forked from malb/lattice-estimator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
param_sweep.py
472 lines (427 loc) · 19.7 KB
/
param_sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
"""
This module provides a function to iterate over multiple inputs to the
Lattice Estimator, and graph the resulting bits of security of the associated
lattice instances.
Note: running the parameter sweep can take minutes to hours, depending on the
number of parameter combinations (the larger the ranges and the smaller the
increment intervals, the more parameter combinations will be computed). For
faster and rougher results, use the `LWE.estimate.rough` function.
"""
import pickle
import time
import math
import os
import itertools as it
from multiprocessing import Pool
from functools import partial
from dataclasses import dataclass, astuple
from typing import Iterable, Union, Optional, Callable
import numpy as np
from matplotlib import pyplot as plt
from estimator import LWE
from estimator.io import Logging
from estimator.nd import NoiseDistribution as ND
class ParameterSweep:
"""
A class that provides utilities for performing and graphing the results
from performing parameter sweeps using the lattice estimator.
"""
@staticmethod
def parameter_sweep(
n: Union[int, Iterable],
q: Union[int, Iterable],
e: Union[float, Iterable],
s: Union[float, Iterable],
m: Optional[Union[int, Iterable]] = None,
Xe: Callable = ND.DiscreteGaussian,
e_log: bool = True,
Xs: Callable = ND.DiscreteGaussian,
s_log: bool = True,
tag: str = None,
f: Callable = LWE.estimate,
num_proc: int = 8,
log_level: int = 0,
) -> dict:
"""
Performs a sweep over the parameters specified.
:param n: the dimension of the LWE sample vector (Z/qZ)^n.
:param q: the modulus of the space Z/qZ of integers for the LWE samples.
:param e: the input to the distribution function for the error term.
:param s: the input to the distribution function for the secret term.
:param m: the number of LWE samples allowed to an attacker.
:param Xe: the distribution function for the error term.
:param e_log: whether to plot the error on a logarithmic scale.
:param Xs: the distribution function for the secret term.
:param s_log: whether to plot the secret on a logarithmic scale.
:param tag: a name for the patameter set
:param f: the estimation function. Use `LWE.estimate.rough` for speed.
:param num_proc: the number of parallel processes for computation.
:param log_level: the logging level.
:returns: a dictionary mapping from a set of parameters, to the
estimated security level for those parameters. The ordering of
the parameters in the dict key is: (n, q, e, s, m).
EXAMPLE ::
>>> from estimator import LWE, nd
>>> from param_sweep import ParameterSweep as PS
>>> n_list = [600, 900]
>>> e_list = [7, 9]
>>> results = PS.parameter_sweep(\
n=n_list,\
q=2**32,\
e=e_list,\
s=2,\
s_log=False,\
Xs=nd.NoiseDistribution.UniformMod,\
f=LWE.estimate.rough,\
tag='test',\
log_level=2,\
num_proc=1,\
)
usvp :: rop: ≈2^45.6, red: ≈2^45.6, δ: 1.007290, β: 156, d: 1120, tag: usvp
dual_hybrid :: rop: ≈2^45.7, red: ≈2^45.6, guess: ≈2^41.7, β: 156, p: 2, ζ: 0, t: 25, β': 156, ...
usvp :: rop: ≈2^51.7, red: ≈2^51.7, δ: 1.006767, β: 177, d: 1124, tag: usvp
dual_hybrid :: rop: ≈2^51.4, red: ≈2^51.4, guess: ≈2^46.6, β: 176, p: 2, ζ: 0, t: 30, β': 176, ...
usvp :: rop: ≈2^82.9, red: ≈2^82.9, δ: 1.005021, β: 284, d: 1661, tag: usvp
dual_hybrid :: rop: ≈2^80.3, red: ≈2^80.3, guess: ≈2^75.4, β: 275, p: 2, ζ: 5, t: 50, β': 275, ...
usvp :: rop: ≈2^92.6, red: ≈2^92.6, δ: 1.004667, β: 317, d: 1650, tag: usvp
dual_hybrid :: rop: ≈2^89.1, red: ≈2^89.1, guess: ≈2^84.9, β: 305, p: 2, ζ: 5, t: 60, β': 305, ...
>>> results[(600, 4294967296, 9.0, 2.0, 600, 'test')]
51.4434...
>>> results[(600, 4294967296, 7.0, 2.0, 600, 'test')]
45.552
>>> results[(900, 4294967296, 7.0, 2.0, 900, 'test')]
80.347...
>>> results[(900, 4294967296, 9.0, 2.0, 900, 'test')]
89.138...
