Skip to content

Latest commit

 

History

History
1591 lines (1339 loc) · 43.2 KB

0102.二叉树的层序遍历.md

File metadata and controls

1591 lines (1339 loc) · 43.2 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

二叉树的层序遍历

看完这篇文章虽然不能打十个,但是可以迅速打八个!而且够快!

学会二叉树的层序遍历,可以一口气撸完leetcode上八道题目:

  • 102.二叉树的层序遍历
  • 107.二叉树的层次遍历II
  • 199.二叉树的右视图
  • 637.二叉树的层平均值
  • 429.N叉树的前序遍历
  • 515.在每个树行中找最大值
    1. 填充每个节点的下一个右侧节点指针
  • 117.填充每个节点的下一个右侧节点指针II

102.二叉树的层序遍历

题目地址:https://leetcode-cn.com/problems/binary-tree-level-order-traversal/

给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。

102.二叉树的层序遍历

思路:

我们之前讲过了三篇关于二叉树的深度优先遍历的文章:

接下来我们再来介绍二叉树的另一种遍历方式:层序遍历。

层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。

需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而是用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。

而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。

使用队列实现二叉树广度优先遍历,动画如下:

102二叉树的层序遍历

这样就实现了层序从左到右遍历二叉树。

代码如下:这份代码也可以作为二叉树层序遍历的模板,以后再打七个就靠它了

C++代码:

class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            // 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(vec);
        }
        return result;
    }
};

python代码:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def levelOrder(self, root: TreeNode) -> List[List[int]]:
        if not root:
            return []

        quene = [root]
        out_list = []

        while quene:
            length = len(queue)  # 这里一定要先求出队列的长度,不能用range(len(queue)),因为queue长度是变化的
            in_list = []
            for _ in range(length):
                curnode = queue.pop(0)  # (默认移除列表最后一个元素)这里需要移除队列最头上的那个
                in_list.append(curnode.val)
                if curnode.left: queue.append(curnode.left)
                if curnode.right: queue.append(curnode.right)
            out_list.append(in_list)

        return out_list

javascript代码:

var levelOrder = function(root) {
    //二叉树的层序遍历
    let res=[],queue=[];
    queue.push(root);
    if(root===null){
        return res;
    }
    while(queue.length!==0){
        // 记录当前层级节点数
        let length=queue.length;
        //存放每一层的节点 
        let curLevel=[];
        for(let i=0;i<length;i++){
            let node=queue.shift();
            curLevel.push(node.val);
            // 存放当前层下一层的节点
            node.left&&queue.push(node.left);
            node.right&&queue.push(node.right);
        }
        //把每一层的结果放到结果数组
        res.push(curLevel);
    }
    return res;
};

此时我们就掌握了二叉树的层序遍历了,那么如下五道leetcode上的题目,只需要修改模板的一两行代码(不能再多了),便可打倒!

107.二叉树的层次遍历 II

题目链接:https://leetcode-cn.com/problems/binary-tree-level-order-traversal-ii/

给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

107.二叉树的层次遍历II

思路:

相对于102.二叉树的层序遍历,就是最后把result数组反转一下就可以了。

C++代码:

class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(vec);
        }
        reverse(result.begin(), result.end()); // 在这里反转一下数组即可
        return result;

    }
};

python代码:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def levelOrderBottom(self, root: TreeNode) -> List[List[int]]:
        if not root:
            return []
        quene = [root]
        out_list = []
        
        while quene:
            in_list = []
            for _ in range(len(quene)):
                node = quene.pop(0)
                in_list.append(node.val)
                if node.left:
                    quene.append(node.left)
                if node.right:
                    quene.append(node.right)
 
            out_list.append(in_list)
    
        out_list.reverse()
        return out_list
    
# 执行用时:36 ms, 在所有 Python3 提交中击败了92.00%的用户
# 内存消耗:15.2 MB, 在所有 Python3 提交中击败了63.76%的用户

javascript代码

var levelOrderBottom = function(root) {
    let res=[],queue=[];
    queue.push(root);
    while(queue.length&&root!==null){
        // 存放当前层级节点数组
        let curLevel=[];
        // 计算当前层级节点数量
        let length=queue.length;
        while(length--){
            let node=queue.shift();
            // 把当前层节点存入curLevel数组
            curLevel.push(node.val);
            // 把下一层级的左右节点存入queue队列
            node.left&&queue.push(node.left);
            node.right&&queue.push(node.right);
        }
        res.push(curLevel);
    }
    return res.reverse();
};

