-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy patheval_score_my.py
executable file
·59 lines (50 loc) · 2.08 KB
/
eval_score_my.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
import sys
import numpy as np
caffe_root = '/home/zhujiagang/temporal-segment-networks/lib/caffeaction/'
sys.path.insert(0, caffe_root + 'python')
#sys.path.append('.')
from pyActionRecog.utils.video_funcs import default_aggregation_func
from pyActionRecog.utils.metrics import mean_class_accuracy
#parser = argparse.ArgumentParser()
#parser.add_argument('score_files', nargs='+', type=str)
#parser.add_argument('--score_weights', nargs='+', type=float, default=None)
#parser.add_argument('--crop_agg', type=str, choices=['max', 'mean'], default='mean')
#args = parser.parse_args()
score_files = ['/home/zjg/zjg/tsncaffe/score/hmdb51_split_3_tsn_rgb_score.npz', '/home/zjg/zjg/tsncaffe/score/hmdb51_split_3_tsn_flow_score.npz']
score_npz_files = [np.load(x) for x in score_files]
score_list = [x['scores'][:, 0] for x in score_npz_files]
print len(score_list)
label_list = [x['labels'] for x in score_npz_files]
print len(label_list)
for ii in xrange(11):
print ii
score_weights = [ii,10-ii]
if score_weights is None:
score_weights = [1] * len(score_npz_files)
else:
score_weights = score_weights
if len(score_weights) != len(score_npz_files):
raise ValueError("Only {} weight specifed for a total of {} score files"
.format(len(score_weights), len(score_npz_files)))
# label verification
iii = 0
# score_aggregation
agg_score_list = []
for score_vec in score_list:
iii = iii + 1
agg_score_vec = [default_aggregation_func(x, normalization=False, crop_agg=getattr(np, 'mean')) for x in score_vec]
#print len(agg_score_vec)
agg_score_list.append(np.array(agg_score_vec))
#print iii
iii = 0
final_scores = np.zeros_like(agg_score_list[0])
for i, agg_score in enumerate(agg_score_list):
iii = iii +1
final_scores += agg_score * score_weights[i]
#print iii
#print len(label_list[0])
#print len(final_scores)
# accuracy
acc = mean_class_accuracy(final_scores, label_list[0])
print 'Final accuracy {:02f}%'.format(acc * 100)