-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_stacked_latent_dvae_ss_adp_cond.py
executable file
·451 lines (344 loc) · 15.9 KB
/
train_stacked_latent_dvae_ss_adp_cond.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#!/usr/bin/env python3
from prefigure.prefigure import get_all_args, push_wandb_config
from contextlib import contextmanager
from copy import deepcopy
import math, random
from pathlib import Path
import sys
import torch
from torch import optim, nn
from torch.nn import functional as F
from torch.utils import data
from torch.nn.parameter import Parameter
from tqdm import trange
import pytorch_lightning as pl
from pytorch_lightning.utilities.distributed import rank_zero_only
from einops import rearrange
import numpy as np
import torchaudio
from blocks.utils import InverseLR
import wandb
from diffusion.pqmf import CachedPQMF as PQMF
from autoencoders.soundstream import SoundStreamXLEncoder, SoundStreamXLDecoder
from autoencoders.models import AudioAutoencoder
from audio_encoders_pytorch import Encoder1d
from ema_pytorch import EMA
from audio_diffusion_pytorch import T5Embedder
from audio_diffusion_pytorch.modules import UNetCFG1d
from decoders.diffusion_decoder import DiffusionAttnUnet1D
from diffusion.model import ema_update
from aeiou.viz import embeddings_table, pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
from aeiou.datasets import AudioDataset
from dataset.dataset import get_wds_loader
from blocks.utils import InverseLR
from prompts.prompters import get_prompt_from_jmann_metadata, get_prompt_from_fma_metadata, get_prompt_from_audio_file_metadata
# Define the noise schedule and sampling loop
def get_alphas_sigmas(t):
"""Returns the scaling factors for the clean image (alpha) and for the
noise (sigma), given a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
def alpha_sigma_to_t(alpha, sigma):
"""Returns a timestep, given the scaling factors for the clean image and for
the noise."""
return torch.atan2(sigma, alpha) / math.pi * 2
@torch.no_grad()
def sample(model, x, steps, eta, **extra_args):
"""Draws samples from a model given starting noise."""
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(1, 0, steps + 1)[:-1]
alphas, sigmas = get_alphas_sigmas(t)
# The sampling loop
for i in trange(steps):
# Get the model output (v, the predicted velocity)
with torch.cuda.amp.autocast():
v = model(x, ts * t[i], **extra_args).float()
# Predict the noise and the denoised image
pred = x * alphas[i] - v * sigmas[i]
eps = x * sigmas[i] + v * alphas[i]
# If we are not on the last timestep, compute the noisy image for the
# next timestep.
if i < steps - 1:
# If eta > 0, adjust the scaling factor for the predicted noise
# downward according to the amount of additional noise to add
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
# Recombine the predicted noise and predicted denoised image in the
# correct proportions for the next step
x = pred * alphas[i + 1] + eps * adjusted_sigma
# Add the correct amount of fresh noise
if eta:
x += torch.randn_like(x) * ddim_sigma
# If we are on the last timestep, output the denoised image
return pred
class LatentAudioDiffusionAutoencoder(pl.LightningModule):
def __init__(self, autoencoder: AudioAutoencoder):
super().__init__()
self.latent_dim = autoencoder.latent_dim
self.second_stage_latent_dim = 32
factors = [2, 2, 2, 2]
self.latent_downsampling_ratio = np.prod(factors)
self.downsampling_ratio = autoencoder.downsampling_ratio * self.latent_downsampling_ratio
self.latent_encoder = Encoder1d(
in_channels=self.latent_dim,
out_channels = self.second_stage_latent_dim,
channels = 128,
multipliers = [1, 2, 4, 8, 8],
factors = factors,
num_blocks = [8, 8, 8, 8],
)
self.latent_encoder_ema = deepcopy(self.latent_encoder)
self.diffusion = DiffusionAttnUnet1D(
io_channels=self.latent_dim,
cond_dim = self.second_stage_latent_dim,
n_attn_layers=0,
c_mults=[512] * 10,
depth=10
)
self.diffusion_ema = deepcopy(self.diffusion)
self.autoencoder = autoencoder
self.autoencoder.requires_grad_(False)
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
def encode(self, reals):
first_stage_latents = self.autoencoder.encode(reals)
second_stage_latents = self.latent_encoder(first_stage_latents)
second_stage_latents = torch.tanh(second_stage_latents)
return second_stage_latents
def decode(self, latents, steps=100, device="cuda"):
first_stage_latent_noise = torch.randn([latents.shape[0], self.latent_dim, latents.shape[2]*self.latent_downsampling_ratio]).to(device)
first_stage_sampled = sample(self.diffusion, first_stage_latent_noise, steps, 0, cond=latents)
decoded = self.autoencoder.decode(first_stage_sampled)
return decoded
def load_ema_weights(self, ema_state_dict):
own_state = self.state_dict()
for name, param in ema_state_dict.items():
if name.startswith("latent_encoder_ema."):
new_name = name.replace("latent_encoder_ema.", "latent_encoder.")
