ArgoVerse2 is a large-scale dataset for autonomous driving research. Before using the dataset, please carefully read and comply with the ArgoVerse dataset Terms of Use.
For more information, visit the ArgoVerse2 webpage.
To install the development toolkit, we follow the official setup instructions. Note that the installation process requires manually installing Rust via rustup before proceeding with the PyPI installation.
-
Install Rust via rustup:
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh export PATH=$HOME/.cargo/bin:$PATH rustup default nightly
-
Install our modified av2 API:
pip install git+https://github.com/ziyc/av2-api
Note: This is a modified API forked from the original av2-api. Our version allows loading tracking IDs of objects in the sensor dataset.
-
Install s5cmd following the instructions.
-
Set Up the Data Directory
# Create the data directory or create a symbolic link to the data directory mkdir -p ./data/argoverse/raw mkdir -p ./data/argoverse/processed
-
Download the dataset:
# Set the name of the dataset subset you want to download export DATASET_NAME="sensor" # Set the target directory where you want to save the dataset export TARGET_DIR="data/argoverse/raw" # Create the target directory if it doesn't exist mkdir -p $TARGET_DIR # Download the dataset using s5cmd s5cmd --no-sign-request cp "s3://argoverse/datasets/av2/$DATASET_NAME/*" $TARGET_DIR
After downloading the raw dataset, you'll need to preprocess these data to our desired format. For the ArgoVerse2 Dataset, we first organize the scene names alphabetically and store them in data/argoverse_train_list.txt
. The scene index is then determined by the line number minus one.
You can provide a split file (e.g. data/argoverse_example_scenes.txt
) to process a batch of scenes at once:
# export PYTHONPATH=\path\to\project
python datasets/preprocess.py \
--data_root data/argoverse/raw \
--target_dir data/argoverse/processed/training \
--dataset argoverse \
--split_file data/argoverse_example_scenes.txt \
--workers 64 \
--process_keys images lidar calib pose dynamic_masks objects
You can also process a specific range of scenes:
# export PYTHONPATH=\path\to\project
python datasets/preprocess.py \
--data_root data/argoverse/raw \
--target_dir data/argoverse/processed/training \
--dataset argoverse \
--start_idx 0 \
--num_scenes 50 \
--workers 64 \
--process_keys images lidar calib pose dynamic_masks objects
The extracted data will be stored in the data/argoverse/processed
directory.
To generate:
- sky masks (required)
- fine dynamic masks (optional)
Follow these steps:
mmcv-full=1.2.7
, which relies on pytorch=1.8
(pytorch<1.9). Hence, a separate conda env is required.
#-- Set conda env
conda create -n segformer python=3.8
conda activate segformer
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
#-- Install mmcv-full
pip install timm==0.3.2 pylint debugpy opencv-python-headless attrs ipython tqdm imageio scikit-image omegaconf
pip install mmcv-full==1.2.7 --no-cache-dir
#-- Clone and install segformer
git clone https://github.com/NVlabs/SegFormer
cd SegFormer
pip install .
Download the pretrained model segformer.b5.1024x1024.city.160k.pth
from the google_drive / one_drive links in https://github.com/NVlabs/SegFormer#evaluation .
Remember the location where you download into, and pass it to the script in the next step with --checkpoint
.
conda activate segformer
segformer_path=/path/to/segformer
python datasets/tools/extract_masks.py \
--data_root data/argoverse/processed/training \
--segformer_path=$segformer_path \
--checkpoint=$segformer_path/pretrained/segformer.b5.1024x1024.city.160k.pth \
--split_file data/argoverse_example_scenes.txt \
--process_dynamic_mask
Replace /path/to/segformer
with the actual path to your Segformer installation.
Note: The --process_dynamic_mask
flag is included to process fine dynamic masks along with sky masks.
This process will extract the required masks from your processed data.
To utilize the SMPL-Gaussian to model pedestrians, please first download the SMPL models.
- Download SMPL v1.1 (
SMPL_python_v.1.1.0.zip
) from the SMPL official website - Move
SMPL_python_v.1.1.0/smpl/models/basicmodel_neutral_lbs_10_207_0_v1.1.0.pkl
toPROJECT_ROOT/smpl_models/SMPL_NEUTRAL.pkl
SMPL-Nodes (SMPL-Gaussian Representation) requires Human Body Pose Sequences of pedestrians. We've developed a human body pose processing pipeline for in-the-wild driving data to generate this information. There are two ways to obtain these data:
We have uploaded preprocessed human pose data for a subset of Argoverse2 scenes to Google Drive. You can download and unzip these files without installing any additional environment.
# https://drive.google.com/file/d/1XbYannJpQ9SRAL1-49XDLL833wqQolDd/view?usp=drive_link
# filename: argoverse_preprocess_humanpose.zip
cd data
gdown 1XbYannJpQ9SRAL1-49XDLL833wqQolDd
unzip argoverse_preprocess_humanpose.zip
rm argoverse_preprocess_humanpose.zip
To process human body poses for other ArgoVerse2 scenes or to run the processing pipeline yourself, follow the instructions in our Human Pose Processing Guide.
After completing all preprocessing steps, the project files should be organized according to the following structure:
ProjectPath/data/
└── argoverse/
├── raw/
│ └── train/
│ ├── 00a6ffc1-6ce9-3bc3-a060-6006e9893a1a/
│ └──....
└── processed/
└──training/
├── 000/
│ ├──images/ # Images: {timestep:03d}_{cam_id}.jpg
│ ├──lidar/ # LiDAR data: {timestep:03d}.bin
│ ├──ego_pose/ # Ego vehicle poses: {timestep:03d}.txt
│ ├──extrinsics/ # Camera extrinsics: {cam_id}.txt
│ ├──intrinsics/ # Camera intrinsics: {cam_id}.txt
│ ├──sky_masks/ # Sky masks: {timestep:03d}_{cam_id}.png
│ ├──dynamic_masks/ # Dynamic masks: {timestep:03d}_{cam_id}.png
│ ├──fine_dynamic_masks/ # (Optional) Fine dynamic masks: {timestep:03d}_{cam_id}.png
│ ├──objects/ # Object information
│ └──humanpose/ # Preprocessed human body pose: smpl.pkl
├── 001/
└── ...