forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
table_master_match.py
953 lines (836 loc) · 35.8 KB
/
table_master_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/match.py
"""
import os
import re
import cv2
import glob
import copy
import math
import pickle
import numpy as np
from shapely.geometry import Polygon, MultiPoint
"""
Useful function in matching.
"""
def remove_empty_bboxes(bboxes):
"""
remove [0., 0., 0., 0.] in structure master bboxes.
len(bboxes.shape) must be 2.
:param bboxes:
:return:
"""
new_bboxes = []
for bbox in bboxes:
if sum(bbox) == 0.:
continue
new_bboxes.append(bbox)
return np.array(new_bboxes)
def xywh2xyxy(bboxes):
if len(bboxes.shape) == 1:
new_bboxes = np.empty_like(bboxes)
new_bboxes[0] = bboxes[0] - bboxes[2] / 2
new_bboxes[1] = bboxes[1] - bboxes[3] / 2
new_bboxes[2] = bboxes[0] + bboxes[2] / 2
new_bboxes[3] = bboxes[1] + bboxes[3] / 2
return new_bboxes
elif len(bboxes.shape) == 2:
new_bboxes = np.empty_like(bboxes)
new_bboxes[:, 0] = bboxes[:, 0] - bboxes[:, 2] / 2
new_bboxes[:, 1] = bboxes[:, 1] - bboxes[:, 3] / 2
new_bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2] / 2
new_bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3] / 2
return new_bboxes
else:
raise ValueError
def xyxy2xywh(bboxes):
if len(bboxes.shape) == 1:
new_bboxes = np.empty_like(bboxes)
new_bboxes[0] = bboxes[0] + (bboxes[2] - bboxes[0]) / 2
new_bboxes[1] = bboxes[1] + (bboxes[3] - bboxes[1]) / 2
new_bboxes[2] = bboxes[2] - bboxes[0]
new_bboxes[3] = bboxes[3] - bboxes[1]
return new_bboxes
elif len(bboxes.shape) == 2:
new_bboxes = np.empty_like(bboxes)
new_bboxes[:, 0] = bboxes[:, 0] + (bboxes[:, 2] - bboxes[:, 0]) / 2
new_bboxes[:, 1] = bboxes[:, 1] + (bboxes[:, 3] - bboxes[:, 1]) / 2
new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]
return new_bboxes
else:
raise ValueError
def pickle_load(path, prefix='end2end'):
if os.path.isfile(path):
data = pickle.load(open(path, 'rb'))
elif os.path.isdir(path):
data = dict()
search_path = os.path.join(path, '{}_*.pkl'.format(prefix))
pkls = glob.glob(search_path)
for pkl in pkls:
this_data = pickle.load(open(pkl, 'rb'))
data.update(this_data)
else:
raise ValueError
return data
def convert_coord(xyxy):
"""
Convert two points format to four points format.
:param xyxy:
:return:
"""
new_bbox = np.zeros([4, 2], dtype=np.float32)
new_bbox[0, 0], new_bbox[0, 1] = xyxy[0], xyxy[1]
new_bbox[1, 0], new_bbox[1, 1] = xyxy[2], xyxy[1]
new_bbox[2, 0], new_bbox[2, 1] = xyxy[2], xyxy[3]
new_bbox[3, 0], new_bbox[3, 1] = xyxy[0], xyxy[3]
return new_bbox
def cal_iou(bbox1, bbox2):
bbox1_poly = Polygon(bbox1).convex_hull
bbox2_poly = Polygon(bbox2).convex_hull
union_poly = np.concatenate((bbox1, bbox2))
if not bbox1_poly.intersects(bbox2_poly):
iou = 0
else:
inter_area = bbox1_poly.intersection(bbox2_poly).area
union_area = MultiPoint(union_poly).convex_hull.area
if union_area == 0:
iou = 0
else:
iou = float(inter_area) / union_area
return iou
def cal_distance(p1, p2):
delta_x = p1[0] - p2[0]
delta_y = p1[1] - p2[1]
d = math.sqrt((delta_x**2) + (delta_y**2))
return d
def is_inside(center_point, corner_point):
"""
Find if center_point inside the bbox(corner_point) or not.
