrete/ml/deployment/_utils.py b/src/concrete/ml/deployment/_utils.py new file mode 100644 index 000000000..835651b95 --- /dev/null +++ b/src/concrete/ml/deployment/_utils.py @@ -0,0 +1,52 @@ +"""Utility functions for deployment.""" + +from typing import Optional, Tuple, Union + +from concrete import fhe + + +def serialize_encrypted_values( + *values_enc: Optional[fhe.Value], +) -> Union[Optional[bytes], Optional[Tuple[bytes]]]: + """Serialize encrypted values. + + If a value is None, None is returned. + + Args: + values_enc (Optional[fhe.Value]): The values to serialize. + + Returns: + Union[Optional[bytes], Optional[Tuple[bytes]]]: The serialized values. + """ + values_enc_serialized = tuple( + value_enc.serialize() if value_enc is not None else None for value_enc in values_enc + ) + + if len(values_enc_serialized) == 1: + return values_enc_serialized[0] + + return values_enc_serialized + + +def deserialize_encrypted_values( + *values_serialized: Optional[bytes], +) -> Union[Optional[fhe.Value], Optional[Tuple[fhe.Value]]]: + """Deserialize encrypted values. + + If a value is None, None is returned. + + Args: + values_serialized (Optional[bytes]): The values to deserialize. + + Returns: + Union[Optional[fhe.Value], Optional[Tuple[fhe.Value]]]: The deserialized values. + """ + values_enc = tuple( + fhe.Value.deserialize(value_serialized) if value_serialized is not None else None + for value_serialized in values_serialized + ) + + if len(values_enc) == 1: + return values_enc[0] + + return values_enc diff --git a/src/concrete/ml/deployment/fhe_client_server.py b/src/concrete/ml/deployment/fhe_client_server.py index 61387df65..70de77ad6 100644 --- a/src/concrete/ml/deployment/fhe_client_server.py +++ b/src/concrete/ml/deployment/fhe_client_server.py @@ -15,7 +15,9 @@ from ..common.serialization.dumpers import dump from ..common.serialization.loaders import load from ..common.utils import to_tuple +from ..quantization import QuantizedModule from ..version import __version__ as CML_VERSION +from ._utils import deserialize_encrypted_values, serialize_encrypted_values try: # 3.8 and above @@ -124,38 +126,71 @@ def load(self): self.server = fhe.Server.load(Path(self.path_dir).joinpath("server.zip")) + # We should make 'serialized_encrypted_quantized_data' handle unpacked inputs, as Concrete does, + # instead of tuples + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4477 + # We should also rename the input arguments to remove the `serialized` part, as we now accept + # both serialized and deserialized input values + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4476 def run( self, - serialized_encrypted_quantized_data: Union[bytes, Tuple[bytes, ...]], + serialized_encrypted_quantized_data: Union[ + bytes, fhe.Value, Tuple[bytes, ...], Tuple[fhe.Value, ...] + ], serialized_evaluation_keys: bytes, - ) -> Union[bytes, Tuple[bytes, ...]]: + ) -> Union[bytes, fhe.Value, Tuple[bytes, ...], Tuple[fhe.Value, ...]]: """Run the model on the server over encrypted data. Args: - serialized_encrypted_quantized_data (Union[bytes, Tuple[bytes, ...]]): the encrypted, - quantized and serialized data - serialized_evaluation_keys (bytes): the serialized evaluation keys + serialized_encrypted_quantized_data (Union[bytes, fhe.Value, Tuple[bytes, ...], \ + Tuple[fhe.Value, ...]]): The encrypted and quantized values to consider. If these + values are serialized (in bytes), they are first deserialized. + serialized_evaluation_keys (bytes): The evaluation keys. If they are serialized (in + bytes), they are first deserialized. Returns: - Union[bytes, Tuple[bytes, ...]]: the result of the model + Union[bytes, fhe.Value, Tuple[bytes, ...], Tuple[fhe.Value, ...]]: The model's encrypted + and quantized results. If the inputs were initially serialized, the outputs are also + serialized. """ + + # TODO: make desr / ser optional assert_true(self.server is not None, "Model has not been loaded.") - serialized_encrypted_quantized_data = to_tuple(serialized_encrypted_quantized_data) + input_quant_encrypted = to_tuple(serialized_encrypted_quantized_data) - deserialized_data = tuple( - fhe.Value.deserialize(data) for data in serialized_encrypted_quantized_data - ) - deserialized_keys = fhe.EvaluationKeys.deserialize(serialized_evaluation_keys) + # Make sure no inputs are None, to avoid any crash in Concrete + assert not any(x is None for x in input_quant_encrypted), "No input values should be None" + + inputs_are_serialized = all(isinstance(x, bytes) for x in input_quant_encrypted) + inputs_are_encrypted_values = all(isinstance(x, fhe.Value) for x in input_quant_encrypted) - result = self.server.run(*deserialized_data, evaluation_keys=deserialized_keys) + # Make sure inputs are either only serialized values or encrypted values + assert ( + inputs_are_serialized ^ inputs_are_encrypted_values + ), "Inputs must be all of the same types, either 'bytes' or 'concrete.fhe.Value'" - return ( - tuple(res.serialize() for res in result) - if isinstance(result, tuple) - else result.serialize() + # Deserialize the values if they are all serialized + if inputs_are_serialized: + input_quant_encrypted = to_tuple(deserialize_encrypted_values(*input_quant_encrypted)) + + # Deserialize the evaluation keys if they are serialized + evaluation_keys = serialized_evaluation_keys + if isinstance(evaluation_keys, bytes): + evaluation_keys = fhe.EvaluationKeys.deserialize(evaluation_keys) + + result_quant_encrypted = self.server.run( + *input_quant_encrypted, evaluation_keys=evaluation_keys ) + # If inputs were serialized, return serialized values as well + if inputs_are_serialized: + result_quant_encrypted = serialize_encrypted_values(*to_tuple(result_quant_encrypted)) + + # Mypy complains because the outputs of `serialize_encrypted_values` can be None, but here + # we already made sure this is not the case + return result_quant_encrypted # type: ignore[return-value] + class FHEModelDev: """Dev API to save the model and then load and run the FHE circuit.""" @@ -357,97 +392,84 @@ def get_serialized_evaluation_keys(self) -> bytes: return self.client.evaluation_keys.serialize() def quantize_encrypt_serialize( - self, x: Union[numpy.ndarray, Tuple[numpy.ndarray, ...]] - ) -> Union[bytes, Tuple[bytes, ...]]: + self, *x: Optional[numpy.ndarray] + ) -> Union[Optional[bytes], Tuple[Optional[bytes], ...]]: """Quantize, encrypt and serialize the values. Args: - x (Union[numpy.ndarray, Tuple[numpy.ndarray, ...]]): the values to quantize, - encrypt and serialize + x (Optional[numpy.ndarray]): The values to quantize, encrypt and serialize. Returns: - Union[bytes, Tuple[bytes, ...]]: the quantized, encrypted and serialized values + Union[bytes, Tuple[bytes, ...]]: The quantized, encrypted and serialized values. """ - x = to_tuple(x) - # Quantize the values - quantized_x = self.model.quantize_input(*x) - - quantized_x = to_tuple(quantized_x) + x_quant = to_tuple(self.model.quantize_input(*x)) # Encrypt the values - enc_qx = self.client.encrypt(*quantized_x) - - enc_qx = to_tuple(enc_qx) + x_quant_encrypted = to_tuple(self.client.encrypt(*x_quant)) # Serialize the encrypted values to be sent to the server - serialized_enc_qx = tuple(e.serialize() for e in enc_qx) + x_quant_encrypted_serialized = serialize_encrypted_values(*x_quant_encrypted) - # Return a single value if the original input was a single value - return serialized_enc_qx[0] if len(serialized_enc_qx) == 1 else serialized_enc_qx + return x_quant_encrypted_serialized + # We should find a better name for `serialized_encrypted_quantized_result` + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4476 def deserialize_decrypt( - self, serialized_encrypted_quantized_result: Union[bytes, Tuple[bytes, ...]] + self, *serialized_encrypted_quantized_result: Optional[bytes] ) -> Union[Any, Tuple[Any, ...]]: """Deserialize and decrypt the values. Args: - serialized_encrypted_quantized_result (Union[bytes, Tuple[bytes, ...]]): the - serialized, encrypted and quantized result + serialized_encrypted_quantized_result (Optional[bytes]): The serialized, encrypted and + quantized values. Returns: - Union[Any, Tuple[Any, ...]]: the decrypted and deserialized values + Union[Any, Tuple[Any, ...]]: The decrypted and deserialized values. """ - - serialized_encrypted_quantized_result = to_tuple(serialized_encrypted_quantized_result) - # Deserialize the encrypted values - deserialized_encrypted_quantized_result = tuple( - fhe.Value.deserialize(data) for data in serialized_encrypted_quantized_result + result_quant_encrypted = to_tuple( + deserialize_encrypted_values(*serialized_encrypted_quantized_result) ) # Decrypt the values - deserialized_decrypted_quantized_result = self.client.decrypt( - *deserialized_encrypted_quantized_result - ) + result_quant = self.client.decrypt(*result_quant_encrypted) - return deserialized_decrypted_quantized_result + return result_quant + # We should find a better name for `serialized_encrypted_quantized_result` + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4476 def deserialize_decrypt_dequantize( - self, serialized_encrypted_quantized_result: Union[bytes, Tuple[bytes, ...]] - ) -> numpy.ndarray: + self, *serialized_encrypted_quantized_result: Optional[bytes] + ) -> Union[numpy.ndarray, Tuple[numpy.ndarray, ...]]: """Deserialize, decrypt and de-quantize the values. Args: - serialized_encrypted_quantized_result (Union[bytes, Tuple[bytes, ...]]): the - serialized, encrypted and quantized result + serialized_encrypted_quantized_result (Optional[bytes]): The serialized, encrypted and + quantized result Returns: - numpy.ndarray: the decrypted (de-quantized) values + Union[numpy.ndarray, Tuple[numpy.ndarray, ...]]: The clear float values. """ - # Ensure the input is a tuple - serialized_encrypted_quantized_result = to_tuple(serialized_encrypted_quantized_result) - # Decrypt and deserialize the values - deserialized_decrypted_quantized_result = self.deserialize_decrypt( - serialized_encrypted_quantized_result - ) - - deserialized_decrypted_quantized_result = to_tuple(deserialized_decrypted_quantized_result) + result_quant = to_tuple(self.deserialize_decrypt(*serialized_encrypted_quantized_result)) # De-quantize the values - deserialized_decrypted_dequantized_result = self.model.dequantize_output( - *deserialized_decrypted_quantized_result - ) - - deserialized_decrypted_dequantized_result = to_tuple( - deserialized_decrypted_dequantized_result - ) + result = to_tuple(self.model.dequantize_output(*result_quant)) # Apply post-processing to the de-quantized values - deserialized_decrypted_dequantized_result = self.model.post_processing( - *deserialized_decrypted_dequantized_result - ) - - return deserialized_decrypted_dequantized_result + # Side note: `post_processing` method from built-in models (not Quantized Modules) only + # handles a single input. Calling the following is however not an issue for now as we expect + # 'result' to be a tuple of length 1 in this case anyway. Still, we need to make sure this + # does not break in the future if any built-in models starts to handle multiple outputs : + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4474 + assert len(result) == 1 or isinstance( + self.model, QuantizedModule + ), "Only 'QuantizedModule' instances can handle multi-outputs." + + # In training mode, note that this step does not make much sense for now. Still, nothing + # breaks since QuantizedModule don't do anything in post-processing + result = self.model.post_processing(*result) + + return result diff --git a/src/concrete/ml/onnx/convert.py b/src/concrete/ml/onnx/convert.py index 1aacbcd65..d339703ce 100644 --- a/src/concrete/ml/onnx/convert.py +++ b/src/concrete/ml/onnx/convert.py @@ -141,6 +141,7 @@ def get_equivalent_numpy_forward_from_torch( use_tempfile: bool = output_onnx_file is None arguments = list(inspect.signature(torch_module.forward).parameters) + # Export to ONNX torch.onnx.export( torch_module, diff --git a/src/concrete/ml/pytest/torch_models.py b/src/concrete/ml/pytest/torch_models.py index cb87f4bf6..90e056990 100644 --- a/src/concrete/ml/pytest/torch_models.py +++ b/src/concrete/ml/pytest/torch_models.py @@ -33,7 +33,7 @@ def forward(self, x, y): y (torch.Tensor): The input of the model. Returns: - Tuple[torch.Tensor. torch.Tensor]: Output of the network. + Tuple[torch.Tensor. torch.Tensor]: Outputs of the network. """ return x + y + self.value, (x - y) ** 2 @@ -1564,3 +1564,39 @@ def forward(self, x): x = self.bn1(x) x = self.fc1(x) return x + + +class IdentityExpandModel(nn.Module): + """Model that only adds an empty dimension at axis 0. + + This model is mostly useful for testing the composition feature. + """ + + def forward(self, x): # pylint: disable-next=no-self-use + """Forward pass. + + Args: + x (torch.Tensor): The input of the model. + + Returns: + Tuple[torch.Tensor. torch.Tensor]: Outputs of the network. + """ + return x.unsqueeze(0) + + +class IdentityExpandMultiOutputModel(nn.Module): + """Model that only adds an empty dimension at axis 0, and returns the initial input as well. + + This model is mostly useful for testing the composition feature. + """ + + def forward(self, x): # pylint: disable-next=no-self-use + """Forward pass. + + Args: + x (torch.Tensor): The input of the model. + + Returns: + Tuple[torch.Tensor. torch.Tensor]: Outputs of the network. + """ + return x, x.unsqueeze(0) diff --git a/src/concrete/ml/quantization/post_training.py b/src/concrete/ml/quantization/post_training.py index b00b13dc7..456d839bd 100644 --- a/src/concrete/ml/quantization/post_training.py +++ b/src/concrete/ml/quantization/post_training.py @@ -687,9 +687,8 @@ def quantize_module(self, *calibration_data: numpy.ndarray) -> QuantizedModule: Following https://arxiv.org/abs/1712.05877 guidelines. Args: - *calibration_data (numpy.ndarray): Data that will be used to compute the bounds, - scales and zero point values for every quantized - object. + calibration_data (numpy.ndarray): Data that will be used to compute the bounds, + scales and zero point values for every quantized object. Returns: QuantizedModule: Quantized numpy module diff --git a/src/concrete/ml/quantization/quantized_module.py b/src/concrete/ml/quantization/quantized_module.py index b26d5c1f4..de9a071fa 100644 --- a/src/concrete/ml/quantization/quantized_module.py +++ b/src/concrete/ml/quantization/quantized_module.py @@ -139,6 +139,9 @@ def __init__( else: self.output_quantizers = [] + # Input-output quantizer mapping for composition is not enabled at initialization + self._composition_mapping: Optional[Dict] = None + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4127 def set_reduce_sum_copy(self): """Set reduce sum to copy or not the inputs. @@ -274,7 +277,7 @@ def _set_output_quantizers(self) -> List[UniformQuantizer]: Returns: List[UniformQuantizer]: List of output quantizers. """ - output_layers = ( + output_layers = list( self.quant_layers_dict[output_name][1] for output_name in self.ordered_module_output_names ) @@ -290,6 +293,61 @@ def _set_output_quantizers(self) -> List[UniformQuantizer]: ) return output_quantizers + # Remove this once we handle the re-quantization step in post-training only + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4472 + def _add_requant_for_composition(self, composition_mapping: Optional[Dict]): + """Trigger a re-quantization step for outputs using an input-output mapping for quantizers. + + Args: + composition_mapping (Optional[Dict]): Dictionary that maps output positions with input + positions in the case of composable circuits. Setting this parameter triggers a + re-quantization step at the end of the FHE circuit. This makes sure outputs are + de-quantized using their output quantizer and then re-quantized using their + associated input quantizer. Default to None. + + Raises: + ValueError: If the mapping is not properly constructed: it must be a dictionary of + positive integers, mapping output positions to input positions, where positions + must not be greater than the model's number of outputs/inputs. + """ + if not isinstance(composition_mapping, Dict): + raise ValueError( + "Parameter 'composition_mapping' mus be a dictionary. Got " + f"{type(composition_mapping)}" + ) + + max_output_pos = len(self.output_quantizers) - 1 + max_input_pos = len(self.input_quantizers) - 1 + + for output_position, input_position in composition_mapping.items(): + if not isinstance(output_position, int) or output_position < 0: + raise ValueError( + "Output positions (keys) must be positive integers. Got " + f"{type(output_position)}" + ) + + if output_position > max_output_pos: + raise ValueError( + "Output positions (keys) must not be greater than the model's number of " + f"outputs. Expected position '{max_output_pos}' at most, but got " + f"'{output_position}'" + ) + + if not isinstance(input_position, int) or input_position < 0: + raise ValueError( + "Input positions (values) must be positive integers. Got " + f"{type(input_position)}" + ) + + if input_position > max_input_pos: + raise ValueError( + "Input positions (values) must not be greater than the model's number of " + f"inputs. Expected position '{max_input_pos}' at most, but got " + f"'{input_position}'" + ) + + self._composition_mapping = composition_mapping + @property def onnx_model(self): """Get