-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathclap_test.py
55 lines (43 loc) · 1.72 KB
/
clap_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
import laion_clap
import torch
from dataset.dataset import get_wds_loader
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
def main(args):
clap_model = laion_clap.CLAP_Module(enable_fusion=True).to("cuda")
clap_model.load_ckpt(model_id=3)
names = []
train_dl = get_wds_loader(
batch_size=args.batch_size,
s3_url_prefix=None,
sample_size=args.sample_size,
names=names,
sample_rate=args.sample_rate,
num_workers=args.num_workers,
recursive=True,
random_crop=True,
epoch_steps=10,
)
all_embeddings = []
for i, batch in enumerate(iter(train_dl)):
print(f"Batch {i}")
audios, jsons, timestamps = batch
audios = audios[0].to("cuda")
audios = torch.mean(audios, dim=1)
clap_audio_embeds = clap_model.get_audio_embedding_from_data(audios.cpu().numpy())
all_embeddings.append(clap_audio_embeds)
all_embeddings = np.concatenate(all_embeddings, axis=0)
pca = PCA(n_components=2)
embeddings_2d = pca.fit_transform(all_embeddings)
plt.scatter(embeddings_2d[:,0], embeddings_2d[:,1])
plt.savefig("pca_chart.png")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Description of your program')
parser.add_argument('-b','--batch_size', help='Batch size', type=int, default=8)
parser.add_argument('-s','--sample_size', help='Sample size', type=int, default=480000)
parser.add_argument('-r','--sample_rate', help='Sample rate', type=int, default=48000)
parser.add_argument('-w','--num_workers', help='Number of workers', type=int, default=12)
args = parser.parse_args()
main(args)