:param center_point: center point (x, y)
:param corner_point: corner point ((x1,y1),(x2,y2))
:return:
"""
x_flag = False
y_flag = False
if (center_point[0] >= corner_point[0][0]) and (
center_point[0] <= corner_point[1][0]):
x_flag = True
if (center_point[1] >= corner_point[0][1]) and (
center_point[1] <= corner_point[1][1]):
y_flag = True
if x_flag and y_flag:
return True
else:
return False
def find_no_match(match_list, all_end2end_nums, type='end2end'):
"""
Find out no match end2end bbox in previous match list.
:param match_list: matching pairs.
:param all_end2end_nums: numbers of end2end_xywh
:param type: 'end2end' corresponding to idx 0, 'master' corresponding to idx 1.
:return: no match pse bbox index list
"""
if type == 'end2end':
idx = 0
elif type == 'master':
idx = 1
else:
raise ValueError
no_match_indexs = []
# m[0] is end2end index m[1] is master index
matched_bbox_indexs = [m[idx] for m in match_list]
for n in range(all_end2end_nums):
if n not in matched_bbox_indexs:
no_match_indexs.append(n)
return no_match_indexs
def is_abs_lower_than_threshold(this_bbox, target_bbox, threshold=3):
# only consider y axis, for grouping in row.
delta = abs(this_bbox[1] - target_bbox[1])
if delta < threshold:
return True
else:
return False
def sort_line_bbox(g, bg):
"""
Sorted the bbox in the same line(group)
compare coord 'x' value, where 'y' value is closed in the same group.
:param g: index in the same group
:param bg: bbox in the same group
:return:
"""
xs = [bg_item[0] for bg_item in bg]
xs_sorted = sorted(xs)
g_sorted = [None] * len(xs_sorted)
bg_sorted = [None] * len(xs_sorted)
for g_item, bg_item in zip(g, bg):
idx = xs_sorted.index(bg_item[0])
bg_sorted[idx] = bg_item
g_sorted[idx] = g_item
return g_sorted, bg_sorted
def flatten(sorted_groups, sorted_bbox_groups):
idxs = []
bboxes = []
for group, bbox_group in zip(sorted_groups, sorted_bbox_groups):
for g, bg in zip(group, bbox_group):
idxs.append(g)
bboxes.append(bg)
return idxs, bboxes
def sort_bbox(end2end_xywh_bboxes, no_match_end2end_indexes):
"""
This function will group the render end2end bboxes in row.
:param end2end_xywh_bboxes:
:param no_match_end2end_indexes:
:return:
"""
groups = []
bbox_groups = []
for index, end2end_xywh_bbox in zip(no_match_end2end_indexes,
end2end_xywh_bboxes):
this_bbox = end2end_xywh_bbox
if len(groups) == 0:
groups.append([index])
bbox_groups.append([this_bbox])
else:
flag = False
for g, bg in zip(groups, bbox_groups):
# this_bbox is belong to bg's row or not
if is_abs_lower_than_threshold(this_bbox, bg[0]):
g.append(index)
bg.append(this_bbox)
flag = True
break
if not flag:
# this_bbox is not belong to bg's row, create a row.
groups.append([index])
bbox_groups.append([this_bbox])
# sorted bboxes in a group
tmp_groups, tmp_bbox_groups = [], []
for g, bg in zip(groups, bbox_groups):
g_sorted, bg_sorted = sort_line_bbox(g, bg)
tmp_groups.append(g_sorted)
tmp_bbox_groups.append(bg_sorted)
