-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_mnist.py
146 lines (115 loc) · 4.67 KB
/
run_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import logging
import numpy as np
import pandas as pd
import torch
import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from model import LinearBetaVAE, ReLUBetaVAE, TanhBetaVAE
parser = argparse.ArgumentParser()
parser.add_argument('--num_samples', default=4096)
parser.add_argument('--model', default='linear')
parser.add_argument('--name', type=str, default="")
parser.add_argument('--input_dim', default=784, type=int)
parser.add_argument('--target_dim', default=784, type=int)
parser.add_argument('--latent_dim', default=8, type=int)
parser.add_argument('--hidden_dim', default=1024, type=int)
parser.add_argument('--eta_dec_sq', default=1, type=float)
parser.add_argument('--eta_prior_sq', default=1, type=float)
parser.add_argument('--batch_size', default=16)
parser.add_argument('--epoch', default=256)
parser.add_argument('--lr', default=1e-3)
def train(dataset, model: nn.Module, args):
loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
trajectory = []
with tqdm.trange(args.epoch) as t:
for e in t:
total_loss = 0
total_rec_loss = 0
total_kl_loss = 0
total_enc_norm = 0
total_dec_norm = 0
sigma_array_list = []
for x, _ in tqdm.tqdm(loader):
x = x.reshape(-1, 784)
optimizer.zero_grad()
fetched = model(x, x)
loss = fetched['loss']
total_loss += loss.item()
total_rec_loss += fetched['rec_loss'].item()
total_kl_loss += fetched['kl_loss'].item()
sigma_array_list.append(fetched['sigma'].detach().cpu().numpy())
if args.model == 'linear':
total_enc_norm += fetched['enc_norm'].item()
total_dec_norm += fetched['dec_norm'].item()
loss.backward()
optimizer.step()
L = len(loader)
traj = {'epoch': e,
'total': total_loss/L,
'rec': total_rec_loss/L,
'kl': total_kl_loss/L,
'enc_norm': total_enc_norm/L,
'dec_norm': total_dec_norm/L}
t.set_postfix(traj)
logging.info(traj)
traj['sigma_array'] = np.concatenate(sigma_array_list, axis=0)
trajectory.append(traj)
return trajectory
if __name__ == "__main__":
args = parser.parse_args()
logging.basicConfig(filename=f'{args.model}_beta_vae.log', filemode='wt', level=logging.INFO)
transform = transforms.Compose(
[transforms.ToTensor()])
dataset = MNIST('./dataset', transform=transform, download=True)
beta_list = list(i for i in range(31))
total_loss = []
rec_loss = []
kl_loss = []
sigma_mean_list = []
sigma_std_list = []
final_traj = []
enc_norm = []
dec_norm = []
for beta in beta_list:
print('beta = ', beta)
if args.model == 'linear':
VAE = LinearBetaVAE
elif args.model == 'relu':
VAE = ReLUBetaVAE
elif args.model == 'tanh':
VAE = TanhBetaVAE
model = VAE(input_dim=args.input_dim,
latent_dim=args.latent_dim,
target_dim=args.target_dim,
hidden_dim=args.hidden_dim,
eta_dec_sq=args.eta_dec_sq,
eta_prior_sq=args.eta_prior_sq,
beta=beta)
traj = train(dataset, model, args)
total_loss.append(traj[-1]['total'])
rec_loss.append(traj[-1]['rec'])
kl_loss.append(traj[-1]['kl'])
last_sigma = traj[-1]['sigma_array']
sigma_mean_list.append(np.mean(last_sigma, axis=0).tolist())
sigma_std_list.append(np.std(last_sigma, axis=0).tolist())
# assert len(sigma_mean_list[0]) == len(xi_list)
if args.model == 'linear':
enc_norm.append(traj[-1]['enc_norm'])
dec_norm.append(traj[-1]['dec_norm'])
final_traj.append(traj[-1])
data = {'beta': beta_list,
'total_loss': total_loss,
'rec_loss': rec_loss,
'kl_loss': kl_loss}
if args.model == 'linear':
data['enc_norm'] = enc_norm
data['dec_norm'] = dec_norm
for i in range(args.latent_dim):
data[f'sigma-{i}_mean'] = [sigma_mean[i] for sigma_mean in sigma_mean_list]
data[f'sigma-{i}_std'] = [sigma_std[i] for sigma_std in sigma_std_list]
pd.DataFrame(data).to_csv(f'output/{args.name}{args.model}_losses.csv', index=False)