-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathahmf.py
541 lines (435 loc) · 20 KB
/
ahmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
# -*- coding: utf-8 -*-
"""
@Author : zhwzhong
@License : (C) Copyright 2013-2018, hit
@Contact : [email protected]
@Software: PyCharm
@File : bestnet.py
@Time : 2020/1/2 17:06
@Desc :
"""
import math
import torch
import numpy as np
from torch import nn
from collections import Iterable
import switchable_norm as sn
from torch.nn.functional import softplus
from torch.nn.modules.utils import _pair
from torch.nn.functional import interpolate
from partialconv2d import PartialConv2d
import torch.nn.functional as F
def clever_format(nums, format="%.2f"):
if not isinstance(nums, Iterable):
nums = [nums]
clever_nums = []
for num in nums:
if num > 1e12:
clever_nums.append(format % (num / 1e12) + "T")
elif num > 1e9:
clever_nums.append(format % (num / 1e9) + "G")
elif num > 1e6:
clever_nums.append(format % (num / 1e6) + "M")
elif num > 1e3:
clever_nums.append(format % (num / 1e3) + "K")
else:
clever_nums.append(format % num + "B")
clever_nums = clever_nums[0] if len(clever_nums) == 1 else (*clever_nums, )
return clever_nums
def get_parameter_number(net):
total_num = sum(p.numel() for p in net.parameters())
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
total_num, trainable_num = clever_format([total_num, trainable_num])
return {'Total': total_num, 'Trainable': trainable_num}
class invPixelShuffle(nn.Module):
def __init__(self, ratio=2):
super(invPixelShuffle, self).__init__()
self.ratio = ratio
def forward(self, tensor):
ratio = self.ratio
b = tensor.size(0)
ch = tensor.size(1)
y = tensor.size(2)
x = tensor.size(3)
assert x % ratio == 0 and y % ratio == 0, 'x, y, ratio : {}, {}, {}'.format(x, y, ratio)
return tensor.view(b, ch, y // ratio, ratio, x // ratio, ratio).permute(0, 1, 3, 5, 2, 4).contiguous().view(b, -1, y // ratio, x // ratio)
class ConvBNReLU2D(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True, partial=False, vcnn=False, act=None, norm=None):
super(ConvBNReLU2D, self).__init__()
if partial:
self.layers = PartialConv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias)
elif vcnn:
self.layers = VConv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias)
else:
self.layers = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias)
self.act = None
self.norm = None
if norm == 'BN':
self.norm = torch.nn.BatchNorm2d(out_channels)
elif norm == 'IN':
self.norm = torch.nn.InstanceNorm2d(out_channels)
elif norm == 'GN':
self.norm = torch.nn.GroupNorm(2, out_channels)
elif norm == 'WN':
self.layers = torch.nn.utils.weight_norm(self.layers)
elif norm == 'SN':
self.norm = sn.SwitchNorm2d(out_channels, using_moving_average=True, using_bn=True)
elif norm == 'Adaptive':
self.norm = AdaptiveNorm(n=out_channels)
if act == 'PReLU':
self.act = torch.nn.PReLU()
elif act == 'SELU':
self.act = torch.nn.SELU(True)
elif act == 'LeakyReLU':
self.act = torch.nn.LeakyReLU(negative_slope=0.02, inplace=True)
elif act == 'ELU':
self.act = torch.nn.ELU(inplace=True)
elif act == 'ReLU':
self.act = torch.nn.ReLU(True)
elif act == 'Tanh':
self.act = torch.nn.Tanh()
elif act == 'Mish':
self.act = Mish()
elif act == 'Sigmoid':
self.act = torch.nn.Sigmoid()
elif act == 'SoftMax':
self.act = torch.nn.Softmax2d()
def forward(self, *inputs):
if len(inputs) == 1:
out = self.layers(inputs[0])
else:
out = self.layers(inputs[0], inputs[1])
if self.norm is not None:
out = self.norm(out)
if self.act is not None:
out = self.act(out)
return out
class FeatureInitialization(nn.Module):
# 提取Depth和RGB的特征,变为64个通道
def __init__(self, num_features, scale, guidance_channel=1):
super(FeatureInitialization, self).__init__()
self.rgb_shuffle = invPixelShuffle(ratio=scale)
self.depth_in = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=num_features, kernel_size=3, stride=1, padding=1),
nn.PReLU()
)
self.guidance_in = nn.Sequential(
nn.Conv2d(in_channels=guidance_channel, out_channels=num_features, kernel_size=3, padding=1),
nn.PReLU(),
InvUpSampler(scale=scale, n_feats=num_features)
)
def forward(self, depth, guidance):
# guide_shuffle = self.rgb_shuffle(guidance)
return self.depth_in(depth), self.guidance_in(guidance), None
class UpSampler(nn.Sequential):
def __init__(self, scale, n_feats):
m = []
if scale == 8:
kernel_size = 3
elif scale == 16:
kernel_size = 5
else:
kernel_size = 1
if (scale & (scale - 1)) == 0: # Is scale = 2^n?