the ONNX model. @@ -439,6 +497,8 @@ def _clear_forward( (Union[numpy.ndarray, Tuple[numpy.ndarray, ...]]): Predictions of the quantized model, with integer values. + Raises: + ValueError: If composition is enabled and that mapped input-output shapes do not match. """ q_inputs = [ @@ -485,12 +545,55 @@ def _clear_forward( # The output of a graph must be a QuantizedArray assert all(isinstance(elt, QuantizedArray) for elt in output_quantized_arrays) - results = tuple( + q_results = tuple( elt.qvalues for elt in output_quantized_arrays if isinstance(elt, QuantizedArray) ) - if len(results) == 1: - return results[0] - return results + + # Remove this once we handle the re-quantization step in post-training only + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4472 + if self._composition_mapping is not None: + mismatch_shapes = list( + f"Output {output_i}: {q_results[output_i].shape} " + f"-> Input {input_i}: {q_x[input_i].shape}" + for output_i, input_i in self._composition_mapping.items() + ) + + if not all( + q_x[input_i].shape == q_results[output_i].shape + for output_i, input_i in self._composition_mapping.items() + ): + raise ValueError( + "A shape mismatch has been found between inputs and outputs when composing the " + "forward pass. Please check the given composition mapping. Got " + f"{self._composition_mapping}, which gives the following shape mapping:\n" + + "\n".join(mismatch_shapes) + ) + + # Only add a re-quantization step to outputs that appear in the composition mapping. + # This is because some outputs might not be used as inputs when composing a circuit + q_results = tuple( + ( + self.input_quantizers[self._composition_mapping[i]].quant( + self.output_quantizers[i].dequant(q_result) + ) + if i in self._composition_mapping + else q_result + ) + for i, q_result in enumerate(q_results) + ) + + # Check that the number of outputs properly matches the number of output quantizers. This is + # to make sure that no processing like, for example, composition mapping has altered the + # number of outputs + assert len(q_results) == len(self.output_quantizers), ( + "The number of outputs does not match the number of output quantizers. Got " + f"{len(q_results)=} != {len(self.output_quantizers)=} " + ) + + if len(q_results) == 1: + return q_results[0] + + return q_results def _fhe_forward( self, *q_x: numpy.ndarray, simulate: bool = True @@ -561,17 +664,21 @@ def _fhe_forward( return q_results[0] return q_results - def quantize_input(self, *x: numpy.ndarray) -> Union[numpy.ndarray, Tuple[numpy.ndarray, ...]]: + def quantize_input( + self, *x: Optional[numpy.ndarray] + ) -> Union[numpy.ndarray, Tuple[Optional[numpy.ndarray], ...]]: """Take the inputs in fp32 and quantize it using the learned quantization parameters. Args: - x (numpy.ndarray): Floating point x. + x (Optional[numpy.ndarray]): Floating point x or None. Returns: - Union[numpy.ndarray, Tuple[numpy.ndarray, ...]]: Quantized (numpy.int64) x. + Union[numpy.ndarray, Tuple[numpy.ndarray, ...]]: Quantized (numpy.int64) x, or None if + the corresponding input is None. """ n_inputs = len(self.input_quantizers) n_values = len(x) + assert_true( n_values == n_inputs, f"Got {n_values} inputs, expected {n_inputs}. Either the quantized module has not been " @@ -579,12 +686,30 @@ def quantize_input(self, *x: numpy.ndarray) -> Union[numpy.ndarray, Tuple[numpy. ValueError, ) - q_x = tuple(self.input_quantizers[idx].quant(x[idx]) for idx in range(len(x))) + assert not all(x_i is None for x_i in x), "Please provide at least one input to quantize." + + # Ignore [arg-type] check from mypy as it is not able to see that the input to `quant` + # cannot be None + q_x = tuple( + ( + self.input_quantizers[idx].quant(x[idx]) # type: ignore[arg-type] + if x[idx] is not None + else None + ) + for idx in range(len(x)) + ) # Make sure all inputs are quantized to int64 - assert all_values_are_of_dtype(*q_x, dtypes="int64"), "Inputs were not quantized to int64" + assert all_values_are_of_dtype( + *q_x, dtypes="int64", allow_none=True + ), "Inputs were not quantized to int64" + + if len(q_x) == 1: + assert q_x[0] is not None + + return q_x[0] - return q_x[0] if len(q_x) == 1 else q_x + return q_x def dequantize_output( self, *q_y_preds: numpy.ndarray @@ -608,8 +733,10 @@ def dequantize_output( numpy.array(output_quantizer.dequant(q_y_pred)) for q_y_pred, output_quantizer in zip(q_y_preds, self.output_quantizers) ) + if len(y_preds) == 1: return y_preds[0] + return y_preds def set_inputs_quantization_parameters(self, *input_q_params: UniformQuantizer): @@ -730,8 +857,15 @@ def compile( # Quantize the inputs q_inputs = self.quantize_input(*inputs) + # Make sure all inputs are quantized to int64 and are not None + assert all_values_are_of_dtype( + *to_tuple(q_inputs), dtypes="int64", allow_none=False + ), "Inputs were not quantized to int64" + # Generate the input-set with proper dimensions - inputset = _get_inputset_generator(q_inputs) + # Ignore [arg-type] check from mypy as it is not able to see that no values in `q_inputs` + # is None + inputset = _get_inputset_generator(q_inputs) # type: ignore[arg-type] # Check that p_error or global_p_error is not set in both the configuration and in the # direct parameters diff --git a/src/concrete/ml/sklearn/linear_model.py b/src/concrete/ml/sklearn/linear_model.py index 82e7aea29..341a57fd7 100644 --- a/src/concrete/ml/sklearn/linear_model.py +++ b/src/concrete/ml/sklearn/linear_model.py @@ -3,16 +3,18 @@ import itertools import time import warnings -from typing import Any, Dict, Optional, Union +from typing import Any, Dict, Optional, Tuple, Union import numpy import sklearn.linear_model +from concrete.fhe import Configuration +from concrete.fhe import Value as EncryptedValue from sklearn.preprocessing import LabelEncoder from ..common.utils import FheMode from ..onnx.ops_impl import numpy_sigmoid from ..quantization import QuantizedModule -from ..torch.compile import compile_torch_model +from ..torch.compile import _compile_torch_or_onnx_model from ._fhe_training_utils import LogisticRegressionTraining, binary_cross_entropy from .base import ( Data, @@ -246,9 +248,10 @@ def __init__( if self.parameters_range is None: raise ValueError( - "Setting 'parameter_range' is mandatory if FHE training is enabled " + "Setting 'parameters_range' is mandatory if FHE training is enabled " f"({fit_encrypted=}). Got {parameters_range=}" ) + else: supported_losses = ["log_loss", "modified_huber"] if self.loss not in supported_losses: @@ -341,18 +344,27 @@ def _get_training_quantized_module( fit_bias=self.fit_intercept, ) + # Enable the underlying FHE circuit to be composed with itself + # This feature is used in order to be able to iterate in the clear n times without having + # to encrypt/decrypt the weight/bias values between each loop + configuration = Configuration(composable=True) + + composition_mapping = {0: 2, 1: 3} + # Compile the model using the compile set if self.verbose: print("Compiling training circuit ...") start = time.time() - training_quantized_module = compile_torch_model( + training_quantized_module = _compile_torch_or_onnx_model( trainer, compile_set, n_bits=self.n_bits_training, rounding_threshold_bits=self.rounding_training, p_error=self.training_p_error, + configuration=configuration, reduce_sum_copy=True, + composition_mapping=composition_mapping, ) end = time.time() @@ -361,6 +373,51 @@ def _get_training_quantized_module( return training_quantized_module + def _decrypt_dequantize_training_output( + self, + weights_enc: Union[numpy.ndarray, EncryptedValue], + bias_enc: Union[numpy.ndarray, EncryptedValue], + fhe: Union[str, FheMode] = FheMode.DISABLE, + ) -> Tuple[numpy.ndarray, numpy.ndarray]: + """Decrypt and de-quantize the outputs using the training circuit. + + Args: + weights_enc (Union[numpy.ndarray, EncryptedValue]): The weight values to decrypt (if + encrypted) and de-quantize. + bias_enc (Union[numpy.ndarray, EncryptedValue]): The bias values to decrypt (if + encrypted) and de-quantize. + fhe (Union[str, FheMode]): The mode to use for FHE training. + Can be FheMode.DISABLE for Concrete ML Python (quantized) training, + FheMode.SIMULATE for FHE simulation and FheMode.EXECUTE for actual FHE execution. + Can also be the string representation of any of these values. Default to + FheMode.DISABLE. + + Returns: + weights_float, bias_float (Tuple[numpy.ndarray, numpy.ndarray]): The weight and bias + float values. + """ + # Mypy + assert self.training_quantized_module is not None + assert self.training_quantized_module.fhe_circuit is not None + + # If the training is done in FHE, decrypt the weight