-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
442 lines (385 loc) · 22.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# -- coding: utf-8 --**
# @author zjp
# @time 22-04-18_10.44.25
import os
import sys
import time
import torch
import random
import logging
import argparse
import warnings
import numpy as np
import pandas as pd
from tqdm import tqdm
from datetime import timedelta
from importlib import import_module
from transformers import BertTokenizer, BertConfig
from transformers.optimization import AdamW, get_linear_schedule_with_warmup
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from utils.process_dataset import process_dataset
from utils.build_dataset import build_dataset
from utils.prepare_vec import prepare_vector
from utils.REDataset import REDataset
from sklearn.metrics import accuracy_score, precision_score, recall_score,\
f1_score, classification_report, confusion_matrix, precision_recall_fscore_support
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(device)
n_gpu = torch.cuda.device_count() ## 如果有多块GPU
def get_args():
'''设置需要的参数'''
parser = argparse.ArgumentParser(description="Chinese medicine Relation Extraction")
parser.add_argument('--datadir', type=str, default='./data', help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='TCM_ET',
help='the data corpus(CMeIE,CMeIE_ET, TCM_ET, sample )') ########
parser.add_argument('--bert_path', type=str, default='./pretrained_model', help='BERT model path')
parser.add_argument('--bert_name', type=str, default='bert-base-chinese', ########
help='type of bert ( bert-base-chinese, ) ')
parser.add_argument('--use_SPECIAL_TOKENS', default=True, help='添加特殊标记')
parser.add_argument('--model_name', type=str, default='bert_bilstm_gcn', #######################
help='name of network (bert, bilstm,bilstm_ygcn, bert_bilstm_gcn,\
bert_bilstm_yygcn, bert_bilstm_ygcn_att_type, bert_bilstm_gcn_att ,\
bilstm_gcn_dis, bert_bilstm_gcn_dis, bert_bilstm_gcn_dis_local,bert_bilstm_gcn_dis_local_global)')
parser.add_argument('--dep_type', type=list, default=["full_graph"],
choices=["full_graph", "local_graph", "global_graph", "local_global_graph", "distance_graph",
",选择后多个时保持距离矩阵在前"]) ######
parser.add_argument('--num_gcn_layers', type=int, default=2) ####
parser.add_argument('--renorm', type=int, default=0, help="重整化参数 =0 为不使用") ####
parser.add_argument('--use_vector', default=True, help='Whether to use pretrained word vector')
parser.add_argument('--vector_file', type=str, default='./vector/cc.zh.300.bin', help='词向量文件的路径')
parser.add_argument('--vector_dim', type=int, default=300, help='词嵌入的维度')
parser.add_argument('--grnn_dim', type=int, default=128, help='衔接GCN的BiLSTM层的隐藏维度')
parser.add_argument('--brnn_dim', type=int, default=128, help='衔接BERT的BiLSTM层的隐藏维度')
parser.add_argument('--cnn_size', type=int, default=32, help='cnn层的隐藏维度')
parser.add_argument('--output_dir', type=str, default='../../autodl-tmp/RE_CM_result',
help='location of the data corpus')
parser.add_argument('--log_dir', type=str, default='./log', help='location of the log')
parser.add_argument('--maxlen', type=float, default=300, ################
help='最大句子长度(CMeIE 170 TCM_ET 300)')
parser.add_argument('--max_word_len', type=float, default=160, ################
help='最大分词后句子的长度(CMeIE 70 TCM 160)')
parser.add_argument('--learning_rate', type=float, default=5e-5, help='initial learning rate()')
parser.add_argument('--learning_rate_gcn', type=float, default=5e-3, help='initial learning rate()')
parser.add_argument('--dropout_prob', type=float, default=0.2, help='dropout applied to layers (0 = no dropout) ')
parser.add_argument('--epochs', type=int, default=10, help='upper epoch limit')
parser.add_argument('--train_batch_size', type=int, default=12, help='batch size of train CMeIE 64 TCM 32') ##
parser.add_argument('--eval_batch_size', type=int, default=12, help='batch size of evaluation')
parser.add_argument('--test_batch_size', type=int, default=12, help='batch size of test')
parser.add_argument('--require_improvement', type=int, default=2000, help='早停')
parser.add_argument('--warmup_proportion', type=float, default=0.2,
help='Proportion of training to perform linear learning rate warmup for. ')
parser.add_argument('--eval_steps', type=int, default=100, help='number of steps for evaluation')
parser.add_argument('--do_train', default=True, help='Whether to run training.')
# parser.add_argument('--do_eval', default=True, help='Whether to run eval on the dev set.')
parser.add_argument('--do_test', default=False, help='Whether to run eval on the test set.')
