forked from thu-ml/tianshou
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fetch_her_ddpg.py
249 lines (227 loc) · 9.13 KB
/
fetch_her_ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#!/usr/bin/env python3
# isort: skip_file
import argparse
import datetime
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from tianshou.data import (
Collector,
CollectStats,
HERReplayBuffer,
HERVectorReplayBuffer,
ReplayBuffer,
VectorReplayBuffer,
)
from tianshou.highlevel.logger import LoggerFactoryDefault
from tianshou.env import ShmemVectorEnv, TruncatedAsTerminated
from tianshou.exploration import GaussianNoise
from tianshou.policy import DDPGPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils.net.common import Net, get_dict_state_decorator
from tianshou.utils.net.continuous import Actor, Critic
from tianshou.env.venvs import BaseVectorEnv
from tianshou.utils.space_info import ActionSpaceInfo
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="FetchReach-v2")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=100000)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
parser.add_argument("--actor-lr", type=float, default=1e-3)
parser.add_argument("--critic-lr", type=float, default=3e-3)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--exploration-noise", type=float, default=0.1)
parser.add_argument("--start-timesteps", type=int, default=25000)
parser.add_argument("--epoch", type=int, default=10)
parser.add_argument("--step-per-epoch", type=int, default=5000)
parser.add_argument("--step-per-collect", type=int, default=1)
parser.add_argument("--update-per-step", type=int, default=1)
parser.add_argument("--n-step", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=512)
parser.add_argument("--replay-buffer", type=str, default="her", choices=["normal", "her"])
parser.add_argument("--her-horizon", type=int, default=50)
parser.add_argument("--her-future-k", type=int, default=8)
parser.add_argument("--training-num", type=int, default=1)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="HER-benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def make_fetch_env(
task: str,
training_num: int,
test_num: int,
) -> tuple[gym.Env, BaseVectorEnv, BaseVectorEnv]:
env = TruncatedAsTerminated(gym.make(task))
train_envs = ShmemVectorEnv(
[lambda: TruncatedAsTerminated(gym.make(task)) for _ in range(training_num)],
)
test_envs = ShmemVectorEnv(
[lambda: TruncatedAsTerminated(gym.make(task)) for _ in range(test_num)],
)
return env, train_envs, test_envs
def test_ddpg(args: argparse.Namespace = get_args()) -> None:
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "ddpg"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
logger_factory = LoggerFactoryDefault()
if args.logger == "wandb":
logger_factory.logger_type = "wandb"
logger_factory.wandb_project = args.wandb_project
else:
logger_factory.logger_type = "tensorboard"
logger = logger_factory.create_logger(
log_dir=log_path,
experiment_name=log_name,
run_id=args.resume_id,
config_dict=vars(args),
)
env, train_envs, test_envs = make_fetch_env(args.task, args.training_num, args.test_num)
# The method HER works with goal-based environments
if not isinstance(env.observation_space, gym.spaces.Dict):
raise ValueError(
"`env.observation_space` must be of type `gym.spaces.Dict`. Make sure you're using a goal-based environment like `FetchReach-v2`.",
)
if not hasattr(env, "compute_reward"):
raise ValueError(
"Atrribute `compute_reward` not found in `env`. "
"HER-based algorithms typically require this attribute. Make sure you're using a goal-based environment like `FetchReach-v2`.",
)
args.state_shape = {
"observation": env.observation_space["observation"].shape,
"achieved_goal": env.observation_space["achieved_goal"].shape,
"desired_goal": env.observation_space["desired_goal"].shape,
}
action_info = ActionSpaceInfo.from_space(env.action_space)
args.action_shape = action_info.action_shape
args.max_action = action_info.max_action
args.exploration_noise = args.exploration_noise * args.max_action
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", action_info.min_action, action_info.max_action)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
dict_state_dec, flat_state_shape = get_dict_state_decorator(
state_shape=args.state_shape,
keys=["observation", "achieved_goal", "desired_goal"],
)
net_a = dict_state_dec(Net)(
flat_state_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
)
actor = dict_state_dec(Actor)(
net_a,
args.action_shape,
max_action=args.max_action,
device=args.device,
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c = dict_state_dec(Net)(
flat_state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic = dict_state_dec(Critic)(net_c, device=args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy: DDPGPolicy = DDPGPolicy(
actor=actor,
actor_optim=actor_optim,
critic=critic,
critic_optim=critic_optim,
tau=args.tau,
gamma=args.gamma,
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
estimation_step=args.n_step,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
def compute_reward_fn(ag: np.ndarray, g: np.ndarray) -> np.ndarray:
return env.compute_reward(ag, g, {})
buffer: VectorReplayBuffer | ReplayBuffer | HERReplayBuffer | HERVectorReplayBuffer
if args.replay_buffer == "normal":
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
else:
if args.training_num > 1:
buffer = HERVectorReplayBuffer(
args.buffer_size,
len(train_envs),
compute_reward_fn=compute_reward_fn,
horizon=args.her_horizon,
future_k=args.her_future_k,
)
else:
buffer = HERReplayBuffer(
args.buffer_size,
compute_reward_fn=compute_reward_fn,
horizon=args.her_horizon,
future_k=args.her_future_k,
)
train_collector = Collector[CollectStats](policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector[CollectStats](policy, test_envs)
train_collector.reset()
train_collector.collect(n_step=args.start_timesteps, random=True)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
if not args.watch:
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
test_in_train=False,
).run()
pprint.pprint(result)
# Let's watch its performance!
test_envs.seed(args.seed)
test_collector.reset()
collector_stats = test_collector.collect(n_episode=args.test_num, render=args.render)
collector_stats.pprint_asdict()
if __name__ == "__main__":
test_ddpg()