and bias values + if fhe == "execute": + q_weights, q_bias = self.training_quantized_module.fhe_circuit.decrypt( + weights_enc, bias_enc + ) + + else: + q_weights, q_bias = weights_enc, bias_enc + + weights_float, bias_float = self.training_quantized_module.dequantize_output( + q_weights, q_bias + ) + + # Reshape parameters to fit what scikit-learn expects + weights_float, bias_float = weights_float.squeeze(0), bias_float.squeeze(0) + + return weights_float, bias_float + # pylint: disable-next=too-many-branches, too-many-statements, too-many-locals def _fit_encrypted( self, @@ -376,7 +433,9 @@ def _fit_encrypted( The is the underlying function that fits the model in FHE if 'fit_encrypted' is enabled. A quantized module is first built in order to generate the FHE circuit need for training. - Then, the method iterates over it in the clear. + Then, the method iterates over it in the clear so that outputs of an iteration are used as + inputs for the following iteration. Thanks to Concrete's composition feature, no + encryption/decryption steps are needed when the training is executed in FHE. For more details on some of these arguments please refer to: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html @@ -426,6 +485,10 @@ def _fit_encrypted( f" was: {self.classes_}" ) + n_samples, n_features = X.shape + weight_shape = (1, n_features, 1) + bias_shape = (1, 1, 1) + # Build the quantized module # In case of a partial fit, only do so if it has not been done already (which indicates # that this is the partial fit's first call) @@ -471,9 +534,11 @@ def _fit_encrypted( y = self.label_encoder.transform(y) + # Mypy + assert self.training_quantized_module.fhe_circuit is not None + # Key generation if fhe == "execute": # pragma: no cover - assert self.training_quantized_module.fhe_circuit is not None # Generate the keys only if necessary. This is already done using the `force=False` # parameter, but here we also avoid printing too much verbose if activated @@ -493,19 +558,19 @@ def _fit_encrypted( # Initialize the weight values with the given ones if some are provided if coef_init is not None: - weights = coef_init + weights = coef_init.reshape(weight_shape) # Else, if warm start is activated or this is a partial fit, use some already computed # weight values have if there are some elif (self.warm_start or is_partial_fit) and self._weights_encrypted_fit is not None: - weights = self._weights_encrypted_fit + weights = self._weights_encrypted_fit.reshape(weight_shape) # Else, initialize the values randomly else: weights = self.random_number_generator.uniform( low=self.parameters_range[0], high=self.parameters_range[1], - size=(1, X.shape[1], 1), + size=weight_shape, ) # If the mode should fit the bias values as well @@ -513,82 +578,137 @@ def _fit_encrypted( # Initialize the bias values with the given ones if some are provided if intercept_init is not None: - bias = intercept_init + bias = intercept_init.reshape(bias_shape) # Else, if warm start is activated or this is a partial fit, use some already computed # bias values have if there are some elif (self.warm_start or is_partial_fit) and self._bias_encrypted_fit is not None: - bias = self._bias_encrypted_fit + bias = self._bias_encrypted_fit.reshape(bias_shape) # Else, initialize the values randomly else: bias = self.random_number_generator.uniform( low=self.parameters_range[0], high=self.parameters_range[1], - size=(1, 1, 1), + size=bias_shape, ) # Else, initialize the bias with zeros else: - bias = numpy.zeros((1, 1, 1)) + bias = numpy.zeros(bias_shape) - loss_value_moving_average = None - - if self.verbose: + # Only print this verbose once if in training using `partial_fit`` + if self.verbose and (not is_partial_fit or self.training_quantized_module is None): mode_string = " (simulation)" if fhe == "simulate" else "" print(f"Training on encrypted data{mode_string}...") # A partial fit is similar to running a fit with a single iteration max_iter = 1 if is_partial_fit else self.max_iter - # Iterate on the training quantized module in the clear - for iteration_step in range(max_iter): + # Iterate on the batches in order to quantize and encrypt them + X_batches_enc, y_batches_enc = [], [] + for _ in range(max_iter): # Sample the batches from X and y in the clear batch_indexes = self.random_number_generator.choice( - len(X), size=self.batch_size, replace=False + n_samples, size=self.batch_size, replace=False ) # Mypy assert isinstance(batch_indexes, numpy.ndarray) # Build the batches - X_batch = X[batch_indexes].astype(float).reshape((1, len(batch_indexes), X.shape[1])) + X_batch = X[batch_indexes].astype(float).reshape((1, self.batch_size, n_features)) y_batch = y[batch_indexes].reshape((1, self.batch_size, 1)).astype(float) - weights = weights.reshape(1, X.shape[1], 1) - bias = bias.reshape(1, 1, 1) + # The underlying quantized module expects (X, y, weight, bias) as inputs. We thus only + # quantize the input and target values using the first and second positional parameter + q_X_batch, q_y_batch, _, _ = self.training_quantized_module.quantize_input( + X_batch, y_batch, None, None + ) + + # If the training is done in FHE, encrypt the input and target values + if fhe == "execute": - # Mypy - assert self.training_quantized_module is not None + # Similarly, the underlying FHE circuit expects (X, y, weight, bias) as inputs, and + # so does the encrypt method + X_batch_enc, y_batch_enc, _, _ = self.training_quantized_module.fhe_circuit.encrypt( + q_X_batch, q_y_batch, None, None + ) + + else: + X_batch_enc, y_batch_enc = q_X_batch, q_y_batch + + X_batches_enc.append(X_batch_enc) + y_batches_enc.append(y_batch_enc) + + # Similarly, we only quantize the weight and bias values using the third and fourth + # position parameter + _, _, q_weights, q_bias = self.training_quantized_module.quantize_input( + None, None, weights, bias + ) + + # If the training is done in FHE, encrypt the weight and bias values + if fhe == "execute": + + # Similarly, we only encrypt using the third and fourth position parameter + _, _, weights_enc, bias_enc = self.training_quantized_module.fhe_circuit.encrypt( + None, None, q_weights, q_bias + ) + + else: + weights_enc, bias_enc = q_weights, q_bias + + # This variable is used for computing the loss and handle early stopping (see at the end of + # the loop) + loss_value_moving_average = None + # Iterate on the training quantized module in the clear + for iteration_step in range(max_iter): + X_batch_enc_i, y_batch_enc_i = ( + X_batches_enc[iteration_step], + y_batches_enc[iteration_step], + ) # Train the model over one iteration inference_start = time.time() - weights, bias = self.training_quantized_module.forward( # type: ignore[assignment] - X_batch, y_batch, weights, bias, fhe=fhe - ) - if self.verbose: - print( - f"Iteration {iteration_step} took {time.time() - inference_start:.4f} seconds." + # If the training is done in FHE, execute the underlying FHE circuit directly on the + # encrypted values + if fhe == "execute": + weights_enc, bias_enc = self.training_quantized_module.fhe_circuit.run( + X_batch_enc_i, + y_batch_enc_i, + weights_enc, + bias_enc, ) - # Mypy - assert isinstance(weights, numpy.ndarray) - assert isinstance(bias, numpy.ndarray) + # Else, use the quantized module on the quantized values (works for both quantized + # clear and FHE simulation modes). It is important to note that 'quantized_forward' + # with 'fhe="execute"' is executing Concrete's 'encrypt_run_decrypt' method, as opposed + # to the 'run' method right above. We thus need to separate these cases since values + # are already encrypted here. + else: + weights_enc, bias_enc = self.training_quantized_module.quantized_forward( + X_batch_enc_i, y_batch_enc_i, weights_enc, bias_enc, fhe=fhe + ) - # Reshape parameters to fit what scikit-learn expects - weights = weights.squeeze(0) - bias = bias.squeeze(0) # pylint: disable=no-member + if self.verbose: + print( + f"Iteration {iteration_step} took {time.time() - inference_start:.2f} seconds." + ) - # If early stopping is enabled, compute the loss and stop the training if it gets under - # the given tolerance + # If early stopping is enabled, decrypt (if needed) and de-quantize the weight and bias + # values. Then, compute the loss and stop the training if it gets under the given + # tolerance # Additionally, there is no point in computing the following in case of a partial fit, # as it only represents a single iteration if self.early_stopping and not is_partial_fit: + weights_float, bias_float = self._decrypt_dequantize_training_output( + weights_enc, bias_enc, fhe=fhe + ) # Evaluate the model on the full