-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_long.py
465 lines (397 loc) · 19 KB
/
train_long.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# torch libraries
import os
import logging
import subprocess
import numpy as np
from datetime import datetime
import random
import yaml
from tensorboardX import SummaryWriter
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch import optim
from torchvision.utils import make_grid
from tqdm import tqdm
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
import scipy.misc
from matplotlib import pyplot as plt
# customized libraries
import eval.metrics as Measure
from model.EMIP_long.model_long import Model_long as Network
from utils.utils import clip_gradient
from dataset.dataset_long_acc import get_loader, test_dataset
from loss.loss_pred import hybrid_e_loss
def train(train_loader, model, optimizer, epoch, save_path, writer, config, opt):
"""
train function
"""
global step
model.train()
loss_all = 0.0
epoch_step = 0
try:
for i, (N_frames, N_masks, info) in enumerate(train_loader, start=1):
N_frames = N_frames.squeeze(0).cuda()
N_masks = N_masks.squeeze(0).cuda()
model = model.cuda()
print('Now:{}, num_frames:{}'.format(info['name'][0], info['num_frames'].item()))
memory_k = None
memory_v = None
loss_iter = 0.0
for index in range(1, len(N_frames)):
optimizer.zero_grad()
preds, memory_k, memory_v = model(N_frames[index-1], N_frames[index], index, memory_k, memory_v)
memory_k = memory_k.detach()
memory_v = memory_v.detach()
loss = hybrid_e_loss(preds, N_masks[index].unsqueeze(dim=0))
loss_iter += loss
loss.backward()
clip_gradient(optimizer, config['clip'])
optimizer.step()
step += 1
epoch_step += 1
loss_all += loss_iter.data
if (opt.multi_gpu and opt.local_rank == 0) or opt.multi_gpu is False:
print(
'{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Total_loss: {:.4f} video: {} num_frames: {:03d}'.
format(datetime.now(), epoch, config['epoch_max'], i, total_step, loss_iter.data,
info['name'][0], info['num_frames'].item()))
logging.info(
'[Train Info]:Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Total_loss: {:.4f} video: {} num_frames: {:03d}'.
format(epoch, config['epoch_max'], i, total_step, loss_iter.data, info['name'][0],
info['num_frames'].item()))
# TensorboardX-Loss
writer.add_scalars('Loss_Statistics',
{'Loss_total': loss_iter.data},
global_step=step)
loss_all /= epoch_step
if (opt.multi_gpu and opt.local_rank == 0) or opt.multi_gpu is False:
logging.info(
'[Train Info]: Epoch [{:03d}/{:03d}], Loss_AVG: {:.4f}'.format(epoch, config['epoch_max'], loss_all))
writer.add_scalar('Loss-epoch', loss_all, global_step=epoch)
except KeyboardInterrupt:
print('Keyboard Interrupt: save model and exit.')
if not os.path.exists(save_path):
os.makedirs(save_path)
if (opt.multi_gpu and opt.local_rank == 0) or opt.multi_gpu is False:
torch.save(model.state_dict(), save_path + 'Net_epoch_{}.pth'.format(epoch + 1))
print('Save checkpoints successfully!')
