-
Notifications
You must be signed in to change notification settings - Fork 60
/
main.py
229 lines (193 loc) · 9.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import numpy as np
import sys
import torch
from torch import nn
from torch.backends import cudnn
from torch.utils.data import DataLoader
from reid.datasets.domain_adaptation import DA
from reid import models
from reid.trainers import Trainer
from reid.evaluators import Evaluator
from reid.utils.data import transforms as T
from reid.utils.data.preprocessor import Preprocessor, UnsupervisedCamStylePreprocessor
from reid.utils.logging import Logger
from reid.utils.serialization import load_checkpoint, save_checkpoint
from reid.loss import InvNet
def get_data(data_dir, source, target, height, width, batch_size, re=0, workers=8):
dataset = DA(data_dir, source, target)
normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
num_classes = dataset.num_train_ids
train_transformer = T.Compose([
T.RandomSizedRectCrop(height, width),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalizer,
T.RandomErasing(EPSILON=re),
])
test_transformer = T.Compose([
T.Resize((height, width), interpolation=3),
T.ToTensor(),
normalizer,
])
source_train_loader = DataLoader(
Preprocessor(dataset.source_train, root=osp.join(dataset.source_images_dir, dataset.source_train_path),
transform=train_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=True, pin_memory=True, drop_last=True)
target_train_loader = DataLoader(
UnsupervisedCamStylePreprocessor(dataset.target_train,
root=osp.join(dataset.target_images_dir, dataset.target_train_path),
camstyle_root=osp.join(dataset.target_images_dir,
dataset.target_train_camstyle_path),
num_cam=dataset.target_num_cam, transform=train_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=True, pin_memory=True, drop_last=True)
query_loader = DataLoader(
Preprocessor(dataset.query,
root=osp.join(dataset.target_images_dir, dataset.query_path), transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
gallery_loader = DataLoader(
Preprocessor(dataset.gallery,
root=osp.join(dataset.target_images_dir, dataset.gallery_path), transform=test_transformer),
batch_size=batch_size, num_workers=workers,
shuffle=False, pin_memory=True)
return dataset, num_classes, source_train_loader, target_train_loader, query_loader, gallery_loader
def main(args):
# For fast training.
cudnn.benchmark = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Redirect print to both console and log file
if not args.evaluate:
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
print('log_dir=', args.logs_dir)
# Print logs
print(args)
# Create data loaders
dataset, num_classes, source_train_loader, target_train_loader, \
query_loader, gallery_loader = get_data(args.data_dir, args.source,
args.target, args.height,
args.width, args.batch_size,
args.re, args.workers)
# Create model
model = models.create(args.arch, num_features=args.features,
dropout=args.dropout, num_classes=num_classes)
# Invariance learning model
num_tgt = len(dataset.target_train)
model_inv = InvNet(args.features, num_tgt,
beta=args.inv_beta, knn=args.knn,
alpha=args.inv_alpha)
# Load from checkpoint
start_epoch = 0
if args.resume:
checkpoint = load_checkpoint(args.resume)
model.load_state_dict(checkpoint['state_dict'])
model_inv.load_state_dict(checkpoint['state_dict_inv'])
start_epoch = checkpoint['epoch']
print("=> Start epoch {} "
.format(start_epoch))
# Set model
model = nn.DataParallel(model).to(device)
model_inv = model_inv.to(device)
# Evaluator
evaluator = Evaluator(model)
if args.evaluate:
print("Test:")
evaluator.evaluate(query_loader, gallery_loader, dataset.query,
dataset.gallery, args.output_feature)
return
# Optimizer
base_param_ids = set(map(id, model.module.base.parameters()))
base_params_need_for_grad = filter(lambda p: p.requires_grad, model.module.base.parameters())
new_params = [p for p in model.parameters() if
id(p) not in base_param_ids]
param_groups = [
{'params': base_params_need_for_grad, 'lr_mult': 0.1},
{'params': new_params, 'lr_mult': 1.0}]
optimizer = torch.optim.SGD(param_groups, lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
# Trainer
trainer = Trainer(model, model_inv, lmd=args.lmd)
# Schedule learning rate
def adjust_lr(epoch):
step_size = args.epochs_decay
lr = args.lr * (0.1 ** (epoch // step_size))
for g in optimizer.param_groups:
g['lr'] = lr * g.get('lr_mult', 1)
# Start training
for epoch in range(start_epoch, args.epochs):
adjust_lr(epoch)
trainer.train(epoch, source_train_loader, target_train_loader, optimizer)
save_checkpoint({
'state_dict': model.module.state_dict(),
'state_dict_inv': model_inv.state_dict(),
'epoch': epoch + 1,
}, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))
print('\n * Finished epoch {:3d} \n'.
format(epoch))
# Final test
print('Test with best model:')
evaluator = Evaluator(model)
evaluator.evaluate(query_loader, gallery_loader, dataset.query,
dataset.gallery, args.output_feature)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Invariance Learning for Domain Adaptive Re-ID")
# source
parser.add_argument('-s', '--source', type=str, default='duke',
choices=['market', 'duke', 'msmt17'])
# target
parser.add_argument('-t', '--target', type=str, default='market',
choices=['market', 'duke', 'msmt17'])
# imgs setting
parser.add_argument('-b', '--batch-size', type=int, default=128)
parser.add_argument('-j', '--workers', type=int, default=8)
parser.add_argument('--height', type=int, default=256,
help="input height, default: 256")
parser.add_argument('--width', type=int, default=128,
help="input width, default: 128")
# model
parser.add_argument('-a', '--arch', type=str, default='resnet50',
choices=models.names())
parser.add_argument('--features', type=int, default=4096)
parser.add_argument('--dropout', type=float, default=0.5)
# optimizer
parser.add_argument('--lr', type=float, default=0.1,
help="learning rate of new parameters, for ImageNet pretrained"
"parameters it is 10 times smaller than this")
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=5e-4)
# training configs
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
parser.add_argument('--epochs', type=int, default=60)
parser.add_argument('--epochs_decay', type=int, default=40)
parser.add_argument('--print-freq', type=int, default=1)
# metric learning
parser.add_argument('--dist-metric', type=str, default='euclidean')
# misc
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
parser.add_argument('--output_feature', type=str, default='pool5')
# random erasing
parser.add_argument('--re', type=float, default=0.5)
# Invariance learning
parser.add_argument('--inv-alpha', type=float, default=0.01,
help='update rate for the exemplar memory in invariance learning')
parser.add_argument('--inv-beta', type=float, default=0.05,
help='The temperature in invariance learning')
parser.add_argument('--knn', default=6, type=int,
help='number of KNN for neighborhood invariance')
parser.add_argument('--lmd', type=float, default=0.3,
help='weight controls the importance of the source loss and the target loss.')
args = parser.parse_args()
main(args)