dataset and compute the loss - logits = ((X @ weights) + bias).squeeze() + logits = ((X @ weights_float) + bias_float).squeeze() loss_value = binary_cross_entropy(y_true=y, logits=logits) # If this is the first training iteration, store the loss value computed above @@ -608,6 +728,11 @@ def _fit_encrypted( if loss_difference < self.tol: break + # Decrypt (if needed) and de-quantize the fitted weight and bias values + fitted_weights, fitted_bias = self._decrypt_dequantize_training_output( + weights_enc, bias_enc, fhe=fhe + ) + # Initialize the underlying scikit-learn model if it has not already been done # This model should be directly initialized in the model's __init__ method instead # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/3373 @@ -619,12 +744,12 @@ def _fit_encrypted( self.sklearn_model = self.sklearn_model_class(**params) # Build the underlying scikit-learn model with the computed weight and bias values - self.sklearn_model.coef_ = weights.T - self.sklearn_model.intercept_ = bias + self.sklearn_model.coef_ = fitted_weights.T + self.sklearn_model.intercept_ = fitted_bias # Update the model's Concrete ML parameters - self._weights_encrypted_fit = weights - self._bias_encrypted_fit = bias + self._weights_encrypted_fit = fitted_weights + self._bias_encrypted_fit = fitted_bias self._is_fitted = True self._quantize_model(X) diff --git a/src/concrete/ml/torch/compile.py b/src/concrete/ml/torch/compile.py index 316e033b9..398e6a907 100644 --- a/src/concrete/ml/torch/compile.py +++ b/src/concrete/ml/torch/compile.py @@ -125,9 +125,11 @@ def build_quantized_module( # only work over shape of (1, ., .). For example, some reshape have newshape hardcoded based # on the inputset we sent in the NumpyModule. quantized_module = post_training_quant.quantize_module(*inputset_as_numpy_tuple) + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4127 if reduce_sum_copy: quantized_module.set_reduce_sum_copy() + return quantized_module @@ -145,7 +147,8 @@ def _compile_torch_or_onnx_model( global_p_error: Optional[float] = None, verbose: bool = False, inputs_encryption_status: Optional[Sequence[str]] = None, - reduce_sum_copy=False, + reduce_sum_copy: bool = False, + composition_mapping: Optional[Dict] = None, ) -> QuantizedModule: """Compile a torch module or ONNX into an FHE equivalent. @@ -181,9 +184,18 @@ def _compile_torch_or_onnx_model( for each input. By default all arguments will be encrypted. reduce_sum_copy (bool): if the inputs of QuantizedReduceSum should be copied to avoid bit-width propagation + composition_mapping (Optional[Dict]): Dictionary that maps output positions with input + positions in the case of composable circuits. Setting this parameter triggers a + re-quantization step at the end of the FHE circuit. This makes sure outputs are + de-quantized using their output quantizer and then re-quantized using their associated + input quantizer. Default to None. Returns: QuantizedModule: The resulting compiled QuantizedModule. + + Raises: + ValueError: If a input-output mapping ('composition_mapping') is set but composition is not + enabled at the Concrete level (in 'configuration'). """ rounding_threshold_bits = process_rounding_threshold_bits(rounding_threshold_bits) @@ -191,6 +203,13 @@ def _compile_torch_or_onnx_model( convert_torch_tensor_or_numpy_array_to_numpy_array(val) for val in to_tuple(torch_inputset) ) + # Check that composition is enabled if an input-output mapping has been set + if composition_mapping is not None and (configuration is None or not configuration.composable): + raise ValueError( + "Composition must be enabled in 'configuration' in order to trigger a re-quantization " + "step on the circuit's outputs." + ) + # Build the quantized module quantized_module = build_quantized_module( model=model, @@ -219,6 +238,13 @@ def _compile_torch_or_onnx_model( # Find the right way to set parameters for compiler, depending on the way we want to default p_error, global_p_error = manage_parameters_for_pbs_errors(p_error, global_p_error) + # If a mapping between input and output quantizers is set, add a re-quantization step at the + # end of the forward call. This is only useful for composable circuits in order to make sure + # that input and output quantizers match + if composition_mapping is not None: + # pylint: disable-next=protected-access + quantized_module._add_requant_for_composition(composition_mapping) + quantized_module.compile( inputset_as_numpy_tuple, configuration, diff --git a/src/concrete/ml/torch/hybrid_model.py b/src/concrete/ml/torch/hybrid_model.py index b6ee537bc..e1b5e4e17 100644 --- a/src/concrete/ml/torch/hybrid_model.py +++ b/src/concrete/ml/torch/hybrid_model.py @@ -289,7 +289,7 @@ def remote_call(self, x: torch.Tensor) -> torch.Tensor: # pragma:no cover # We need to iterate over elements in the batch since # we don't support batch inference - inferences: List[torch.Tensor] = [] + inferences: List[numpy.ndarray] = [] for index in range(len(x)): # Manage tensor, tensor shape, and encrypt tensor clear_input = x[[index], :].detach().numpy() @@ -331,6 +331,7 @@ def remote_call(self, x: torch.Tensor) -> torch.Tensor: # pragma:no cover encrypted_result = inference_query.content decrypted_prediction = client.deserialize_decrypt_dequantize(encrypted_result)[0] inferences.append(decrypted_prediction) + # Concatenate results and move them back to proper device return torch.Tensor(numpy.array(inferences)).to(device=base_device) diff --git a/tests/deployment/test_client_server.py b/tests/deployment/test_client_server.py index e36a88f8b..c14e64aea 100644 --- a/tests/deployment/test_client_server.py +++ b/tests/deployment/test_client_server.py @@ -3,7 +3,6 @@ import json import os import tempfile -import warnings import zipfile from functools import partial from pathlib import Path @@ -13,6 +12,7 @@ import pytest from torch import nn +from concrete import fhe from concrete.ml.deployment.fhe_client_server import ( DeploymentMode, FHEModelClient, @@ -48,48 +48,21 @@ def __init__(self): self.client_dir = tempfile.TemporaryDirectory() # pylint: disable=consider-using-with self.dev_dir = tempfile.TemporaryDirectory() # pylint: disable=consider-using-with - def client_send_evaluation_key_to_server(self, serialized_evaluation_keys): - """Send the public key to the server.""" - with open(self.server_dir.name + "/serialized_evaluation_keys.ekl", "wb") as f: - f.write(serialized_evaluation_keys) - - def client_send_input_to_server_for_prediction(self, encrypted_input): - """Send the input to the server.""" - with open(self.server_dir.name + "/serialized_evaluation_keys.ekl", "rb") as f: - serialized_evaluation_keys = f.read() - encrypted_prediction = FHEModelServer(self.server_dir.name).run( - encrypted_input, serialized_evaluation_keys - ) - with open(self.server_dir.name + "/encrypted_prediction.enc", "wb") as f: - f.write(encrypted_prediction) - def dev_send_model_to_server(self): """Send the model to the server.""" copyfile(self.dev_dir.name + "/server.zip", self.server_dir.name + "/server.zip") - def server_send_encrypted_prediction_to_client(self): - """Send the encrypted prediction to the client.""" - with open(self.server_dir.name + "/encrypted_prediction.enc", "rb") as f: - encrypted_prediction = f.read() - return encrypted_prediction - def dev_send_clientspecs_and_modelspecs_to_client(self): """Send the clientspecs and evaluation key to the client.""" copyfile(self.dev_dir.name + "/client.zip", self.client_dir.name + "/client.zip") - def cleanup(self): - """Clean up the temporary folders.""" - self.server_dir.cleanup() - self.client_dir.cleanup() - self.dev_dir.cleanup() - # This is a known flaky test # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4014 @pytest.mark.flaky @pytest.mark.parametrize("model_class, parameters", MODELS_AND_DATASETS) @pytest.mark.parametrize("n_bits", [2]) -def test_client_server_sklearn( +def test_client_server_sklearn_inference( default_configuration, model_class, parameters, @@ -99,7 +72,7 @@ def test_client_server_sklearn( check_array_equal, check_float_array_equal, ): - """Test the client-server interface for built-in models.""" + """Test the client-server interface for built-in models' inference.""" if get_model_name(model_class) == "KNeighborsClassifier": # Skipping KNN for this test @@ -117,15 +90,16 @@ def test_client_server_sklearn( model = instantiate_model_generic(model_class, n_bits=n_bits) # Fit the model - with warnings.catch_warnings(): - warnings.simplefilter("ignore", category=UserWarning) + if getattr(model, "fit_encrypted", False): + model.fit(x_train, y_train, fhe="disable") + else: model.fit(x_train, y_train) key_dir = default_configuration.insecure_key_cache_location # Running the simulation using a model that is not compiled should not be possible with pytest.raises(AttributeError, match=".