-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp849.rs
49 lines (46 loc) · 1.51 KB
/
p849.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#[test]
fn test() {
use method1::max_dist_to_closest;
assert_eq!(max_dist_to_closest(vec![1, 0, 0, 0, 1, 0, 1]), 2);
assert_eq!(max_dist_to_closest(vec![1, 0, 0, 0]), 3);
assert_eq!(max_dist_to_closest(vec![0, 1]), 1);
assert_eq!(max_dist_to_closest(vec![1, 0, 1]), 1);
}
// 可能会坐在三个位置
// 坐开头,[0, 0, 0, 0, 1],距离为dist1
// 坐结尾,[1, 0, 0, 0, 0],距离为dist2
// 坐中间,[1, 0, 0, 0, 1],坐中间有很多情况,取最大距离dist3
// 比较哪个距离最远即可,距离实际上就是连续0的个数
// 虽然有3个循环,但是三个循环的范围分别为[0, i]、[i + 1, j]、[j, len - 1]
// 所以时间复杂度O(n)
mod method1 {
pub fn max_dist_to_closest(seats: Vec<i32>) -> i32 {
let mut i: usize = 0;
let mut j: usize = seats.len() - 1;
// 计算坐开头的距离
let mut dist1: i32 = 0;
while seats[i] == 0 {
i += 1;
dist1 += 1;
}
// 计算坐结尾的距离
let mut dist2: i32 = 0;
while seats[j] == 0 {
j -= 1;
dist2 += 1;
}
// 此时i,j指向1
// 计算坐中间时的最大距离
let mut dist3: i32 = 0;
let mut tmp: i32 = 0;
for k in (i + 1)..=j {
if seats[k] == 0 {
tmp += 1;
} else {
dist3 = dist3.max(tmp);
tmp = 0;
}
}
dist1.max(dist2).max((dist3 + 1) / 2)
}
}