-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
224 lines (189 loc) · 8.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import torch
import random
import argparse
import numpy as np
import torch.nn.functional as F
from options.train_options import TrainOptions
from dataloader import CreateDataLoader
from models import CreateModel
from evaluate import evaluate
from losses import *
from utils.util import Timer, AverageMeter, accumulate_distribution, calc_threshold, cutmix
torch.set_num_threads(4)
def main():
_t = {'epoch_time': Timer()}
_t['epoch_time'].tic()
# get args parameters
cls_fore, cls_back = 1, 0
opt = TrainOptions()
args = opt.initialize()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
args.percent = str(args.percent)
args.data_dir = args.data_dir.replace('dataset', args.dataset)
args.train_lbl_list = args.train_lbl_list.replace('percent', args.percent)
args.train_unl_list = args.train_unl_list.replace('percent', args.percent)
opt.print_options(args)
# create model
torch.cuda.manual_seed(args.seed)
model = CreateModel(args.model, args.num_classes).cuda()
optimizer = torch.optim.Adam(model.optim_parameters(args), lr=args.learning_rate)
# resume checkpoint
args.save_dir = os.path.join(args.save_dir, args.model)
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
save_dir = os.path.join(args.save_dir, args.method)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
checkpoint_file = '{}_{}%.pth'.format(args.dataset.replace('/', '_'), args.percent)
checkpoint_file = os.path.join(save_dir, checkpoint_file)
log_file = checkpoint_file.replace('pth', 'txt')
start_iter = 0
if os.path.exists(checkpoint_file) and args.restore:
resume = torch.load(checkpoint_file)
model.load_state_dict(resume['state_dict'])
start_iter = resume['iter']
best_acc = resume['best_acc']
best_IoU = resume['best_IoU']
print ('loading checkpoint from: {}, iter: {}, best_IoU: {} '\
.format(checkpoint_file, start_iter, best_IoU))
else:
best_acc = 0
best_IoU = 0
start_iter = 0
# build loader
print ('Loading dataset ...')
lbl_loader, unl_loader, val_loader = CreateDataLoader(args)
lbl_iter, unl_iter = iter(lbl_loader), iter(unl_loader)
# initialize class-wise weight
dist_l = {cls_fore: [], cls_back: []}
dist_u = {cls_fore: [], cls_back: []}
cls_thr_l = {cls_fore: 0, cls_back: 0}
cls_thr_u = {cls_fore: 0, cls_back: 0}
# print ('class_weight: ', cls_wgt)
jaccard_loss = JaccardLoss(args.num_classes)
losses = AverageMeter()
losses_s = AverageMeter()
losses_u = AverageMeter()
losses_jaccard = AverageMeter()
#-------------------------------------------------------------------#
# Training, K-means, and Evaluation
print ('Starting training ...')
for i in range(start_iter, args.num_iters):
# adjust model status
model.adjust_learning_rate(args, optimizer, i)
# i training
optimizer.zero_grad()
model.train()
if i % len(lbl_loader) == 0:
lbl_iter = iter(lbl_loader)
if i % len(unl_loader) == 0:
unl_iter = iter(unl_loader)
img_l, img_l_bar, gt_l, _ = lbl_iter.next() # new batch target
img_u, img_u_bar, gt_u, _ = unl_iter.next() # new batch target
img_l, img_l_bar, gt_l = img_l.cuda().detach(), img_l_bar.cuda().detach(), gt_l.unsqueeze(dim=1).cuda()
img_u, img_u_bar, gt_u = img_u.cuda().detach(), img_u_bar.cuda().detach(), gt_u.unsqueeze(dim=1).cuda()
b, _, h, w = img_l.size()
# feature and prediction extraction
pred_l = model(img_l)
with torch.no_grad():
pred_u = model(img_u)
if 'Fixmatch' in args.method or 'Adaptmatch' in args.method:
if 'DeepLab_V3plus' in args.model:
