-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparkfun_edge_accelerometer_handler.cpp
220 lines (181 loc) · 7.56 KB
/
sparkfun_edge_accelerometer_handler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#if defined(ARDUINO) && !defined(ARDUINO_SFE_EDGE)
#define ARDUINO_EXCLUDE_CODE
#endif // defined(ARDUINO) && !defined(ARDUINO_SFE_EDGE)
#ifndef ARDUINO_EXCLUDE_CODE
#include "accelerometer_handler.h"
// These are headers from Ambiq's Apollo3 SDK.
#include <string.h>
#include "am_bsp.h"
#include "am_mcu_apollo.h"
#include "am_util.h"
#include "lis2dh12_platform_apollo3.h"
lis2dh12_platform_apollo3_if_t dev_if; // accelerometer device interface
lis2dh12_ctx_t dev_ctx; // accelerometer device control
// A union representing either int16_t[3] or uint8_t[6],
// storing the most recent data
axis3bit16_t data_raw_acceleration;
// A buffer holding the last 200 sets of 3-channel values
float save_data[600] = {0.0};
// Most recent position in the save_data buffer
int begin_index = 0;
// True if there is not yet enough data to run inference
bool pending_initial_data = true;
int initAccelerometer(void) {
uint32_t retVal32 = 0;
static uint8_t whoamI = 0;
am_hal_iom_config_t i2cConfig;
memset((void*)(&i2cConfig), 0x00, sizeof(am_hal_iom_config_t));
i2cConfig.eInterfaceMode = AM_HAL_IOM_I2C_MODE;
i2cConfig.ui32ClockFreq = AM_HAL_IOM_100KHZ;
// Initialize the IOM.
retVal32 = am_hal_iom_initialize(
AM_BSP_ACCELEROMETER_I2C_IOM,
&(dev_if.iomHandle)); // set the iomHandle of the device interface
if (retVal32 != AM_HAL_STATUS_SUCCESS) {
return (int)retVal32;
}
retVal32 =
am_hal_iom_power_ctrl((dev_if.iomHandle), AM_HAL_SYSCTRL_WAKE, false);
if (retVal32 != AM_HAL_STATUS_SUCCESS) {
return (int)retVal32;
}
retVal32 = am_hal_iom_configure((dev_if.iomHandle), &i2cConfig);
if (retVal32 != AM_HAL_STATUS_SUCCESS) {
return (int)retVal32;
}
// Configure the IOM pins.
am_hal_gpio_pinconfig(AM_BSP_ACCELEROMETER_I2C_SDA_PIN,
g_AM_BSP_ACCELEROMETER_I2C_SDA_PIN);
am_hal_gpio_pinconfig(AM_BSP_ACCELEROMETER_I2C_SCL_PIN,
g_AM_BSP_ACCELEROMETER_I2C_SDA_PIN);
// Enable the IOM.
retVal32 = am_hal_iom_enable((dev_if.iomHandle));
if (retVal32 != AM_HAL_STATUS_SUCCESS) {
return (int)retVal32;
}
//
// Apply accelerometer configuration
lis2dh12_device_id_get(&dev_ctx, &whoamI);
if (whoamI != LIS2DH12_ID) {
return AM_HAL_STATUS_FAIL;
}
lis2dh12_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
lis2dh12_temperature_meas_set(&dev_ctx, LIS2DH12_TEMP_ENABLE);
lis2dh12_data_rate_set(&dev_ctx, LIS2DH12_ODR_25Hz);
lis2dh12_full_scale_set(&dev_ctx, LIS2DH12_2g);
lis2dh12_temperature_meas_set(&dev_ctx, LIS2DH12_TEMP_ENABLE);
lis2dh12_operating_mode_set(&dev_ctx, LIS2DH12_HR_12bit);
return (int)AM_HAL_STATUS_SUCCESS;
}
TfLiteStatus SetupAccelerometer(tflite::ErrorReporter* error_reporter) {
// Set the clock frequency.
am_hal_clkgen_control(AM_HAL_CLKGEN_CONTROL_SYSCLK_MAX, 0);
// Set the default cache configuration
am_hal_cachectrl_config(&am_hal_cachectrl_defaults);
am_hal_cachectrl_enable();
// Configure the board for low power operation.