"""
n, q, m, e, s = [
param if hasattr(param, "__iter__") else [param] for param in (n, q, m, e, s)
]
@dataclass
class Params:
n: int
q: int
e: float
s: float
m: int
def __post_init__(self):
if self.m is None:
self.m = self.n
# Check types are same as annotations
for name, field_type in self.__annotations__.items():
obj = self.__dict__[name]
if not isinstance(obj, field_type):
# Attempt conversion to correct type
setattr(self, name, field_type(obj))
tasks = [astuple(Params(*params)) for params in it.product(n, q, e, s, m)]
fn = partial(
ParameterSweep.security_level,
Xe=Xe,
e_log=e_log,
Xs=Xs,
s_log=s_log,
tag=tag,
f=f,
log_level=log_level,
)
if num_proc <= 1:
return {(*task, tag): fn(task) for task in tasks}
# Parallel process the calculations
with Pool(processes=min(num_proc, len(tasks))) as pool:
return {(*task, tag): value for task, value in zip(tasks, pool.map(fn, tasks))}
@staticmethod
def security_level(
input_params: tuple[int, float],
Xe: Callable = ND.DiscreteGaussian,
e_log: bool = True,
Xs: Callable = ND.DiscreteGaussian,
s_log: bool = True,
tag: str = None,
f: Callable = LWE.estimate,
log_level: int = 0,
) -> float:
"""
Calls the lattice-estimator for a given set of input
parameters, and appends the output to the `result_dict` dict.
:param input_params: a tuple of params to estimate security for.
Parameter ordering is: (n: int, q: int, e: float, s: float, m: int).
:param result_dict: the dictionary to append the output to. The key is
the tuple of parameters from input_params.
:param Xe: the distribution function for the error term.
:param e_log: whether to plot the error on a logarithmic scale.
:param Xs: the distribution function for the secret term.
:param s_log: whether to plot the secret on a logarithmic scale.
:param tag: a name for the patameter set
:param f: the estimation function. Use `LWE.estimate.rough` for speed.
:param log_level: the logging level.
"""
n_ = int(input_params[0])
q_ = int(input_params[1])
e_ = 2 ** input_params[2] if e_log else input_params[2]
s_ = 2 ** input_params[3] if s_log else input_params[3]
# If m = infinity, pass infinity to the estimator (since infinity can't be cast to an int).
m_ = float("inf") if input_params[4] == float("inf") else int(input_params[4])
lwe_params = LWE.Parameters(
n=n_,
q=q_,
Xe=Xe(e_),
Xs=Xs(s_),
m=m_,
tag=tag,
)
estimator_result = f(lwe_params)
security = min([math.log(res.get("rop", 0), 2) for res in estimator_result.values()])
if not security:
raise ValueError("ROP for a estimator result was 0, estimator failed")
Logging.log("sweep", log_level, f"Parameters = {lwe_params}; security = {security}")
return security
@staticmethod
def graph_parameter_sweep(
n: Union[int, Iterable],
q: Union[int, Iterable],
e: Union[float, Iterable],
s: Union[float, Iterable],
m: Optional[Union[int, Iterable]] = None,
Xe: Callable = ND.DiscreteGaussian,
e_log: bool = True,
Xs: Callable = ND.DiscreteGaussian,
s_log: bool = True,
tag: str = None,
f: Callable = LWE.estimate,
num_proc: int = 8,
log_level: int = 0,
make_pickle: bool = False,
load_pickle: bool = False,
security_cutoff: int = None,
directory: str = None,
file_name: str = None,
extension: str = ".png",
) -> None:
"""
Gets the results of a parameter sweep, and creates graph visualizations
of the data. The type of graph depends on the number of variables.
:param n: the dimension of the LWE sample vector (Z/qZ)^n.
:param q: the modulus of the space Z/qZ of integers for the LWE samples.
:param e: the input to the distribution function for the error term.
:param s: the input to the distribution function for the secret term.
:param m: the number of LWE samples allowed to an attacker.
:param Xe: the distribution function for the error term.
:param e_log: whether to plot the error on a logarithmic scale.
:param Xs: the distribution function for the secret term.
:param s_log: whether to plot the secret on a logarithmic scale.
:param tag: a name for the patameter set
:param f: the estimation function. Use `LWE.estimate.rough` for speed.
:param num_proc: the number of parallel processes for computation.
:param log_level: the logging level.
:param make_pickle: whether to make a pickle file of the results dict.
:param load_pickle: whether to load a pickle file of the results dict.
