-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgeodesic_algorithm_subdivision.h
270 lines (232 loc) · 7.06 KB
/
geodesic_algorithm_subdivision.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//Copyright (C) 2008 Danil Kirsanov, MIT License
#ifndef GEODESIC_ALGORITHM_SUBDIVISION_122806
#define GEODESIC_ALGORITHM_SUBDIVISION_122806
#include "geodesic_algorithm_graph_base.h"
#include "geodesic_mesh_elements.h"
#include <vector>
#include <set>
#include <assert.h>
namespace geodesic{
class SubdivisionNode: public SurfacePoint
{
typedef SubdivisionNode* node_pointer;
public:
SubdivisionNode(){};
template <class Pointer>
SubdivisionNode(Pointer p):
SurfacePoint(p),
m_previous(NULL),
m_distance(0.0)
{};
template <class Pointer, class Parameter>
SubdivisionNode(Pointer p, Parameter param):
SurfacePoint(p, param),
m_previous(NULL),
m_distance(0.0)
{};
~SubdivisionNode(){};
double& distance_from_source(){return m_distance;};
node_pointer& previous(){return m_previous;};
unsigned& source_index(){return m_source_index;};
void clear()
{
m_distance = GEODESIC_INF;
m_previous = NULL;
}
bool operator()(node_pointer const s1, node_pointer const s2) const
{
if(s1 == s2)
{
return false;
}
if(s1->distance_from_source() != s2->distance_from_source())
{
return s1->distance_from_source() < s2->distance_from_source();
}
/* if(s1->type() != s2->type())
{
return s1->type() < s2->type();
}
if(s1->base_element()->id() != s2->base_element()->id())
{
return s1->base_element()->id() < s2->base_element()->id();
} */
if(s1->x() != s2->x()) //two nodes cannot be located in the same space
{
return s1->x() < s2->x();
}
if(s1->y() != s2->y())
{
return s1->y() < s2->y();
}
if(s1->z() != s2->z())
{
return s1->z() < s2->z();
}
assert(0);
return true;
};
SurfacePoint& surface_point(){return static_cast<SurfacePoint&>(*this);};
private:
double m_distance; //distance to the closest source
unsigned m_source_index; //closest source index
node_pointer m_previous; //previous node in the geodesic path
};
class GeodesicAlgorithmSubdivision: public GeodesicAlgorithmGraphBase<SubdivisionNode>
{
typedef SubdivisionNode Node;
public:
GeodesicAlgorithmSubdivision(geodesic::Mesh* mesh = NULL,
unsigned subdivision_level = 0):
GeodesicAlgorithmGraphBase<Node>(mesh)
{
m_type = SUBDIVISION;
m_nodes.reserve(mesh->vertices().size());
for(unsigned i=0; i<mesh->vertices().size(); ++i)
{
vertex_pointer v = &mesh->vertices()[i];
m_nodes.push_back(Node(v)); //!!