# sorted groups, sort by coord y's value.
sorted_groups = [None] * len(tmp_groups)
sorted_bbox_groups = [None] * len(tmp_bbox_groups)
ys = [bg[0][1] for bg in tmp_bbox_groups]
sorted_ys = sorted(ys)
for g, bg in zip(tmp_groups, tmp_bbox_groups):
idx = sorted_ys.index(bg[0][1])
sorted_groups[idx] = g
sorted_bbox_groups[idx] = bg
# flatten, get final result
end2end_sorted_idx_list, end2end_sorted_bbox_list \
= flatten(sorted_groups, sorted_bbox_groups)
return end2end_sorted_idx_list, end2end_sorted_bbox_list, sorted_groups, sorted_bbox_groups
def get_bboxes_list(end2end_result, structure_master_result):
"""
This function is use to convert end2end results and structure master results to
List of xyxy bbox format and List of xywh bbox format
:param end2end_result: bbox's format is xyxy
:param structure_master_result: bbox's format is xywh
:return: 4 kind list of bbox ()
"""
# end2end
end2end_xyxy_list = []
end2end_xywh_list = []
for end2end_item in end2end_result:
src_bbox = end2end_item['bbox']
end2end_xyxy_list.append(src_bbox)
xywh_bbox = xyxy2xywh(src_bbox)
end2end_xywh_list.append(xywh_bbox)
end2end_xyxy_bboxes = np.array(end2end_xyxy_list)
end2end_xywh_bboxes = np.array(end2end_xywh_list)
# structure master
src_bboxes = structure_master_result['bbox']
src_bboxes = remove_empty_bboxes(src_bboxes)
structure_master_xyxy_bboxes = src_bboxes
xywh_bbox = xyxy2xywh(src_bboxes)
structure_master_xywh_bboxes = xywh_bbox
return end2end_xyxy_bboxes, end2end_xywh_bboxes, structure_master_xywh_bboxes, structure_master_xyxy_bboxes
def center_rule_match(end2end_xywh_bboxes, structure_master_xyxy_bboxes):
"""
Judge end2end Bbox's center point is inside structure master Bbox or not,
if end2end Bbox's center is in structure master Bbox, get matching pair.
:param end2end_xywh_bboxes:
:param structure_master_xyxy_bboxes:
:return: match pairs list, e.g. [[0,1], [1,2], ...]
"""
match_pairs_list = []
for i, end2end_xywh in enumerate(end2end_xywh_bboxes):
for j, master_xyxy in enumerate(structure_master_xyxy_bboxes):
x_end2end, y_end2end = end2end_xywh[0], end2end_xywh[1]
x_master1, y_master1, x_master2, y_master2 \
= master_xyxy[0], master_xyxy[1], master_xyxy[2], master_xyxy[3]
center_point_end2end = (x_end2end, y_end2end)
corner_point_master = ((x_master1, y_master1),
(x_master2, y_master2))
if is_inside(center_point_end2end, corner_point_master):
match_pairs_list.append([i, j])
return match_pairs_list
def iou_rule_match(end2end_xyxy_bboxes, end2end_xyxy_indexes,
structure_master_xyxy_bboxes):
"""
Use iou to find matching list.
choose max iou value bbox as match pair.
:param end2end_xyxy_bboxes:
:param end2end_xyxy_indexes: original end2end indexes.
:param structure_master_xyxy_bboxes:
:return: match pairs list, e.g. [[0,1], [1,2], ...]
"""
match_pair_list = []
for end2end_xyxy_index, end2end_xyxy in zip(end2end_xyxy_indexes,
end2end_xyxy_bboxes):
max_iou = 0
max_match = [None, None]
for j, master_xyxy in enumerate(structure_master_xyxy_bboxes):
end2end_4xy = convert_coord(end2end_xyxy)
master_4xy = convert_coord(master_xyxy)
iou = cal_iou(end2end_4xy, master_4xy)
if iou > max_iou:
max_match[0], max_match[1] = end2end_xyxy_index, j
max_iou = iou
if max_match[0] is None:
# no match
continue
match_pair_list.append(max_match)
return match_pair_list
def distance_rule_match(end2end_indexes, end2end_bboxes, master_indexes,
master_bboxes):
"""
Get matching between no-match end2end bboxes and no-match master bboxes.
Use min distance to match.
This rule will only run (no-match end2end nums > 0) and (no-match master nums > 0)
It will Return master_bboxes_nums match-pairs.
:param end2end_indexes:
:param end2end_bboxes:
:param master_indexes:
:param master_bboxes:
:return: match_pairs list, e.g. [[0,1], [1,2], ...]
