-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobot.py
164 lines (140 loc) · 4.8 KB
/
robot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from math import *
import random
from draw import painter
landmarks = [[20.0, 20.0],
[80.0, 80.0],
[20.0, 80.0],
[80.0, 20.0]]
world_size = 100.0
RATE = 0.95
PARTICLE_NUM = 1000
class robot(object):
"""docstring for robot"""
def __init__(self):
self.x = random.random() * world_size
self.y = random.random() * world_size
self.orientation = random.random() * 2.0 * pi
self.forward_noise = 0.0
self.turn_noise = 0.0
self.sense_noise = 0.0
def set(self, new_x, new_y, new_orientation):
if new_x < 0 or new_x >= world_size:
raise ValueError, 'X coordinate out of bound'
if new_y < 0 or new_y >= world_size:
raise ValueError, 'Y coordinate out of bound'
if new_orientation < 0 or new_orientation >= 2.0 * pi:
raise ValueError, 'Orientation out of bound'
self.x = float(new_x)
self.y = float(new_y)
self.orientation = float(new_orientation)
def set_noise(self, new_f_noise, new_t_noise, new_s_noise):
self.forward_noise = float(new_f_noise)
self.turn_noise = float(new_t_noise)
self.sense_noise = float(new_s_noise)
def sense(self):
Z = []
for i in range(len(landmarks)):
dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2)
dist += random.gauss(0.0, self.sense_noise)
Z.append(dist)
return Z
def move(self, turn, forward):
if forward < 0:
raise ValueError, 'Robot cant move backwards'
orientation = self.orientation + float(turn) + random.gauss(0.0, self.turn_noise)
orientation %= 2 * pi
#move and add randomness to the motion command
dist = float(forward) + random.gauss(0.0, self.forward_noise)
x = self.x + (cos(orientation) * dist)
y = self.y + (sin(orientation) * dist)
x %= world_size
y %= world_size
#set particle
res = robot()
res.set(x, y, orientation)
res.set_noise(self.forward_noise, self.turn_noise, self.sense_noise)
return res
def random_move(self):
turn = 0
forward = 5
return self.move(turn, forward)
def Gaussian(self, mu, sigma, x):
#calculate the probability of x for 1-dim Gaussian with mean mu and var. sigma
return exp(- ((mu - x) ** 2) / (sigma ** 2) / 2.0 ) / sqrt(2.0 * pi * (sigma ** 2))
def measurement_prob(self, measurement):
# calculates how likely a measurement should be
prob = 1.0
for i in range(len(landmarks)):
dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2)
prob *= self.Gaussian(dist, self.sense_noise, measurement[i])
return prob
def __repr__(self):
return '[x = %.6s y = %.6s orient = %.6s]' % (str(self.x), str(self.y), str(self.orientation))
def eval(r, p):
sum = 0.0
for i in range(len(p)): # calculate mean error
dx = (p[i].x - r.x + (world_size/2.0)) % world_size - (world_size/2.0)
dy = (p[i].y - r.y + (world_size/2.0)) % world_size - (world_size/2.0)
err = sqrt(dx * dx + dy * dy)
sum += err
return sum / float(len(p))
def calculate_mean(particles, w):
sum_x = 0
sum_y = 0
sum_w = 0
for i in range(PARTICLE_NUM):
particle = particles[i]
sum_x += particle.x * w[i]
sum_y += particle.y * w[i]
sum_w += w[i]
x = sum_x / sum_w
y = sum_y / sum_w
cnt = 0
for particle in particles:
dist = sqrt((particle.x - x) ** 2 + (particle.y - y) ** 2)
if (dist < 5):
cnt += 1
return x, y, cnt > PARTICLE_NUM * RATE
myrobot = robot()
myrobot = myrobot.move(0.1, 5.0)
Z = myrobot.sense()
p = []
for i in range(PARTICLE_NUM):
r = robot()
r.set_noise(0.05, 0.05, 5.0)
p.append(r)
print eval(myrobot,p)
painter = painter(world_size, landmarks, robot, p)
# while True:
# painter.draw_landmarks(landmarks)
while True:
#move robot
myrobot = myrobot.move(0.1, 5.0)
Z = myrobot.sense()
#move particles
p2 = []
for i in range(PARTICLE_NUM):
p2.append(p[i].move(0.1, 5.0))
p = p2
#evaluate
w = []
for i in range(PARTICLE_NUM):
w.append(p[i].measurement_prob(Z))
x, y, accept = calculate_mean(p, w)
painter.draw_robot(myrobot)
painter.draw_mean(x, y, accept)
painter.draw_particles(p)
painter.draw_landmarks()
#resampling
p3 = []
index = int(random.random() * PARTICLE_NUM)
beta = 0.0
mw = max(w)
for i in range(PARTICLE_NUM):
beta += random.random() * 2.0 * mw
while beta > w[index]:
beta -= w[index]
index = (index + 1) % PARTICLE_NUM
p3.append(p[index])
p = p3
print eval(myrobot,p)