for _ in range(int(math.log(scale, 2))):
m.append(nn.Conv2d(in_channels=n_feats, out_channels=4 * n_feats, kernel_size=kernel_size, stride=1,
padding=kernel_size // 2))
m.append(nn.PixelShuffle(upscale_factor=2))
m.append(nn.PReLU())
super(UpSampler, self).__init__(*m)
class InvUpSampler(nn.Sequential):
def __init__(self, scale, n_feats):
m = []
if scale == 8:
kernel_size = 3
elif scale == 16:
kernel_size = 5
else:
kernel_size = 1
if (scale & (scale - 1)) == 0: # Is scale = 2^n?
for _ in range(int(math.log(scale, 2))):
m.append(invPixelShuffle(2))
m.append(nn.Conv2d(in_channels=n_feats * 4, out_channels=n_feats, kernel_size=kernel_size, stride=1,
padding=kernel_size // 2))
m.append(nn.PReLU())
super(InvUpSampler, self).__init__(*m)
class Compress(nn.Module):
def __init__(self, num_features, act, norm, fuse_way='add'):
super(Compress, self).__init__()
self.fuse_way = fuse_way
self.layers = ResNet(num_features=num_features, act=act, norm=norm)
if self.fuse_way == 'cat':
self.compress_out = ConvBNReLU2D(in_channels=2 * num_features, out_channels=num_features, kernel_size=1,
padding=0, act=act)
def forward(self, *inputs):
if len(inputs) == 2:
if self.fuse_way == 'add':
out = inputs[0] + inputs[1]
else:
out = self.compress_out(torch.cat(([inputs[0], inputs[1]]), dim=1))
else:
out = inputs[0]
return self.layers(out)
class ResNet(nn.Module):
def __init__(self, num_features, act, norm):
super(ResNet, self).__init__()
self.layers = nn.Sequential(*[
ConvBNReLU2D(in_channels=num_features, out_channels=num_features, kernel_size=3, stride=1, padding=1, act=act, norm=norm),
ConvBNReLU2D(in_channels=num_features, out_channels=num_features, kernel_size=3, stride=1, padding=1, norm=norm)
])
self.act = get_act(act=act)
def forward(self, input_feature):
return self.act(self.layers(input_feature) + input_feature)
def variance_pool(x):
my_mean = x.mean(dim=3, keepdim=True).mean(dim=2, keepdim=True)
return (x - my_mean).pow(2).mean(dim=3, keepdim=False).mean(dim=2, keepdim=False).view(x.size()[0], x.size()[1], 1, 1)
def logsumexp_2d(tensor):
tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1)
s, _ = torch.max(tensor_flatten, dim=2, keepdim=True)
outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log()
return outputs
def pool_func(x, pool_type=None):
b, c = x.size()[:2]
if pool_type == 'avg':
ret = F.avg_pool2d(x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
elif pool_type == 'max':
ret = F.max_pool2d(x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
elif pool_type == 'lp':
ret = F.lp_pool2d(x, 2, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
else:
ret = variance_pool(x)
return ret.view(b, c)
class GateConv2D(nn.Module):
def __init__(self, num_features):
super(GateConv2D, self).__init__()
self.Attention = nn.Sequential(
nn.Conv2d(in_channels=num_features, out_channels=num_features, kernel_size=3, padding=1),
nn.Sigmoid()
)
self.Feature = nn.Sequential(
nn.Conv2d(in_channels=num_features, out_channels=num_features, kernel_size=3, padding=1),
nn.PReLU()
)
def forward(self, inputs):
return self.Attention(inputs) * self.Feature(inputs)
class ConvGRUCell(nn.Module):
"""
Basic CGRU cell.