if isinstance(param, Parameter):
# backwards compatibility for serialized parameters
param = param.data
own_state[new_name].copy_(param)
if name.startswith("diffusion_ema."):
new_name = name.replace("diffusion_ema.", "diffusion.")
if isinstance(param, Parameter):
# backwards compatibility for serialized parameters
param = param.data
own_state[new_name].copy_(param)
def unwrap_text(str_or_tuple):
if type(str_or_tuple) is tuple:
return random.choice(str_or_tuple)
elif type(str_or_tuple) is str:
return str_or_tuple
class StackedAELatentDiffusionCond(pl.LightningModule):
def __init__(self, latent_ae: LatentAudioDiffusionAutoencoder):
super().__init__()
self.latent_dim = latent_ae.second_stage_latent_dim
self.downsampling_ratio = latent_ae.downsampling_ratio
embedding_max_len = 64
#embedding_max_len = 128
self.embedder = T5Embedder(model='t5-base', max_length=embedding_max_len).requires_grad_(False)
self.embedding_features = 768
# self.diffusion = UNetConditional1d(
# in_channels = self.latent_dim,
# context_embedding_features = self.embedding_features,
# context_embedding_max_length= embedding_max_len,
# channels = 256,
# patch_blocks = 1,
# patch_factor = 1,
# resnet_groups = 8,
# kernel_multiplier_downsample = 2,
# multipliers = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
# factors = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
# num_blocks = [3, 3, 3, 3, 3, 3, 4, 4, 4, 4],
# attentions = [0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3],
# attention_heads = 16,
# attention_features = 64,
# attention_multiplier = 4,
# attention_use_rel_pos=False,
# use_nearest_upsample = False,
# use_skip_scale = True,
# use_context_time = True,
# use_magnitude_channels = False
# )
self.diffusion = UNetCFG1d(
in_channels = self.latent_dim,
context_embedding_features = self.embedding_features,
context_embedding_max_length= embedding_max_len,
channels = 256,
resnet_groups = 8,
kernel_multiplier_downsample = 2,
multipliers = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
factors = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
num_blocks = [3, 3, 3, 3, 3, 3, 4, 4, 4, 4],
attentions = [0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3],
attention_heads = 16,
attention_features = 64,
attention_multiplier = 4,
attention_use_rel_pos=False,
use_nearest_upsample = False,
use_skip_scale = True,
use_context_time = True
)
self.diffusion_ema = EMA(
self.diffusion,
beta = 0.9999,
power=3/4,
update_every = 1,
update_after_step = 1
)
self.autoencoder = latent_ae
self.autoencoder.requires_grad_(False)
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
def encode(self, reals):
return self.autoencoder.encode(reals)
def decode(self, latents, steps=100):
return self.autoencoder.decode(latents, steps, device=self.device)
def configure_optimizers(self):
#return optim.Adam([*self.diffusion.parameters()], lr=1e-4)
optimizer = optim.Adam([*self.diffusion.parameters()], lr=1e-4)
#scheduler = InverseLR(optimizer, inv_gamma=50000, power=1/2, warmup=0.9)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=100, eta_min=1e-6)
return [optimizer], [scheduler]
def training_step(self, batch, batch_idx):
reals, jsons, timestamps = batch
reals = reals[0]
condition_strings = [unwrap_text(json["prompt"][0]) for json in jsons]
print(condition_strings)
with torch.cuda.amp.autocast():
with torch.no_grad():
latents = self.encode(reals)
embeddings = self.embedder(condition_strings)
# Draw uniformly distributed continuous timesteps
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
# Calculate the noise schedule parameters for those timesteps
alphas, sigmas = get_alphas_sigmas(t)
# Combine the ground truth audio and the noise
alphas = alphas[:, None, None]
sigmas = sigmas[:, None, None]
noise = torch.randn_like(latents)
noised_latents = latents * alphas + noise * sigmas
targets = noise * alphas - latents * sigmas
with torch.cuda.amp.autocast():
# 0.1 CFG dropout
v = self.diffusion(noised_latents, t, embedding=embeddings, embedding_mask_proba = 0.1)
mse_loss = F.mse_loss(v, targets)
loss = mse_loss
log_dict = {
'train/loss': loss.detach(),
'train/mse_loss': mse_loss.detach(),
