-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparticle_filter.m
229 lines (194 loc) · 6.71 KB
/
particle_filter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
function [] = particle_filter()
% Define the related parameters
% Information for the whole
% sampling interval Ts
Ts = 2;
% Sampling time
Times = 300;
% Sampling numbers
K = Times / Ts;
T = 2; % targets numbers
M = 4; % sensors numbers
% Information for sensors, in this example there are 4 sensors.
x_sen0 = 0;
y_sen0 = 0;
cost_sen0 = 0.5;
sigma_r_sen0 = 500;
sigma_theta_sen0 = 2;
sigma_rdot_sen0 = 6;
x_sen1 = -30000;
y_sen1 = 0;
cost_sen1 = 0.1;
sigma_r_sen1 = 500;
sigma_theta_sen1 = 2;
sigma_rdot_sen1 = 6;
x_sen2 = 15000;
y_sen2 = 26000;
cost_sen2 = 0.1;
sigma_r_sen2 = 500;
sigma_theta_sen2 = 2;
sigma_rdot_sen2 = 6;
x_sen3 = 15000;
y_sen3 = -26000;
cost_sen3 = 0.1;
sigma_r_sen3 = 250;
sigma_theta_sen3 = 1;
sigma_rdot_sen3 = 3;
x_sen = [x_sen0, x_sen1, x_sen2, x_sen3];
y_sen = [y_sen0, y_sen1, y_sen2, y_sen3];
c_usage = [cost_sen0, cost_sen1, cost_sen2, cost_sen3];
a = zeros(K, M);
u = zeros(K, M);
% sensors sensible area
R_min = 25000;
R_max = 100000;
% sensors start/stop cost
cost_start = 0.1;
% the detection probability
Pd = 0.85;
% false alarm probability
Pf = 0.47;
% false alarm rate
beta = 1.0 * 10 ^ -8;
alpha = 0.5;
N = 2000;
% numbers of particles
H = zeros(K, M, T, 3);
% targets Information
x_target0 = 2500;
y_target0 = 25000;
vx_target0 = 0;
vy_target0 = -222;
x_target1 = -5000;
y_target1 = -20000;
vx_target1 = 120;
vy_target1 = 0;
x_target = zeros(Times / Ts, 2);
vx_target = zeros(Times / Ts, 2);
y_target = zeros(Times / Ts, 2);
vy_target = zeros(Times / Ts, 2);
x_target_hat = zeros(Times / Ts, 2);
vx_target_hat = zeros(Times / Ts, 2);
y_target_hat = zeros(Times / Ts, 2);
vy_target_hat = zeros(Times / Ts, 2);
x_target(1, :) = [x_target0, x_target1];
y_target(1, :) = [y_target0, y_target1];
vx_target(1, :) = [vx_target0, vx_target1];
vy_target(1, :) = [vy_target0, vy_target1];
function [r, theta, rdot] = observe(i, m, k)
% observations from target i and sensor m at time k.
if sqrt((x_target(k,i) - x_sen(m))^2 + (y_target(k,i) - y_sen(m))^2) > R_min && sqrt((x_target(k,i) - x_sen(m))^2 + (y_target(k,i) - y_sen(m))^2) < R_max;
r = sqrt((x_target(k,i) - x_sen(m))^2 + (y_target(k,i) - y_sen(m))^2) + randn;
theta = atan((y_target(k,i) - y_sen(m)) / (x_target(k,i) - y_sen(m))) + randn;
% the result is radians
r_dot = ((x_target(k,i) - x_sen(m)) * vx_target(k, i) + (y_target(k, i) - y_sen(m)) * vy_target(k, i)) / sqrt((x_target(k, i) - x_sen(m))^2 + (y_target(k, i) - y_sen(m))^2) + randn;
end
end
function FalseAlarm = false_alarm()
% notice the condition that false_num = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% generate the false alarm
false_num = poissrnd(1); %poisson distrubition with 1 mean
FalseAlarm = zeros(false_num, 3);
for i = 1:false_num
FalseAlarm(i, 1) = R_min + (R_max - R_min) * rand();
FalseAlarm(i, 2) = -pi + 2 * pi * rand;
FalseAlarm(i, 3) = 120 + (222 - 120) * rand;
% the r_dot false is between target 0 and 1;
% there may be some problems for the choices.
end
end
function OneStepCost = one_step_cost(i, m, k)
error_cost = 0;
sensor_cost = 0;
for i = 1:T
error_cost = error_cost + (x_target_hat(k,i) - x_target(k, i))^2 + (y_target_hat(k, i) - y_target(k, i))^2;
end
for m = 1:M
sensor_cost = sensor_cost + c_usage(m) * a(k, m) + cost_start * (a(k, m) - u(k, m));
end
OneStepCost = alpha * error_cost + sensor_cost;
end
function detection = det_num()
% Calculate the number of detection in the detected probability
u = rand;
if rand > Pd
detection = 0;
else
detection = 1;
end
end
function Hy = detected(m, k)
FalseAlarm = false_alarm();
[false_num, no_use] = size(FalseAlarm);
Hy = zeros(T + false_num, 3);
for i = 1:T
detect_result(i) = det_num()
if detect_result(i) = 1
Hy(i, :) = observe(i, m, k);
else
Hy(i, :) = zeros(1, 3);
end
end
for i = 1:false_num
Hy(T + i, :) = FalseAlarm(i);
end
end
function weight_pmk = weight_cal(p, m, k)
%
% calculate weight using 8, 9, 10
weight_pmk = 0;
Hy = detected();
[N_hm, no_use] = size(Hy)
dm = ones(1, T);
em = ones(1, T);
nf = N_hm - T;
nd = 0;
for i = 1:T
if Hy(i, :) == [0, 0, 0]
;
else
nd = nd + 1;
end
end
% hypothese index for all kinds of conditions, here is a small problem, it is only ok when there are two targets
t = 0;
for i = 1:N_hm
for j = 1:N_hm
if i ~= j
Hl(1, t) = i;
Hl(2, t) = j;
t = t + 1;
end
end
end
[no_use, N_allindex] = size(Hl)
for l = 1:N_allindex
weight_l = beta^(nf) * (1 - Pd)^(T - nd) * Pd^nd;
for i = 1:T
r_im_4 = ((x_sen(m) - x_target_hat(k))^2 + (y_sen(m) - y_target_hat(k))^2)^4
sigma_r_i = Qr * r_im_4;
sigma_rdot_i = Qrdot * r_im_4;
sigma_theta_i = Qtheta * r_im_4;
dm(i) = ((r_hat(m, i) - Hy(Hl(i, l), 1)) / sigma_r_i)^2 + ((theta_hat(m, i) - Hy(Hl(i, l), 2)) / sigma_theta_i)^2 + ((rdot_hat(m, i) - Hy(Hl(i, l), 3)) / sigma_rdot_i)^2;
em(i) = (exp(-dm(i) / 2)) / (sqrt((2*pi)^3) * sigma_r_i * sigma_theta_i * sigma_rdot_i);
if Hy(Hl(i, l), :) ~= [0 0 0]
weight_l = weight_l * em(i);
end
end
weight_pmk = weight_pmk + weight_l;
end
% in this part the hypo is now consedered wrongly, it needs to change again.
function pf()
% Initialization
for i = 1:N
S(0, i, :) = x_target_hat(k, :);
w(0, i, :) = 1 / N * ones(1, M);
end
k = 1;
for m = 1:M
detected(m, k);
end
% Prediction
end
end