Skip to content

Latest commit

 

History

History
699 lines (607 loc) · 29.2 KB

README_cn.md

File metadata and controls

699 lines (607 loc) · 29.2 KB

(简体中文|English)


PaddleSpeech 是基于飞桨 PaddlePaddle 的语音方向的开源模型库,用于语音和音频中的各种关键任务的开发,包含大量基于深度学习前沿和有影响力的模型,一些典型的应用示例如下:

语音识别
输入音频 识别结果

I knocked at the door on the ancient side of the building.

我认为跑步最重要的就是给我带来了身体健康。
语音翻译 (英译中)
输入音频 翻译结果

我 在 这栋 建筑 的 古老 门上 敲门。
语音合成
输入文本 合成音频
Life was like a box of chocolates, you never know what you're gonna get.
早上好,今天是2020/10/29,最低温度是-3°C。
季姬寂,集鸡,鸡即棘鸡。棘鸡饥叽,季姬及箕稷济鸡。鸡既济,跻姬笈,季姬忌,急咭鸡,鸡急,继圾几,季姬急,即籍箕击鸡,箕疾击几伎,伎即齑,鸡叽集几基,季姬急极屐击鸡,鸡既殛,季姬激,即记《季姬击鸡记》。

更多合成音频,可以参考 PaddleSpeech 语音合成音频示例

标点恢复
输入文本 输出文本
今天的天气真不错啊你下午有空吗我想约你一起去吃饭 今天的天气真不错啊!你下午有空吗?我想约你一起去吃饭。

特性

本项目采用了易用、高效、灵活以及可扩展的实现,旨在为工业应用、学术研究提供更好的支持,实现的功能包含训练、推断以及测试模块,以及部署过程,主要包括

  • 📦 易用性: 安装门槛低,可使用 CLI 快速开始。
  • 🏆 对标 SoTA: 提供了高速、轻量级模型,且借鉴了最前沿的技术。
  • 🏆 流式ASR和TTS系统:工业级的端到端流式识别、流式合成系统。
  • 💯 基于规则的中文前端: 我们的前端包含文本正则化和字音转换(G2P)。此外,我们使用自定义语言规则来适应中文语境。
  • 多种工业界以及学术界主流功能支持:
    • 🛎️ 典型音频任务: 本工具包提供了音频任务如音频分类、语音翻译、自动语音识别、文本转语音、语音合成、声纹识别、KWS等任务的实现。
    • 🔬 主流模型及数据集: 本工具包实现了参与整条语音任务流水线的各个模块,并且采用了主流数据集如 LibriSpeech、LJSpeech、AIShell、CSMSC,详情请见 模型列表
    • 🧩 级联模型应用: 作为传统语音任务的扩展,我们结合了自然语言处理、计算机视觉等任务,实现更接近实际需求的产业级应用。

近期更新

  • 👑 2022.05.13: PaddleSpeech 发布 PP-ASR 流式语音识别系统、PP-TTS 流式语音合成系统、PP-VPR 全链路声纹识别系统
  • 👏🏻 2022.05.06: PaddleSpeech Streaming Server 上线! 覆盖了语音识别(标点恢复、时间戳),和语音合成。
  • 👏🏻 2022.05.06: PaddleSpeech Server 上线! 覆盖了声音分类、语音识别、语音合成、声纹识别,标点恢复。
  • 👏🏻 2022.03.28: PaddleSpeech CLI 覆盖声音分类、语音识别、语音翻译(英译中)、语音合成,声纹验证。
  • 🤗 2021.12.14: PaddleSpeech ASR and TTS Demos on Hugging Face Spaces are available!

🔥 加入技术交流群获取入群福利

  • 3 日直播课链接: 深度解读 PP-TTS、PP-ASR、PP-VPR 三项核心语音系统关键技术
  • 20G 学习大礼包:视频课程、前沿论文与学习资料

微信扫描二维码关注公众号,点击“马上报名”填写问卷加入官方交流群,获得更高效的问题答疑,与各行各业开发者充分交流,期待您的加入。

安装

我们强烈建议用户在 Linux 环境下,3.7 以上版本的 python 上安装 PaddleSpeech。 目前为止,Linux 支持声音分类、语音识别、语音合成和语音翻译四种功能,Mac OSX、 Windows 下暂不支持语音翻译功能。 想了解具体安装细节,可以参考安装文档

快速开始

安装完成后,开发者可以通过命令行快速开始,改变 --input 可以尝试用自己的音频或文本测试。

声音分类

paddlespeech cls --input input.wav

声纹识别

paddlespeech vector --task spk --input input_16k.wav

语音识别

paddlespeech asr --lang zh --input input_16k.wav

语音翻译 (English to Chinese)

paddlespeech st --input input_16k.wav

语音合成

paddlespeech tts --input "你好,欢迎使用百度飞桨深度学习框架!" --output output.wav

文本后处理

  • 标点恢复
    paddlespeech text --task punc --input 今天的天气真不错啊你下午有空吗我想约你一起去吃饭

批处理

echo -e "1 欢迎光临。\n2 谢谢惠顾。" | paddlespeech tts

Shell管道 ASR + Punc:

paddlespeech asr --input ./zh.wav | paddlespeech text --task punc

更多命令行命令请参考 demos

Note: 如果需要训练或者微调,请查看语音识别语音合成

快速使用服务

安装完成后,开发者可以通过命令行快速使用服务。

启动服务

paddlespeech_server start --config_file ./paddlespeech/server/conf/application.yaml

访问语音识别服务

paddlespeech_client asr --server_ip 127.0.0.1 --port 8090 --input input_16k.wav

访问语音合成服务

paddlespeech_client tts --server_ip 127.0.0.1 --port 8090 --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav

访问音频分类服务

paddlespeech_client cls --server_ip 127.0.0.1 --port 8090 --input input.wav

更多服务相关的命令行使用信息,请参考 demos

快速使用流式服务

开发者可以尝试 流式 ASR流式 TTS 服务.