# parser.add_argument('--do_predict', default=False, help='Whether to predict.')
parser.add_argument('--test_model_idx', type=int, default=10000, help='Whether to predict.')
parser.add_argument('--seed', type=int, default=2023, help='random seed')
parser.add_argument('--cuda', default=True, help='use CUDA')
args = parser.parse_args()
return args
def set_params(args):
'''设置一些重要参数
输出文件夹, 日志文件夹, 日志格式, 随机种子
'''
args.output_dir = os.path.join(args.output_dir, args.dataset, args.bert_name, "_".join(args.dep_type))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
args.log_dir = os.path.join(args.log_dir, args.dataset, args.bert_name, "_".join(args.dep_type))
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
logger = logging.getLogger('root')
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.INFO)
## 写入到文件
formatter = logging.Formatter('[%(asctime)s] [%(levelname)s] %(message)s', '%Y-%m-%d %H:%M:%S')
fhlr = logging.FileHandler(os.path.join(args.log_dir, args.model_name + "_train.log"), encoding="utf-8")
fhlr.setFormatter(formatter)
logger.addHandler(fhlr)
logger.info("=================begin=================")
logger.info(sys.argv)
for i in vars(args).items():
logger.info(f"{i[0]}: {i[1]}")
## 设置随机种子
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
return logger
def model_params(prompt_model, logger):
'''Find total parameters and trainable parameters'''
total_params = sum(p.numel() for p in prompt_model.parameters())
logger.info(f'{total_params:,} total parameters.')
total_trainable_params = sum(
p.numel() for p in prompt_model.parameters() if p.requires_grad)
logger.info(f'{total_trainable_params:,} training parameters.')
def train_function(args, logger, model, tokenizer, dataset, results={}):
'''定义训练模型所需要的数据以及模型、一些重要参数等 训练过程'''
train_examples = dataset.get_train_examples() ## 获取训练数据
train_dataset = build_dataset(train_examples, tokenizer, args.word2index, args)
train_data = REDataset(train_dataset, args)
train_sampler = RandomSampler(train_data)
trian_dataloader = DataLoader(train_data,
sampler=train_sampler,
batch_size=args.train_batch_size,
num_workers=3)
eval_examples = dataset.get_dev_examples()
eval_dataset = build_dataset(eval_examples, tokenizer, args.word2index, args)
eval_data = REDataset(eval_dataset, args)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data,
sampler=eval_sampler,
batch_size=args.eval_batch_size,
num_workers=3)
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size) * args.epochs
num_warmup_steps = int(args.warmup_proportion * num_train_optimization_steps)
max_grad_norm = 1.0
model.to(device)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
other = ['lstm_word', 'gcn_layer', 'words_embedding', 'dep_type_embedding'] ##gcn相关的设置较高的学习率 weight_deacy 0.01 lrg
## weight_deacy 0.01 lr not no_decay, not other
## weight_deacy 0.0 lr no_decay, not other
## weight_deacy 0.01 lrg not no_decay, other
## weight_deacy 0.01 lrg other, no_decay
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if
not any(nd in n for nd in no_decay) and not any(nd in n for nd in other)], 'weight_decay': 0.01,
'lr': args.learning_rate},
{'params': [p for n, p in param_optimizer if
any(nd in n for nd in no_decay) and not any(nd in n for nd in other)], 'weight_decay': 0.0,
'lr': args.learning_rate},
{'params': [p for n, p in param_optimizer if
not any(nd in n for nd in no_decay) and any(nd in n for nd in other)], 'weight_decay': 0.01,
'lr': args.learning_rate_gcn},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in other) and any(nd in n for nd in no_decay)],
'weight_decay': 0.01, 'lr': args.learning_rate_gcn}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=1e-8)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_train_optimization_steps)
logger.info("lr: {} warm_step: {} total_step: {}".format(args.learning_rate, num_warmup_steps,
num_train_optimization_steps))
model_params(model, logger)
torch.cuda.empty_cache()
model.train()
global_step = 0
best_macro_f1 = 0
last_improve = 0 # 记录上次验证集loss下降的batch数
flag = False # 记录是否很久没有效果提升
start_time = time.time()
for epoch_num in range(args.epochs):
logger.info('Epoch [{}/{}]'.format(epoch_num + 1, args.epochs))
tr_loss = 0
nb_tr_steps = 0
for batch in trian_dataloader:
batch = tuple(t.to(device) for t in batch)
