-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain_pnp.py
338 lines (296 loc) · 14.2 KB
/
main_pnp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import time
import csv
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.optim
cudnn.benchmark = True
from models import ResNet
from metrics import AverageMeter, Result
from dataloaders.dense_to_sparse import UniformSampling, SimulatedStereo
import criteria
import utils
##############################################################
## Start of PnP-Depth modification ##
##############################################################
from torch.autograd import Variable
from torch.autograd import grad as Grad
##############################################################
## End of PnP-Depth modification ##
##############################################################
args = utils.parse_command()
print(args)
fieldnames = ['mse', 'rmse', 'absrel', 'lg10', 'mae',
'delta1', 'delta2', 'delta3',
'data_time', 'gpu_time']
best_result = Result()
best_result.set_to_worst()
def create_data_loaders(args):
# Data loading code
print("=> creating data loaders ...")
traindir = os.path.join('data', args.data, 'train')
valdir = os.path.join('data', args.data, 'val')
train_loader = None
val_loader = None
# sparsifier is a class for generating random sparse depth input from the ground truth
sparsifier = None
max_depth = args.max_depth if args.max_depth >= 0.0 else np.inf
if args.sparsifier == UniformSampling.name:
sparsifier = UniformSampling(num_samples=args.num_samples, max_depth=max_depth)
elif args.sparsifier == SimulatedStereo.name:
sparsifier = SimulatedStereo(num_samples=args.num_samples, max_depth=max_depth)
if args.data == 'nyudepthv2':
from dataloaders.nyu_dataloader import NYUDataset
if not args.evaluate:
train_dataset = NYUDataset(traindir, type='train',
modality=args.modality, sparsifier=sparsifier)
val_dataset = NYUDataset(valdir, type='val',
modality=args.modality, sparsifier=sparsifier)
elif args.data == 'kitti':
from dataloaders.kitti_dataloader import KITTIDataset
if not args.evaluate:
train_dataset = KITTIDataset(traindir, type='train',
modality=args.modality, sparsifier=sparsifier)
val_dataset = KITTIDataset(valdir, type='val',
modality=args.modality, sparsifier=sparsifier)
else:
raise RuntimeError('Dataset not found.' +
'The dataset must be either of nyudepthv2 or kitti.')
# set batch size to be 1 for validation
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True)
# put construction of train loader here, for those who are interested in testing only
if not args.evaluate:
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, sampler=None,
worker_init_fn=lambda work_id:np.random.seed(work_id))
# worker_init_fn ensures different sampling patterns for each data loading thread
print("=> data loaders created.")
return train_loader, val_loader
def main():
global args, best_result, output_directory, train_csv, test_csv
# evaluation mode
start_epoch = 0
if args.evaluate:
assert os.path.isfile(args.evaluate), \
"=> no best model found at '{}'".format(args.evaluate)
print("=> loading best model '{}'".format(args.evaluate))
checkpoint = torch.load(args.evaluate)
output_directory = os.path.dirname(args.evaluate)
args = checkpoint['args']
start_epoch = checkpoint['epoch'] + 1
best_result = checkpoint['best_result']
model = checkpoint['model']
print("=> loaded best model (epoch {})".format(checkpoint['epoch']))
_, val_loader = create_data_loaders(args)
args.evaluate = True
validate(val_loader, model, checkpoint['epoch'], write_to_file=False)
return
# optionally resume from a checkpoint
elif args.resume:
chkpt_path = args.resume
assert os.path.isfile(chkpt_path), \
"=> no checkpoint found at '{}'".format(chkpt_path)
print("=> loading checkpoint '{}'".format(chkpt_path))
checkpoint = torch.load(chkpt_path)
args = checkpoint['args']
start_epoch = checkpoint['epoch'] + 1
best_result = checkpoint['best_result']
model = checkpoint['model']
optimizer = checkpoint['optimizer']
output_directory = os.path.dirname(os.path.abspath(chkpt_path))
print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
train_loader, val_loader = create_data_loaders(args)
args.resume = True
# create new model
else:
train_loader, val_loader = create_data_loaders(args)
print("=> creating Model ({}-{}) ...".format(args.arch, args.decoder))
in_channels = len(args.modality)
if args.arch == 'resnet50':
model = ResNet(layers=50, decoder=args.decoder, output_size=train_loader.dataset.output_size,
in_channels=in_channels, pretrained=args.pretrained)
elif args.arch == 'resnet18':
model = ResNet(layers=18, decoder=args.decoder, output_size=train_loader.dataset.output_size,
in_channels=in_channels, pretrained=args.pretrained)
print("=> model created.")
