-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathinference.py
executable file
·105 lines (81 loc) · 3.05 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import datetime
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from pathlib import Path
from data.inference_dataset import Inference_Dataset, collate_fn
from model.build_model import build_maskformer, load_checkpoint
from model.text_encoder import Text_Encoder
from train.dist import is_master
from evaluate.inference_engine import inference
from evaluate.params import parse_args
def set_seed(config):
seed = config.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
# new seed
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def main(args):
# set gpu
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
device=torch.device("cuda", int(os.environ["LOCAL_RANK"]))
gpu_id = int(os.environ["LOCAL_RANK"])
torch.distributed.init_process_group(backend="nccl", init_method='env://', timeout=datetime.timedelta(seconds=7200)) # might takes a long time to sync between process
# dispaly
if is_master():
print('** GPU NUM ** : ', torch.cuda.device_count()) # 打印gpu数量
print('** WORLD SIZE ** : ', torch.distributed.get_world_size())
rank = dist.get_rank()
print(f"** DDP ** : Start running DDP on rank {rank}.")
# file to save the inference results
if is_master():
Path(args.rcd_dir).mkdir(exist_ok=True, parents=True)
print(f'Inference Results will be Saved to ** {args.rcd_dir} **')
# dataset and loader
testset = Inference_Dataset(args.datasets_jsonl, args.max_queries, args.batchsize_3d)
sampler = DistributedSampler(testset)
testloader = DataLoader(testset, sampler=sampler, batch_size=1, pin_memory=args.pin_memory, num_workers=args.num_workers, collate_fn=collate_fn)
sampler.set_epoch(0)
# set model (by default gpu
model = build_maskformer(args, device, gpu_id)
# load knowledge encoder
text_encoder = Text_Encoder(
text_encoder=args.text_encoder,
checkpoint=args.text_encoder_checkpoint,
partial_load=args.text_encoder_partial_load,
open_bert_layer=12,
open_modality_embed=False,
gpu_id=gpu_id,
device=device
)
# load checkpoint if specified
model, _, _ = load_checkpoint(
checkpoint=args.checkpoint,
resume=False,
partial_load=args.partial_load,
model=model,
device=device
)
# choose how to evaluate the checkpoint
inference(model=model,
text_encoder=text_encoder,
device=device,
testset=testset,
testloader=testloader,
nib_dir=args.rcd_dir)
if __name__ == '__main__':
# get configs
args = parse_args()
main(args)