"""
def __init__(self, in_channels, hidden_channels, kernel_size, bias):
super(ConvGRUCell, self).__init__()
self.input_dim = in_channels
self.hidden_dim = hidden_channels
self.kernel_size = kernel_size
self.padding = kernel_size[0] // 2, kernel_size[1] // 2
self.bias = bias
self.update_gate = nn.Conv2d(in_channels=self.input_dim+self.hidden_dim, out_channels=self.hidden_dim,
kernel_size=self.kernel_size, padding=self.padding,
bias=self.bias)
self.reset_gate = nn.Conv2d(in_channels=self.input_dim+self.hidden_dim, out_channels=self.hidden_dim,
kernel_size=self.kernel_size, padding=self.padding,
bias=self.bias)
self.out_gate = nn.Conv2d(in_channels=self.input_dim+self.hidden_dim, out_channels=self.hidden_dim,
kernel_size=self.kernel_size, padding=self.padding,
bias=self.bias)
def forward(self, input_tensor, cur_state):
h_cur = cur_state
# data size is [batch, channel, height, width]
x_in = torch.cat([input_tensor, h_cur], dim=1)
update = torch.sigmoid(self.update_gate(x_in))
reset = torch.sigmoid(self.reset_gate(x_in))
x_out = torch.tanh(self.out_gate(torch.cat([input_tensor, h_cur * reset], dim=1)))
h_new = h_cur * (1 - update) + x_out * update
return h_new
def init_hidden(self, b, h, w):
return torch.zeros(b, self.hidden_dim, h, w).cuda()
class ConvGRU(nn.Module):
def __init__(self, in_channels, hidden_channels, kernel_size, num_layers=2,
batch_first=False, bias=True, return_all_layers=False):
super(ConvGRU, self).__init__()
self._check_kernel_size_consistency(kernel_size)
# Make sure that both `kernel_size` and `hidden_dim` are lists having len == num_layers
kernel_size = self._extend_for_multilayer(kernel_size, num_layers)
hidden_channels = self._extend_for_multilayer(hidden_channels, num_layers)
if not len(kernel_size) == len(hidden_channels) == num_layers:
raise ValueError('Inconsistent list length.')
self.input_dim = in_channels
self.hidden_dim = hidden_channels
self.kernel_size = kernel_size
self.num_layers = num_layers
self.batch_first = batch_first
self.bias = bias
self.return_all_layers = return_all_layers
cell_list = []
for i in range(0, self.num_layers):
cur_input_dim = self.input_dim if i == 0 else self.hidden_dim[i-1]
cell_list.append(ConvGRUCell(in_channels=cur_input_dim,
hidden_channels=self.hidden_dim[i],
kernel_size=self.kernel_size[i],
bias=self.bias))
self.cell_list = nn.ModuleList(cell_list)
def forward(self, input_tensor, hidden_state=None):
"""
Parameters
----------
input_tensor: todo
5-D Tensor either of shape (t, b, c, h, w) or (b, t, c, h, w)
hidden_state: todo
None. todo implement stateful
Returns
-------
last_state_list, layer_output
"""
if not self.batch_first:
# (t, b, c, h, w) -> (b, t, c, h, w)
input_tensor = input_tensor.permute(1, 0, 2, 3, 4)
# Implement stateful ConvGRU
if hidden_state is not None:
raise NotImplementedError()
else:
b, _, _, h, w = input_tensor.shape
hidden_state = self._init_hidden(b, h, w)
layer_output_list = []
last_state_list = []
seq_len = input_tensor.size(1)
cur_layer_input = input_tensor
for layer_idx in range(self.num_layers):
h = hidden_state[layer_idx]
output_inner = []
for t in range(seq_len):
h = self.cell_list[layer_idx](input_tensor=cur_layer_input[:, t, :, :, :], cur_state=h)
output_inner.append(h)
layer_output = torch.stack(output_inner, dim=1)
cur_layer_input = layer_output
layer_output_list.append(layer_output)
last_state_list.append(h)
if not self.return_all_layers:
layer_output_list = layer_output_list[-1:]
last_state_list = last_state_list[-1:]
return layer_output_list, last_state_list
def _init_hidden(self, b, h, w):
init_states = []
for i in range(self.num_layers):
init_states.append(self.cell_list[i].init_hidden(b, h, w))
return init_states
@staticmethod
def _check_kernel_size_consistency(kernel_size):
if not (isinstance(kernel_size, tuple) or
(isinstance(kernel_size, list) and all([isinstance(elem, tuple) for elem in kernel_size]))):
raise ValueError('`kernel_size` must be tuple or list of tuples')
@staticmethod
def _extend_for_multilayer(param, num_layers):
if not isinstance(param, list):
param = [param] * num_layers
return param
class MMAB(nn.Module):
def __init__(self, num_features, reduction_ratio=4):
super(MMAB, self).__init__()