input_ids, attention_masks, segment_ids, entity_token_ids, label_id, word_feature, e1_mask, e2_mask, dep_type_matrix, dep_distence_matrix = batch
loss = model(input_ids=input_ids,
attention_masks=attention_masks,
segment_ids=segment_ids,
entity_token_ids=entity_token_ids,
label_id=label_id,
word_feature=word_feature,
e1_mask=e1_mask,
e2_mask=e2_mask,
dep_type_matrix=dep_type_matrix,
dep_distence_matrix=dep_distence_matrix)
loss.backward()
perplexity = torch.exp(torch.tensor(loss))
tr_loss += loss.item()
nb_tr_steps += 1
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) # 梯度裁剪不再在AdamW中了(因此你可以毫无问题地使用放大器)
scheduler.step()
optimizer.step()
optimizer.zero_grad()
global_step += 1
if global_step % args.eval_steps == 0:
trues, preds = evaluate(args, model, eval_dataloader)
macro_f1 = f1_score(y_true=trues, y_pred=preds, average='macro')
if macro_f1 > best_macro_f1:
checkpoint = {'epoch': epoch_num, 'loss': tr_loss / nb_tr_steps, 'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(), }
# save_path_name = os.path.join(args.output_dir,args.model_name+"_best.pt")
save_path_name = os.path.join(args.output_dir, args.model_name + "_{}_best.pt".format(global_step))
logger.info("model save path: " + str(save_path_name))
torch.save(checkpoint, save_path_name)
best_macro_f1 = macro_f1
improve = '*'
last_improve = global_step
else:
improve = ''
time_dif = timedelta(seconds=int(round(time.time() - start_time)))
msg = 'Iter: {0:},T Loss: {1:.5},T perplexity: {2:.5}, V F1: {3:.5},Time: {4} {5}'
logger.info(msg.format(global_step, tr_loss / nb_tr_steps, perplexity, macro_f1, time_dif, improve))
model.train()
if global_step - last_improve > args.require_improvement:
# 验证集loss超过指定batch没下降,结束训练
logger.info("No optimization for a long time, auto-stopping...")
flag = True
break
if flag:
break
def evaluate(args, model, dataloader):
# examples = dataset.get_dev_examples()
# eval_dataset = build_dataset(examples, tokenizer, word2index, args)
# eval_data = REDataset(eval_dataset, args)
# eval_sampler = SequentialSampler(eval_data)
# eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size, num_workers=6)
model.eval()
pred_scores = None
out_label_ids = None
if args.do_test:
dataloader = tqdm(dataloader, desc="test model")
for batch in dataloader:
batch = tuple(t.to(device) for t in batch)
input_ids, attention_masks, segment_ids, entity_token_ids, label_id, word_feature, e1_mask, e2_mask, dep_type_matrix, dep_distence_matrix = batch
with torch.no_grad():
logits = model(input_ids=input_ids,
attention_masks=attention_masks,
segment_ids=segment_ids,
entity_token_ids=entity_token_ids,
label_id=None,
word_feature=word_feature,
e1_mask=e1_mask,
e2_mask=e2_mask,
dep_type_matrix=dep_type_matrix,
dep_distence_matrix=dep_distence_matrix)
if pred_scores is None:
pred_scores = logits.detach().cpu().numpy()
out_label_ids = label_id.detach().cpu().numpy()
else:
pred_scores = np.append(pred_scores, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, label_id.detach().cpu().numpy(), axis=0)
preds = np.argmax(pred_scores, axis=1)
return out_label_ids, preds
def base_function(args, logger):
'''训练模型, 测试模型共同需要的一些功能'''
## 处理数据
dataset = process_dataset(args=args)
# dep_data = dataset.get_train_examples()
# dep_data = dataset.get_test_examples()
# dep_data = dataset.get_dev_examples()
args.types_dict = dataset.prepare_type_dict() ## 获取依存类型字典
args.labels_dict = dataset.prepare_labels_dict() ## 获取标签字典
dep_type_list = args.types_dict.keys() ## 获取依存类型列表
label_list = args.labels_dict.keys() ## 获取标签列表
type_num = len(dep_type_list)
num_labels = len(label_list)
## 准备词向量嵌入数据
vector = prepare_vector(args=args)
args.word2index = vector.word_index()
if args.use_vector:
args.embedding_matrix = vector.get_embedding_matrix()
else:
logger.info("不使用词向量文件")
args.embedding_matrix = []
bert_vocab_file = os.path.join(args.bert_path, args.bert_name, 'vocab.txt')
logger.info("加载 bert vocab.txt, 文件路径: {}".format(bert_vocab_file))
if args.use_SPECIAL_TOKENS:
args.ADDITIONAL_SPECIAL_TOKENS = []
entity_type_file = os.path.join(args.datadir, args.dataset, 'entity_type.txt')
with open(entity_type_file, 'r', encoding="utf-8") as f:
for each in f:
args.ADDITIONAL_SPECIAL_TOKENS.append(each.strip())
tokenizer = BertTokenizer.from_pretrained(bert_vocab_file, do_lower_case=True)
tokenizer.add_special_tokens({"additional_special_tokens": args.ADDITIONAL_SPECIAL_TOKENS})