* model is not compiled.*"): - check_client_server_execution( + check_client_server_inference( x_test, model, key_dir, check_array_equal, check_float_array_equal ) @@ -150,7 +124,7 @@ def test_client_server_sklearn( check_is_good_execution_for_cml_vs_circuit(x_test, model, simulate=False, n_allowed_runs=1) # Check client/server FHE predictions vs the FHE predictions of the dev model - check_client_server_execution( + check_client_server_inference( x_test, model, key_dir, check_array_equal, check_float_array_equal ) @@ -173,7 +147,7 @@ def test_client_server_custom_model( # Instantiate an empty QuantizedModule object quantized_module = QuantizedModule() - check_client_server_execution( + check_client_server_inference( x_test, quantized_module, key_dir, check_array_equal, check_float_array_equal ) @@ -200,12 +174,12 @@ def test_client_server_custom_model( x_test, quantized_numpy_module, simulate=False, n_allowed_runs=1 ) - check_client_server_execution( + check_client_server_inference( x_test, quantized_numpy_module, key_dir, check_array_equal, check_float_array_equal ) -def check_client_server_files(model): +def check_client_server_files(model, mode="inference"): """Test the client server interface API generates the expected file. This test expects that the given model has been trained and compiled in development. @@ -215,7 +189,7 @@ def check_client_server_files(model): # And try to save it again fhe_model_dev = FHEModelDev(path_dir=disk_network.dev_dir.name, model=model) - fhe_model_dev.save() + fhe_model_dev.save(mode=mode, via_mlir=True) # Check that re-saving the dev model fails with pytest.raises( @@ -225,7 +199,7 @@ def check_client_server_files(model): "Please delete it before saving a new model." ), ): - fhe_model_dev.save() + fhe_model_dev.save(mode=mode) client_zip_path = Path(disk_network.dev_dir.name) / "client.zip" server_zip_path = Path(disk_network.dev_dir.name) / "server.zip" @@ -260,11 +234,8 @@ def check_client_server_files(model): json.load(file), dict ), f"{server_zip_path} does not contain a '{versions_file_name}' file." - # Clean up - disk_network.cleanup() - -def check_client_server_execution( +def check_client_server_inference( x_test, model, key_dir, check_array_equal, check_float_array_equal ): """Test the client server interface API. @@ -278,7 +249,7 @@ def check_client_server_execution( # Save development files fhe_model_dev = FHEModelDev(path_dir=disk_network.dev_dir.name, model=model) - fhe_model_dev.save() + fhe_model_dev.save(mode="inference") # Send necessary files to server and client disk_network.dev_send_clientspecs_and_modelspecs_to_client() @@ -298,7 +269,7 @@ def check_client_server_execution( # Client side : Generate all keys and serialize the evaluation keys for the server evaluation_keys = fhe_model_client.get_serialized_evaluation_keys() - # Client side : Encrypt the data + # Client side : Quantize, encrypt and serialize the data q_x_encrypted_serialized = fhe_model_client.quantize_encrypt_serialize(x_test) # Server side: Run the model over encrypted data @@ -319,9 +290,6 @@ def check_client_server_execution( check_float_array_equal(y_pred, y_pred_dev) check_array_equal(q_y_pred, q_y_pred_dev) - # Clean up - disk_network.cleanup() - def check_input_compression(model, fhe_circuit_compressed, is_torch, **compilation_kwargs): """Check that input compression properly reduces input sizes.""" @@ -395,9 +363,10 @@ def test_save_mode_handling(n_bits, fit_encrypted, mode, error_message): n_bits=n_bits, ) - # Fit the model - with warnings.catch_warnings(): - warnings.simplefilter("ignore", category=UserWarning) + # Fit the model in the clear + if getattr(model, "fit_encrypted", False): + model.fit(x_train, y_train, fhe="disable") + else: model.fit(x_train, y_train) # Compile @@ -412,3 +381,360 @@ def test_save_mode_handling(n_bits, fit_encrypted, mode, error_message): model_dev.save(mode=mode) else: model_dev.save(mode=mode) + + +def quantize_encrypt_training_inputs( + x, + y, + weights, + bias, + batch_size=8, + max_iter=None, + fhe_client=None, + quantized_module=None, +): + """Quantize and encrypt training data, and serialize them if in client-server mode.""" + + assert (fhe_client is None) ^ ( + quantized_module is None + ), "Either provide a client or a QuantizedModule instance" + + x_batches_enc, y_batches_enc = [], [] + + for i in range(0, x.shape[0], batch_size): + + # Avoid the last batch if it's not a multiple of 'batch_size' + if i + batch_size < x.shape[0]: + batch_range = range(i, i + batch_size) + else: + break + + # Make the data X (1, batch_size, n_features) and y (1, batch_size, n_targets=1) + x_batch = numpy.expand_dims(x[batch_range, :], 0) + y_batch = numpy.expand_dims(y[batch_range], (0, 2)) + + # Quantize and encrypt the batch + # Serialize as well if in client-server mode + if fhe_client is not None: + x_batch_enc, y_batch_enc, _, _ = fhe_client.quantize_encrypt_serialize( + x_batch, y_batch, None, None + ) + else: + q_x_batch, q_y_batch, _, _ = quantized_module.quantize_input( + x_batch, y_batch, None, None + ) + x_batch_enc, y_batch_enc, _, _ = quantized_module.fhe_circuit.encrypt( + q_x_batch, q_y_batch, None, None + ) + + x_batches_enc.append(x_batch_enc) + y_batches_enc.append(y_batch_enc) + + # Stop at 'max_iter' iterations + if max_iter is not None and (i // batch_size) >= max_iter - 1: + break + + # Quantize and encrypt the weight and bias values + # Serialize as well if in client-server mode + if fhe_client is not None: + _, _, weights_enc, bias_enc = fhe_client.quantize_encrypt_serialize( + None, None, weights, bias + ) + else: + _, _, q_weights, q_bias = quantized_module.quantize_input( + None, + None, + weights, + bias, + ) + _, _, weights_enc, bias_enc = quantized_module.fhe_circuit.encrypt( + None, None, q_weights, q_bias + ) + + return x_batches_enc, y_batches_enc, weights_enc, bias_enc + + +def fhe_training_run( + x_batches_enc, + y_batches_enc, + weights_enc, + bias_enc, + evaluation_keys=None, + fhe_server=None, + quantized_module=None, +): + """Run encrypted training for several iterations.""" + + assert (fhe_server is None) ^ ( + quantized_module is None + ), "Either provide a server or a QuantizedModule instance" + + # Deserialize weights, bias and evaluations keys if in client-server mode + if fhe_server is not None: + weights_enc = fhe.Value.deserialize(weights_enc) + bias_enc = fhe.Value.deserialize(bias_enc) + + assert evaluation_keys is not None, "Please provide evaluations keys in client-server mode" + + evaluation_keys = fhe.EvaluationKeys.deserialize(evaluation_keys) + + # Run the circuit on the server n times, n being the number of batches provided + for x_batch, y_batch in zip(x_batches_enc, y_batches_enc): + + # Deserialize the input batches if in client-server mode + if fhe_server is not None: + x_batch = fhe.Value.deserialize(x_batch) + y_batch = fhe.Value.deserialize(y_batch) + + weights_enc, bias_enc = fhe_server.run( + (x_batch, y_batch, weights_enc, bias_enc), evaluation_keys + ) + else: + weights_enc, bias_enc = quantized_module.fhe_circuit.run( + x_batch, y_batch, weights_enc, bias_enc + ) + + # Serialize the output weight and bias values if in client-server mode + if fhe_server is not None: + weights_enc = weights_enc.serialize() + bias_enc = bias_enc.serialize() + + return weights_enc, bias_enc + + +def decrypt_dequantize_training_outputs( + weights_enc, + bias_enc, + fhe_client=None, + quantized_module=None, +): + """Decrypt and de-quantize training outputs, and de-serialize them if in client-server mode.""" + if fhe_client is not None: + q_weights, q_bias = fhe_client.deserialize_decrypt(weights_enc, bias_enc) + weights, bias = fhe_client.deserialize_decrypt_dequantize(weights_enc, bias_enc) + else: + q_weights, q_bias = quantized_module.fhe_circuit.decrypt(weights_enc, bias_enc) + weights, bias = quantized_module.dequantize_output(q_weights, q_bias) + + return q_weights, q_bias, weights, bias + + +def get_fitted_weights( + x_train, + y_train, + weights, + bias, + batch_size=None, + max_iter=None, + fhe_client=None, + fhe_server=None, + quantized_module=None, +): + """RunFHE training in client-server or un development mode.""" + + # Client side : Quantize, encrypt and serialize the data + x_batches_enc, y_batches_enc, weights_enc, bias_enc = quantize_encrypt_training_inputs( + x_train, + y_train, + weights, + bias, + batch_size=batch_size, + max_iter=max_iter, + fhe_client=fhe_client, + quantized_module=quantized_module, + ) + + evaluation_keys = None + + # Client side : Generate all keys and serialize the evaluation keys for the server + if fhe_client is not None: + evaluation_keys = fhe_client.get_serialized_evaluation_keys() + + # Server side: Fit the model over encrypted data using the training FHE circuit + weights_enc, bias_enc = fhe_training_run( + x_batches_enc, + y_batches_enc, + weights_enc, + bias_enc, + evaluation_keys=evaluation_keys, + fhe_server=fhe_server, + quantized_module=quantized_module, + ) + + # Client side: Deserialize, decrypt and de-quantize the result + q_weights, q_bias, weights, bias = decrypt_dequantize_training_outputs( + weights_enc, + bias_enc, + fhe_client=fhe_client, + quantized_module=quantized_module, + ) + + return q_weights, q_bias, weights, bias + + +def check_client_server_training( + model, + x_train, + y_train, + weights, + bias, + batch_size, + max_iter, + key_dir, + check_array_equal, + check_float_array_equal, +): + """Test the client server interface API for encrypted training.""" + + model_name = get_model_name(model) + assert hasattr( + model, "training_quantized_module" + ), f"Model '{model_name}' has no 'training_quantized_module' attribute" + + assert ( + model.training_quantized_module is not None + ), f"Attribute 'training_quantized_module' for model '{model_name}' has not been set" + + # Create a new network + disk_network = OnDiskNetwork() + + # Save development files + fhe_dev = FHEModelDev(path_dir=disk_network.dev_dir.name, model=model) + fhe_dev.save(mode="training", via_mlir=True) + + # Send necessary files to server and client + disk_network.dev_send_clientspecs_and_modelspecs_to_client() + disk_network.dev_send_model_to_server() + + # Load the client + fhe_client = FHEModelClient( + path_dir=disk_network.client_dir.name, + key_dir=key_dir, + ) + fhe_client.load() + + # Load the server + fhe_server = FHEModelServer(path_dir=disk_network.server_dir.name) + fhe_server.load() + + # Client-server training + q_weights_deployment, q_bias_deployment, weights_deployment, bias_deployment = ( + get_fitted_weights( + x_train, + y_train, + weights, + bias, + batch_size=batch_size, + max_iter=max_iter, + fhe_client=fhe_client, + fhe_server=fhe_server, + ) + ) + + # Quantized module (development) training + q_weights_development, q_bias_development, weights_development, bias_development = ( + get_fitted_weights( + x_train, + y_train, + weights, + bias, + batch_size=batch_size, + max_iter=max_iter, + quantized_module=model.training_quantized_module, + ) + ) + + # Check that both quantized outputs from the quantized module (development) are matching the + # ones from the deployment interface + check_array_equal(q_weights_deployment, q_weights_development) + check_array_equal(q_bias_deployment, q_bias_development) + + # Same for de-quantized outputs + check_float_array_equal(weights_deployment, weights_development) + check_float_array_equal(bias_deployment, bias_development) + + +@pytest.mark.parametrize( + "model_class, parameters", + [ + pytest.param( + partial(SGDClassifier, fit_encrypted=True, parameters_range=(-1, 1)), + { + "n_samples": 100, + "n_features": 2, + "n_classes": 2, + "n_informative": 2, + "n_redundant": 0, + }, + id="SGDClassifier_Encrypted_Training", + ) + ], +) +@pytest.mark.parametrize("n_bits", [2]) +def test_client_server_sklearn_training( + model_class, + parameters, + n_bits, + load_data, + default_configuration, + check_array_equal, + check_float_array_equal, +): + """Test the client-server interface for encrypted training.""" + max_iter = 2 + batch_size = 2 + + # Generate random data + x_train, y_train = load_data(model_class, **parameters) + + # Instantiate the model + model = instantiate_model_generic(model_class, n_bits=n_bits, max_iter=max_iter) + + # Set a higher p_error s that tests pass + model.training_p_error = 2 ** (-40) + + # SGDClassifier cannot set teh training batch size and number of bits through the initializer, + # so we fix a lower value in order to speed-up tests, especially since we do not actually check + # any score here + model.batch_size = batch_size + model.n_bits_training = n_bits + + # Generate the min and max values for x_train and y_train + x_min, x_max = x_train.min(axis=0), x_train.max(axis=0) + y_min, y_max = y_train.min(), y_train.max() + + # Create a dataset with the min and max values for each feature, repeated to fill the batch size + x_compile_set = numpy.vstack([x_min, x_max] * (batch_size // 2)) + + # Create a dataset with the min and max values for y, repeated to fill the batch size + y_compile_set = numpy.array([y_min, y_max] * (batch_size // 2)) + + # Fit the model with the created dataset to compile it for production + # This step ensures the model knows the number of features, targets and features distribution + # Remove this once this step is improved + # FIXME: https://github.com/zama-ai/concrete-ml-internal/issues/4466 + model.fit(x_compile_set, y_compile_set, fhe="disable") + + # Check that client and server files are properly generated + check_client_server_files(model, mode="training") + + # Initialize the weight and bias randomly + # They are going to be updated using FHE training. + weights = numpy.random.rand(1, x_train.shape[1], 1) + bias = numpy.random.rand(1, 1, 1) + + key_dir = default_configuration.insecure_key_cache_location + + # Check client/server FHE training + check_client_server_training( + model, + x_train, + y_train, + weights, + bias, + batch_size, + max_iter, + key_dir, + check_array_equal, + check_float_array_equal, + ) diff --git a/tests/sklearn/test_fhe_training.py b/tests/sklearn/test_fhe_training.py index 07afab79d..a5aa76aea 100644 --- a/tests/sklearn/test_fhe_training.py +++ b/tests/sklearn/test_fhe_training.py @@ -11,12 +11,11 @@ from concrete.ml.sklearn import SGDClassifier -def get_blob_data(n_classes=2, scale_input=False, parameters_range=None): +def get_blob_data( + n_samples=1000, n_classes=2, n_features=8, scale_input=False, parameters_range=None +): """Get the training data.""" - n_samples = 1000 - n_features = 8 - # Generate the input and target values # pylint: disable-next=unbalanced-tuple-unpacking x, y = make_blobs(n_samples=n_samples, centers=n_classes, n_features=n_features) @@ -57,7 +56,7 @@ def test_init_error_raises(n_bits, parameter_min_max): ) with pytest.raises( - ValueError, match="Setting 'parameter_range' is mandatory if FHE training is enabled." + ValueError, match="Setting 'parameters_range' is mandatory if FHE training is enabled." ): SGDClassifier( n_bits=n_bits, @@ -67,13 +66,31 @@ def test_init_error_raises(n_bits, parameter_min_max): fit_intercept=True, ) - SGDClassifier( - n_bits=n_bits, - fit_encrypted=True, - random_state=random_state, - parameters_range=parameters_range, - fit_intercept=False, - ) + with pytest.raises( + ValueError, + match=re.escape( + "Only 'log_loss' is currently supported if FHE training is enabled" + " (fit_encrypted=True). Got loss='perceptron'" + ), + ): + SGDClassifier( + n_bits=n_bits, + fit_encrypted=True, + loss="perceptron", + random_state=random_state, + parameters_range=parameters_range, + ) + + with pytest.raises( + ValueError, match="Setting 'parameters_range' is mandatory if FHE training is enabled." + ): + SGDClassifier( + n_bits=n_bits, + fit_encrypted=True, + random_state=random_state, + parameters_range=None, + fit_intercept=True, + ) @pytest.mark.parametrize("n_classes", [1, 3]) @@ -448,24 +465,6 @@ def test_encrypted_fit_coherence( assert array_allclose_and_same_shape(y_pred_proba_simulated, y_pred_proba_disable) assert array_allclose_and_same_shape(y_pred_class_simulated, y_pred_class_disable) - # Define early break parameters, with a very high tolerance - early_break_kwargs = {"early_stopping": True, "tol": 1e100} - - # We don't have any way to properly test early break, we therefore disable the accuracy check - # in order to avoid flaky issues - check_encrypted_fit( - x, - y, - n_bits, - random_state, - parameters_range, - max_iter, - fit_intercept, - check_accuracy=None, - fhe="simulate", - init_kwargs=early_break_kwargs, - ) - weights_partial, bias_partial, y_pred_proba_partial, y_pred_class_partial, _ = ( check_encrypted_fit( x, @@ -512,7 +511,7 @@ def test_encrypted_fit_coherence( # Fit the model for max_iter // 2 iterations and retrieved the weight/bias values, as well as # the RNG object - weights_coef_init, bias_coef_init, _, _, rng_coef_init = check_encrypted_fit( + weights_coef_init_partial, bias_coef_init_partial, _, _, rng_coef_init = check_encrypted_fit( x, y, n_bits, @@ -528,8 +527,8 @@ def test_encrypted_fit_coherence( # Define coef parameters