raise
def val(test_loader, model, epoch, save_path, writer, config, opt):
"""
validation function
"""
global best_metric_dict, best_sm, best_epoch, val_step
wFm = Measure.WeightedFmeasure()
Sm = Measure.Smeasure()
MAE = Measure.MAE()
metrics_dict = dict()
model.eval()
model.cuda()
epoch_step_val = 0
loss_all_val = 0
if opt.multi_gpu is False or opt.local_rank == 0:
pbar = tqdm(total=test_loader.size, leave=False, desc='val')
else:
pbar = None
with torch.no_grad():
for i in range(test_loader.size):
N_frames, N_masks, N_gts, info = test_loader.load_data()
N_frames = N_frames.squeeze(0).cuda()
N_masks = N_masks.squeeze(0).cuda()
model = model.cuda()
memory_k = None
memory_v = None
loss_val_pred = 0.0
for index in range(len(N_frames)):
if index == 0:
preds, memory_k, memory_v = model(N_frames[index], N_frames[index+1], index, memory_k, memory_v)
else:
preds, memory_k, memory_v = model(N_frames[index-1], N_frames[index], index, memory_k, memory_v)
memory_k = memory_k.detach()
memory_v = memory_v.detach()
loss_val_pred += hybrid_e_loss(preds, N_masks[index].unsqueeze(dim=0))
res = F.upsample(preds, size=info['shape'], mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
wFm.step(pred=res, gt=N_gts[index])
Sm.step(pred=res, gt=N_gts[index])
MAE.step(pred=res, gt=N_gts[index])
val_step += 1
epoch_step_val += 1
loss_all_val += loss_val_pred
if pbar is not None:
pbar.update(1)
if pbar is not None:
pbar.close()
metrics_dict.update(Sm=Sm.get_results()['sm'])
metrics_dict.update(wFm=wFm.get_results()['wfm'])
metrics_dict.update(MAE=MAE.get_results()['mae'])
cur_sm = metrics_dict['Sm']
loss_all_val /= epoch_step_val
if (opt.multi_gpu and opt.local_rank == 0) or opt.multi_gpu is False:
logging.info('[Val Info]: Epoch [{:03d}/{:03d}], Loss_val_epoch: {:.4f}'.format(epoch, config['epoch_max'],
loss_all_val))
writer.add_scalar('Loss_val_epoch', loss_all_val, global_step=epoch)
if epoch == 1:
best_sm = cur_sm
best_metric_dict = metrics_dict
best_epoch = epoch
print('[Cur Epoch: {}] Metrics (wFm={}, Sm={}, MAE={})'.format(
epoch, metrics_dict['wFm'], metrics_dict['Sm'], metrics_dict['MAE']))
torch.save(model.state_dict(), save_path + 'Net_epoch_1.pth')
print('>>> save state_dict successfully! the first epoch.')
logging.info('[Cur Epoch: {}] Metrics (wFm={}, Sm={}, MAE={})'.format(
epoch, metrics_dict['wFm'], metrics_dict['Sm'], metrics_dict['MAE']))
else:
torch.save(model.state_dict(), save_path + 'Net_epoch_{}.pth'.format(epoch))
if cur_sm > best_sm:
best_metric_dict = metrics_dict
best_sm = cur_sm
best_epoch = epoch
torch.save(model.state_dict(), save_path + 'Net_epoch_best.pth')
print('>>> save state_dict successfully! best epoch is {}.'.format(epoch))
else:
print('>>> not find the best epoch -> continue training ...')
print(
'[Cur Epoch: {}] Metrics (wFm={}, Sm={}, MAE={})\n[Best Epoch: {}] Metrics (wFm={}, Sm={}, MAE={})'.format(
epoch, metrics_dict['wFm'], metrics_dict['Sm'], metrics_dict['MAE'],
best_epoch, best_metric_dict['wFm'], best_metric_dict['Sm'], best_metric_dict['MAE']))
logging.info(
'[Cur Epoch: {}] Metrics (wFm={}, Sm={}, MAE={})\n[Best Epoch:{}] Metrics (wFm={}, Sm={}, MAE={})'.format(
epoch, metrics_dict['wFm'], metrics_dict['Sm'], metrics_dict['MAE'],
best_epoch, best_metric_dict['wFm'], best_metric_dict['Sm'], best_metric_dict['MAE']))
def val_cad(test_loader, model, epoch, save_path, writer, config, opt):
"""
validation function
"""
global best_metric_dict, best_mae, best_epoch, val_step
wFm = Measure.WeightedFmeasure()
Sm = Measure.Smeasure()
MAE = Measure.MAE()
metrics_dict = dict()
model.eval()
model.cuda()
epoch_step_val = 0
loss_all_val = 0
if opt.multi_gpu is False or opt.local_rank == 0:
pbar = tqdm(total=test_loader.size, leave=False, desc='val_cad')
