-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrainer.py
64 lines (54 loc) · 2.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
"""
@Author : zhwzhong
@License : (C) Copyright 2013-2018, hit
@Contact : [email protected]
@Software: PyCharm
@File : trainer.py
@Time : 2022/3/1 20:06
@Desc :
"""
import os
import cv2
import numpy as np
import utils
import torch
import tqdm
@torch.no_grad()
def evaluate(model, criterion, test_name, val_data, device, args):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
sv_path = './track1/evaluation1/x4/' if args.scale == 4 else './track1/evaluation2/x2/'
if args.dataset == 'NIR':
sv_path = './track2/evaluation/x8/'
if args.save_result and args.local_rank == 0:
utils.create_dir(sv_path)
nb = len(val_data)
val_data = enumerate(val_data)
if args.local_rank in [-1, 0]:
val_data = tqdm.tqdm(val_data, total=nb) # 只在主进程打印进度条
for _, samples in val_data:
samples = utils.to_device(samples, device)
out = utils.ensemble(samples, model, args.ensemble_mode, args.dataset) if args.self_ensemble else model(samples)
torch.cuda.synchronize()
loss = criterion(out['img_out'], samples['img_gt'])
metric_logger.update(loss=loss.item() * 1000)
if args.save_result:
for index in range(samples['img_gt'].size(0)):
save_name = os.path.join(sv_path, samples['img_name'][0])
img = utils.tensor2uint(out['img_out'][index: index + 1], data_range=args.data_range)
if args.dataset == 'NIR':
cv2.imwrite(save_name, img)
np.save(save_name.replace('bmp', 'npy'), out['img_out'][index: index + 1].detach().cpu().numpy())
else:
cv2.imwrite(save_name.replace('npy', 'jpg'), img, [int(cv2.IMWRITE_JPEG_QUALITY), 97])
print('Image Saved to {}'.format(save_name))
metrics = utils.calc_metrics(out['img_out'], samples['img_gt'], args)
# print(metrics, samples['img_gt'].size(0), os.path.join(sv_path, samples['img_name'][0]))
for metric, value in metrics.items():
metric_logger.meters[metric].update(value.item(), n=samples['img_gt'].size(0))
metric_logger.synchronize_between_processes()
torch.cuda.empty_cache()
metric_out = {'{}_'.format(test_name) + k: round(meter.global_avg, 3) for k, meter in metric_logger.meters.items()}
print(metric_out)
return metric_out