-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
31 lines (27 loc) · 1.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# _*_ coding: utf-8 _*_
# Author: Jielong
# @Time: 27/08/2019 08:54
import torch
from torch.nn import CrossEntropyLoss
from unet3d_model.unet3d import UnetModel, Trainer
from unet3d_model.tmp import UNet
from unet3d_model.loss import DiceLoss
from data_gen import get_data_paths, data_gen, batch_data_gen
def train_main(data_folder, in_channels, out_channels, learning_rate, no_epochs):
"""
Train module
:param data_folder: data folder
:param in_channels: the input channel of input images
:param out_channels: the final output channel
:param learning_rate: set learning rate for training
:param no_epochs: number of epochs to train model
:return: None
"""
model = UNet(in_dim=in_channels, out_dim=out_channels, num_filters=16)
optim = torch.optim.Adam(params=model.parameters(), lr=learning_rate)
criterion = DiceLoss()
trainer = Trainer(data_dir=data_folder, net=model, optimizer=optim, criterion=criterion, no_epochs=no_epochs)
trainer.train(data_paths_loader=get_data_paths, dataset_loader=data_gen, batch_data_loader=batch_data_gen)
if __name__ == "__main__":
data_dir = "./processed"
train_main(data_folder=data_dir, in_channels=1, out_channels=1, learning_rate=0.0001, no_epochs=10)