else:
args.ADDITIONAL_SPECIAL_TOKENS = []
tokenizer = BertTokenizer.from_pretrained(bert_vocab_file, do_lower_case=True)
config_file = os.path.join(args.bert_path, args.bert_name, 'config.json')
config = BertConfig.from_json_file(config_file)
config.__dict__['num_gcn_layers'] = args.num_gcn_layers
config.__dict__['type_num'] = type_num
config.__dict__['num_relation_labels'] = num_labels
config.__dict__['dep_type'] = args.dep_type
args.tokenizer_len = len(tokenizer)
return config, tokenizer, dataset
def load_model_from_file(model, optimizer, checkpoint_path):
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
return model, optimizer, epoch, loss
# model_params(prompt_model, logger):
def test_func(args, logger, model, tokenizer, dataset, model_path):
'''测试模型'''
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
other = ['lstm_word', 'gcn_layer', 'words_embedding', 'dep_type_embedding'] ##gcn相关的设置较高的学习率 weight_deacy 0.01 lrg
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if
not any(nd in n for nd in no_decay) and not any(nd in n for nd in other)], 'weight_decay': 0.01,
'lr': args.learning_rate},
{'params': [p for n, p in param_optimizer if
any(nd in n for nd in no_decay) and not any(nd in n for nd in other)], 'weight_decay': 0.0,
'lr': args.learning_rate},
{'params': [p for n, p in param_optimizer if
not any(nd in n for nd in no_decay) and any(nd in n for nd in other)], 'weight_decay': 0.01,
'lr': args.learning_rate_gcn},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in other) and any(nd in n for nd in no_decay)],
'weight_decay': 0.01, 'lr': args.learning_rate_gcn}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=1e-8)
model, optimizer, epoch, loss = load_model_from_file(model, optimizer, model_path)
model_params(model, logger)
test_examples = dataset.get_test_examples()
test_dataset = build_dataset(test_examples, tokenizer, args.word2index, args)
test_data = REDataset(test_dataset, args)
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data,
sampler=test_sampler,
batch_size=args.test_batch_size)
model.to(device)
# result = evaluate(args, model, tokenizer, processor, device, mode="test")
trues, preds = evaluate(args, model, test_dataloader)
accuracy = accuracy_score(trues, preds)
micro_p = precision_score(trues, preds, average='micro')
micro_r = recall_score(trues, preds, average='micro')
micro_f = f1_score(trues, preds, average='micro')
macro_p = precision_score(trues, preds, average='macro')
macro_r = recall_score(trues, preds, average='macro')
macro_f = f1_score(trues, preds, average='macro')
weighted_p = precision_score(trues, preds, average='weighted')
weighted_r = recall_score(trues, preds, average='weighted')
weighted_f = f1_score(trues, preds, average='weighted')
logger.info("accuracy: {:.6f} ".format(accuracy))
logger.info("micro_precision: {:.6f}, macro_precision: {:.6f}, weighted_precision: {:.6f}".format(micro_p, macro_p,
weighted_p))
logger.info(
"micro_recall: {:.6f}, macro_recall: {:.6f}, weighted_recall: {:.6f}".format(micro_r, macro_r, weighted_r))
logger.info("micro_f1: {:.6f}, macro_f1: {:.6f}, weighted_f1: {:.6f}".format(micro_f, macro_f, weighted_f))
label_list = args.labels_dict.keys() ## 获取标签列表
report = classification_report(trues, preds, target_names=label_list)
logger.info(report)
cm = confusion_matrix(trues, preds)
cm = pd.DataFrame(cm, columns=[i for i, v in enumerate(label_list)], index=label_list)
# logger.info(cm)
for row in cm.itertuples():
print(" ".join([str(i) for i in row]))
p, r, f, s = precision_recall_fscore_support(y_true=trues, y_pred=preds, average=None)
logger.info("p,r,f,s: \n{:},\n{:},\n{:},\n{:}\n ".format(str(p), str(r), str(f), str(s)))
if __name__ == "__main__":
args = get_args()
logger = set_params(args=args)
config, tokenizer, dataset = base_function(args, logger)
x = import_module('models.' + args.model_name) ## 通过文件名称引入模型
model = x.Model(args, config)
if args.do_train:
train_function(args, logger, model, tokenizer, dataset)
elif args.do_test:
model_path = os.path.join(args.output_dir, args.model_name + "_best.pt")
# model_path = os.path.join(args.output_dir,args.model_name+"_{}_best.pt".format(args.test_model_idx))
logger.info("model path:{}".format(model_path))
test_func(args, logger, model, tokenizer, dataset, model_path)