-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathvectorize_u3d.py
executable file
·457 lines (392 loc) · 14.5 KB
/
vectorize_u3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
#!/usr/bin/env python3
"""Vectorize result
Usage:
vectorize.py [options] <npzdir> [<indices>...]
vectorize.py (-h | --help )
Options:
-h --help Show this screen.
--show Show the result on screen
-j --jobs <jobs> Number of threads for vectorization [default: 1]
--vpdir <vpdir> Directory to the vanishing points prediction
[Default: logs/pretrained-vanishing-points/npz/000096000]
"""
import os
import sys
import json
import math
import random
import os.path as osp
from collections import deque
import cv2
import yaml
import numpy as np
import matplotlib as mpl
import skimage.io
import numpy.linalg as LA
import skimage.draw
import matplotlib.cm as cm
import skimage.filters
import matplotlib.pyplot as plt
import skimage.morphology
from docopt import docopt
from wireframe.utils import parmap
from wireframe.metric import nms_junction
from wireframe.viewer import show_wireframe
from wireframe.optimize import (
to_world,
lifting_from_vp,
vanish_point_refine,
vanish_point_clustering,
vanish_point_clustering2,
estimate_intrinsic_from_vp,
)
PI2 = math.pi * 2
NMS_ANGLE = PI2 / 24
JUNC = 0.2
JUND = 0.3
MAX_T_DISTANCE = 5
T_SCALE = 1.1
# Thresholding
MEDIAN = 0.1
SCORE = 0.65
N_ITER = 3
# Gaussian blur
SIGMA = 0.5
SCALE = 2.0
# setup matplotlib
cmap = plt.get_cmap("jet")
norm = mpl.colors.Normalize(vmin=0.6, vmax=1.1)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array([])
def line_color(x):
return sm.to_rgba(x)
def filter_heatmap(h, h_threshold, offset=None):
if offset is None:
offset = np.zeros([2] + list(h.shape))
result = []
for y in range(h.shape[0]):
for x in range(h.shape[1]):
if h[y, x] > h_threshold:
result.append(
[(x + offset[0, y, x]) * 4, (y + offset[1, y, x]) * 4, h[y, x]]
)
return result
def project(c, a, b):
px = b[0] - a[0]
py = b[1] - a[1]
dd = px * px + py * py
u = max(min(((c[0] - a[0]) * px + (c[1] - a[1]) * py) / float(dd), 1), 0)
return (a[0] + u * px, a[1] + u * py)
def is_intersected(a0, a1, b0, b1):
def ccw(c, a, b):
return (a[0] - c[0]) * (b[1] - c[1]) - (b[0] - c[0]) * (a[1] - c[1])
def sgn(x):
if abs(x) < 1e-6:
return 0
if x > 0:
return 1
return -1
c0 = sgn(ccw(a0, a1, b0))
c1 = sgn(ccw(a0, a1, b1))
d0 = sgn(ccw(b0, b1, a0))
d1 = sgn(ccw(b0, b1, a1))
return c0 * c1 < 0 and d0 * d1 < 0
def angle(c, a, b):
a = (a[0] - c[0], a[1] - c[1])
b = (b[0] - c[0], b[1] - c[1])
dot = (
(a[0] * b[0] + a[1] * b[1])
/ math.sqrt(a[0] ** 2 + a[1] ** 2 + 1e-9)
/ math.sqrt(b[0] ** 2 + b[1] ** 2 + 1e-9)
)
return math.acos(max(min(dot, 1), -1))
def point2line(c, a, b):
px = b[0] - a[0]
py = b[1] - a[1]
dd = px * px + py * py
u = ((c[0] - a[0]) * px + (c[1] - a[1]) * py) / float(dd)
if u <= 0 or u >= 1:
return 100
dx = a[0] + u * px - c[0]
dy = a[1] + u * py - c[1]
return dx * dx + dy * dy
def parse_result(result):
junc = nms_junction(result["jmap"][0])
