To obtain the KITTI dataset:
- Visit the KITTI Raw Data official website.
- Register for an account to access the download links.
- Choose the specific dates and drives you need.
- Download the following components:
- Synchronized and unrectified data
- Calibration files
- Tracklets
- After downloading, organize the files according to the file structure shown below.
Project_path/Kitti/raw/
├── 2011_09_26
│ ├── 2011_09_26_drive_0001_sync
│ │ ├── image_00
│ │ ├── image_01
│ │ ├── image_02
│ │ ├── image_03
│ │ ├── oxts
│ │ ├── velodyne_points
│ │ └── tracklet_labels.xml
│ ├── 2011_09_26_drive_0002_sync
│ │ └── ... (similar structure as 0001_sync)
│ ├── ...
│ ├── calib_cam_to_cam.txt
│ ├── calib_imu_to_velo.txt
│ └── calib_velo_to_cam.txt
├── 2011_09_28
│ ├── 2011_09_28_drive_0001_sync
│ │ └── ... (similar structure as 0001_sync)
│ ├── ...
│ ├── calib_cam_to_cam.txt
│ ├── calib_imu_to_velo.txt
│ └── calib_velo_to_cam.txt
└── ...
pip install pykitti
To process the raw KITTI data, use the following command:
# export PYTHONPATH=\path\to\project
python datasets/preprocess.py \
--data_root data/kitti/raw \
--dataset kitti \
--split 2011_09_26 \
--split_file data/kitti_example_scenes.txt \
--target_dir data/kitti/processed \
--workers 32 \
--process_keys images lidar pose calib dynamic_masks objects
The extracted data will be stored in the data/kitti/processed
directory.
To generate:
- sky masks (required)
- fine dynamic masks (optional)
Follow these steps:
mmcv-full=1.2.7
, which relies on pytorch=1.8
(pytorch<1.9). Hence, a separate conda env is required.
#-- Set conda env
conda create -n segformer python=3.8
conda activate segformer
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
#-- Install mmcv-full
pip install timm==0.3.2 pylint debugpy opencv-python-headless attrs ipython tqdm imageio scikit-image omegaconf
pip install mmcv-full==1.2.7 --no-cache-dir
#-- Clone and install segformer
git clone https://github.com/NVlabs/SegFormer
cd SegFormer
pip install .
Download the pretrained model segformer.b5.1024x1024.city.160k.pth
from the google_drive / one_drive links in https://github.com/NVlabs/SegFormer#evaluation .
Remember the location where you download into, and pass it to the script in the next step with --checkpoint
.
conda activate segformer
segformer_path=/path/to/segformer
python datasets/tools/extract_masks.py \
--data_root data/kitti/processed \
--segformer_path=$segformer_path \
--checkpoint=$segformer_path/pretrained/segformer.b5.1024x1024.city.160k.pth \
--split_file data/kitti_example_scenes.txt \
--process_dynamic_mask
Replace /path/to/segformer
with the actual path to your Segformer installation.
Note: The --process_dynamic_mask
flag is included to process fine dynamic masks along with sky masks.
This process will extract the required masks from your processed data.
To utilize the SMPL-Gaussian to model pedestrians, please first download the SMPL models.
- Download SMPL v1.1 (
SMPL_python_v.1.1.0.zip
) from the SMPL official website - Move
SMPL_python_v.1.1.0/smpl/models/basicmodel_neutral_lbs_10_207_0_v1.1.0.pkl
toPROJECT_ROOT/smpl_models/SMPL_NEUTRAL.pkl
SMPL-Nodes (SMPL-Gaussian Representation) requires Human Body Pose Sequences of pedestrians. We've developed a human body pose processing pipeline for in-the-wild driving data to generate this information. There are two ways to obtain these data:
We have uploaded preprocessed human pose data for a subset of KITTI scenes to Google Drive. You can download and unzip these files without installing any additional environment.
# https://drive.google.com/file/d/1eAMNi5NFMU8T7tjQBT_jzxeX-yJRwVKM/view?usp=drive_link
# filename: kitti_preprocess_humanpose.zip
cd data
gdown 1eAMNi5NFMU8T7tjQBT_jzxeX-yJRwVKM
unzip kitti_preprocess_humanpose.zip
rm kitti_preprocess_humanpose.zip
To process human body poses for other KITTI scenes or to run the processing pipeline yourself, follow the instructions in our Human Pose Processing Guide.
After completing all preprocessing steps, the project files should be organized according to the following structure:
ProjectPath/data/
└── kitti/
├── raw/
│ ├── 2011_09_26/
│ │ ├── 2011_09_26_drive_0001_sync/
│ │ │ ├── image_00/
│ │ │ ├── image_01/
│ │ │ ├── image_02/
│ │ │ ├── image_03/
│ │ │ ├── oxts/
│ │ │ ├── velodyne_points/
│ │ │ └── tracklet_labels.xml
│ │ ├── ...
│ │ ├── calib_cam_to_cam.txt
│ │ ├── calib_imu_to_velo.txt
│ │ └── calib_velo_to_cam.txt
│ └── ...
└── processed/
├── 2011_09_26_drive_0001_sync/
│ ├──images/ # Images: {timestep:03d}_{cam_id}.jpg
│ ├──lidar/ # LiDAR data: {timestep:03d}.bin
│ ├──ego_pose/ # Ego vehicle poses: {timestep:03d}.txt
│ ├──extrinsics/ # Camera extrinsics: {cam_id}.txt
│ ├──intrinsics/ # Camera intrinsics: {cam_id}.txt
│ ├──sky_masks/ # Sky masks: {timestep:03d}_{cam_id}.png
│ ├──dynamic_masks/ # Dynamic masks: {timestep:03d}_{cam_id}.png
│ ├──fine_dynamic_masks/ # (Optional) Fine dynamic masks: {timestep:03d}_{cam_id}.png
│ ├──objects/ # Object information
│ └──humanpose/ # Preprocessed human body pose: smpl.pkl
├── 2011_09_26_drive_0002_sync/
└── ...