self.squeeze = ConvBNReLU2D(in_channels=num_features * 2, out_channels=num_features * 2 // reduction_ratio,
kernel_size=3, act='PReLU', padding=1)
self.excitation1 = ConvBNReLU2D(in_channels=num_features * 2 // reduction_ratio, out_channels=num_features,
kernel_size=1, act='Sigmoid')
self.excitation2 = ConvBNReLU2D(in_channels=num_features * 2 // reduction_ratio, out_channels=num_features,
kernel_size=1, act='Sigmoid')
def forward(self, depth, guidance):
fuse_feature = self.squeeze(torch.cat((depth, guidance), 1))
fuse_statistic = pool_func(fuse_feature, 'avg') + pool_func(fuse_feature)
squeeze_feature = fuse_statistic.unsqueeze(2).unsqueeze(3)
depth_out = self.excitation1(squeeze_feature)
guidance_out = self.excitation2(squeeze_feature)
return (depth_out * depth).div(2), (guidance_out * guidance).div(2)
class FuseNet(nn.Module):
def __init__(self, num_features, reduction_ratio, act, norm):
super(FuseNet, self).__init__()
self.filter_conv = GateConv2D(num_features=num_features)
self.filter_conv1 = GateConv2D(num_features=num_features)
self.attention_layer = MMAB(num_features=num_features, reduction_ratio=reduction_ratio)
self.res_conv = ResNet(num_features=num_features, act=act, norm=norm)
def forward(self, depth, guide):
guide = self.filter_conv(guide)
depth = self.filter_conv1(depth)
depth, guide = self.attention_layer(depth=depth, guidance=guide)
fuse_feature = self.res_conv(depth + guide)
return fuse_feature
def get_act(act):
if act == 'PReLU':
ret_act = torch.nn.PReLU()
elif act == 'SELU':
ret_act = torch.nn.SELU(True)
elif act == 'LeakyReLU':
ret_act = torch.nn.LeakyReLU(negative_slope=0.02, inplace=True)
elif act == 'ELU':
ret_act = torch.nn.ELU(inplace=True)
elif act == 'ReLU':
ret_act = torch.nn.ReLU(True)
elif act == 'Mish':
ret_act = Mish()
else:
print('ACT ERROR')
ret_act = torch.nn.ReLU(True)
return ret_act
class AHMF(nn.Module):
def __init__(self, scale=4):
super(AHMF, self).__init__()
self.head = FeatureInitialization(num_features=64, scale=scale, guidance_channel=3)
# Forward Backward None ALL
self.rgb_conv = nn.ModuleList()
self.fuse_conv = nn.ModuleList()
self.depth_conv = nn.ModuleList()
self.compress_out = nn.ModuleList()
self.forward_gru_cell = nn.ModuleList()
self.reverse_gru_cell = nn.ModuleList()
for _ in range(3):
self.rgb_conv.append(
ConvBNReLU2D(in_channels=64, out_channels=64, kernel_size=3, padding=1, act='PReLU')
)
for _ in range(3):
self.depth_conv.append(
ConvBNReLU2D(in_channels=64, out_channels=64, kernel_size=3, padding=1, act='PReLU')
)
for _ in range(4):
self.fuse_conv.append(
FuseNet(num_features=64, reduction_ratio=4, act='PReLU', norm=None)
)
self.compress_out.append(
Compress(num_features=64, act='PReLU', norm=None)
)
self.forward_gru_cell = ConvGRU(in_channels=64, hidden_channels=64, kernel_size=(3, 3), batch_first=True)
self.reverse_gru_cell = ConvGRU(in_channels=64, hidden_channels=64, kernel_size=(3, 3), batch_first=True)
self.up_conv = nn.Sequential(
ConvBNReLU2D(in_channels=64 * 4, out_channels=64,
kernel_size=1, padding=0, act='PReLU'),
*UpSampler(scale=scale, n_feats=64),
ConvBNReLU2D(in_channels=64, out_channels=1, kernel_size=3, padding=1, vcnn=False, norm=None)
)
def forward(self, lr, rgb, lr_up):
depth_feature, guide_feature, _ = self.head(lr, rgb)
depth_out = [depth_feature]
guide_out = [guide_feature]
for i in range(3):
guide_feature = self.rgb_conv[i](guide_feature)
guide_out.append(guide_feature)
for i in range(3):
depth_feature = self.depth_conv[i](depth_feature)
depth_out.append(depth_feature)
fuse_feature = []
for i in range(4):
tmp = self.fuse_conv[i](depth=depth_out[3 - i],
guide=guide_out[3 - i])
fuse_feature.append(tmp)
forward_hidden_list, _ = self.forward_gru_cell(torch.stack(fuse_feature, dim=1))
forward_hidden_list = forward_hidden_list[-1]
reversed_idx = list(reversed(range(4)))
reverse_hidden_list, _ = self.reverse_gru_cell(torch.stack(fuse_feature, dim=1)[:, reversed_idx, ...])
reverse_hidden_list = reverse_hidden_list[-1]
reverse_hidden_list = reverse_hidden_list[:, reversed_idx, ...]
fuse_out = []
for i in range(4):
tmp_out = self.compress_out[i](forward_hidden_list[:, i], reverse_hidden_list[:, i])
fuse_out.append(tmp_out)
out = self.up_conv(torch.cat(tuple(fuse_out), dim=1))
return [out + lr_up]