coef_init_fit_kwargs = { - "coef_init": weights_coef_init, - "intercept_init": bias_coef_init, + "coef_init": weights_coef_init_partial, + "intercept_init": bias_coef_init_partial, } # Fit the model for the remaining iterations starting at the previous weight/bias values. It is @@ -556,3 +555,69 @@ def test_encrypted_fit_coherence( assert array_allclose_and_same_shape(bias_disable, bias_coef_init) assert array_allclose_and_same_shape(y_pred_proba_disable, y_pred_proba_coef_init) assert array_allclose_and_same_shape(y_pred_class_disable, y_pred_class_coef_init) + + # Define early break parameters, with a very high tolerance + early_break_kwargs = {"early_stopping": True, "tol": 1e100} + + # We don't have any way to properly test early break, we therefore disable the accuracy check + # in order to avoid flaky issues + check_encrypted_fit( + x, + y, + n_bits, + random_state, + parameters_range, + max_iter, + fit_intercept, + check_accuracy=None, + fhe="simulate", + init_kwargs=early_break_kwargs, + ) + + +@pytest.mark.parametrize("n_bits, max_iter, parameter_min_max", [pytest.param(7, 2, 1.0)]) +def test_encrypted_fit_in_fhe(n_bits, max_iter, parameter_min_max): + """Test that encrypted fitting works properly when executed in FHE.""" + + # Model parameters + random_state = numpy.random.randint(0, 2**15) + parameters_range = (-parameter_min_max, parameter_min_max) + fit_intercept = True + + # Generate a data-set with binary target classes + x, y = get_blob_data(n_features=2, scale_input=True, parameters_range=parameters_range) + y = y + 1 + + # Avoid checking the accuracy. Since this test is mostly here to make sure that FHE execution + # properly matches the quantized clear one, some parameters (for example, the number of + # features) were set to make it quicker, without considering the model's accuracy + weights_disable, bias_disable, y_pred_proba_disable, y_pred_class_disable, _ = ( + check_encrypted_fit( + x, + y, + n_bits, + random_state, + parameters_range, + max_iter, + fit_intercept, + fhe="disable", + ) + ) + + # Same, avoid checking the accuracy + weights_fhe, bias_fhe, y_pred_proba_fhe, y_pred_class_fhe, _ = check_encrypted_fit( + x, + y, + n_bits, + random_state, + parameters_range, + max_iter, + fit_intercept, + fhe="execute", + ) + + # Make sure weight, bias and prediction values are identical between clear and fhe training + assert array_allclose_and_same_shape(weights_fhe, weights_disable) + assert array_allclose_and_same_shape(bias_fhe, bias_disable) + assert array_allclose_and_same_shape(y_pred_proba_fhe, y_pred_proba_disable) + assert array_allclose_and_same_shape(y_pred_class_fhe, y_pred_class_disable) diff --git a/tests/torch/test_brevitas_qat.py b/tests/torch/test_brevitas_qat.py index 1c24d4ec5..32331fc42 100644 --- a/tests/torch/test_brevitas_qat.py +++ b/tests/torch/test_brevitas_qat.py @@ -508,6 +508,7 @@ def test_brevitas_power_of_two( power_of_two: bool, n_bits: int, is_cnn: bool, + check_array_equal, ): """Test a custom QAT network that uses power-of-two scaling. @@ -603,5 +604,5 @@ def test_brevitas_power_of_two( # # Compare the result with the optimized network and without # # they should be equal - assert numpy.sum(y_pred_sim_round != y_pred_clear_round) == 0 - assert numpy.sum(y_pred_clear_round != y_pred_clear_no_round) == 0 + check_array_equal(y_pred_sim_round, y_pred_clear_round) + check_array_equal(y_pred_clear_round, y_pred_clear_no_round) diff --git a/tests/torch/test_compile_torch.py b/tests/torch/test_compile_torch.py index 1f5629331..6e6061925 100644 --- a/tests/torch/test_compile_torch.py +++ b/tests/torch/test_compile_torch.py @@ -36,6 +36,8 @@ EncryptedMatrixMultiplicationModel, ExpandModel, FCSmall, + IdentityExpandModel, + IdentityExpandMultiOutputModel, MultiInputNN, MultiInputNNConfigurable, MultiInputNNDifferentSize, @@ -43,6 +45,7 @@ NetWithLoops, PaddingNet, ShapeOperationsNet, + SimpleNet, SimpleQAT, SingleMixNet, StepActivationModule, @@ -55,6 +58,7 @@ # packages/projects, disable the warning # pylint: disable=ungrouped-imports from concrete.ml.torch.compile import ( + _compile_torch_or_onnx_model, build_quantized_module, compile_brevitas_qat_model, compile_onnx_model, @@ -1476,3 +1480,150 @@ def test_rounding_mode(rounding_method, expected_reinterpret, default_configurat ), "Expected 'reinterpret_precision' found but 'round' should not be present." else: assert "reinterpret_precision" not in mlir, "Unexpected 'reinterpret_precision' found." + + +def test_composition_compilation(default_configuration): + """Test that we can compile models with composition.""" + default_configuration.composable = True + torch_inputset = torch.randn(10, 5) + + model = SimpleNet() + composition_mapping = {0: 0} + + # Check that we can compile a simple torch model with a proper composition mapping + _compile_torch_or_onnx_model( + model, + torch_inputset, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + torch_inputset_multi_input = (torch.randn(10, 5), torch.randn(10, 5)) + + model = MultiOutputModel() + composition_mapping = {1: 0} + + # Check that we can compile a multi-output torch model that does not consider all outputs for + # composition + _compile_torch_or_onnx_model( + model, + torch_inputset_multi_input, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + model = MultiOutputModel() + composition_mapping = {0: 1} + + # Check that we can compile a multi-input torch model that does not consider all inputs for + # composition + _compile_torch_or_onnx_model( + model, + torch_inputset_multi_input, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + +def test_composition_errors(default_configuration): + """Test that using composition in a wrong manner raises the proper errors.""" + torch_inputset = torch.randn(10, 5) + + check_composition_mapping_error_raise(default_configuration, torch_inputset) + check_composition_shape_mismatch_error(default_configuration, torch_inputset) + + +def check_composition_mapping_error_raise(default_configuration, torch_inputset): + """Check that using composition mappings in a wrong manner raises the proper errors.""" + model = FCSmall(input_output=5, activation_function=nn.ReLU) + composition_mapping = {0: 2} + + with pytest.raises(ValueError, match="Composition must be enabled in 'configuration'.*"): + _compile_torch_or_onnx_model( + model, + torch_inputset, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + default_configuration.composable = True + + # Disable mypy as this test is voluntarily made to fail + composition_mapping = [(0, 0)] # type: ignore[assignment] + + with pytest.raises(ValueError, match="Parameter 'composition_mapping' mus be a dictionary.*"): + _compile_torch_or_onnx_model( + model, + torch_inputset, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + composition_mapping = {-1: 2} + + with pytest.raises(ValueError, match=r"Output positions \(keys\) must be positive integers.*"): + _compile_torch_or_onnx_model( + model, + torch_inputset, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + composition_mapping = {0: -2} + + with pytest.raises(ValueError, match=r"Input positions \(values\) must be positive integers.*"): + _compile_torch_or_onnx_model( + model, + torch_inputset, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + composition_mapping = {10: 2} + + with pytest.raises(ValueError, match=r"Output positions \(keys\) must not be greater.*"): + _compile_torch_or_onnx_model( + model, + torch_inputset, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + composition_mapping = {0: 20} + + with pytest.raises(ValueError, match=r"Input positions \(values\) must not be greater.*"): + _compile_torch_or_onnx_model( + model, + torch_inputset, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + +def check_composition_shape_mismatch_error(default_configuration, torch_inputset): + """Check that composing a model with shape mismatches raises the proper errors. + + This could be done by either wrongly creating a torch model or by providing an unexpected + composition mapping. + """ + default_configuration.composable = True + + model = IdentityExpandModel() + composition_mapping = {0: 0} + with pytest.raises(ValueError, match="A shape mismatch has been found.*"): + _compile_torch_or_onnx_model( + model, + torch_inputset, + configuration=default_configuration, + composition_mapping=composition_mapping, + ) + + model = IdentityExpandMultiOutputModel() + composition_mapping = {1: 0} + with pytest.raises(ValueError, match="A shape mismatch has been found.*"): + _compile_torch_or_onnx_model( + model, + torch_inputset, + configuration=default_configuration, + composition_mapping=composition_mapping, + )