"""
min_match_list = []
for j, master_bbox in zip(master_indexes, master_bboxes):
min_distance = np.inf
min_match = [0, 0] # i, j
for i, end2end_bbox in zip(end2end_indexes, end2end_bboxes):
x_end2end, y_end2end = end2end_bbox[0], end2end_bbox[1]
x_master, y_master = master_bbox[0], master_bbox[1]
end2end_point = (x_end2end, y_end2end)
master_point = (x_master, y_master)
dist = cal_distance(master_point, end2end_point)
if dist < min_distance:
min_match[0], min_match[1] = i, j
min_distance = dist
min_match_list.append(min_match)
return min_match_list
def extra_match(no_match_end2end_indexes, master_bbox_nums):
"""
This function will create some virtual master bboxes,
and get match with the no match end2end indexes.
:param no_match_end2end_indexes:
:param master_bbox_nums:
:return:
"""
end_nums = len(no_match_end2end_indexes) + master_bbox_nums
extra_match_list = []
for i in range(master_bbox_nums, end_nums):
end2end_index = no_match_end2end_indexes[i - master_bbox_nums]
extra_match_list.append([end2end_index, i])
return extra_match_list
def get_match_dict(match_list):
"""
Convert match_list to a dict, where key is master bbox's index, value is end2end bbox index.
:param match_list:
:return:
"""
match_dict = dict()
for match_pair in match_list:
end2end_index, master_index = match_pair[0], match_pair[1]
if master_index not in match_dict.keys():
match_dict[master_index] = [end2end_index]
else:
match_dict[master_index].append(end2end_index)
return match_dict
def deal_successive_space(text):
"""
deal successive space character for text
1. Replace ' '*3 with '<space>' which is real space is text
2. Remove ' ', which is split token, not true space
3. Replace '<space>' with ' ', to get real text
:param text:
:return:
"""
text = text.replace(' ' * 3, '<space>')
text = text.replace(' ', '')
text = text.replace('<space>', ' ')
return text
def reduce_repeat_bb(text_list, break_token):
"""
convert ['<b>Local</b>', '<b>government</b>', '<b>unit</b>'] to ['<b>Local government unit</b>']
PS: maybe style <i>Local</i> is also exist, too. it can be processed like this.
:param text_list:
:param break_token:
:return:
"""
count = 0
for text in text_list:
if text.startswith('<b>'):
count += 1
if count == len(text_list):
new_text_list = []
for text in text_list:
text = text.replace('<b>', '').replace('</b>', '')
new_text_list.append(text)
return ['<b>' + break_token.join(new_text_list) + '</b>']
else:
return text_list
def get_match_text_dict(match_dict, end2end_info, break_token=' '):
match_text_dict = dict()
for master_index, end2end_index_list in match_dict.items():
text_list = [
end2end_info[end2end_index]['text']
for end2end_index in end2end_index_list
]
text_list = reduce_repeat_bb(text_list, break_token)
text = break_token.join(text_list)
match_text_dict[master_index] = text
return match_text_dict
def merge_span_token(master_token_list):
"""
Merge the span style token (row span or col span).
:param master_token_list:
:return:
"""
new_master_token_list = []
pointer = 0
if master_token_list[-1] != '</tbody>':
master_token_list.append('</tbody>')
while master_token_list[pointer] != '</tbody>':
try:
if master_token_list[pointer] == '<td':
if master_token_list[pointer + 1].startswith(
' colspan=') or master_token_list[
pointer + 1].startswith(' rowspan='):
"""
example:
pattern <td colspan="3">
'<td' + 'colspan=" "' + '>' + '</td>'
"""
tmp = ''.join(master_token_list[pointer:pointer + 3 + 1])
pointer += 4
new_master_token_list.append(tmp)
elif master_token_list[pointer + 2].startswith(
' colspan=') or master_token_list[
pointer + 2].startswith(' rowspan='):
"""
example:
pattern <td rowspan="2" colspan="3">
'<td' + 'rowspan=" "' + 'colspan=" "' + '>' + '</td>'
"""
tmp = ''.join(master_token_list[pointer:pointer + 4 + 1])
pointer += 5
new_master_token_list.append(tmp)
else:
new_master_token_list.append(master_token_list[pointer])
pointer += 1
else:
new_master_token_list.append(master_token_list[pointer])
pointer += 1
except:
print("Break in merge...")
break
new_master_token_list.append('</tbody>')
return new_master_token_list
def deal_eb_token(master_token):
"""
post process with <eb></eb>, <eb1></eb1>, ...
