-
Notifications
You must be signed in to change notification settings - Fork 0
/
test1.py
186 lines (136 loc) · 5.69 KB
/
test1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pandas as pd
import tensorflow as tf
import numpy as np
VALIDATION_SIZE = 2000
BATCH_SIZE = 50
def dense_to_one_hot(labels_dense, num_classes):
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def next_batch(batch_size):
global train_images
global train_labels
global index_in_epoch
global epochs_completed
start = index_in_epoch
index_in_epoch += batch_size
if index_in_epoch > num_examples:
epochs_completed += 1
perm = np.arange(num_examples)
np.random.shuffle(perm)
train_images = train_images[perm]
train_labels = train_labels[perm]
start = 0
index_in_epoch = batch_size
assert batch_size <= num_examples
end = index_in_epoch
return train_images[start:end], train_labels[start:end]
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
data = pd.read_csv('train.csv')
images = data.iloc[:, 1:].values
images = images.astype(np.float32)
images = np.multiply(images, 1.0 / 255.0)
image_size = images.shape[1]
image_width = image_height = np.ceil(np.sqrt(image_size)).astype(np.uint8)
labels_flat = data[[0]].values.ravel()
labels_count = np.unique(labels_flat).shape[0]
labels = dense_to_one_hot(labels_flat, labels_count)
labels = labels.astype(np.uint8)
validation_images = images[:VALIDATION_SIZE]
validation_labels = labels[:VALIDATION_SIZE]
train_images = images[VALIDATION_SIZE:]
train_labels = labels[VALIDATION_SIZE:]
test_images = pd.read_csv('test.csv')
test_images = test_images.astype(np.float32)
test_images = np.multiply(test_images, 1.0 / 255.0)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
y_ = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
predicted_labels = np.zeros(test_images.shape[0])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# h_drop1 = tf.nn.dropout(h_pool1, keep_prob)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# h_drop2 = tf.nn.dropout(h_pool2, keep_prob)
W_conv3 = weight_variable([5, 5, 64, 128])
b_conv3 = bias_variable([128])
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
# h_drop3 = tf.nn.dropout(h_conv3, keep_prob)
W_fc1 = weight_variable([7 * 7 * 128, 1024])
b_fc1 = bias_variable([1024])
h_pool3_flat = tf.reshape(h_conv3, [-1, 7*7*128])
h_fc1 = tf.nn.relu(tf.matmul(h_pool3_flat, W_fc1) + b_fc1)
# keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# cross_entropy = tf.reduce_mean(
# tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
# train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
predict = tf.argmax(y_conv, 1)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
epochs_completed = 0
index_in_epoch = 0
num_examples = train_images.shape[0]
# start TensorFlow session
# init = tf.initialize_all_variables()
# sess = tf.InteractiveSession()
# for _ in range(1000):
# batch_xs, batch_ys = next_batch(100)
# sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
#
# # Test trained model
# correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# print(sess.run(accuracy, feed_dict={x: validation_images,
# y_: validation_labels}))
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = next_batch(BATCH_SIZE)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("test accuracy %g" % accuracy.eval(feed_dict={
x: validation_images, y_: validation_labels, keep_prob: 1.0}))
for i in range(0, test_images.shape[0] // BATCH_SIZE):
predicted_labels[i * BATCH_SIZE: (i + 1) * BATCH_SIZE] = predict.eval(
feed_dict={x: test_images[i * BATCH_SIZE: (i + 1) * BATCH_SIZE], keep_prob: 1.0})
np.savetxt('submission1.csv',
np.c_[range(1, len(test_images) + 1), predicted_labels],
delimiter=',',
header='ImageId,Label',
comments='',
fmt='%d')
sess.close()