199.二叉树的右视图

题目链接:https://leetcode-cn.com/problems/binary-tree-right-side-view/

给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

199.二叉树的右视图

思路:

层序遍历的时候,判断是否遍历到单层的最后面的元素,如果是,就放进result数组中,随后返回result就可以了。

C++代码:

class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<int> result;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (i == (size - 1)) result.push_back(node->val); // 将每一层的最后元素放入result数组中
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

python代码:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rightSideView(self, root: TreeNode) -> List[int]:
        if not root:
            return []
        
        # deque来自collections模块,不在力扣平台时,需要手动写入
        # 'from collections import deque' 导入
        # deque相比list的好处是,list的pop(0)是O(n)复杂度,deque的popleft()是O(1)复杂度

        quene = deque([root])
        out_list = []

        while quene:
            # 每次都取最后一个node就可以了
            node = quene[-1]
            out_list.append(node.val)

            # 执行这个遍历的目的是获取下一层所有的node
            for _ in range(len(quene)):
                node = quene.popleft()
                if node.left:
                    quene.append(node.left)
                if node.right:
                    quene.append(node.right)
        
        return out_list
    
# 执行用时:36 ms, 在所有 Python3 提交中击败了89.47%的用户
# 内存消耗:14.6 MB, 在所有 Python3 提交中击败了96.65%的用户

javascript代码:

var rightSideView = function(root) {
    //二叉树右视图 只需要把每一层最后一个节点存储到res数组
    let res=[],queue=[];
    queue.push(root);
    while(queue.length&&root!==null){
        // 记录当前层级节点个数
        let length=queue.length;
        while(length--){
            let node=queue.shift();
            //length长度为0的时候表明到了层级最后一个节点
            if(!length){
                res.push(node.val);
            }
            node.left&&queue.push(node.left);
            node.right&&queue.push(node.right);
        }
    }
    return res;
};

637.二叉树的层平均值

题目链接:https://leetcode-cn.com/problems/average-of-levels-in-binary-tree/

给定一个非空二叉树, 返回一个由每层节点平均值组成的数组。

637.二叉树的层平均值

思路:

本题就是层序遍历的时候把一层求个总和在取一个均值。

C++代码:

class Solution {
public:
    vector<double> averageOfLevels(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<double> result;
        while (!que.empty()) {
            int size = que.size();
            double sum = 0; // 统计每一层的和
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                sum += node->val;
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(sum / size); // 将每一层均值放进结果集
        }
        return result;
    }
};

python代码:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def averageOfLevels(self, root: TreeNode) -> List[float]:
        if not root:
            return []
        
        quene = deque([root])
        out_list = []

        while quene:
            in_list = []

            for _ in range(len(quene)):
                node = quene.popleft()
                in_list.append(node.val)
                if node.left:
                    quene.append(node.left)
                if node.right:
                    quene.append(node.right)

            out_list.append(in_list)

        out_list = map(lambda x: sum(x) / len(x), out_list)
    
        return out_list
        
# 执行用时:56 ms, 在所有 Python3 提交中击败了81.48%的用户
# 内存消耗:17 MB, 在所有 Python3 提交中击败了89.68%的用户

javascript代码:

var averageOfLevels = function(root) {
    //层级平均值
    let res=[],queue=[];
    queue.push(root);
    while(queue.length&&root!==null){
        //每一层节点个数
        let length=queue.length;
        //sum记录每一层的和
        let sum=0;
        for(let i=0;i<length;i++){
            let node=queue.shift();
            sum+=node.val;
            node.left&&queue.push(node.left);
            node.right&&queue.push(node.right);
        }
        //每一层的平均值存入数组res
        res.push(sum/length);
    }
    return res;
};

429.N叉树的层序遍历

题目链接:https://leetcode-cn.com/problems/n-ary-tree-level-order-traversal/

给定一个 N 叉树,返回其节点值的层序遍历。 (即从左到右,逐层遍历)。

例如,给定一个 3叉树 :

429. N叉树的层序遍历

返回其层序遍历:

[ [1], [3,2,4], [5,6] ]

思路:

这道题依旧是模板题,只不过一个节点有多个孩子了

C++代码:

class Solution {
public:
    vector<vector<int>> levelOrder(Node* root) {
        queue<Node*> que;
        if (root != NULL) que.push(root);
        vector<vector<int>> result;
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            for (int i = 0; i < size; i++) {
                Node* node = que.front();
                que.pop();
                vec.push_back(node->val);
                for (int i = 0; i < node->children.size(); i++) { // 将节点孩子加入队列
                    if (node->children[i]) que.push(node->children[i]);
                }
            }
            result.push_back(vec);
        }
        return result;

    }
};

python代码:

"""
# Definition for a Node.
class Node:
    def __init__(self, val=None, children=None):
        self.val = val
        self.children = children
"""

class Solution:
    def levelOrder(self, root: 'Node') -> List[List[int]]:
        if not root:
            return []
        
        quene = deque([root])
        out_list = []

        while quene:
            in_list = []

            for _ in range(len(quene)):
                node = quene.popleft()
                in_list.append(node.val)
                if node.children:
                    # 这个地方要用extend而不是append,我们看下面的例子:
                    # In [18]: alist=[]
                    # In [19]: alist.append([1,2,3])
                    # In [20]: alist
                    # Out[20]: [[1, 2, 3]]
                    # In [21]: alist.extend([4,5,6])
                    # In [22]: alist
                    # Out[22]: [[1, 2, 3], 4, 5, 6]
                    # 可以看到extend对要添加的list进行了一个解包操作
                    # print(root.children),可以得到children是一个包含
                    # 孩子节点地址的list,我们使用for遍历quene的时候,
                    # 希望quene是一个单层list,所以要用extend
                    # 使用extend的情况,如果print(quene),结果是
                    # deque([<__main__.Node object at 0x7f60763ae0a0>])
				   # deque([<__main__.Node object at 0x7f607636e6d0>, <__main__.Node object at 0x7f607636e130>, <__main__.Node object at 0x7f607636e310>])
				  # deque([<__main__.Node object at 0x7f607636e880>, <__main__.Node object at 0x7f607636ef10>])
				  # 可以看到是单层list
                    # 如果使用append,print(quene)的结果是
                    # deque([<__main__.Node object at 0x7f18907530a0>])
				  # deque([[<__main__.Node object at 0x7f18907136d0>, <__main__.Node object at 0x7f1890713130>, <__main__.Node object at 0x7f1890713310>]])
				  # 可以看到是两层list,这样for的遍历就会报错
                    
                    quene.extend(node.children)
                
            out_list.append(in_list)
        
        return out_list
    
# 执行用时:60 ms, 在所有 Python3 提交中击败了76.99%的用户
# 内存消耗:16.5 MB, 在所有 Python3 提交中击败了89.19%的用户

JavaScript代码:

var levelOrder = function(root) {
    //每一层可能有2个以上,所以不再使用node.left node.right
    let res=[],queue=[];
    queue.push(root);
    while(queue.length&&root!==null){
        //记录每一层节点个数还是和二叉树一致
        let length=queue.length;
        //存放每层节点 也和二叉树一致
        let curLevel=[];
        while(length--){
            let node = queue.shift();
            curLevel.push(node.val);
            //这里不再是 ndoe.left node.right 而是循坏node.children
           for(let item of node.children){
               item&&queue.push(item);
           }
        }
        res.push(curLevel);
    }
    return res;
};

515.在每个树行中找最大值

题目链接:https://leetcode-cn.com/problems/find-largest-value-in-each-tree-row/

您需要在二叉树的每一行中找到最大的值。

515.在每个树行中找最大值

思路:

层序遍历,取每一层的最大值

C++代码:

class Solution {
public:
    vector<int> largestValues(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        vector<int> result;
        while (!que.empty()) {
            int size = que.size();
            int maxValue = INT_MIN; // 取每一层的最大值
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                maxValue = node->val > maxValue ? node->val : maxValue;
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            result.push_back(maxValue); // 把最大值放进数组
        }
        return result;
    }
};

javascript代码:

var largestValues = function(root) {
    //使用层序遍历
    let res=[],queue=[];
    queue.push(root);
    while(root!==null&&queue.length){
        //设置max初始值就是队列的第一个元素
        let max=queue[0];
        let length=queue.length;
        while(length--){
            let node = queue.shift();
            max=max>node.val?max:node.val;
            node.left&&queue.push(node.left);
            node.right&&queue.push(node.right);
        }
        //把每一层的最大值放到res数组
        res.push(max);
    }
    return res;
};