emptyBboxTokenDict = {
"[]": '<eb></eb>',
"[' ']": '<eb1></eb1>',
"['<b>', ' ', '</b>']": '<eb2></eb2>',
"['\\u2028', '\\u2028']": '<eb3></eb3>',
"['<sup>', ' ', '</sup>']": '<eb4></eb4>',
"['<b>', '</b>']": '<eb5></eb5>',
"['<i>', ' ', '</i>']": '<eb6></eb6>',
"['<b>', '<i>', '</i>', '</b>']": '<eb7></eb7>',
"['<b>', '<i>', ' ', '</i>', '</b>']": '<eb8></eb8>',
"['<i>', '</i>']": '<eb9></eb9>',
"['<b>', ' ', '\\u2028', ' ', '\\u2028', ' ', '</b>']": '<eb10></eb10>',
}
:param master_token:
:return:
"""
master_token = master_token.replace('<eb></eb>', '<td></td>')
master_token = master_token.replace('<eb1></eb1>', '<td> </td>')
master_token = master_token.replace('<eb2></eb2>', '<td><b> </b></td>')
master_token = master_token.replace('<eb3></eb3>', '<td>\u2028\u2028</td>')
master_token = master_token.replace('<eb4></eb4>', '<td><sup> </sup></td>')
master_token = master_token.replace('<eb5></eb5>', '<td><b></b></td>')
master_token = master_token.replace('<eb6></eb6>', '<td><i> </i></td>')
master_token = master_token.replace('<eb7></eb7>',
'<td><b><i></i></b></td>')
master_token = master_token.replace('<eb8></eb8>',
'<td><b><i> </i></b></td>')
master_token = master_token.replace('<eb9></eb9>', '<td><i></i></td>')
master_token = master_token.replace('<eb10></eb10>',
'<td><b> \u2028 \u2028 </b></td>')
return master_token
def insert_text_to_token(master_token_list, match_text_dict):
"""
Insert OCR text result to structure token.
:param master_token_list:
:param match_text_dict:
:return:
"""
master_token_list = merge_span_token(master_token_list)
merged_result_list = []
text_count = 0
for master_token in master_token_list:
if master_token.startswith('<td'):
if text_count > len(match_text_dict) - 1:
text_count += 1
continue
elif text_count not in match_text_dict.keys():
text_count += 1
continue
else:
master_token = master_token.replace(
'><', '>{}<'.format(match_text_dict[text_count]))
text_count += 1
master_token = deal_eb_token(master_token)
merged_result_list.append(master_token)
return ''.join(merged_result_list)
def deal_isolate_span(thead_part):
"""
Deal with isolate span cases in this function.
It causes by wrong prediction in structure recognition model.
eg. predict <td rowspan="2"></td> to <td></td> rowspan="2"></b></td>.
:param thead_part:
:return:
"""
# 1. find out isolate span tokens.
isolate_pattern = "<td></td> rowspan=\"(\d)+\" colspan=\"(\d)+\"></b></td>|" \
"<td></td> colspan=\"(\d)+\" rowspan=\"(\d)+\"></b></td>|" \
"<td></td> rowspan=\"(\d)+\"></b></td>|" \
"<td></td> colspan=\"(\d)+\"></b></td>"
isolate_iter = re.finditer(isolate_pattern, thead_part)
isolate_list = [i.group() for i in isolate_iter]
# 2. find out span number, by step 1 results.
span_pattern = " rowspan=\"(\d)+\" colspan=\"(\d)+\"|" \
" colspan=\"(\d)+\" rowspan=\"(\d)+\"|" \
" rowspan=\"(\d)+\"|" \
" colspan=\"(\d)+\""
corrected_list = []
for isolate_item in isolate_list:
span_part = re.search(span_pattern, isolate_item)
spanStr_in_isolateItem = span_part.group()
# 3. merge the span number into the span token format string.
if spanStr_in_isolateItem is not None:
corrected_item = '<td{}></td>'.format(spanStr_in_isolateItem)
corrected_list.append(corrected_item)
else:
corrected_list.append(None)
# 4. replace original isolated token.
for corrected_item, isolate_item in zip(corrected_list, isolate_list):
if corrected_item is not None:
thead_part = thead_part.replace(isolate_item, corrected_item)
else:
pass
return thead_part
def deal_duplicate_bb(thead_part):
"""
Deal duplicate <b> or </b> after replace.