else:
pbar = None
with torch.no_grad():
for i in range(test_loader.size):
N_frames, N_masks, N_gts, info = test_loader.load_data()
N_frames = N_frames.squeeze(0).cuda()
N_masks = N_masks.squeeze(0).cuda()
model = model.cuda()
memory_k = None
memory_v = None
loss_val_pred = 0.0
for index in range(len(N_frames)):
if index == 0:
preds, memory_k, memory_v = model(N_frames[index], N_frames[index+1], index, memory_k, memory_v)
else:
preds, memory_k, memory_v = model(N_frames[index-1], N_frames[index], index, memory_k, memory_v)
memory_k = memory_k.detach()
memory_v = memory_v.detach()
loss_val_pred += hybrid_e_loss(preds, N_masks[index].unsqueeze(dim=0))
res = F.upsample(preds, size=info['shape'], mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
wFm.step(pred=res, gt=N_gts[index])
Sm.step(pred=res, gt=N_gts[index])
MAE.step(pred=res, gt=N_gts[index])
val_step += 1
epoch_step_val += 1
loss_all_val += loss_val_pred
if pbar is not None:
pbar.update(1)
if pbar is not None:
pbar.close()
metrics_dict.update(Sm=Sm.get_results()['sm'])
metrics_dict.update(wFm=wFm.get_results()['wfm'])
metrics_dict.update(MAE=MAE.get_results()['mae'])
loss_all_val /= epoch_step_val
if (opt.multi_gpu and opt.local_rank == 0) or opt.multi_gpu is False:
logging.info('[Val_cad Info]: Epoch [{:03d}/{:03d}], Loss_val_cad_epoch: {:.4f}'.format(epoch, config['epoch_max'],
loss_all_val))
writer.add_scalar('Loss_val_cad_epoch', loss_all_val, global_step=epoch)
print(
'[Cur Epoch: {}] CAD Metrics (wFm={}, Sm={}, MAE={})'.format(
epoch, metrics_dict['wFm'], metrics_dict['Sm'], metrics_dict['MAE']))
logging.info(
'[Cur Epoch: {}] CAD Metrics (wFm={}, Sm={}, MAE={})'.format(
epoch, metrics_dict['wFm'], metrics_dict['Sm'], metrics_dict['MAE']))
def setup_distributed(backend="nccl", port=None):
"""Initialize distributed training environment.
support both slurm and torch.distributed.launch
see torch.distributed.init_process_group() for more details
"""
num_gpus = torch.cuda.device_count()
if "SLURM_JOB_ID" in os.environ:
rank = int(os.environ["SLURM_PROCID"])
world_size = int(os.environ["SLURM_NTASKS"])
node_list = os.environ["SLURM_NODELIST"]
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
# specify master port
if port is not None:
os.environ["MASTER_PORT"] = str(port)
elif "MASTER_PORT" not in os.environ:
os.environ["MASTER_PORT"] = "29501"
if "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = addr
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["LOCAL_RANK"] = str(rank % num_gpus)
os.environ["RANK"] = str(rank)
os.environ["MASTER_PORT"] = "29501"
else:
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
local_rank = int(rank % num_gpus)
device = torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(
backend=backend,
world_size=world_size,
rank=rank,
)
return rank, local_rank, device
def adp_lr(bs):
base_bs = 36
base_lr = 1e-4
multiple = bs / base_bs
new_lr = base_lr * pow(multiple, 0.5)
return new_lr
def setup_seed(seed=3407):
print('seed:{}'.format(seed))
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--config', default="configs/configs.yaml")
parser.add_argument('--num_workers', type=int, default=6,
help='train use gpu')
parser.add_argument('--multi_gpu', type=bool, default=False,
help='train use gpu')
parser.add_argument("--rank", type=int, default=-1, help="")
parser.add_argument("--local_rank", type=int, default=-1, help="")
parser.add_argument("--gpu_id", type=str, default='0', help="")
parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin')
parser.add_argument('--test_mode', default=False, help='test/train mode')
opt = parser.parse_args()
with open(opt.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print('config loaded.')