116.填充每个节点的下一个右侧节点指针

题目链接:https://leetcode-cn.com/problems/populating-next-right-pointers-in-each-node/

给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。

116.填充每个节点的下一个右侧节点指针

思路:

本题依然是层序遍历,只不过在单层遍历的时候记录一下本层的头部节点,然后在遍历的时候让前一个节点指向本节点就可以了

C++代码:

class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> que;
        if (root != NULL) que.push(root);
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            Node* nodePre;
            Node* node;
            for (int i = 0; i < size; i++) {
                if (i == 0) {
                    nodePre = que.front(); // 取出一层的头结点
                    que.pop();
                    node = nodePre;
                } else {
                    node = que.front();
                    que.pop();
                    nodePre->next = node; // 本层前一个节点next指向本节点
                    nodePre = nodePre->next;
                }
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            nodePre->next = NULL; // 本层最后一个节点指向NULL
        }
        return root;

    }
};

117.填充每个节点的下一个右侧节点指针II

题目地址:https://leetcode-cn.com/problems/populating-next-right-pointers-in-each-node-ii/

思路:

这道题目说是二叉树,但116题目说是完整二叉树,其实没有任何差别,一样的代码一样的逻辑一样的味道

C++代码:

class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> que;
        if (root != NULL) que.push(root);
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;
            Node* nodePre;
            Node* node;
            for (int i = 0; i < size; i++) {
                if (i == 0) {
                    nodePre = que.front(); // 取出一层的头结点
                    que.pop();
                    node = nodePre;
                } else {
                    node = que.front();
                    que.pop();
                    nodePre->next = node; // 本层前一个节点next指向本节点
                    nodePre = nodePre->next;
                }
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
            nodePre->next = NULL; // 本层最后一个节点指向NULL
        }
        return root;
    }
};

总结

二叉树的层序遍历,就是图论中的广度优先搜索在二叉树中的应用,需要借助队列来实现(此时是不是又发现队列的应用了)。

虽然不能一口气打十个,打八个也还行。

  • 102.二叉树的层序遍历
  • 107.二叉树的层次遍历II
  • 199.二叉树的右视图
  • 637.二叉树的层平均值
  • 429.N叉树的前序遍历
  • 515.在每个树行中找最大值
    1. 填充每个节点的下一个右侧节点指针
  • 117.填充每个节点的下一个右侧节点指针II

如果非要打十个,还得找叶师傅!

我要打十个

其他语言版本

Java:

// 102.二叉树的层序遍历
class Solution {
    public List<List<Integer>> resList = new ArrayList<List<Integer>>();

    public List<List<Integer>> levelOrder(TreeNode root) {
        //checkFun01(root,0);
        checkFun02(root);

        return resList;
    }

    //DFS--递归方式
    public void checkFun01(TreeNode node, Integer deep) {
        if (node == null) return;
        deep++;

        if (resList.size() < deep) {
            //当层级增加时,list的Item也增加,利用list的索引值进行层级界定
            List<Integer> item = new ArrayList<Integer>();
            resList.add(item);
        }
        resList.get(deep - 1).add(node.val);

        checkFun01(node.left, deep);
        checkFun01(node.right, deep);
    }

    //BFS--迭代方式--借助队列
    public void checkFun02(TreeNode node) {
        if (node == null) return;
        Queue<TreeNode> que = new LinkedList<TreeNode>();
        que.offer(node);

        while (!que.isEmpty()) {
            List<Integer> itemList = new ArrayList<Integer>();
            int len = que.size();

            while (len > 0) {
                TreeNode tmpNode = que.poll();
                itemList.add(tmpNode.val);

                if (tmpNode.left != null) que.offer(tmpNode.left);
                if (tmpNode.right != null) que.offer(tmpNode.right);
                len--;
            }

            resList.add(itemList);
        }

    }
}
    

// 107. 二叉树的层序遍历 II
public class N0107 {

    /**
     * 解法:队列,迭代。
     * 层序遍历,再翻转数组即可。
     */
    public List<List<Integer>> solution1(TreeNode root) {
        List<List<Integer>> list = new ArrayList<>();
        Deque<TreeNode> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            List<Integer> levelList = new ArrayList<>();

            int levelSize = que.size();
            for (int i = 0; i < levelSize; i++) {
                TreeNode peek = que.peekFirst();
                levelList.add(que.pollFirst().val);

                if (peek.left != null) {
                    que.offerLast(peek.left);
                }
                if (peek.right != null) {
                    que.offerLast(peek.right);
                }
            }
            list.add(levelList);
        }

