-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvalidate_ddp.py
192 lines (163 loc) · 6.24 KB
/
validate_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import datasets as datasets
import torch.utils.data
from config import config
import models as models
import torch_utils
import torch.optim
import timm.scheduler
import torch.nn as nn
from tqdm import tqdm
import numpy as np
from torch.utils.data.distributed import DistributedSampler
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import os
import torch.distributed as dist
import sys
import torch.cuda
run_id = 'dropout0.1_decay1_0.97_h32s32_hidden256_fastedge_usepredictedgenormcls_ft_train_valid_l24'
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
dist.init_process_group('nccl', rank=rank, world_size=world_size)
pass
def main(rank, num_processes):
setup(rank, num_processes)
dataset_train = datasets.SimplePCQM4MDataset(
path=config['middle_data_path'], split_name='train', rotate=True, data_path_name='data',
load_dist=True, use_predict_dist=True)
dataset_test = datasets.SimplePCQM4MDataset(
path=config['middle_data_path'], split_name='valid', rotate=False, data_path_name='data',
load_dist=True, use_predict_dist=True)
if rank == 0:
print(f'num train: {len(dataset_train)}')
print(f'num test: {len(dataset_test)}')
pass
sampler_train = DistributedSampler(dataset_train, shuffle=True)
loader_train = torch.utils.data.DataLoader(
dataset_train,
batch_size=config['batch_size'],
num_workers=config['num_data_workers'],
collate_fn=datasets.collate_fn,
sampler=sampler_train
)
loader_test = torch.utils.data.DataLoader(
dataset_test,
batch_size=config['batch_size']//4,
num_workers=config['num_data_workers'],
collate_fn=datasets.collate_fn,
sampler=DistributedSampler(dataset_test, shuffle=False)
)
torch.cuda.set_device(rank)
torch.cuda.empty_cache()
device = f'cuda:{rank}'
model = models.MoleculeHLGapPredictor(config)
if rank == 0:
print('num of parameters: {0}'.format(np.sum([p.numel() for p in model.parameters()])))
pass
model.to(device)
ddp_model = DDP(model, device_ids=[rank], find_unused_parameters=True)
if len(sys.argv) > 1:
ddp_model.load_state_dict(torch.load(sys.argv[1]))
pass
optimizer = torch.optim.AdamW(torch_utils.get_optimizer_params(ddp_model, config['learning_rate'], config['weight_decay']))
scheduler = timm.scheduler.StepLRScheduler(
optimizer, decay_t=1, decay_rate=config['learning_rate_decay_rate'],
warmup_t=config['warmup_epochs'], warmup_lr_init=1e-6)
model_save_path = os.path.join('models_valid', run_id)
if rank == 0:
if os.path.exists(model_save_path):
raise RuntimeError('model_save_path already exists')
pass
os.makedirs(model_save_path, exist_ok=True)
pass
for iepoch in range(config['num_epochs']):
sampler_train.set_epoch(iepoch)
scheduler.step(iepoch)
ddp_model.train()
if rank == 0:
pbar = tqdm(loader_train)
running_loss = None
pass
for ibatch, batch in enumerate(loader_train):
graph, y = batch
graph = torch_utils.batch_to_device(graph, device)
y = y.to(device)
# print(graph['structure_feat_cate'].shape)
scores = ddp_model(
graph['atom_feat_cate'],
graph['atom_feat_float'],
graph['atom_mask'],
graph['bond_index'],
graph['bond_feat_cate'],
graph['bond_feat_float'],
graph['bond_mask'],
graph['structure_feat_cate'],
graph['structure_feat_float'],
graph['triplet_feat_cate']
# graph
)[0]
# y = graph['extra_data'].flatten()
loss = nn.functional.l1_loss(scores.flatten(), y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss = loss.item()
if rank == 0:
if running_loss is None:
running_loss = loss
else:
running_loss = 0.99 * running_loss + 0.01 * loss
pass
pbar.set_postfix(loss=running_loss, lr=optimizer.param_groups[0]['lr'])
pbar.update(1)
pass
pass
ddp_model.eval()
if rank == 0:
pbar.close()
losses = []
pass
for batch in loader_test:
graph, y = batch
graph = torch_utils.batch_to_device(graph, device)
y = y.to(device)
with torch.no_grad():
scores = ddp_model(
graph['atom_feat_cate'],
graph['atom_feat_float'],
graph['atom_mask'],
graph['bond_index'],
graph['bond_feat_cate'],
graph['bond_feat_float'],
graph['bond_mask'],
graph['structure_feat_cate'],
graph['structure_feat_float'],
graph['triplet_feat_cate']
# graph
)[0]
# y = graph['extra_data'].flatten()
loss = nn.functional.l1_loss(scores.flatten(), y, reduction='sum')
pass
dist.reduce(loss, 0, op=dist.ReduceOp.SUM)
if rank == 0:
losses.append(loss.item())
pass
pass
if rank == 0:
mean_loss = np.sum(losses) / len(dataset_test)
print(f'epoch: {iepoch}, loss: {mean_loss}')
torch.save(
ddp_model.state_dict(),
os.path.join(model_save_path, f'epoch_{iepoch:03d}.pt'))
with open(os.path.join(model_save_path, 'result.txt'), 'a') as f:
f.write(f'epoch: {iepoch}, loss: {mean_loss}\n')
pass
pass
pass
pass
if __name__ == '__main__':
num_gpus = torch.cuda.device_count()
mp.spawn(main, nprocs=num_gpus, args=(num_gpus, ), join=True,)
pass