}
set_subdivision_level(subdivision_level);
};
~GeodesicAlgorithmSubdivision(){};
unsigned subdivision_level(){return m_subdivision_level;};
void set_subdivision_level(unsigned subdivision_level)
{
m_subdivision_level = subdivision_level;
m_nodes.resize(m_mesh->vertices().size());
m_nodes.reserve(m_mesh->vertices().size() +
m_mesh->edges().size()*subdivision_level);
for(unsigned i=0; i<m_mesh->edges().size(); ++i)
{
edge_pointer e = &m_mesh->edges()[i];
for(unsigned i=0; i<subdivision_level; ++i)
{
double offset = (double)(i+1)/(double)(subdivision_level+1);
m_nodes.push_back(Node(e, offset));
}
}
};
protected:
void list_nodes_visible_from_source(MeshElementBase* p,
std::vector<node_pointer>& storage); //list all nodes that belong to this mesh element
void list_nodes_visible_from_node(node_pointer node, //list all nodes that belong to this mesh element
std::vector<node_pointer>& storage,
std::vector<double>& distances,
double threshold_distance); //list only the nodes whose current distance is larger than the threshold
unsigned node_indexx(edge_pointer e)
{
return e->id()*m_subdivision_level + m_mesh->vertices().size();
};
private:
void list_nodes(MeshElementBase* p, //list nodes that belong to this mesh element
std::vector<node_pointer>& storage,
double threshold_distance = -1.0); //list only the nodes whose current distance is larger than the threshold
unsigned m_subdivision_level; //when level is equal to 1, this algorithm corresponds to the Dijkstra algorithm
};
inline void GeodesicAlgorithmSubdivision::list_nodes(MeshElementBase* p,
std::vector<node_pointer>& storage,
double threshold_distance)
{
assert(p->type() != UNDEFINED_POINT);
if(p->type() == VERTEX)
{
vertex_pointer v = static_cast<vertex_pointer>(p);
node_pointer node = &m_nodes[node_index(v)];
if(node->distance_from_source() > threshold_distance)
{
storage.push_back(node);
}
}
else if(p->type() == EDGE)
{
edge_pointer e = static_cast<edge_pointer>(p);
unsigned node_index = node_indexx(e);
for(unsigned i=0; i<m_subdivision_level; ++i)
{
node_pointer node = &m_nodes[node_index++];
if(node->distance_from_source() > threshold_distance)
{
storage.push_back(node);
}
}
}
//FACE has no nodes
}
void GeodesicAlgorithmSubdivision::list_nodes_visible_from_source(MeshElementBase* p,
std::vector<node_pointer>& storage)
{
assert(p->type() != UNDEFINED_POINT);
if(p->type() == FACE)
{
face_pointer f = static_cast<face_pointer>(p);
for(unsigned i=0; i<3; ++i)
{
list_nodes(f->adjacent_vertices()[i],storage);
list_nodes(f->adjacent_edges()[i],storage);
}
}
else if(p->type() == EDGE)
{
list_nodes(p,storage);
list_nodes(p->adjacent_vertices()[0],storage);
list_nodes(p->adjacent_vertices()[1],storage);
}
else //VERTEX
{
list_nodes(p,storage);
}
}
void GeodesicAlgorithmSubdivision::list_nodes_visible_from_node(node_pointer node, //list all nodes that belong to this mesh element
std::vector<node_pointer>& storage,
std::vector<double>& distances,
double threshold_distance)
{
MeshElementBase* p = node->base_element();
assert(p->type() != UNDEFINED_POINT);
assert(storage.size() == distances.size());
if(p->type() == VERTEX)
{
vertex_pointer v = static_cast<vertex_pointer>(p);
for(unsigned i=0; i<v->adjacent_edges().size(); ++i)
{
edge_pointer e = v->adjacent_edges()[i];
vertex_pointer v_opposite = e->opposite_vertex(v);
list_nodes(e, storage, threshold_distance);
list_nodes(v_opposite, storage, threshold_distance);
}
for(unsigned i=0; i<v->adjacent_faces().size(); ++i)
{
face_pointer f = v->adjacent_faces()[i];
edge_pointer e = f->opposite_edge(v);
list_nodes(e, storage, threshold_distance);
}
}
else if(p->type() == EDGE)
{
edge_pointer e = static_cast<edge_pointer>(p);
vertex_pointer v0 = e->adjacent_vertices()[0];
vertex_pointer v1 = e->adjacent_vertices()[1];
list_nodes(v0, storage, threshold_distance);
list_nodes(v1, storage, threshold_distance);
for(unsigned i=0; i<e->adjacent_faces().size(); ++i)
{
face_pointer f = e->adjacent_faces()[i];
list_nodes(f->next_edge(e,v0), storage, threshold_distance);
list_nodes(f->next_edge(e,v1), storage, threshold_distance);
list_nodes(f->opposite_vertex(e), storage, threshold_distance);
}
}
else
{
assert(0);
}
unsigned index = distances.size();
distances.resize(storage.size());
for(; index<storage.size(); ++index)
{
distances[index] = node->distance(&storage[index]->surface_point());
}
}
} //geodesic
#endif //GEODESIC_ALGORITHM_SUBDIVISION_122806