'train/lr': self.lr_schedulers().get_last_lr()[0]
}
self.log_dict(log_dict, prog_bar=True, on_step=True)
return loss
def on_before_zero_grad(self, *args, **kwargs):
self.diffusion_ema.update()
class ExceptionCallback(pl.Callback):
def on_exception(self, trainer, module, err):
print(f'{type(err).__name__}: {err}')
class DemoCallback(pl.Callback):
def __init__(self, global_args):
super().__init__()
self.demo_every = global_args.demo_every
self.demo_samples = global_args.sample_size
self.demo_steps = global_args.demo_steps
self.num_demos = global_args.num_demos
self.sample_rate = global_args.sample_rate
@rank_zero_only
@torch.no_grad()
def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):
last_demo_step = -1
if (trainer.global_step - 1) % self.demo_every != 0 or last_demo_step == trainer.global_step:
#if trainer.current_epoch % self.demo_every != 0:
return
last_demo_step = trainer.global_step
print("Starting demo")
try:
latent_noise = torch.randn([4, module.latent_dim, self.demo_samples//module.downsampling_ratio]).to(module.device)
embedding = module.embedder([
"",
"",
"",
"",
"",
"",
"",
"",
])
demo_cfg_scales = [3, 5, 7]
for cfg_scale in demo_cfg_scales:
print(f"Generating latents, CFG scale {cfg_scale}")
fake_latents = sample(module.diffusion_ema, latent_noise, self.demo_steps, 0, embedding=embedding, embedding_scale=cfg_scale)
print(f"Decoding latents, shape: {fake_latents.shape}")
fakes = module.decode(fake_latents, steps=100)
print("Rearranging demos")
# Put the demos together
fakes = rearrange(fakes, 'b d n -> d (b n)')
log_dict = {}
print("Saving files")
filename = f'demo_{trainer.global_step:08}_cfg_{cfg_scale}.wav'
fakes = fakes.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
torchaudio.save(filename, fakes, self.sample_rate)
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Demo CFG {cfg_scale}')
log_dict[f'demo_melspec_left_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
log_dict[f'embeddings_3dpca_{cfg_scale}'] = pca_point_cloud(fake_latents)
log_dict[f'embeddings_spec_{cfg_scale}'] = wandb.Image(tokens_spectrogram_image(fake_latents))
trainer.logger.experiment.log(log_dict, step=trainer.global_step)
print("Done logging")
except Exception as e:
print(f'{type(e).__name__}: {e}')
def main():
args = get_all_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
torch.manual_seed(args.seed)
names = []
metadata_prompt_funcs = {}
train_dl = get_wds_loader(
batch_size=args.batch_size,
s3_url_prefix=None,
sample_size=args.sample_size,
names=names,
sample_rate=args.sample_rate,
num_workers=args.num_workers,
recursive=True,
random_crop=True,
epoch_steps=10000,
)
wandb_logger = pl.loggers.WandbLogger(project=args.name)
exc_callback = ExceptionCallback()
ckpt_callback = pl.callbacks.ModelCheckpoint(every_n_train_steps=args.checkpoint_every, save_top_k=-1)
demo_callback = DemoCallback(args)
first_stage_config = {"capacity": 64, "c_mults": [2, 4, 8, 16, 32], "strides": [2, 2, 2, 2, 2], "latent_dim": 32}
first_stage_autoencoder = AudioAutoencoder(
**first_stage_config
).requires_grad_(False)
latent_diffae = LatentAudioDiffusionAutoencoder.load_from_checkpoint(args.pretrained_ckpt_path, autoencoder=first_stage_autoencoder, strict=False).requires_grad_(False)
latent_diffae.diffusion = latent_diffae.diffusion_ema
latent_diffae.latent_encoder = latent_diffae.latent_encoder_ema
del latent_diffae.diffusion_ema
del latent_diffae.latent_encoder_ema
if args.ckpt_path:
latent_diffusion_model = StackedAELatentDiffusionCond.load_from_checkpoint(args.ckpt_path, latent_ae=latent_diffae, strict=False)
else:
latent_diffusion_model = StackedAELatentDiffusionCond(latent_diffae)
wandb_logger.watch(latent_diffusion_model)
push_wandb_config(wandb_logger, args)
diffusion_trainer = pl.Trainer(
devices=args.num_gpus,
accelerator="gpu",
num_nodes = args.num_nodes,
strategy='ddp_find_unused_parameters_false',
precision=16,
accumulate_grad_batches=args.accum_batches,
callbacks=[ckpt_callback, demo_callback, exc_callback],
logger=wandb_logger,
log_every_n_steps=1,
max_epochs=10000000,
default_root_dir=args.save_dir
)
diffusion_trainer.fit(latent_diffusion_model, train_dl)
if __name__ == '__main__':
main()