-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest.py
125 lines (105 loc) · 4.45 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import numpy as np
import os, cv2
from tqdm import tqdm
import paddle
import time
import paddle.nn.functional as F
####################################################
NET_NAME = 'AIDR'
####################################################
def read_img(path, size=None):
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if img.dtype == np.uint8:
img = img.astype(np.float32) / 255.
elif img.dtype == np.uint16:
img = img.astype(np.float32) / 65535.
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
# some images have 4 channels
if img.shape[2] > 3:
img = img[:, :, :3]
return img
def pd_tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
img = tensor.squeeze().cpu().numpy()
img = img.clip(min_max[0], min_max[1])
img = (img - min_max[0]) / (min_max[1] - min_max[0])
if out_type == np.uint8:
# scaling
img = img * 255.0
img = np.transpose(img, (1, 2, 0))
img = img.round()
img = img[:,:,::-1]
return img.astype(out_type)
def load_network(weight_path, network):
print('Loading checkpoint from: {}'.format(weight_path))
weights = paddle.load(os.path.join(weight_path))
network.load_dict(weights)
def uint2tensor4(img):
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
img = img.astype(np.float32) / 255.
return paddle.to_tensor(np.ascontiguousarray(np.transpose(img, (2, 0, 1)))).unsqueeze(0)
def main(args):
# set device
if paddle.is_compiled_with_cuda():
paddle.set_device('gpu:0')
else:
paddle.set_device('cpu')
# make dirs
os.makedirs(os.path.join(args.save_path), exist_ok=True)
# set model
if NET_NAME == 'AIDR':
from modules.AIDR_arch import AIDR
net = AIDR(num_c=96)
else:
raise NotImplementedError('Generator model [{:s}] not recognized'.format(NET_NAME))
print('=========> Load From: ', args.pretrained)
load_network(args.pretrained, net)
net.eval()
out_dir = os.path.join(args.save_path)
TIME= []
for img_name in tqdm(os.listdir(os.path.join(args.root_test))):
img = read_img(os.path.join(args.root_test, img_name))
img = img[:, :, [2, 1, 0]] # bgr -> rgb
img = img.astype(np.float32)
input_tensor = paddle.to_tensor(np.ascontiguousarray(np.transpose(img, (2, 0, 1)))).unsqueeze(0)
_, _, h, w = input_tensor.shape
pad_size = 128
h_padded = False
w_padded = False
if h % pad_size != 0:
pad_h = pad_size - (h % pad_size)
input_tensor = F.pad(input_tensor, (0, 0, 0, pad_h), mode='reflect')
h_padded = True
if w % pad_size != 0:
pad_w = pad_size - (w % pad_size)
input_tensor = F.pad(input_tensor, (0, pad_w, 0, 0), mode='reflect')
w_padded = True
# print(input_tensor.shape)
t0 = time.time()
with paddle.no_grad():
result_tensor = net(input_tensor)
if args.test_enhance:
result_tensor += paddle.flip(net(paddle.flip(input_tensor, axis=[2])), axis=[2])
result_tensor += paddle.flip(net(paddle.flip(input_tensor, axis=[3])), axis=[3])
result_tensor += paddle.flip(net(paddle.flip(input_tensor, axis=[2, 3])), axis=[2, 3])
result_tensor = result_tensor / 4
TIME.append(time.time() - t0)
# remove extra pad
if h_padded:
result_tensor = result_tensor[:, :, 0:h, :]
if w_padded:
result_tensor = result_tensor[:, :, :, 0:w]
result_img = pd_tensor2img(result_tensor) # 已转bgr
cv2.imwrite(out_dir + '/{}'.format(img_name), result_img)
if __name__== '__main__':
parser = argparse.ArgumentParser(description="BaiDu")
parser.add_argument("--root_test", type=str, default="./dataset/baidu/task1/moire_testB_dataset/",
help='dataset directory')
parser.add_argument("--save_path", type=str, default="./result_testBx4", help='dataset directory')
parser.add_argument("--pretrained", default="./checkpoint/best.pdparams", type=str, help="path to pretrained models")
parser.add_argument("--test_psnr", default=False, type=bool, help="test psnr")
parser.add_argument("--test_enhance", default=True, type=bool, help="test enhance")
args = parser.parse_args()
main(args)