Skip to content

Latest commit

 

History

History
42 lines (32 loc) · 1.32 KB

README.md

File metadata and controls

42 lines (32 loc) · 1.32 KB

ZNN v4

Required libraries

Supports Linux and MacOS. When using MKL fftw is not required

Library Ubuntu package name
fftw libfftw3-dev
boost libboost-all-dev
BoostNumpy NA
jemalloc libjemalloc-dev

Compiler flags

Flag Description
ZNN_CUBE_POOL Use custom memory pool, usually faster
ZNN_CUBE_POOL_LOCKFREE Use custom lockfree memory pool, even faster (some memory overhead)
ZNN_USE_FLOATS Use single precision floating point numbers
ZNN_DONT_CACHE_FFTS Don't cache FFTs for the backward pass
ZNN_USE_MKL_DIRECT_CONV Use MKL direct convolution
ZNN_USE_MKL_FFT Use MKL fftw wrappers
ZNN_USE_MKL_NATIVE_FFT Use MKL native convolution overrides the previous flag
ZNN_XEON_PHI 64 byte memory alignment

Compile gcc and clang

g++ -std=c++1y training_test.cpp -I../../ -I../include -lfftw3 -lfftw3f -lpthread -pthread -O3 -DNDEBUG -o training_test

Compile icc

icc -std=c++1y training_test.cpp -I../../ -I../include -lpthread -lrt -static-intel -DNDEBUG -O3 -mkl=sequential -o training_test

Contact