am_bsp_low_power_init();
// Initialize the device interface and control structures
dev_if.iomHandle =
NULL; // Gets initialized once iomHandle is known (in initAccel())
dev_if.addCS = AM_BSP_ACCELEROMETER_I2C_ADDRESS; // Gets the accelerometer
// I2C address for the board
dev_if.useSPI = false; // Using I2C
dev_ctx.write_reg = lis2dh12_write_platform_apollo3; // write bytes function
dev_ctx.read_reg = lis2dh12_read_platform_apollo3; // read bytes function
dev_ctx.handle = (void*)&dev_if; // Apollo3-specific interface information
// Collecting data at 25Hz.
int accInitRes = initAccelerometer();
if (accInitRes != (int)AM_HAL_STATUS_SUCCESS) {
TF_LITE_REPORT_ERROR(error_reporter,
"Failed to initialize the accelerometer. (code %d)",
accInitRes);
}
// Enable the accelerometer's FIFO buffer.
// Note: LIS2DH12 has a FIFO buffer which holds up to 32 data entries. It
// accumulates data while the CPU is busy. Old data will be overwritten if
// it's not fetched in time, so we need to make sure that model inference is
// faster than 1/25Hz * 32 = 1.28s
if (lis2dh12_fifo_set(&dev_ctx, 1)) {
TF_LITE_REPORT_ERROR(error_reporter, "Failed to enable FIFO buffer.");
}
if (lis2dh12_fifo_mode_set(&dev_ctx, LIS2DH12_BYPASS_MODE)) {
TF_LITE_REPORT_ERROR(error_reporter, "Failed to clear FIFO buffer.");
return kTfLiteError;
}
if (lis2dh12_fifo_mode_set(&dev_ctx, LIS2DH12_DYNAMIC_STREAM_MODE)) {
TF_LITE_REPORT_ERROR(error_reporter, "Failed to set streaming mode.");
return kTfLiteError;
}
TF_LITE_REPORT_ERROR(error_reporter, "Magic starts!");
return kTfLiteOk;
}
bool ReadAccelerometer(tflite::ErrorReporter* error_reporter, float* input,
int length) {
// Check FIFO buffer for new samples
lis2dh12_fifo_src_reg_t status;
if (lis2dh12_fifo_status_get(&dev_ctx, &status)) {
TF_LITE_REPORT_ERROR(error_reporter, "Failed to get FIFO status.");
return false;
}
int samples = status.fss;
if (status.ovrn_fifo) {
samples++;
}
// Skip this round if data is not ready yet
if (samples == 0) {
return false;
}
// Load data from FIFO buffer
axis3bit16_t data_raw_acceleration_local;
for (int i = 0; i < samples; i++) {
// Zero out the struct that holds raw accelerometer data
memset(data_raw_acceleration_local.u8bit, 0x00, 3 * sizeof(int16_t));
// If the return value is non-zero, sensor data was successfully read
if (lis2dh12_acceleration_raw_get(&dev_ctx,
data_raw_acceleration_local.u8bit)) {
TF_LITE_REPORT_ERROR(error_reporter, "Failed to get raw data.");
} else {
// Convert each raw 16-bit value into floating point values representing
// milli-Gs, a unit of acceleration, and store in the current position of
// our buffer
save_data[begin_index++] =
lis2dh12_from_fs2_hr_to_mg(data_raw_acceleration_local.i16bit[0]);
save_data[begin_index++] =
lis2dh12_from_fs2_hr_to_mg(data_raw_acceleration_local.i16bit[1]);
save_data[begin_index++] =
lis2dh12_from_fs2_hr_to_mg(data_raw_acceleration_local.i16bit[2]);
// Start from beginning, imitating loop array.
if (begin_index >= 600) begin_index = 0;
}
}
// Check if we are ready for prediction or still pending more initial data
if (pending_initial_data && begin_index >= 200) {
pending_initial_data = false;
}
// Return if we don't have enough data
if (pending_initial_data) {
return false;
}
// Copy the requested number of bytes to the provided input tensor
for (int i = 0; i < length; ++i) {
int ring_array_index = begin_index + i - length;
if (ring_array_index < 0) {
ring_array_index += 600;
}
input[i] = save_data[ring_array_index];
}
return true;
}
#endif // ARDUINO_EXCLUDE_CODE