Skip to content
/ ConvKB Public
forked from daiquocnguyen/ConvKB

A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network (NAACL 2018)

License

Notifications You must be signed in to change notification settings

4AI/ConvKB

 
 

Repository files navigation

A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural NetworkTwitter

GitHub top languageGitHub issues GitHub repo size GitHub last commit GitHub forks GitHub stars GitHub

This program provides the implementation of the CNN-based model ConvKB for the knowledge base completion task. ConvKB obtains new state-of-the-art results on two standard datasets: WN18RR and FB15k-237 as described in the paper:

    @InProceedings{Nguyen2018,
      author={Dai Quoc Nguyen and Tu Dinh Nguyen and Dat Quoc Nguyen and Dinh Phung},
      title={{A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network}},
      booktitle={Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)},
      year={2018},
      pages={327--333}
      }

Usage

Requirements

  • Python 3
  • Tensorflow >= 1.6

Training

To run the program:

    python train.py --embedding_dim <int> --num_filters <int> --learning_rate <float> --name <dataset_name> [--useConstantInit] --model_name <name_of_saved_model>

Required parameters:

--embedding_dim: Dimensionality of entity and relation embeddings.

--num_filters: Number of filters.

--learning_rate: Initial learning rate.

--name: Dataset name (WN18RR or FB15k-237).

--useConstantInit: Initialize filters by [0.1, 0.1, -0.1]. Otherwise, initialize filters by a truncated normal distribution.

--model_name: Name of saved models.

Optional parameters:

--l2_reg_lambda: L2 regularizaion lambda (Default: 0.001).

--dropout_keep_prob: Dropout keep probability (Default: 1.0).

--num_epochs: Number of training epochs (Default: 200).

--run_folder: Specify directory path to save trained models.

--batch_size: Batch size.

Reproduce the ConvKB results

To reproduce the ConvKB results published in the paper:

    $ python train.py --embedding_dim 100 --num_filters 50 --learning_rate 0.000005 --name FB15k-237 --useConstantInit --model_name fb15k237
    
    $ python train.py --embedding_dim 50 --num_filters 500 --learning_rate 0.0001 --name WN18RR --model_name wn18rr --saveStep 50

Evaluation metrics

File eval.py provides ranking-based scores as evaluation metrics, including the mean rank, the mean reciprocal rank and Hits@10 in a setting protocol "Filtered".

Files evalFB15k-237.sh and evalWN18RR.sh contain evaluation commands. Depending on the memory resources, you should change the value of --num_splits to a suitable value to get a faster process. To get the results (supposing num_splits = 8):

    $ python eval.py --embedding_dim 100 --num_filters 50 --name FB15k-237 --useConstantInit --model_name fb15k237 --num_splits 8 --decode
    
    $ python eval.py --embedding_dim 50 --num_filters 500 --name WN18RR --model_name wn18rr --num_splits 8 --decode

Note

Update a new initialization for WN18RR: MR:763, MRR:0.253 and Hits@10:56.7. Please check our new NAACL2019 paper.

$ python train.py --embedding_dim 100 --num_filters 400 --learning_rate 0.00005 --name WN18RR --num_epochs 101 --saveStep 100 --model_name wn18rr_400_3

Pytorch version

Thanks to Deepak Nathani, a pytorch implementation of our ConvKB can be found as a part from https://github.com/deepakn97/relationPrediction

License

Please cite the paper whenever ConvKB is used to produce published results or incorporated into other software. I would highly appreciate to have your bug reports, comments and suggestions about ConvKB. As a free open-source implementation, ConvKB is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

ConvKB is licensed under the Apache License 2.0.

About

A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network (NAACL 2018)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.4%
  • Shell 5.6%