optimizer = torch.optim.SGD(model.parameters(), args.lr, \
momentum=args.momentum, weight_decay=args.weight_decay)
# model = torch.nn.DataParallel(model).cuda() # for multi-gpu training
model = model.cuda()
# define loss function (criterion) and optimizer
if args.criterion == 'l2':
criterion = criteria.MaskedMSELoss().cuda()
elif args.criterion == 'l1':
criterion = criteria.MaskedL1Loss().cuda()
# create results folder, if not already exists
output_directory = utils.get_output_directory(args)
if not os.path.exists(output_directory):
os.makedirs(output_directory)
train_csv = os.path.join(output_directory, 'train.csv')
test_csv = os.path.join(output_directory, 'test.csv')
best_txt = os.path.join(output_directory, 'best.txt')
# create new csv files with only header
if not args.resume:
with open(train_csv, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
with open(test_csv, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for epoch in range(start_epoch, args.epochs):
utils.adjust_learning_rate(optimizer, epoch, args.lr)
train(train_loader, model, criterion, optimizer, epoch) # train for one epoch
result, img_merge = validate(val_loader, model, epoch) # evaluate on validation set
# remember best rmse and save checkpoint
is_best = result.rmse < best_result.rmse
if is_best:
best_result = result
with open(best_txt, 'w') as txtfile:
txtfile.write("epoch={}\nmse={:.3f}\nrmse={:.3f}\nabsrel={:.3f}\nlg10={:.3f}\nmae={:.3f}\ndelta1={:.3f}\nt_gpu={:.4f}\n".
format(epoch, result.mse, result.rmse, result.absrel, result.lg10, result.mae, result.delta1, result.gpu_time))
if img_merge is not None:
img_filename = output_directory + '/comparison_best.png'
utils.save_image(img_merge, img_filename)
utils.save_checkpoint({
'args': args,
'epoch': epoch,
'arch': args.arch,
'model': model,
'best_result': best_result,
'optimizer' : optimizer,
}, is_best, epoch, output_directory)
# NOTE: PnP-Depth is only used during inference, not training time
def train(train_loader, model, criterion, optimizer, epoch):
average_meter = AverageMeter()
model.train() # switch to train mode
end = time.time()
for i, (input, target) in enumerate(train_loader):
input, target = input.cuda(), target.cuda()
torch.cuda.synchronize()
data_time = time.time() - end
# compute pred
end = time.time()
pred = model(input)
loss = criterion(pred, target)
optimizer.zero_grad()
loss.backward() # compute gradient and do SGD step
optimizer.step()
torch.cuda.synchronize()
gpu_time = time.time() - end
# measure accuracy and record loss
result = Result()
result.evaluate(pred.data, target.data)
average_meter.update(result, gpu_time, data_time, input.size(0))
end = time.time()
if (i + 1) % args.print_freq == 0:
print('=> output: {}'.format(output_directory))
print('Train Epoch: {0} [{1}/{2}]\t'
't_Data={data_time:.3f}({average.data_time:.3f}) '
't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n\t'
'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
'MAE={result.mae:.2f}({average.mae:.2f}) '
'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
'REL={result.absrel:.3f}({average.absrel:.3f}) '
'Lg10={result.lg10:.3f}({average.lg10:.3f}) '.format(
epoch, i+1, len(train_loader), data_time=data_time,
gpu_time=gpu_time, result=result, average=average_meter.average()))
avg = average_meter.average()
with open(train_csv, 'a') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writerow({'mse': avg.mse, 'rmse': avg.rmse, 'absrel': avg.absrel, 'lg10': avg.lg10,