jund = nms_junction(result["jmap"][1])
line = result["lmap"]
jdep = result["jdep"]
junc = filter_heatmap(junc, JUNC)
jund = filter_heatmap(jund, JUND)
jun = junc + jund
return jun, list(range(len(junc))), list(range(len(junc), len(jun))), line, jdep
def edge_pruning(juncs, edges):
def polar_angle(p0, p1):
return math.atan2(p1[1] - p0[1], p1[0] - p0[0])
def polar_diff(p1, p2):
d = math.fmod(p1 - p2, PI2)
if d < 0:
d += PI2
return min(abs(d), abs(PI2 - d))
esets = set()
links = [{} for _ in range(len(juncs))]
def delete_edge(i):
j1, j2 = edges[i][3], edges[i][4]
del links[j1][i]
del links[j2][i]
esets.remove(i)
for it in range(N_ITER):
for i, (p1, p2, score, j1, j2) in enumerate(edges):
if i in links[j1]:
continue
angle1 = polar_angle(p1, p2)
angle2 = math.fmod(angle1 + math.pi, PI2)
# check nearby edges
error = False
# if it == N_ITER - 1:
# score = -1
for j, angle in links[j1].copy().items():
if polar_diff(angle, angle1) < NMS_ANGLE and edges[j][2] > score:
error = True
break
if error:
continue
for j, angle in links[j2].copy().items():
if polar_diff(angle, angle2) < NMS_ANGLE and edges[j][2] > score:
error = True
break
if error:
continue
# prunning other edges
for j, angle in links[j1].copy().items():
if polar_diff(angle, angle1) < NMS_ANGLE and edges[j][2] < score:
delete_edge(j)
for j, angle in links[j2].copy().items():
if polar_diff(angle, angle2) < NMS_ANGLE and edges[j][2] < score:
delete_edge(j)
# add this edge
esets.add(i)
links[j1][i] = angle1
links[j2][i] = angle2
# remove intersected edges
for i in esets.copy():
if i not in esets:
continue
for j in esets.copy():
if j not in esets:
continue
if edges[i][2] < edges[j][2]:
continue
if is_intersected(*edges[i][:2], *edges[j][:2]):
delete_edge(j)
return [edges[i] for i in sorted(esets)]
def line_score(p1, p2, line_map, shrink=True):
if p1[0] == p2[0] and p1[1] == p2[1]:
return -1, -1
r0, c0, r1, c1 = map(int, [p1[1] // 4, p1[0] // 4, p2[1] // 4, p2[0] // 4])
rr, cc, I = skimage.draw.line_aa(r0, c0, r1, c1)
if shrink:
if len(rr) <= 2:
return -1, -1
rr, cc, I = rr[1:-1], cc[1:-1], I[1:-1]
Ip = line_map[rr, cc]
Ip = Ip / np.maximum(I, Ip)
score = (I * Ip).sum() / I.sum()
Ip_sorted = np.sort(Ip)
median = Ip_sorted[max(min(2, len(Ip) - 1), len(Ip) // 7)]
return score, median
def extract_wireframe(prefix, image, result, plot=True, imshow=True):
jun, ijunc, ijund, line_map, jdep = parse_result(result)
line_map[line_map > 1] = 1
line_map = skimage.filters.gaussian(line_map, SIGMA) * SCALE
line_map[line_map > 1] = 1
if plot:
# plt.figure(), plt.imshow(jdep[0])
# plt.figure(), plt.imshow(jdep[1])
# plt.figure(), plt.title("Edge map"), plt.tight_layout()
# plt.imshow(line_map), plt.colorbar(fraction=0.046)
plt.figure(), plt.axis("off"), plt.tight_layout(), plt.axes([0, 0, 1, 1])
plt.xlim([-0.5, 127.5]), plt.ylim([127.5, -0.5])
plt.imshow(line_map, cmap="Purples")
