forked from hertz-pj/BERT-BiLSTM-CRF-NER-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clue_process.py
128 lines (110 loc) · 4.26 KB
/
clue_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import json
def _read_json(input_file, mode="train"):
lines = []
with open(input_file,'r') as f:
for line in f:
line = json.loads(line.strip())
text = line['text']
label_entities = line.get('label',None)
words = list(text)
labels = ['O'] * len(words)
if label_entities is not None:
for key,value in label_entities.items():
for sub_name,sub_index in value.items():
for start_index,end_index in sub_index:
assert ''.join(words[start_index:end_index+1]) == sub_name
if start_index == end_index:
labels[start_index] = 'B-'+key
else:
labels[start_index] = 'B-'+key
labels[start_index+1:end_index+1] = ['I-'+key]*(len(sub_name)-1)
lines.append({"words": words, "labels": labels})
with open(f"/raid/ypj/openSource/cluener_public/{mode}.txt", "w") as f:
for line in lines:
for w, l in zip(line["words"], line["labels"]):
f.write(f"{w}\t{l}\n")
f.write("\n")
def get_entity_bio(seq):
"""Gets entities from sequence.
note: BIO
Args:
seq (list): sequence of labels.
Returns:
list: list of (chunk_type, chunk_start, chunk_end).
Example:
seq = ['B-PER', 'I-PER', 'O', 'B-LOC']
get_entity_bio(seq)
#output
[['PER', 0,1], ['LOC', 3, 3]]
"""
chunks = []
chunk = [-1, -1, -1]
for indx, tag in enumerate(seq):
# if not isinstance(tag, str):
# tag = id2label[tag]
if tag.startswith("B-"):
if chunk[2] != -1:
chunks.append(chunk)
chunk = [-1, -1, -1]
chunk[1] = indx
chunk[0] = tag.split('-')[1]
chunk[2] = indx
if indx == len(seq) - 1:
chunks.append(chunk)
elif tag.startswith('I-') and chunk[1] != -1:
_type = tag.split('-')[1]
if _type == chunk[0]:
chunk[2] = indx
if indx == len(seq) - 1:
chunks.append(chunk)
else:
if chunk[2] != -1:
chunks.append(chunk)
chunk = [-1, -1, -1]
return chunks
if __name__ == "__main__":
_read_json("/raid/ypj/openSource/cluener_public/train.json", "train")
_read_json("/raid/ypj/openSource/cluener_public/dev.json", "dev")
_read_json("/raid/ypj/openSource/cluener_public/test.json", "test")
# with open("./model/clue/token_labels_.txt") as f:
# lines = [line.strip().split(" ") for line in f.readlines()]
# label_seq = []
# token_seq = []
# texts = []
# labels = []
# for id_, line in enumerate(lines):
# if len(line) == 3:
# token_seq.append(line[0])
# label_seq.append(line[2])
# if len(line) != 3:
# texts.append(token_seq)
# labels.append(label_seq)
# token_seq = []
# label_seq = []
# if token_seq:
# texts.append(token_seq)
# labels.append(label_seq)
# test_submit = []
# for id_, (token_seq, label_seq) in enumerate(zip(texts, labels)):
# json_d = {}
# json_d['id'] = str(id_)
# json_d['label'] = {}
# chunks = get_entity_bio(label_seq)
# if len(chunks) != 0:
# for subject in chunks:
# tag = subject[0]
# start = subject[1]
# end = subject[2]
# word = "".join(token_seq[start:end + 1])
# if tag in json_d['label']:
# if word in json_d['label'][tag]:
# json_d['label'][tag][word].append([start, end])
# else:
# json_d['label'][tag][word] = [[start, end]]
# else:
# json_d['label'][tag] = {}
# json_d['label'][tag][word] = [[start, end]]
# test_submit.append(json_d)
# with open("./model/clue/submit.json", "w") as f:
# for line in test_submit:
# f.write(json.dumps(line, ensure_ascii=False)+"\n")