Keep one <b></b> in a <td></td> token.
:param thead_part:
:return:
"""
# 1. find out <td></td> in <thead></thead>.
td_pattern = "<td rowspan=\"(\d)+\" colspan=\"(\d)+\">(.+?)</td>|" \
"<td colspan=\"(\d)+\" rowspan=\"(\d)+\">(.+?)</td>|" \
"<td rowspan=\"(\d)+\">(.+?)</td>|" \
"<td colspan=\"(\d)+\">(.+?)</td>|" \
"<td>(.*?)</td>"
td_iter = re.finditer(td_pattern, thead_part)
td_list = [t.group() for t in td_iter]
# 2. is multiply <b></b> in <td></td> or not?
new_td_list = []
for td_item in td_list:
if td_item.count('<b>') > 1 or td_item.count('</b>') > 1:
# multiply <b></b> in <td></td> case.
# 1. remove all <b></b>
td_item = td_item.replace('<b>', '').replace('</b>', '')
# 2. replace <tb> -> <tb><b>, </tb> -> </b></tb>.
td_item = td_item.replace('<td>', '<td><b>').replace('</td>',
'</b></td>')
new_td_list.append(td_item)
else:
new_td_list.append(td_item)
# 3. replace original thead part.
for td_item, new_td_item in zip(td_list, new_td_list):
thead_part = thead_part.replace(td_item, new_td_item)
return thead_part
def deal_bb(result_token):
"""
In our opinion, <b></b> always occurs in <thead></thead> text's context.
This function will find out all tokens in <thead></thead> and insert <b></b> by manual.
:param result_token:
:return:
"""
# find out <thead></thead> parts.
thead_pattern = '<thead>(.*?)</thead>'
if re.search(thead_pattern, result_token) is None:
return result_token
thead_part = re.search(thead_pattern, result_token).group()
origin_thead_part = copy.deepcopy(thead_part)
# check "rowspan" or "colspan" occur in <thead></thead> parts or not .
span_pattern = "<td rowspan=\"(\d)+\" colspan=\"(\d)+\">|<td colspan=\"(\d)+\" rowspan=\"(\d)+\">|<td rowspan=\"(\d)+\">|<td colspan=\"(\d)+\">"
span_iter = re.finditer(span_pattern, thead_part)
span_list = [s.group() for s in span_iter]
has_span_in_head = True if len(span_list) > 0 else False
if not has_span_in_head:
# <thead></thead> not include "rowspan" or "colspan" branch 1.
# 1. replace <td> to <td><b>, and </td> to </b></td>
# 2. it is possible to predict text include <b> or </b> by Text-line recognition,
# so we replace <b><b> to <b>, and </b></b> to </b>
thead_part = thead_part.replace('<td>', '<td><b>')\
.replace('</td>', '</b></td>')\
.replace('<b><b>', '<b>')\
.replace('</b></b>', '</b>')
else:
# <thead></thead> include "rowspan" or "colspan" branch 2.
# Firstly, we deal rowspan or colspan cases.
# 1. replace > to ><b>
# 2. replace </td> to </b></td>
# 3. it is possible to predict text include <b> or </b> by Text-line recognition,
# so we replace <b><b> to <b>, and </b><b> to </b>
# Secondly, deal ordinary cases like branch 1
# replace ">" to "<b>"
replaced_span_list = []
for sp in span_list:
replaced_span_list.append(sp.replace('>', '><b>'))
for sp, rsp in zip(span_list, replaced_span_list):
thead_part = thead_part.replace(sp, rsp)
# replace "</td>" to "</b></td>"
thead_part = thead_part.replace('</td>', '</b></td>')
# remove duplicated <b> by re.sub
mb_pattern = "(<b>)+"
single_b_string = "<b>"
thead_part = re.sub(mb_pattern, single_b_string, thead_part)
mgb_pattern = "(</b>)+"
single_gb_string = "</b>"
thead_part = re.sub(mgb_pattern, single_gb_string, thead_part)
# ordinary cases like branch 1
thead_part = thead_part.replace('<td>', '<td><b>').replace('<b><b>',
'<b>')