        List<List<Integer>> result = new ArrayList<>();
        for (int i = list.size() - 1; i >= 0; i-- ) {
            result.add(list.get(i));
        }

        return result;
    }
}

// 199.二叉树的右视图
public class N0199 {
    /**
     * 解法:队列,迭代。
     * 每次返回每层的最后一个字段即可。
     *
     * 小优化:每层右孩子先入队。代码略。
     */
    public List<Integer> rightSideView(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        Deque<TreeNode> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            int levelSize = que.size();

            for (int i = 0; i < levelSize; i++) {
                TreeNode poll = que.pollFirst();

                if (poll.left != null) {
                    que.addLast(poll.left);
                }
                if (poll.right != null) {
                    que.addLast(poll.right);
                }

                if (i == levelSize - 1) {
                    list.add(poll.val);
                }
            }
        }

        return list;
    }
}

// 637. 二叉树的层平均值
public class N0637 {

    /**
     * 解法:队列,迭代。
     * 每次返回每层的最后一个字段即可。
     */
    public List<Double> averageOfLevels(TreeNode root) {
        List<Double> list = new ArrayList<>();
        Deque<TreeNode> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            TreeNode peek = que.peekFirst();

            int levelSize = que.size();
            double levelSum = 0.0;
            for (int i = 0; i < levelSize; i++) {
                TreeNode poll = que.pollFirst();

                levelSum += poll.val;

                if (poll.left != null) {
                    que.addLast(poll.left);
                }
                if (poll.right != null) {
                    que.addLast(poll.right);
                }
            }
            list.add(levelSum / levelSize);
        }
        return list;
    }
}

// 429. N 叉树的层序遍历
public class N0429 {
    /**
     * 解法1:队列,迭代。
     */
    public List<List<Integer>> levelOrder(Node root) {
        List<List<Integer>> list = new ArrayList<>();
        Deque<Node> que = new LinkedList<>();

        if (root == null) {
            return list;
        }

        que.offerLast(root);
        while (!que.isEmpty()) {
            int levelSize = que.size();
            List<Integer> levelList = new ArrayList<>();

            for (int i = 0; i < levelSize; i++) {
                Node poll = que.pollFirst();

                levelList.add(poll.val);

                List<Node> children = poll.children;
                if (children == null || children.size() == 0) {
                    continue;
                }
                for (Node child : children) {
                    if (child != null) {
                        que.offerLast(child);
                    }
                }
            }
            list.add(levelList);
        }

        return list;
    }

    class Node {
        public int val;
        public List<Node> children;

        public Node() {}

        public Node(int _val) {
            val = _val;
        }

        public Node(int _val, List<Node> _children) {
            val = _val;
            children = _children;
        }
    }
}

Python:

Go:

func levelOrder(root *TreeNode) [][]int  {
	result:=make([][]int,0)
	if root==nil{
		return result
	}

	queue:=make([]*TreeNode,0)
	queue=append(queue,root)

	for len(queue)>0{
		list:=make([]int,0)
		l:=len(queue)

		for i:=0;i<l;i++{
			level:=queue[0]
			queue=queue[1:]
			list=append(list,level.Val)
			if level.Left!=nil{
				queue=append(queue,level.Left)
			}
			if level.Right!=nil{
				queue=append(queue,level.Right)
			}
		}
		result=append(result,list)
	}
	return result
}

二叉树的层序遍历(GO语言完全版)

