-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtracker.py
58 lines (46 loc) · 1.71 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import datetime
import os
import time
import torch
from tensorboardX import SummaryWriter
import wandb
class WandBTracker:
def __init__(self, name=None, args=None):
wandb.init(project="test", config=args)
def add_histogram(self, tag, data, i):
if type(data) == torch.Tensor:
data = data.cpu().detach()
wandb.log({tag: wandb.Histogram(data)}, step=i)
def add_scalar(self, tag, value, i):
wandb.log({tag: value}, step=i)
def add_image(self, tag, value, i):
wandb.log({tag: [wandb.Image(value, caption="Label")]}, step=i)
def log_iteration_time(self, batch_size, i):
"""Call this once per training iteration."""
try:
dt = time.time() - self.last_time #noqa
self.last_time = time.time()
if i % 10 == 0:
self.add_scalar("timings/iterations-per-sec", 1/dt, i)
self.add_scalar("timings/samples-per-sec", batch_size/dt, i)
except AttributeError:
self.last_time = time.time()
class ConsoleTracker:
def __init__(self, name=None, args=None):
pass
def add_histogram(self, tag, data, i):
pass
def add_scalar(self, tag, value, i):
print(f"{i} {tag}: {value}")
def add_image(self, tag, value, i):
pass
def log_iteration_time(self, batch_size, i):
"""Call this once per training iteration."""
try:
dt = time.time() - self.last_time #noqa
self.last_time = time.time()
if i % 10 == 0:
print(f"{i} iterations-per-sec: {1/dt}")
print(f"{i} samples-per-sec: {batch_size/dt}")
except AttributeError:
self.last_time = time.time()