forked from doserjef/Doser_etal_2021_InReview
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.R
132 lines (125 loc) · 5.5 KB
/
main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# main.R: main R script to run ICOM via NIMBLE through R using one replicated
# data set and two nonreplicated data sets. This script can be used for
# initial exploration of the ICOM and for adapting the ICOM towards
# individual case studies.
# Author: Jeffrey W. Doser ([email protected])
# Citation:
rm(list = ls())
library(nimble)
library(coda)
library(tidyverse)
# Load function to simulate data.
source("code/simulations/sim-icom-data.R")
# Set seed for constant results
#set.seed(1817)
# Functions ---------------------------------------------------------------
logit <- function(theta, a = 0, b = 1){log((theta-a)/(b-theta))}
logit.inv <- function(z, a = 0, b = 1){b-(b-a)/(1+exp(z))}
# Simulate Data -----------------------------------------------------------
# Data are simulated from a single replicated data source and two
# nonreplicated data sources.
# Number sites with replicated data source
J.rep <- 50
# Number sites with first nonreplicated data source
J.nrep.1 <- 50
# Number of sites with second nonreplicated data source
J.nrep.2 <- 50
# Total number of sites
J <- J.rep + J.nrep.1 + J.nrep.2
# Number of years
n.years <- 5
# Community level parameters ----------------------------------------------
# Occupancy intercept (vary by year)
beta.0.mean <- runif(n.years, -1.5, .15)
# Occupancy spatial covariate effect
beta.1.mean <- 0.1
# Community auto-logistic mean
phi.mean <- 1.4
# Replicated detection intercept (vary by year)
alpha.0.mean <- runif(n.years, -1, 1)
# Replicated detection space/time covariate effect
alpha.1.mean <- 0.3
# Nonreplicated 1 detection intercept (vary by year)
gamma.1.0.mean <- runif(n.years, -2.5, 0)
# Nonreplicated 1 detection space/time covariate effect
gamma.1.1.mean <- 0.1
# Nonreplicated 2 detection intercept (vary by year)
gamma.2.0.mean <- runif(n.years, 0, 2.5)
# Nonreplicated 2 detection space/time covariate effect
gamma.2.1.mean <- -0.2
# Number of replicates for replicated data set
K.rep <- 3
# Number of replicates for first nonreplicated data set (can change if
# desired to have two replicated data sets)
K.nrep.1 <- 1
# Number of species
I <- 8
# Community-level variance parameters
sigma.sq.beta.0 <- runif(n.years, 0.5, 1.5)
sigma.sq.beta.1 <- runif(1, 0.25, 2)
sigma.sq.phi <- runif(1, 0.25, 1)
sigma.sq.rep.0 <- runif(n.years, 1, 3)
sigma.sq.rep.1 <- runif(1, 0.25, 2)
sigma.sq.nrep.1.0 <- runif(n.years, 1, 3)
sigma.sq.nrep.1.1 <- runif(1, 0.25, 2)
sigma.sq.nrep.2.0 <- runif(n.years, 1, 3)
sigma.sq.nrep.2.1 <- runif(1, 0.25, 2)
# Form species-specific covariates ----------------------------------------
beta.0 <- matrix(NA, nrow = I, ncol = n.years)
alpha.0 <- matrix(NA, nrow = I, ncol = n.years)
gamma.1.0 <- matrix(NA, nrow = I, ncol = n.years)
gamma.2.0 <- matrix(NA, nrow = I, ncol = n.years)
for (t in 1:n.years) {
beta.0[, t] <- rnorm(I, beta.0.mean[t], sqrt(sigma.sq.beta.0[t]))
alpha.0[, t] <- rnorm(I, alpha.0.mean[t], sqrt(sigma.sq.rep.0[t]))
gamma.1.0[, t] <- rnorm(I, gamma.1.0.mean[t], sqrt(sigma.sq.nrep.1.0[t]))
gamma.2.0[, t] <- rnorm(I, gamma.2.0.mean[t], sqrt(sigma.sq.nrep.2.0[t]))
}
beta.1 <- rnorm(I, beta.1.mean, sqrt(sigma.sq.beta.1))
phi <- rnorm(I, phi.mean, sqrt(sigma.sq.phi))
gamma.1.1 <- rnorm(I, gamma.1.1.mean, sqrt(sigma.sq.nrep.1.1))
alpha.1 <- rnorm(I, alpha.1.mean, sqrt(sigma.sq.rep.1))
gamma.2.1 <- rnorm(I, gamma.2.1.mean, sqrt(sigma.sq.nrep.2.1))
# Simulate the data using the data simulation function.
dat <- sim.icom.data(J.rep, J.nrep.1, J.nrep.2, beta.0, beta.1,
phi, gamma.2.0, gamma.2.1,
alpha.0, alpha.1,
gamma.1.0, gamma.1.1, K.rep, K.nrep.1, I,
n.years)
# dat contains the following objects:
# X.psi: design matrix for occurrence
# X.nrep.2: design matrix for detection of nonreplicated 2 data set
# X.nrep.1: design matrix for detection of nonreplicated 1 data set
# X.rep: design matrix for detection of replicated data set
# psi: latent occurrence probabilities
# z: latent precense/absence array
# p: detection probabilities for replicated data set
# y: detection-nondetection data for replicated data set
# pi.1, pi.2: detection probabilities for nonreplicated data sets 1 and 2.
# v.1, v.2: detection-nondetection data for nonreplicated data sets 1 and 2.
# Load BUGS code and initial values/constants/data for use in NIMBLE ------
source("code/simulations/nimble-code/icom-rep-nrep1-nrep2.R")
start <- Sys.time()
# Create Model ------------------------------------------------------------
icom.model <- nimbleModel(code = icom.code, name = 'icom', constants = icom.consts,
data = icom.data, inits = icom.inits)
# Configure MCMC ----------------------------------------------------------
icom.conf <- configureMCMC(icom.model, monitors = c('int.beta.mean', 'beta.1.mean',
'phi.mean',
'beta.0', 'beta.1', 'phi'))
# Create an MCMC function -------------------------------------------------
icom.mcmc <- buildMCMC(icom.conf)
# Compile model -----------------------------------------------------------
icom.c.model <- compileNimble(icom.model)
icom.c.mcmc <- compileNimble(icom.mcmc, project = icom.model)
# Number of iterations ----------------------------------------------------
n.iter <- 8000
n.thin <- 2
n.burn <- 5000
n.chain <- 1
# Run the model -----------------------------------------------------------
samples <- runMCMC(icom.c.mcmc, niter = n.iter, nburnin = n.burn,
thin = n.thin, nchains = n.chain, samplesAsCodaMCMC = TRUE)
# Quick summary of model --------------------------------------------------
summary(samples)
plot(mcmc(samples), density = FALSE)