:param security_cutoff: makes a separate graph with a security cutoff.
:param directory: the directory to load files from and/or save files to.
:param file_name: the file name to load files from and/or save files to.
:param extension: the extension of the graph(s). Ex: .png, .pdf, .svg.
EXAMPLE ::
>>> from estimator import LWE, nd
>>> from param_sweep import ParameterSweep as PS
>>> import uuid
>>> from pathlib import Path
>>> e_range = range(7, 10, 2)
>>> s_range = range(2, 5, 2)
>>> file_name = 'test_file_' + str(uuid.uuid4())
>>> _ = PS.graph_parameter_sweep(\
n=700,\
q=2**32,\
e=e_range,\
s=s_range,\
f=LWE.estimate.rough,\
tag='test',\
directory='/tmp',\
make_pickle=True,\
security_cutoff=128,\
file_name=file_name,\
num_proc=1,\
)
usvp :: rop: ≈2^69.2, red: ≈2^69.2, δ: 1.005647, β: 237, d: 1396, tag: usvp
dual_hybrid :: rop: ≈2^70.7, red: ≈2^70.7, guess: ≈2^63.6, β: 242, p: 3, ζ: 0, t: 0, β': 242, ...
usvp :: rop: ≈2^78.8, red: ≈2^78.8, δ: 1.005191, β: 270, d: 1396, tag: usvp
dual_hybrid :: rop: ≈2^80.6, red: ≈2^80.6, guess: ≈2^74.0, β: 276, p: 3, ζ: 0, t: 0, β': 276, ...
usvp :: rop: ≈2^78.8, red: ≈2^78.8, δ: 1.005191, β: 270, d: 1391, tag: usvp
dual_hybrid :: rop: ≈2^80.6, red: ≈2^80.6, guess: ≈2^70.0, β: 276, p: 3, ζ: 0, t: 0, β': 276, ...
usvp :: rop: ≈2^90.5, red: ≈2^90.5, δ: 1.004738, β: 310, d: 1394, tag: usvp
dual_hybrid :: rop: ≈2^92.6, red: ≈2^92.6, guess: ≈2^82.3, β: 317, p: 3, ζ: 0, t: 0, β': 317, ...
>>> Path(f'/tmp/{file_name}.pickle').exists()
True
>>> Path(f'/tmp/{file_name}_gradient.png').exists()
True
>>> Path(f'/tmp/{file_name}_cutoff.png').exists()
True
>>> results = pickle.load(open(f'/tmp/{file_name}.pickle', 'rb'))
>>> results[(700, 4294967296, 9.0, 2.0, 700, 'test')]
78.83999999999999
>>> results[(700, 4294967296, 9.0, 4.0, 700, 'test')]
90.52000000000001
>>> results[(700, 4294967296, 7.0, 4.0, 700, 'test')]
78.83999999999999
>>> results[(700, 4294967296, 7.0, 2.0, 700, 'test')]
69.204
"""
if directory is None:
directory = os.path.dirname(os.path.realpath(__file__))
if file_name is None:
file_name = time.strftime("%d-%m-%Y_%H-%M-%S")
file_name = os.path.join(directory, file_name)
assert num_proc >= 1, "need at least one process to execute"
pickle_filename = f"{file_name}.pickle"
if load_pickle is True:
with open(pickle_filename, "rb") as f:
result_dict = pickle.load(f)
else:
result_dict = ParameterSweep.parameter_sweep(
n, q, e, s, m, Xe, e_log, Xs, s_log, tag, f, num_proc, log_level
)
if make_pickle is True:
# Pickle the intermediate computation results
with open(pickle_filename, "wb") as f:
pickle.dump(result_dict, f)
Logging.log(
"sweep",
log_level,
"Pickled the intermediate computations to: %s",
pickle_filename,
)
Xe_string = "log_2(Xe)" if e_log else "Xe"
Xs_string = "log_2(Xs)" if s_log else "Xs"
params = {
"n": (n, 0),
"q": (q, 1),
Xe_string: (e, 2),
Xs_string: (s, 3),
"m": (m, 4),
}
ParameterSweep.graph_results(
result_dict,
params,
file_name,
security_cutoff,
log_level,
extension,
)
@staticmethod
def graph_results(
result_dict: dict,
params: dict[str, (list[Union[int, float]], int)],
file_name: str,
security_cutoff: int = None,
log_level: int = 0,
extension: str = ".png",
):
"""
Graph the security estimate results in `result_dict`, using the
parameters in `params` for labeling the plot axes and titles.
- For 1 variable: creates a line plot.