'mae': avg.mae, 'delta1': avg.delta1, 'delta2': avg.delta2, 'delta3': avg.delta3,
'gpu_time': avg.gpu_time, 'data_time': avg.data_time})
def validate(val_loader, model, epoch, write_to_file=True):
average_meter = AverageMeter()
model.eval() # switch to evaluate mode
end = time.time()
for i, (input, target) in enumerate(val_loader):
input, target = input.cuda(), target.cuda()
torch.cuda.synchronize()
data_time = time.time() - end
# compute output
end = time.time()
##############################################################
## Start of PnP-Depth modification ##
##############################################################
# Original inference
with torch.no_grad():
ori_pred = model.pnp_forward_front(model.pnp_forward_rear(input)) # equivalent to `ori_pred = model(input)`
# Inference with PnP
sparse_target = input[:,-1:] # NOTE: written for rgbd input
criterion = criteria.MaskedL1Loss().cuda() # NOTE: criterion function defined here only for clarity
pnp_iters = 5 # number of iterations
pnp_alpha = 0.01 # update/learning rate
pnp_z = model.pnp_forward_front(input)
for pnp_i in range(pnp_iters):
if pnp_i != 0:
pnp_z = pnp_z - pnp_alpha * torch.sign(pnp_z_grad) # iFGM
pnp_z = Variable(pnp_z, requires_grad=True)
pred = model.pnp_forward_rear(pnp_z)
if pnp_i < pnp_iters - 1:
pnp_loss = criterion(pred, sparse_target)
pnp_z_grad = Grad([pnp_loss], [pnp_z], create_graph=True)[0]
##############################################################
## End of PnP-Depth modification ##
##############################################################
torch.cuda.synchronize()
gpu_time = time.time() - end
# measure accuracy and record loss
result = Result()
result.evaluate(pred.data, target.data)
average_meter.update(result, gpu_time, data_time, input.size(0))
end = time.time()
# save 8 images for visualization
skip = 50
if args.modality == 'd':
img_merge = None
else:
if args.modality == 'rgb':
rgb = input
elif args.modality == 'rgbd':
rgb = input[:,:3,:,:]
depth = input[:,3:,:,:]
if i == 0:
if args.modality == 'rgbd':
img_merge = utils.merge_into_row_with_gt(rgb, depth, target, pred)
else:
img_merge = utils.merge_into_row(rgb, target, pred)
elif (i < 8*skip) and (i % skip == 0):
if args.modality == 'rgbd':
row = utils.merge_into_row_with_gt(rgb, depth, target, pred)
else:
row = utils.merge_into_row(rgb, target, pred)
img_merge = utils.add_row(img_merge, row)
elif i == 8*skip:
filename = output_directory + '/comparison_' + str(epoch) + '.png'
utils.save_image(img_merge, filename)
if (i+1) % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n\t'
'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
'MAE={result.mae:.2f}({average.mae:.2f}) '
'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
'REL={result.absrel:.3f}({average.absrel:.3f}) '
'Lg10={result.lg10:.3f}({average.lg10:.3f}) '.format(
i+1, len(val_loader), gpu_time=gpu_time, result=result, average=average_meter.average()))
avg = average_meter.average()
print('\n*\n'
'RMSE={average.rmse:.3f}\n'
'MAE={average.mae:.3f}\n'
'Delta1={average.delta1:.3f}\n'
'REL={average.absrel:.3f}\n'
'Lg10={average.lg10:.3f}\n'
't_GPU={time:.3f}\n'.format(
average=avg, time=avg.gpu_time))
if write_to_file:
with open(test_csv, 'a') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writerow({'mse': avg.mse, 'rmse': avg.rmse, 'absrel': avg.absrel, 'lg10': avg.lg10,
'mae': avg.mae, 'delta1': avg.delta1, 'delta2': avg.delta2, 'delta3': avg.delta3,
'data_time': avg.data_time, 'gpu_time': avg.gpu_time})
return avg, img_merge
if __name__ == '__main__':
main()