/**
102. 二叉树的层序遍历
 */
func levelOrder(root *TreeNode) [][]int {
    res:=[][]int{}
    if root==nil{//防止为空
        return res
    }
    queue:=list.New()
    queue.PushBack(root)
    var tmpArr []int
    for queue.Len()>0 {
        length:=queue.Len()//保存当前层的长度,然后处理当前层(十分重要,防止添加下层元素影响判断层中元素的个数)
        for i:=0;i<length;i++{
            node:=queue.Remove(queue.Front()).(*TreeNode)//出队列
            if node.Left!=nil{
                queue.PushBack(node.Left)
            }
            if node.Right!=nil{
                queue.PushBack(node.Right)
            }
            tmpArr=append(tmpArr,node.Val)//将值加入本层切片中
        }
        res=append(res,tmpArr)//放入结果集
        tmpArr=[]int{}//清空层的数据
    }
    return res
}

/**
107. 二叉树的层序遍历 II
 */
func levelOrderBottom(root *TreeNode) [][]int {
    queue:=list.New()
    res:=[][]int{}
    if root==nil{
        return res
    }
    queue.PushBack(root)
    for queue.Len()>0{
        length:=queue.Len()
        tmp:=[]int{}
        for i:=0;i<length;i++{
            node:=queue.Remove(queue.Front()).(*TreeNode)
            if node.Left!=nil{
                queue.PushBack(node.Left)
            }
            if node.Right!=nil{
                queue.PushBack(node.Right)
            }
            tmp=append(tmp,node.Val)
        }
        res=append(res,tmp)
    }
    //反转结果集
    for i:=0;i<len(res)/2;i++{
        res[i],res[len(res)-i-1]=res[len(res)-i-1],res[i]
    }
    return res
}

/**
199. 二叉树的右视图
 */
func rightSideView(root *TreeNode) []int {
    queue:=list.New()
    res:=[][]int{}
    var finaRes []int
    if root==nil{
        return finaRes
    }
    queue.PushBack(root)
    for queue.Len()>0{
        length:=queue.Len()
        tmp:=[]int{}
        for i:=0;i<length;i++{
            node:=queue.Remove(queue.Front()).(*TreeNode)
            if node.Left!=nil{
                queue.PushBack(node.Left)
            }
            if node.Right!=nil{
                queue.PushBack(node.Right)
            }
            tmp=append(tmp,node.Val)
        }
        res=append(res,tmp)
    }
    //取每一层的最后一个元素
    for i:=0;i<len(res);i++{
        finaRes=append(finaRes,res[i][len(res[i])-1])
    }
    return finaRes
}

/**
637. 二叉树的层平均值
 */
func averageOfLevels(root *TreeNode) []float64 {
    res:=[][]int{}
    var finRes []float64
    if root==nil{//防止为空
        return finRes
    }
    queue:=list.New()
    queue.PushBack(root)
    var tmpArr []int
    for queue.Len()>0 {
        length:=queue.Len()//保存当前层的长度,然后处理当前层(十分重要,防止添加下层元素影响判断层中元素的个数)
        for i:=0;i<length;i++{
            node:=queue.Remove(queue.Front()).(*TreeNode)//出队列
            if node.Left!=nil{
                queue.PushBack(node.Left)
            }
            if node.Right!=nil{
                queue.PushBack(node.Right)
            }
            tmpArr=append(tmpArr,node.Val)//将值加入本层切片中
        }
        res=append(res,tmpArr)//放入结果集
        tmpArr=[]int{}//清空层的数据
    }
    //计算每层的平均值
    length:=len(res)
    for i:=0;i<length;i++{
        var sum int
        for j:=0;j<len(res[i]);j++{
            sum+=res[i][j]
        }
        tmp:=float64(sum)/float64(len(res[i]))
        finRes=append(finRes,tmp)//将平均值放入结果集合
    }
    return finRes
}

/**
429. N 叉树的层序遍历
 */

func levelOrder(root *Node) [][]int {
    queue:=list.New()
    res:=[][]int{}//结果集
    if root==nil{
        return res
    }
    queue.PushBack(root)
    for queue.Len()>0{
        length:=queue.Len()//记录当前层的数量
        var tmp []int
        for T:=0;T<length;T++{//该层的每个元素:一添加到该层的结果集中;二找到该元素的下层元素加入到队列中,方便下次使用
            myNode:=queue.Remove(queue.Front()).(*Node)
            tmp=append(tmp,myNode.Val)
            for i:=0;i<len(myNode.Children);i++{
                queue.PushBack(myNode.Children[i])
            }
        }
        res=append(res,tmp)
    }
    return res
}