feat_u_bar, feat_u_low_bar = model.get_features(img_u_bar)
pred_u_bar = model.get_predicts(F.dropout(feat_u_bar, p=0.5), F.dropout(feat_u_low_bar, p=0.5), [h,w])
else:
feat_u_bar = model.get_features(img_u_bar)
pred_u_bar = model.get_predicts(F.dropout(feat_u_bar, p=0.5), [h,w])
# sup loss
loss_s = F.binary_cross_entropy(pred_l, gt_l)
loss_jaccard = jaccard_loss(pred_l, gt_l)
# unsuperivised loss
if args.method == 'Sup':
pseudo_gt = (pred_u > 0.5).float().detach()
if 'Fixmatch' in args.method:
thr = 0.95
thr_fore = thr
thr_back = 1 - thr
mask = torch.logical_or(pred_u>thr_fore, pred_u<thr_back)
pseudo_gt = (pred_u > 0.5).float().detach()
loss_u = (F.binary_cross_entropy(pred_u_bar, pseudo_gt, reduction='none')*mask).mean()
if 'Adaptmatch' in args.method:
thr_fore = np.abs(cls_fore - cls_thr_l[cls_fore])
thr_back = np.abs(cls_back - cls_thr_l[cls_back])
mask = torch.logical_or(pred_u>thr_fore, pred_u<thr_back)
pseudo_gt = (pred_u > 0.5).float().detach()
loss_u = (F.binary_cross_entropy(pred_u_bar, pseudo_gt, reduction='none')*mask).mean()
# overall loss
loss = loss_s + loss_jaccard
if 'Fixmatch' in args.method or 'Adaptmatch' in args.method:
loss += loss_u
loss.backward()
optimizer.step()
# record loss
losses.update(loss.item(), b)
losses_s.update(loss.item(), b)
losses_jaccard.update(loss_jaccard.item(), b)
if 'Fixmatch' in args.method or 'Adaptmatch' in args.method:
losses_u.update(loss_u.item(), b)
# accumulate weight
list_length = 100
with torch.no_grad():
dist_l = accumulate_distribution(list_length, dist_l, pred_l.detach(), gt_l, cls_fore, cls_back)
dist_u = accumulate_distribution(list_length*5, dist_l, pred_u.detach(), pseudo_gt, cls_fore, cls_back)
# calculate thr: labeled & unlabeled
if i > list_length:
cls_thr_l[cls_fore] = calc_threshold(dist_l[cls_fore]+dist_u[cls_fore])
cls_thr_l[cls_back] = calc_threshold(dist_l[cls_back]+dist_u[cls_fore])
# print info
if (i+1) % args.print_freq == 0:
_t['epoch_time'].toc(average=False)
if args.method=='Sup':
print('[Iter: %d-%d][loss_s %.4f][loss_jaccard %.4f][lr %.4f][%.2fs]' % \
(i+1, args.num_iters, losses_s.avg, losses_jaccard.avg,
optimizer.param_groups[0]['lr']*1e4, _t['epoch_time'].diff) )
else:
print('[Iter: %d-%d][loss_s %.4f][loss_jaccard %.4f][loss_u %.4f][lr %.4f][%.2fs]' % \
(i+1, args.num_iters, losses_s.avg, losses_jaccard.avg, losses_u.avg,
optimizer.param_groups[0]['lr']*1e4, _t['epoch_time'].diff) )
# evaluation and save
# reset the weight
if (i+1) % args.eval_freq == 0:
# evaluate
val_acc, val_IoU, val_ratio = evaluate(args.num_classes, val_loader, model)
val_IoU = val_IoU[cls_fore]
print ('Val-- IoU: {} cls_thr_l: {}'\
.format(val_IoU, cls_thr_l))
# record class thresholds
with open(log_file, 'a') as file:
line = str(cls_thr_l[cls_fore]) + ' ' + str(cls_thr_l[cls_back]) + '\n'
file.write(line)
# save checkpoint
if best_IoU < val_IoU:
best_acc = val_acc
best_IoU = val_IoU
state = {
'iter': i,
'best_acc': best_acc,
'best_IoU': best_IoU,
'state_dict': model.state_dict(),
}
torch.save(state, checkpoint_file)
print ('taking snapshot ...')
print ()
record_dir = './records'
if not os.path.exists(record_dir):
os.mkdir(record_dir)
record_file = os.path.join(record_dir, args.method + '_' \
+ args.dataset.replace('INRIA/', 'INRIA_') \
+ '_' + args.percent + '.txt')
with open(record_file, 'a') as f:
f.write(str(val_IoU) + ' ' + str(val_ratio) + '\n')
# reset loss
losses.reset()
losses_s.reset()
losses_u.reset()
losses_jaccard.reset()
_t['epoch_time'].tic()
if __name__ == '__main__':
main()