# for i in ijunc:
# plt.scatter(jun[i][0] / 4, jun[i][1] / 4, color="red", zorder=100)
# for i in ijund:
# plt.scatter(jun[i][0] / 4, jun[i][1] / 4, color="blue", zorder=100)
plt.savefig(f"{prefix}_map.svg", bbox_inches=0)
plt.close()
# plt.figure(), plt.title("Initial Wireframe"), plt.tight_layout()
# plt.imshow(image), plt.colorbar(sm, fraction=0.046)
# for i in ijunc:
# plt.scatter(jun[i][0], jun[i][1], color="red", zorder=100)
edges = []
for i_, i in enumerate(ijunc):
for j in ijunc[:i_]:
p1, p2 = jun[i], jun[j]
score, median = line_score(p1, p2, line_map)
if median > MEDIAN and score > SCORE:
edges.append((p1, p2, score, i, j))
# plt.plot([p1[0], p2[0]], [p1[1], p2[1]], c=line_color(score))
edges.sort(key=lambda e: e[2])
edges = edge_pruning(jun, edges)
# plt.figure(), plt.title("Prunned Wireframe"), plt.tight_layout()
# plt.imshow(image), plt.colorbar(sm, fraction=0.046)
# for i in ijunc:
# plt.scatter(jun[i][0], jun[i][1], color="red", zorder=100)
# for p1, p2, score, *_ in edges:
# plt.plot([p1[0], p2[0]], [p1[1], p2[1]], c=line_color(score))
selected_juns = set(i for i in ijunc)
for i in ijund:
pi = jun[i][:2]
mind = 1e10
for e in edges:
dist = point2line(pi, e[0], e[1])
if dist < mind:
mind = dist
mine = e
if mind < MAX_T_DISTANCE:
pip = project(pi, mine[0], mine[1]) # reproject for nicer figure
jun[i][0], jun[i][1] = pip[0], pip[1]
best_score = -1e100
for j, pj in enumerate(jun):
if i == j or (j > len(ijunc) and j not in selected_juns):
continue
if min(angle(pi, pj, mine[0]), angle(pi, pj, mine[1])) < 0.2:
continue
if LA.norm(np.array(pi[:2]) - pj[:2]) < 12:
continue
score, median = line_score(pi, pj, line_map, shrink=False)
if median > MEDIAN and score > best_score:
best_score = score
bestj = j
bestp = pj
if best_score > SCORE:
edges.append((pip, bestp, best_score * T_SCALE, i, bestj))
selected_juns.add(i)
edges.sort(key=lambda e: e[2])
edges = edge_pruning(jun, edges)
selected_juns = set()
for *_, i, j in edges:
selected_juns.add(i)
selected_juns.add(j)
if plot:
# plt.figure(), plt.title("Final Wireframe"), plt.tight_layout()
# plt.imshow(image), plt.colorbar(sm, fraction=0.046)
plt.figure(), plt.axis("off"), plt.tight_layout(), plt.axes([0, 0, 1, 1])
plt.xlim([-0.5, 511.5]), plt.ylim([511.5, -0.5])
plt.imshow(image)
for i in ijunc:
alpha = 1 if i in selected_juns else 0.5
plt.scatter(
jun[i][0], jun[i][1], color="red", alpha=alpha, zorder=100, s=40
)
for i in ijund:
alpha = 1 if i in selected_juns else 0.5
plt.scatter(
jun[i][0], jun[i][1], color="blue", alpha=alpha, zorder=100, s=40
)
for e in edges:
p1, p2, score = e[0], e[1], e[2]
# plt.plot([p1[0], p2[0]], [p1[1], p2[1]], c=line_color(score))
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], c="darkorange", linewidth=2)
plt.savefig(f"{prefix}.svg")
if imshow:
plt.show()
plt.close()
junctions = []
junctypes = []
juncdepth = []
new_index = [0] * len(jun)
index = 0
for i in selected_juns:
new_index[i] = index
junctions.append([jun[i][0] / 256 - 1, 1 - jun[i][1] / 256])
junctypes.append(int(i in ijund))
juncdepth.append(jdep[int(i in ijund)][int(jun[i][1] / 4), int(jun[i][0] / 4)])