setup_seed(config['seed'])
save_path = config['save_path']
if not os.path.exists(save_path):
os.makedirs(save_path)
with open(os.path.join(save_path, 'config.yaml'), 'w') as f:
yaml.dump(config, f, sort_keys=False)
if opt.multi_gpu:
rank, local_rank, device = setup_distributed()
opt.rank = rank
opt.local_rank = local_rank
# build the model
model = Network(args=config['model']['args'])
model = model.to(device)
# DistributedDataParallel
model = DDP(model.cuda(), device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
if config['load']['path'] is not None:
checkpoint = torch.load(config['load']['path'])
model_dict = model.state_dict()
print('load model from ', config['load']['path'])
pretrained_dict = {'module.' + k: v for k, v in checkpoint.items() if 'module.' + k in model_dict}
model_dict.update(pretrained_dict)
if config['load']['flow_path'] is not None:
checkpoint_flow = torch.load(config['load']['flow_path'])
flow_dict = {'module.GMFlow.' + k: v for k, v in checkpoint_flow['model'].items() if
'module.GMFlow.' + k in model_dict}
model_dict.update(flow_dict)
model.load_state_dict(model_dict)
else:
# build the model
model = Network(args=config['model']['args'])
# set the device for training
if opt.gpu_id == '0':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
print('USE GPU 0')
elif opt.gpu_id == '1':
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
print('USE GPU 1')
elif opt.gpu_id == '2':
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
print('USE GPU 2')
elif opt.gpu_id == '3':
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
print('USE GPU 3')
if config['load']['path'] is not None:
checkpoint = torch.load(config['load']['path'])
model_dict = model.state_dict()
pretrained_dict = {}
for k, v in checkpoint.items():
if 'short_term.' + k in model_dict:
pretrained_dict['short_term.' + k] = v
if k.split('.')[0] in ['injector1', 'dr1', 'decoder']:
pretrained_dict[k] = v
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
for name, para in model.named_parameters():
if "short_term" in name:
para.requires_grad_(False)
print('Now device id:...')
print(os.environ["CUDA_VISIBLE_DEVICES"])
print(torch.cuda.current_device())
# load data
print('load data...')
train_loader = get_loader(image_root=config['train_dataset']['image_path'],
gt_root=config['train_dataset']['gt_path'],
batchsize=config['train_dataset']['batch_size'],
trainsize=config['train_dataset']['inp_size'],
num_workers=opt.num_workers,
pin_memory=False,
multi_gpu=opt.multi_gpu,
dataset_type=config['train_dataset']['dataset_type'])
val_loader = test_dataset(images_root=config['val_dataset']['image_path'],
gts_root=config['val_dataset']['gt_path'],
testsize=config['val_dataset']['inp_size'],
dataset=config['val_dataset']['dataset_type'])
val_loader_cad = test_dataset(images_root=config['val_dataset_cad']['image_path'],
gts_root=config['val_dataset_cad']['gt_path'],
testsize=config['val_dataset_cad']['inp_size'],
dataset=config['val_dataset_cad']['dataset_type'])
total_step = len(train_loader)
# logging
logging.basicConfig(filename=save_path + 'log.log',
format='[%(asctime)s-%(filename)s-%(levelname)s:%(message)s]',
level=logging.INFO, filemode='a', datefmt='%Y-%m-%d %I:%M:%S %p')
logging.info(">>> current mode: network-train/val")
logging.info('>>> config: {}'.format(opt))
print('>>> config: : {}'.format(opt))
step = 0
val_step = 0
writer = SummaryWriter(save_path + 'summary')
best_epoch = 0
best_mae = 1
optimizer = torch.optim.AdamW(model.parameters(), config['optimizer']['lr'],
weight_decay=config['optimizer']['weight_decay'])
schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=config['epoch_max'],
eta_min=config['lr_min'])
print(">>> start train...")
for epoch in range(1, config['epoch']):
# schedule
schedule.step()
writer.add_scalar('learning_rate_base', optimizer.state_dict()['param_groups'][0]['lr'], global_step=epoch)
logging.info('>>> current lr_base: {}'.format(optimizer.state_dict()['param_groups'][0]['lr']))
train(train_loader, model, optimizer, epoch, save_path, writer, config, opt)
if epoch > 0:
val(val_loader, model, epoch, save_path, writer, config, opt)