启动流式 ASR 服务

paddlespeech_server start --config_file ./demos/streaming_asr_server/conf/application.yaml

访问流式 ASR 服务

paddlespeech_client asr_online --server_ip 127.0.0.1 --port 8090 --input input_16k.wav

启动流式 TTS 服务

paddlespeech_server start --config_file ./demos/streaming_tts_server/conf/tts_online_application.yaml

访问流式 TTS 服务

paddlespeech_client tts_online --server_ip 127.0.0.1 --port 8092 --protocol http --input "您好,欢迎使用百度飞桨语音合成服务。" --output output.wav

更多信息参看: 流式 ASR流式 TTS

模型列表

PaddleSpeech 支持很多主流的模型,并提供了预训练模型,详情请见模型列表

PaddleSpeech 的 语音转文本 包含语音识别声学模型、语音识别语言模型和语音翻译, 详情如下:

语音转文本模块类型 数据集 模型类型 脚本
语音识别 Aishell DeepSpeech2 RNN + Conv based Models deepspeech2-aishell
Transformer based Attention Models u2.transformer.conformer-aishell
Librispeech Transformer based Attention Models deepspeech2-librispeech / transformer.conformer.u2-librispeech / transformer.conformer.u2-kaldi-librispeech
TIMIT Unified Streaming & Non-streaming Two-pass u2-timit
对齐 THCHS30 MFA mfa-thchs30
语言模型 Ngram 语言模型 kenlm
语音翻译(英译中) TED En-Zh Transformer + ASR MTL transformer-ted
FAT + Transformer + ASR MTL fat-st-ted

PaddleSpeech 的 语音合成 主要包含三个模块:文本前端、声学模型和声码器。声学模型和声码器模型如下:

语音合成模块类型 模型类型 数据集 脚本
文本前端 tn / g2p
声学模型 Tacotron2 LJSpeech / CSMSC tacotron2-ljspeech / tacotron2-csmsc
Transformer TTS LJSpeech transformer-ljspeech
SpeedySpeech CSMSC speedyspeech-csmsc
FastSpeech2 LJSpeech / VCTK / CSMSC / AISHELL-3 fastspeech2-ljspeech / fastspeech2-vctk / fastspeech2-csmsc / fastspeech2-aishell3
声码器 WaveFlow LJSpeech waveflow-ljspeech
Parallel WaveGAN LJSpeech / VCTK / CSMSC / AISHELL-3 PWGAN-ljspeech / PWGAN-vctk / PWGAN-csmsc / PWGAN-aishell3
Multi Band MelGAN CSMSC Multi Band MelGAN-csmsc
Style MelGAN CSMSC Style MelGAN-csmsc
HiFiGAN LJSpeech / VCTK / CSMSC / AISHELL-3 HiFiGAN-ljspeech / HiFiGAN-vctk / HiFiGAN-csmsc / HiFiGAN-aishell3
WaveRNN CSMSC WaveRNN-csmsc
声音克隆 GE2E Librispeech, etc. ge2e
GE2E + Tacotron2 AISHELL-3 ge2e-tacotron2-aishell3
GE2E + FastSpeech2 AISHELL-3 ge2e-fastspeech2-aishell3

声音分类

任务 数据集 模型类型 脚本
声音分类 ESC-50 PANN pann-esc50

声纹识别

任务 数据集 模型类型 脚本
Speaker Verification VoxCeleb12 ECAPA-TDNN ecapa-tdnn-voxceleb12

标点恢复

任务 数据集 模型类型 脚本
标点恢复 IWLST2012_zh Ernie Linear iwslt2012-punc0

教程文档

对于 PaddleSpeech 的所关注的任务,以下指南有助于帮助开发者快速入门,了解语音相关核心思想。

语音合成模块最初被称为 Parakeet,现在与此仓库合并。如果您对该任务的学术研究感兴趣,请参阅 TTS 研究概述。此外,模型介绍 是了解语音合成流程的一个很好的指南。

⭐ 应用案例

  • PaddleBoBo: 使用 PaddleSpeech 的语音合成模块生成虚拟人的声音。

引用

要引用 PaddleSpeech 进行研究,请使用以下格式进行引用。

@inproceedings{zhang2022paddlespeech,
    title = {PaddleSpeech: An Easy-to-Use All-in-One Speech Toolkit},
    author = {Hui Zhang, Tian Yuan, Junkun Chen, Xintong Li, Renjie Zheng, Yuxin Huang, Xiaojie Chen, Enlei Gong, Zeyu Chen, Xiaoguang Hu, dianhai yu, Yanjun Ma, Liang Huang},
    booktitle = {Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations},
    year = {2022},
    publisher = {Association for Computational Linguistics},
}

@inproceedings{zheng2021fused,
  title={Fused acoustic and text encoding for multimodal bilingual pretraining and speech translation},
  author={Zheng, Renjie and Chen, Junkun and Ma, Mingbo and Huang, Liang},
  booktitle={International Conference on Machine Learning},
  pages={12736--12746},
  year={2021},
  organization={PMLR}
}

参与 PaddleSpeech 的开发

热烈欢迎您在 Discussions 中提交问题,并在 Issues 中指出发现的 bug。此外,我们非常希望您参与到 PaddleSpeech 的开发中!

贡献者

致谢

此外,PaddleSpeech 依赖于许多开源存储库。有关更多信息,请参阅 references

License

PaddleSpeech 在 Apache-2.0 许可 下提供。