index += 1
lines = [[new_index[i], new_index[j]] for *_, i, j in edges]
return np.array(junctions), np.array(junctypes), np.array(juncdepth), lines, edges
def main():
args = docopt(__doc__)
npzdir = args["<npzdir>"]
indices = args["<indices>"] or [101]
with open(f"{npzdir}/../../config.yaml", "r") as f:
c = yaml.load(f, Loader=yaml.FullLoader)
datadir = c["io"]["datadir"]
def extract(index):
batch = index // 100 + 1
image = skimage.io.imread(f"{datadir}/{batch:03}/{index % 100:04}.png")
result = np.load(f"{npzdir}/{index:06}.npz")
print(f"Extracting {npzdir}/{index:06}.npz")
with open(f"{datadir}/{batch:03}/{index % 100:04}_label.json") as f:
js = json.load(f)
gjunctions = js["junctions"]
gjuncdepth = js["juncdepth"]
gjunctypes = js["junctypes"]
glines = js["lines"]
gj512 = np.array(
[
256 * (1 + np.array(gjunctions)[:, 0]),
256 * (1 - np.array(gjunctions)[:, 1]),
]
).T
plt.figure(), plt.axis("off"), plt.tight_layout(), plt.axes([0, 0, 1, 1])
plt.xlim([-0.5, 511.5]), plt.ylim([511.5, -0.5])
plt.imshow(image)
os.makedirs(f"{npzdir}/wireframe", exist_ok=True)
for junc, typ in zip(gj512, gjunctypes):
if typ == 0:
color = "red"
else:
color = "blue"
plt.scatter(junc[0], junc[1], color=color, zorder=100, s=40)
for i, j in glines:
p1, p2 = gj512[i], gj512[j]
# plt.plot([p1[0], p2[0]], [p1[1], p2[1]], c=line_color(score))
plt.plot([p1[0], p2[0]], [p1[1], p2[1]], c="darkorange", linewidth=2)
plt.savefig(f"{npzdir}/wireframe/{index:06}_gt.svg")
plt.close()
os.makedirs(f"{npzdir}/wireframe", exist_ok=True)
junctions, junctypes, juncdepth, lines, _ = extract_wireframe(
f"{npzdir}/wireframe/{index:06}",
image,
result,
plot=True,
imshow=args["--show"],
)
gdepth = []
for jun in junctions:
best_distance = 1e10
best_i = 0
for i, gjun in enumerate(gjunctions):
if LA.norm(jun - gjun) < best_distance:
best_distance = LA.norm(jun - gjun)
best_i = i
gdepth.append(gjuncdepth[best_i])
gdepth = np.array(gdepth)
# FIXME: retrain the neural network to use the same npz
vpfn = args["--vpdir"] + f"/{index:06}.npz"
vps = np.load(vpfn)["vpts"]
## show vanish point
# for vp in vps:
# vp_ = [256 * (1 + vp[0] / vp[2]) - 0.5, 256 * (1 - vp[1] / vp[2]) - 0.5]
# plt.scatter(vp_[0], vp_[1])
# plt.show()
vps = vanish_point_refine(np.array(junctions), np.array(lines), vps)
# vps = vanish_point_clustering2(np.array(junctions), lines)
K = estimate_intrinsic_from_vp(vps[0][0], vps[1][0], vps[2][0])[0]
invK = LA.inv(K)
print("K:", 1 / invK[0, 0])
depth = lifting_from_vp(vps, invK, junctions, -juncdepth, junctypes, lines)
vertices, projection_matrix = to_world(junctions, depth, lines, K)
show_wireframe(
f"{npzdir}/wireframe/{index:06}", vertices, lines, projection_matrix
)
return 0
if args["--show"] or int(args["--jobs"]) == 1:
for index in map(int, indices):
extract(index)
else:
parmap(extract, map(int, indices), int(args["<jobs>"]))
if __name__ == "__main__":
np.seterr(all="raise")
plt.rcParams["figure.figsize"] = (8, 8)
main()