/**
515. 在每个树行中找最大值
 */
func largestValues(root *TreeNode) []int {
    res:=[][]int{}
    var finRes []int
    if root==nil{//防止为空
        return finRes
    }
    queue:=list.New()
    queue.PushBack(root)
    var tmpArr []int
    //层次遍历
    for queue.Len()>0 {
        length:=queue.Len()//保存当前层的长度,然后处理当前层(十分重要,防止添加下层元素影响判断层中元素的个数)
        for i:=0;i<length;i++{
            node:=queue.Remove(queue.Front()).(*TreeNode)//出队列
            if node.Left!=nil{
                queue.PushBack(node.Left)
            }
            if node.Right!=nil{
                queue.PushBack(node.Right)
            }
            tmpArr=append(tmpArr,node.Val)//将值加入本层切片中
        }
        res=append(res,tmpArr)//放入结果集
        tmpArr=[]int{}//清空层的数据
    }
    //找到每层的最大值
    for i:=0;i<len(res);i++{
        finRes=append(finRes,max(res[i]...))
    }
    return finRes
}
func max(vals...int) int {
    max:=int(math.Inf(-1))//负无穷
    for _, val := range vals {
        if val > max {
            max = val
        }
    }
    return max
}
/**
116. 填充每个节点的下一个右侧节点指针
117. 填充每个节点的下一个右侧节点指针 II
 */

func connect(root *Node) *Node {
   res:=[][]*Node{}
    if root==nil{//防止为空
        return root
    }
    queue:=list.New()
    queue.PushBack(root)
    var tmpArr []*Node
    for queue.Len()>0 {
        length:=queue.Len()//保存当前层的长度,然后处理当前层(十分重要,防止添加下层元素影响判断层中元素的个数)
        for i:=0;i<length;i++{
            node:=queue.Remove(queue.Front()).(*Node)//出队列
            if node.Left!=nil{
                queue.PushBack(node.Left)
            }
            if node.Right!=nil{
                queue.PushBack(node.Right)
            }
            tmpArr=append(tmpArr,node)//将值加入本层切片中
        }
        res=append(res,tmpArr)//放入结果集
        tmpArr=[]*Node{}//清空层的数据
    }
    //遍历每层元素,指定next
    for i:=0;i<len(res);i++{
        for j:=0;j<len(res[i])-1;j++{
            res[i][j].Next=res[i][j+1]
        }
    }
    return root
}

Javascript:

var levelOrder = function (root) {
  let ans = [];
  if (!root) return ans;
  let queue = [root];
  while (queue.length) {
    let size = queue.length;
    let temp = [];
    while (size--) {
      let n = queue.shift();
      temp.push(n.val);
      if (n.left) queue.push(n.left);
      if (n.right) queue.push(n.right);
    }
    ans.push(temp);
  }
  return ans;
};

二叉树的层序遍历(Javascript语言完全版) (迭代 + 递归)

/**
 * 102. 二叉树的层序遍历
 * @param {TreeNode} root
 * @return {number[][]}
 */

// 迭代

var levelOrder = function(root) {
    const queue = [], res = [];
    root && queue.push(root);
    while(len = queue.length) {
        const val = [];
        while(len--) {
            const node = queue.shift();
            val.push(node.val);
            node.left && queue.push(node.left);
            node.right && queue.push(node.right);
        }
        res.push(val);
    }
    return res;
};

// 递归
var levelOrder = function(root) {
    const res = [];
    function defs (root, i) {
        if(!root) return;
        if(!res[i]) res[i] = [];
        res[i].push(root.val)
        root.left && defs(root.left, i + 1);
        root.right && defs(root.right, i + 1);
    }
    defs(root, 0);
    return res;
};


/**
 * 107. 二叉树的层序遍历 II
 * @param {TreeNode} root
 * @return {number[][]}
 */

// 迭代

var levelOrderBottom = function(root) {
    const queue = [], res = [];
    root && queue.push(root);
    while(len = queue.length) {
        const val = [];
        while(len--) {
            const node = queue.shift();
            val.push(node.val);
            node.left && queue.push(node.left);
            node.right && queue.push(node.right);
        }
        res.push(val);
    }
    return res.reverse()
};

// 递归

var levelOrderBottom = function(root) {
    const res = [];
    function defs (root, i) {
        if(!root) return;
        if(!res[i]) res[i] = [];
        res[i].push(root.val);
        root.left && defs(root.left, i + 1);
        root.right && defs(root.right, i + 1);
    }
    defs(root, 0);
    return res.reverse();
};