# convert <tb><b></b></tb> back to <tb></tb>, empty cell has no <b></b>.
# but space cell(<tb> </tb>) is suitable for <td><b> </b></td>
thead_part = thead_part.replace('<td><b></b></td>', '<td></td>')
# deal with duplicated <b></b>
thead_part = deal_duplicate_bb(thead_part)
# deal with isolate span tokens, which causes by wrong predict by structure prediction.
# eg.PMC5994107_011_00.png
thead_part = deal_isolate_span(thead_part)
# replace original result with new thead part.
result_token = result_token.replace(origin_thead_part, thead_part)
return result_token
class Matcher:
def __init__(self, end2end_file, structure_master_file):
"""
This class process the end2end results and structure recognition results.
:param end2end_file: end2end results predict by end2end inference.
:param structure_master_file: structure recognition results predict by structure master inference.
"""
self.end2end_file = end2end_file
self.structure_master_file = structure_master_file
self.end2end_results = pickle_load(end2end_file, prefix='end2end')
self.structure_master_results = pickle_load(
structure_master_file, prefix='structure')
def match(self):
"""
Match process:
pre-process : convert end2end and structure master results to xyxy, xywh ndnarray format.
1. Use pseBbox is inside masterBbox judge rule
2. Use iou between pseBbox and masterBbox rule
3. Use min distance of center point rule
:return:
"""
match_results = dict()
for idx, (file_name,
end2end_result) in enumerate(self.end2end_results.items()):
match_list = []
if file_name not in self.structure_master_results:
continue
structure_master_result = self.structure_master_results[file_name]
end2end_xyxy_bboxes, end2end_xywh_bboxes, structure_master_xywh_bboxes, structure_master_xyxy_bboxes = \
get_bboxes_list(end2end_result, structure_master_result)
# rule 1: center rule
center_rule_match_list = \
center_rule_match(end2end_xywh_bboxes, structure_master_xyxy_bboxes)
match_list.extend(center_rule_match_list)
# rule 2: iou rule
# firstly, find not match index in previous step.
center_no_match_end2end_indexs = \
find_no_match(match_list, len(end2end_xywh_bboxes), type='end2end')
if len(center_no_match_end2end_indexs) > 0:
center_no_match_end2end_xyxy = end2end_xyxy_bboxes[
center_no_match_end2end_indexs]
# secondly, iou rule match
iou_rule_match_list = \
iou_rule_match(center_no_match_end2end_xyxy, center_no_match_end2end_indexs, structure_master_xyxy_bboxes)
match_list.extend(iou_rule_match_list)
# rule 3: distance rule
# match between no-match end2end bboxes and no-match master bboxes.
# it will return master_bboxes_nums match-pairs.
# firstly, find not match index in previous step.
centerIou_no_match_end2end_indexs = \
find_no_match(match_list, len(end2end_xywh_bboxes), type='end2end')
centerIou_no_match_master_indexs = \
find_no_match(match_list, len(structure_master_xywh_bboxes), type='master')
if len(centerIou_no_match_master_indexs) > 0 and len(
centerIou_no_match_end2end_indexs) > 0:
centerIou_no_match_end2end_xywh = end2end_xywh_bboxes[
centerIou_no_match_end2end_indexs]
centerIou_no_match_master_xywh = structure_master_xywh_bboxes[
centerIou_no_match_master_indexs]
distance_match_list = distance_rule_match(
centerIou_no_match_end2end_indexs,
centerIou_no_match_end2end_xywh,
centerIou_no_match_master_indexs,
centerIou_no_match_master_xywh)
match_list.extend(distance_match_list)
