forked from Leo-Chu/Deep-learning-for-LDPC-decoding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DataIO.py
117 lines (104 loc) · 6.08 KB
/
DataIO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
# this file defines classes for data io
class TrainingDataIO:
def __init__(self, feature_filename, label_filename, total_trainig_samples, feature_length, label_length):
print("Construct the data IO class for training!\n")
self.fin_feature = open(feature_filename, "rb")
self.fin_label = open(label_filename, "rb")
self.total_trainig_samples = total_trainig_samples
self.feature_length = feature_length
self.label_length = label_length
def __del__(self):
print("Delete the data IO class!\n")
self.fin_feature.close()
self.fin_label.close()
def load_next_mini_batch(self, mini_batch_size, factor_of_start_pos=1):
# the function is to load the next batch where the datas in the batch are from a continuous memory block
# the start position for reading data must be a multiple of factor_of_start_pos
remain_samples = mini_batch_size
sample_id = np.random.randint(self.total_trainig_samples) # output a single value which is less than total_trainig_samples
features = np.zeros((0))
labels = np.zeros((0))
if mini_batch_size > self.total_trainig_samples:
print("Mini batch size should not be larger than total sample size!\n")
self.fin_feature.seek((self.feature_length * 4) * (sample_id//factor_of_start_pos*factor_of_start_pos), 0) # float32 = 4 bytes = 32 bits
self.fin_label.seek((self.label_length * 4) * (sample_id//factor_of_start_pos*factor_of_start_pos), 0)
while 1:
new_feature = np.fromfile(self.fin_feature, np.float32, self.feature_length * remain_samples)
new_label = np.fromfile(self.fin_label, np.float32, self.label_length * remain_samples)
features = np.concatenate((features, new_feature))
labels = np.concatenate((labels, new_label))
remain_samples -= len(new_feature) // self.feature_length
if remain_samples == 0:
break
self.fin_feature.seek(0, 0)
self.fin_label.seek(0, 0)
features = features.reshape((mini_batch_size, self.feature_length))
labels = labels.reshape((mini_batch_size, self.label_length))
return features, labels
class TestDataIO:
def __init__(self, feature_filename, label_filename, test_sample_num, feature_length, label_length):
self.fin_feature = open(feature_filename, "rb")
self.fin_label = open(label_filename, "rb")
self.test_sample_num = test_sample_num
self.feature_length = feature_length
self.label_length = label_length
self.all_features = np.zeros(0)
self.all_labels = np.zeros(0)
self.data_position = 0
def __del__(self):
self.fin_feature.close()
self.fin_label.close()
def seek_file_to_zero(self): # reset the file pointer to the start of the file
self.fin_feature.seek(0, 0)
self.fin_label.seek(0, 0)
def load_batch_for_test(self, batch_size):
if batch_size > self.test_sample_num:
print("Batch size should not be larger than total sample size!\n")
if np.size(self.all_features) == 0:
self.all_features = np.fromfile(self.fin_feature, np.float32, self.feature_length * self.test_sample_num)
self.all_labels = np.fromfile(self.fin_label, np.float32, self.label_length * self.test_sample_num)
self.all_features = np.reshape(self.all_features, [self.test_sample_num, self.feature_length])
self.all_labels = np.reshape(self.all_labels, [self.test_sample_num, self.label_length])
features = self.all_features[self.data_position:(self.data_position + batch_size), :]
labels = self.all_labels[self.data_position:(self.data_position + batch_size), :]
self.data_position += batch_size
if self.data_position >= self.test_sample_num:
self.data_position = 0
return features, labels
class BPdecDataIO:
def __init__(self, recieve_filename, transmit_filename, top_config):
print("Construct the data IO class for training!\n")
self.fin_recieve = open(recieve_filename, "rb")
self.fin_transmit = open(transmit_filename, "rb")
self.feature_length = top_config.N_code
self.label_length = top_config.K_code
self.N = top_config.N_code
self.total_samples = top_config.total_samples
self.start_pos = top_config.start_pos
def __del__(self):
print("Delete the data IO class!\n")
self.fin_recieve.close()
self.fin_transmit.close()
def load_next_batch(self, batch_size, batch_num):
# the function is to load the next batch where the datas in the batch are from a continuous memory block
# the start position for reading data must be a multiple of factor_of_start_pos
remain_samples = batch_size
sample_id = batch_num * batch_size + self.start_pos * batch_size # output a single value which is less than total_trainig_samples
y_recieve = np.zeros((0))
x_transmit = np.zeros((0))
self.fin_recieve.seek((self.feature_length * 4) * sample_id, 0) # float32 = 4 bytes = 32 bits
self.fin_transmit.seek((self.label_length * 4) * sample_id, 0)
while 1:
new_y_recieve = np.fromfile(self.fin_recieve, np.float32, self.feature_length * remain_samples)
new_x_transmit = np.fromfile(self.fin_transmit, np.float32, self.label_length * remain_samples)
y_recieve = np.concatenate((y_recieve, new_y_recieve))
x_transmit = np.concatenate((x_transmit, new_x_transmit))
remain_samples -= len(new_y_recieve) // self.feature_length
if remain_samples == 0:
break
self.fin_recieve.seek(0, 0)
self.fin_transmit.seek(0, 0)
y_recieve = y_recieve.reshape((batch_size, self.feature_length))
x_transmit = x_transmit.reshape((batch_size, self.label_length))
return y_recieve, x_transmit