-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathKernels.h
154 lines (136 loc) · 3.47 KB
/
Kernels.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
* Struck: Structured Output Tracking with Kernels
*
* Code to accompany the paper:
* Struck: Structured Output Tracking with Kernels
* Sam Hare, Amir Saffari, Philip H. S. Torr
* International Conference on Computer Vision (ICCV), 2011
*
* Copyright (C) 2011 Sam Hare, Oxford Brookes University, Oxford, UK
*
* This file is part of Struck.
*
* Struck is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Struck is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Struck. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef KERNELS_H
#define KERNELS_H
#include <Eigen/Core>
#include <cmath>
class Kernel
{
public:
virtual ~Kernel() {}
virtual double Eval(const Eigen::VectorXd& x1, const Eigen::VectorXd& x2) const = 0;
virtual double Eval(const Eigen::VectorXd& x) const = 0;
};
class LinearKernel : public Kernel
{
public:
inline double Eval(const Eigen::VectorXd& x1, const Eigen::VectorXd& x2) const
{
return x1.dot(x2);
}
inline double Eval(const Eigen::VectorXd& x) const
{
return x.squaredNorm();
}
};
class GaussianKernel : public Kernel
{
public:
GaussianKernel(double sigma) : m_sigma(sigma) {}
inline double Eval(const Eigen::VectorXd& x1, const Eigen::VectorXd& x2) const
{
return exp(-m_sigma*(x1-x2).squaredNorm());
}
inline double Eval(const Eigen::VectorXd& x) const
{
return 1.0;
}
private:
double m_sigma;
};
class IntersectionKernel : public Kernel
{
public:
inline double Eval(const Eigen::VectorXd& x1, const Eigen::VectorXd& x2) const
{
return x1.array().min(x2.array()).sum();
}
inline double Eval(const Eigen::VectorXd& x) const
{
return x.sum();
}
};
class Chi2Kernel : public Kernel
{
public:
inline double Eval(const Eigen::VectorXd& x1, const Eigen::VectorXd& x2) const
{
double result = 0.0;
for (int i = 0; i < x1.size(); ++i)
{
double a = x1[i];
double b = x2[i];
result += (a-b)*(a-b)/(0.5*(a+b)+1e-8);
}
return 1.0 - result;
}
inline double Eval(const Eigen::VectorXd& x) const
{
return 1.0;
}
};
class MultiKernel : public Kernel
{
public:
MultiKernel(const std::vector<Kernel*>& kernels, const std::vector<int>& featureCounts) :
m_n(kernels.size()),
m_norm(1.0/kernels.size()),
m_kernels(kernels),
m_counts(featureCounts)
{
}
inline double Eval(const Eigen::VectorXd& x1, const Eigen::VectorXd& x2) const
{
double sum = 0.0;
int start = 0;
for (int i = 0; i < m_n; ++i)
{
int c = m_counts[i];
sum += m_norm*m_kernels[i]->Eval(x1.segment(start, c), x2.segment(start, c));
start += c;
}
return sum;
}
inline double Eval(const Eigen::VectorXd& x) const
{
double sum = 0.0;
int start = 0;
for (int i = 0; i < m_n; ++i)
{
int c = m_counts[i];
sum += m_norm*m_kernels[i]->Eval(x.segment(start, c));
start += c;
}
return sum;
}
private:
int m_n;
double m_norm;
std::vector<Kernel*> m_kernels;
std::vector<int> m_counts;
};
#endif