# TODO:
# The render no-match pseBbox, insert the last
# After step3 distance rule, a master bbox at least match one end2end bbox.
# But end2end bbox maybe overmuch, because numbers of master bbox will cut by max length.
# For these render end2end bboxes, we will make some virtual master bboxes, and get matching.
# The above extra insert bboxes will be further processed in "formatOutput" function.
# After this operation, it will increase TEDS score.
no_match_end2end_indexes = \
find_no_match(match_list, len(end2end_xywh_bboxes), type='end2end')
if len(no_match_end2end_indexes) > 0:
no_match_end2end_xywh = end2end_xywh_bboxes[
no_match_end2end_indexes]
# sort the render no-match end2end bbox in row
end2end_sorted_indexes_list, end2end_sorted_bboxes_list, sorted_groups, sorted_bboxes_groups = \
sort_bbox(no_match_end2end_xywh, no_match_end2end_indexes)
# make virtual master bboxes, and get matching with the no-match end2end bboxes.
extra_match_list = extra_match(
end2end_sorted_indexes_list,
len(structure_master_xywh_bboxes))
match_list_add_extra_match = copy.deepcopy(match_list)
match_list_add_extra_match.extend(extra_match_list)
else:
# no no-match end2end bboxes
match_list_add_extra_match = copy.deepcopy(match_list)
sorted_groups = []
sorted_bboxes_groups = []
match_result_dict = {
'match_list': match_list,
'match_list_add_extra_match': match_list_add_extra_match,
'sorted_groups': sorted_groups,
'sorted_bboxes_groups': sorted_bboxes_groups
}
# format output
match_result_dict = self._format(match_result_dict, file_name)
match_results[file_name] = match_result_dict
return match_results
def _format(self, match_result, file_name):
"""
Extend the master token(insert virtual master token), and format matching result.
:param match_result:
:param file_name:
:return:
"""
end2end_info = self.end2end_results[file_name]
master_info = self.structure_master_results[file_name]
master_token = master_info['text']
sorted_groups = match_result['sorted_groups']
# creat virtual master token
virtual_master_token_list = []
for line_group in sorted_groups:
tmp_list = ['<tr>']
item_nums = len(line_group)
for _ in range(item_nums):
tmp_list.append('<td></td>')
tmp_list.append('</tr>')
virtual_master_token_list.extend(tmp_list)
# insert virtual master token
master_token_list = master_token.split(',')
if master_token_list[-1] == '</tbody>':
# complete predict(no cut by max length)
# This situation insert virtual master token will drop TEDs score in val set.
# So we will not extend virtual token in this situation.
# fake extend virtual
master_token_list[:-1].extend(virtual_master_token_list)
# real extend virtual
# master_token_list = master_token_list[:-1]
# master_token_list.extend(virtual_master_token_list)
# master_token_list.append('</tbody>')
elif master_token_list[-1] == '<td></td>':
master_token_list.append('</tr>')
master_token_list.extend(virtual_master_token_list)
master_token_list.append('</tbody>')
else:
master_token_list.extend(virtual_master_token_list)
master_token_list.append('</tbody>')
# format output
match_result.setdefault('matched_master_token_list', master_token_list)
return match_result
def get_merge_result(self, match_results):
"""
Merge the OCR result into structure token to get final results.
:param match_results:
:return:
"""
merged_results = dict()
# break_token is linefeed token, when one master bbox has multiply end2end bboxes.
break_token = ' '
for idx, (file_name, match_info) in enumerate(match_results.items()):
end2end_info = self.end2end_results[file_name]
master_token_list = match_info['matched_master_token_list']
match_list = match_info['match_list_add_extra_match']
match_dict = get_match_dict(match_list)
match_text_dict = get_match_text_dict(match_dict, end2end_info,
break_token)
merged_result = insert_text_to_token(master_token_list,
match_text_dict)
merged_result = deal_bb(merged_result)
merged_results[file_name] = merged_result
return merged_results
class TableMasterMatcher(Matcher):
def __init__(self):
pass
def __call__(self, structure_res, dt_boxes, rec_res, img_name=1):
end2end_results = {img_name: []}
for dt_box, res in zip(dt_boxes, rec_res):
d = dict(
bbox=np.array(dt_box),
text=res[0], )
end2end_results[img_name].append(d)
self.end2end_results = end2end_results
structure_master_result_dict = {img_name: {}}
pred_structures, pred_bboxes = structure_res
pred_structures = ','.join(pred_structures[3:-3])
structure_master_result_dict[img_name]['text'] = pred_structures
structure_master_result_dict[img_name]['bbox'] = pred_bboxes
self.structure_master_results = structure_master_result_dict
# match
match_results = self.match()
merged_results = self.get_merge_result(match_results)
pred_html = merged_results[img_name]
pred_html = '<html><body><table>' + pred_html + '</table></body></html>'
return pred_html