/**
 * 199. 二叉树的右视图
 * @param {TreeNode} root
 * @return {number[]}
 */

// 迭代

var rightSideView = function(root) {
    const res = [], queue = [];
    root && queue.push(root);
    while(l = queue.length) {
        while (l--) {
            const {val, left, right} = queue.shift();
            !l && res.push(val);
            left && queue.push(left);
            right && queue.push(right);
        }
    }
    return res;
};

// 递归
var rightSideView = function(root) {
    const res = [];
    function defs(root, i) {
        if(!root) return;
        res[i] = root.val;
        root.left && defs(root.left, i + 1);
        root.right && defs(root.right, i + 1);
    }
    defs(root, 0);
    return res;
};

/**
 * 637. 二叉树的层平均值
 * @param {TreeNode} root
 * @return {number[]}
 */

// 迭代
var averageOfLevels = function(root) {
    const queue = [], res = [];
    root && queue.push(root);
    while(len = queue.length) {
        let sum = 0, l = len;
        while(l--) {
            const {val, left, right} = queue.shift();
            sum += val;
            left && queue.push(left);
            right && queue.push(right);
        }
        res.push(sum/len);
    }
    return res;
};

// 递归
var averageOfLevels = function(root) {
    const resCount = [], res = [];
    function defs(root, i) {
        if(!root) return;
        if(isNaN(res[i])) resCount[i] = res[i] = 0;
        res[i] += root.val;
        resCount[i]++;
        root.left && defs(root.left, i + 1);
        root.right && defs(root.right, i + 1);
    }
    defs(root, 0);
    return res.map((val, i) => val / resCount[i]);
};

/**
 * 515. 在每个树行中找最大值
 * @param {TreeNode} root
 * @return {number[]}
 */

// 迭代
const MIN_G = Number.MIN_SAFE_INTEGER;
var largestValues = function(root) {
    const queue = [], res = [];
    root && queue.push(root);
    while(len = queue.length) {
        let max = MIN_G;
        while(len--) {
            const {val, left, right} = queue.shift();
            max = max > val ? max : val;
            left && queue.push(left);
            right && queue.push(right);
        }
        res.push(max);
    }
    return res;
};

// 递归
var largestValues = function(root) {
    const res = [];
    function defs (root, i) {
        if(!root) return;
        if(isNaN(res[i])) res[i] = root.val;
        res[i] = res[i] > root.val ? res[i] : root.val; 
        root.left && defs(root.left, i + 1);
        root.right && defs(root.right, i + 1);
    }
    defs(root, 0);
    return res;
};

/**
 * 429. N 叉树的层序遍历
 * @param {Node|null} root
 * @return {number[][]}
 */

// 迭代
var levelOrder = function(root) {
    const queue = [], res = [];
    root && queue.push(root);
    while(len = queue.length) {
        const vals = [];
        while(len--) {
            const {val, children} = queue.shift();
            vals.push(val);
            for(const e of children) {
                queue.push(e);
            }
        }
        res.push(vals);
    }
    return res;
};

// 递归

var levelOrder = function(root) {
    const res = [];
    function defs (root, i) {
        if(!root) return;
        if(!res[i]) res[i] = [];
        res[i].push(root.val);
        for(const e of root.children) {
            defs(e, i + 1);
        }
    }
    defs(root, 0);
    return res;
};

/**
 * 116. 填充每个节点的下一个右侧节点指针
 * 117. 填充每个节点的下一个右侧节点指针 II
 * @param {Node} root
 * @return {Node}
 */

// 迭代
var connect = function(root) {
    const queue = [];
    root && queue.push(root);
    while(len = queue.length) {
        while(len--) {
            const node1 = queue.shift(), 
                node2 = len ? queue[0] : null;
            node1.next = node2;
            node1.left && queue.push(node1.left);
            node1.right && queue.push(node1.right);
        }
    }
    return root;
};

// 递归
var connect = function(root) {
    const res = [];
    function defs (root, i) {
        if(!root) return;
        if(res[i]) res[i].next = root; 
        res[i] = root;
        root.left && defs(root.left, i + 1);
        root.right && defs(root.right, i + 1);
    }
    defs(root, 0);
    return root;
};