- For 2 variables: creates a heatmap plot, and an optional cutoff plot.
:param result_dict: a mapping from a set of parameters, to security.
Parameter ordering: (n: int, q: int, e: float, s: float, m: int).
:param params: a mapping from the string representation of a parameter,
to a tuple of the parameter and its associated order in the
`result_dict` key. Example: {'n': (600, 0), 'q'': (4294967296, 1)}
:param file_name: the file name to write the output graphs to.
:param security_cutoff: makes a separate graph with a security cutoff.
:param log_level: the logging level
:param extension: the extension of the graph(s). Ex: .png, .pdf, .svg.
"""
# Convert parameter iterators to lists.
# Also keep track of the axis and fixed variables, for labeling.
axis_vars = {}
fixed_vars = {}
for p, sec in params.items():
try:
# The variable is an axis variable
params[p] = (list(sec[0]), sec[1])
axis_vars[p] = len(sec[0])
except TypeError:
# The variable is a fixed variable
params[p] = ([sec[0]], sec[1])
fixed_vars[p] = sec[0]
if len(axis_vars) == 0:
raise ValueError(
"Cannot plot when there are no variables. Call the lattice estimator directly for security."
)
elif len(axis_vars) == 1:
variable_param = list(axis_vars.keys())[0] # a string like 'Xe'
x = sorted(params[variable_param][0])
y = sorted(result_dict.items(), key=lambda x: x[params[variable_param][1]])
y = list(zip(*y))[1]
fig, ax = plt.subplots(figsize=(20, 20), dpi=80)
ax.plot(x, y)
ax.set_xlabel(f"Parameter: {variable_param}")
ax.set_ylabel("Security")
plot_filename = f"{file_name}_plot{extension}"
plt.title(f"Security with parameters {fixed_vars}")
fig.savefig(plot_filename)
Logging.log("sweep", log_level, "Saved the line plot graph to: %s", plot_filename)
elif len(axis_vars) == 2:
axis_vars = sorted(axis_vars.items(), key=lambda x: params[x[0]][1])
x_param = axis_vars[0][0]
x = sorted(params[x_param][0])
y_param = axis_vars[1][0]
y = sorted(params[y_param][0])
values = [v for _, v in sorted(result_dict.items(), key=lambda x: x[0])]
mat = np.flip(np.array(values).reshape((len(set(x)), len(set(y)))), axis=1).transpose()
fig, ax = plt.subplots(figsize=(20, 20), dpi=80)
ax.imshow(mat)
ax.set_xticks(np.arange(0, len(set(x)), 1))
ax.set_yticks(np.arange(0, len(set(y)), 1))
ax.set_xticklabels(sorted(set(x)))
ax.set_yticklabels(sorted(set(y), reverse=True))
plt.title(f"Security with fixed parameters {fixed_vars}")
for (j, i), label in np.ndenumerate(mat):
ax.text(
i,
j,
round(label, 1),
ha="center",
va="center",
color="white",
)
ax.set_xlabel(f"Parameter: {x_param}")
ax.set_ylabel(f"Parameter: {y_param}")
gradient_filename = f"{file_name}_gradient{extension}"
fig.savefig(gradient_filename)
Logging.log("sweep", log_level, "Saved the gradient graph to: %s", gradient_filename)
if security_cutoff:
fig2, ax2 = plt.subplots(figsize=(20, 20), dpi=80)
binary_mat = mat >= security_cutoff
ax2.imshow(binary_mat)
ax2.set_xticks(np.arange(0, len(set(x)), 1))
ax2.set_yticks(np.arange(0, len(set(y)), 1))
ax2.set_xticklabels(sorted(set(x)))
ax2.set_yticklabels(sorted(set(y), reverse=True))
for (j, i), label in np.ndenumerate(mat):
ax2.text(
i,
j,
round(label, 1),
ha="center",
va="center",
color="white" if label < security_cutoff else "black",
)
ax.text(
i,
j,
round(label, 1),
ha="center",
va="center",
color="white",
)
plt.title(
f"Security with fixed parameters {fixed_vars} and cutoff at {security_cutoff}"
)
ax2.set_xlabel(f"Parameter: {x_param}")
ax2.set_ylabel(f"Parameter: {y_param}")
cutoff_filename = f"{file_name}_cutoff{extension}"
fig2.savefig(cutoff_filename)
Logging.log("sweep", log_level, "Saved the cutoff graph to: %s", cutoff_filename)
else:
raise ValueError(
"Cannot plot more than two variables. Try freezing one or more of them."
)