forked from jefflai108/Attentive-Filtering-Network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_plot.py
128 lines (114 loc) · 6.79 KB
/
feature_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
## Utilities
from __future__ import print_function
import argparse
import time
import os
import logging
from timeit import default_timer as timer
## Libraries
import numpy as np
## Torch
import torch
import torch.nn as nn
from torch.utils import data
import torch.nn.functional as F
import torch.optim as optim
## Custrom Imports
from src.data_reader.v3_dataset import SpoofDataset
from src.v1_logger import setup_logs
from src.v4_plot import retrieve_weight
from src.attention_neuro.simple_attention_network import AttenResNet, PreAttenResNet, AttenResNet2, AttenResNet4, AttenResNet5
run_name = "pred" + time.strftime("-%y-%m-%d_%h_%m")
feat_dim = 257
m = 1091
rnn = False # rnn
atten_channel = 16
atten_activation = 'sigmoid'
temperature = 1
#model = AttenResNet5(atten_activation, atten_channel, temperature)
model = AttenResNet4(atten_activation, atten_channel)
#model = AttenResNet(atten_activation, atten_channel)
model_dir = '/export/b19/jlai/cstr/spoof/model/snapshots/attention/'
#model1 = model_dir + 'attention-2018-07-11_15_25_44-model_best.pth' # AttenResnet1, c=16, sigmoid
#model1 = model_dir + 'attention-2018-07-10_16_15_25-model_best.pth' # AttenResnet1, c=1, softmax
model1 = model_dir + 'attention-2018-07-17_09_13_56-model_best.pth' # AttenResnet2, c=16, sigmoid, attention residual
#model1 = model_dir + 'attention-2018-07-19_21_59_11-model_best.pth' # AttenResnet4, c=16, tanh, attention residual
#model1 = model_dir + 'attention-2018-07-19_16_11_46-model_best.pth' # AttenResnet4, c=16, softmax2, attention residual
#model1 = model_dir + 'attention-2018-07-19_20_48_59-model_best.pth' # AttenResnet4, c=16, softmax3, attention residual
#model1 = model_dir + 'attention-2018-07-20_17_55_06-model_best.pth' # AttenResnet5, c=16, softmax3, T=10, attention residual
#model1 = model_dir + 'attention-2018-07-21_07_07_15-model_best.pth' # AttenResnet5, c=16, softmax3, T=100, attention residual
#model1 = model_dir + 'attention-2018-07-21_13_14_42-model_best.pth' # AttenResnet5, c=16, softmax3, T=0.1, attention residual
#model1 = model_dir + 'attention-2018-07-20_19_06_27-model_best.pth' # AttenResnet5, c=16, softmax3, T=5, attention residual
#model1 = model_dir + 'attention-2018-07-21_07_02_09-model_best.pth' # AttenResnet5, c=16, softmax3, T=20, attention residual
#model1 = model_dir + 'attention-2018-07-21_18_51_34-model_best.pth' # AttenResnet5, c=16, softmax2, T=10, attention residual
#model1 = model_dir + 'attention-2018-07-23_17_30_53-model_best.pth' # AttenResnet5, c=16, softmax3, T=0.01, attention residual
#model1 = model_dir + 'attention-2018-07-23_18_01_13-model_best.pth' # AttenResnet5, c=16, softmax3, T=0.05, attention residual
#model1 = model_dir + 'attention-2018-07-23_23_45_07-model_best.pth' # AttenResnet5, c=16, softmax3, T=0.001, attention residual
#model1 = model_dir + 'attention-2018-07-24_01_38_24-model_best.pth' # AttenResnet5, c=16, softmax3, T=0.2, attention residual
#model1 = model_dir + 'attention-2018-07-24_03_40_28-model_best.pth' # AttenResnet5, c=16, softmax3, T=1000, attention residual
#model1 = model_dir + 'attention-2018-07-21_18_51_34-model_best.pth' # AttenResnet5, c=16, softmax3, T=2, attention residual
#model1 = model_dir + 'attention-2018-07-24_07_54_07-model_best.pth' # AttenResnet5, c=16, softmax3, T=0.5, attention residual
#model1 = model_dir + 'attention-2018-07-21_18_51_34-model_best.pth' # AttenResnet5, c=16, softmax3, T=3, attention residual
#model1 = model_dir + 'attention-2018-07-21_18_51_34-model_best.pth' # AttenResnet5, c=16, softmax3, T=4, attention residual
#model1 = model_dir + 'attention-2018-07-21_18_51_34-model_best.pth' # AttenResnet5, c=16, softmax3, T=6, attention residual
#model1 = model_dir + 'attention-2018-07-21_18_51_34-model_best.pth' # AttenResnet5, c=16, softmax3, T=7, attention residual
#model1 = model_dir + 'attention-2018-07-21_18_51_34-model_best.pth' # AttenResnet5, c=16, softmax3, T=8, attention residual
#model1 = model_dir + 'attention-2018-07-21_18_51_34-model_best.pth' # AttenResnet5, c=16, softmax3, T=9, attention residual
models = [model1]
def main():
##############################################################
## Settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--eval-scp',
help='kaldi eval scp file')
parser.add_argument('--eval-utt2label',
help='train utt2label')
parser.add_argument('--model-path',
help='trained model')
parser.add_argument('--logging-dir', required=True,
help='model save directory')
parser.add_argument('--test-batch-size', type=int, default=100, metavar='N',
help='input batch size for testing (default: 100)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--plot-dir',
help='directory to save plots')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
print('use_cuda is', use_cuda)
# Global timer
global_timer = timer()
# Setup logs
logger = setup_logs(args.logging_dir, run_name)
# Setting random seeds for reproducibility.
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
model.to(device)
##############################################################
## Loading the dataset
params = {'num_workers': 0,
'pin_memory': False} if use_cuda else {}
logger.info('===> loading eval dataset')
eval_set = SpoofDataset(args.eval_scp, args.eval_utt2label)
eval_loader = data.DataLoader(eval_set, batch_size=args.test_batch_size, shuffle=False, **params) # set shuffle to False
################### for multiple models #####################
np.set_printoptions(threshold=np.nan)
sum_preds = 0
for model_i in models:
logger.info('===> loading {} for prediction'.format(model_i))
checkpoint = torch.load(model_i)
model.load_state_dict(checkpoint['state_dict'])
model_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('model params is', model_params)
retrieve_weight(args, model, device, eval_loader, args.eval_scp, args.eval_utt2label, args.plot_dir, rnn)
logger.info("===> Final predictions done. Here is a snippet")
###########################################################
end_global_timer = timer()
logger.info("################## Success #########################")
logger.info("Total elapsed time: %s" % (end_global_timer - global_timer))
if __name__ == '__main__':
main()