This repository has been archived by the owner on Nov 25, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of https://github.com/AI-performance/embedded-a…
- Loading branch information
Showing
4 changed files
with
261 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#include "tensorflow/lite/tools/benchmark/benchmark_model.h" | ||
|
||
#include <iostream> | ||
#include <sstream> | ||
|
||
#include "tensorflow/lite/profiling/memory_info.h" | ||
#include "tensorflow/lite/profiling/time.h" | ||
#include "tensorflow/lite/tools/benchmark/benchmark_utils.h" | ||
#include "tensorflow/lite/tools/logging.h" | ||
|
||
namespace tflite { | ||
namespace benchmark { | ||
using tensorflow::Stat; | ||
|
||
BenchmarkParams BenchmarkModel::DefaultParams() { | ||
BenchmarkParams params; | ||
params.AddParam("num_runs", BenchmarkParam::Create<int32_t>(50)); | ||
params.AddParam("min_secs", BenchmarkParam::Create<float>(1.0f)); | ||
params.AddParam("max_secs", BenchmarkParam::Create<float>(150.0f)); | ||
params.AddParam("run_delay", BenchmarkParam::Create<float>(-1.0f)); | ||
params.AddParam("num_threads", BenchmarkParam::Create<int32_t>(1)); | ||
params.AddParam("use_caching", BenchmarkParam::Create<bool>(false)); | ||
params.AddParam("benchmark_name", BenchmarkParam::Create<std::string>("")); | ||
params.AddParam("output_prefix", BenchmarkParam::Create<std::string>("")); | ||
params.AddParam("warmup_runs", BenchmarkParam::Create<int32_t>(1)); | ||
params.AddParam("warmup_min_secs", BenchmarkParam::Create<float>(0.5f)); | ||
params.AddParam("verbose", BenchmarkParam::Create<bool>(false)); | ||
return params; | ||
} | ||
|
||
BenchmarkModel::BenchmarkModel() : params_(DefaultParams()) {} | ||
|
||
void BenchmarkLoggingListener::OnBenchmarkEnd(const BenchmarkResults& results) { | ||
auto inference_us = results.inference_time_us(); | ||
auto init_us = results.startup_latency_us(); | ||
auto warmup_us = results.warmup_time_us(); | ||
auto init_mem_usage = results.init_mem_usage(); | ||
auto overall_mem_usage = results.overall_mem_usage(); | ||
|
||
std::cout << "time cost: min=" << inference_us.min() / 1000. << "ms" | ||
<< " max=" << inference_us.max() / 1000. << "ms" | ||
<< " avg=" << inference_us.avg() / 1000. << "ms" | ||
<< " std_dev=" << inference_us.std_deviation() / 1000. << "ms" | ||
<< std::endl; | ||
TFLITE_LOG(INFO) << "Inference timings in us: " | ||
<< "Init: " << init_us << ", " | ||
<< "First inference: " << warmup_us.first() << ", " | ||
<< "Warmup (avg): " << warmup_us.avg() << ", " | ||
<< "Inference (avg): " << inference_us.avg(); | ||
|
||
if (!init_mem_usage.IsSupported()) return; | ||
TFLITE_LOG(INFO) | ||
<< "Note: as the benchmark tool itself affects memory footprint, the " | ||
"following is only APPROXIMATE to the actual memory footprint of the " | ||
"model at runtime. Take the information at your discretion."; | ||
TFLITE_LOG(INFO) << "Peak memory footprint (MB): init=" | ||
<< init_mem_usage.max_rss_kb / 1024.0 | ||
<< " overall=" << overall_mem_usage.max_rss_kb / 1024.0; | ||
} | ||
|
||
std::vector<Flag> BenchmarkModel::GetFlags() { | ||
return { | ||
CreateFlag<int32_t>( | ||
"num_runs", ¶ms_, | ||
"expected number of runs, see also min_secs, max_secs"), | ||
CreateFlag<float>( | ||
"min_secs", ¶ms_, | ||
"minimum number of seconds to rerun for, potentially making the " | ||
"actual number of runs to be greater than num_runs"), | ||
CreateFlag<float>( | ||
"max_secs", ¶ms_, | ||
"maximum number of seconds to rerun for, potentially making the " | ||
"actual number of runs to be less than num_runs. Note if --max-secs " | ||
"is exceeded in the middle of a run, the benchmark will continue to " | ||
"the end of the run but will not start the next run."), | ||
CreateFlag<float>("run_delay", ¶ms_, "delay between runs in seconds"), | ||
CreateFlag<int32_t>("num_threads", ¶ms_, "number of threads"), | ||
CreateFlag<bool>( | ||
"use_caching", ¶ms_, | ||
"Enable caching of prepacked weights matrices in matrix " | ||
"multiplication routines. Currently implies the use of the Ruy " | ||
"library."), | ||
CreateFlag<std::string>("benchmark_name", ¶ms_, "benchmark name"), | ||
CreateFlag<std::string>("output_prefix", ¶ms_, | ||
"benchmark output prefix"), | ||
CreateFlag<int32_t>( | ||
"warmup_runs", ¶ms_, | ||
"minimum number of runs performed on initialization, to " | ||
"allow performance characteristics to settle, see also " | ||
"warmup_min_secs"), | ||
CreateFlag<float>( | ||
"warmup_min_secs", ¶ms_, | ||
"minimum number of seconds to rerun for, potentially making the " | ||
"actual number of warm-up runs to be greater than warmup_runs"), | ||
CreateFlag<bool>("verbose", ¶ms_, | ||
"Whether to log parameters whose values are not set. " | ||
"By default, only log those parameters that are set by " | ||
"parsing their values from the commandline flags."), | ||
}; | ||
} | ||
|
||
void BenchmarkModel::LogParams() { | ||
const bool verbose = params_.Get<bool>("verbose"); | ||
TFLITE_LOG(INFO) << "Log parameter values verbosely: [" << verbose << "]"; | ||
|
||
LOG_BENCHMARK_PARAM(int32_t, "num_runs", "Min num runs", verbose); | ||
LOG_BENCHMARK_PARAM(float, "min_secs", "Min runs duration (seconds)", | ||
verbose); | ||
LOG_BENCHMARK_PARAM(float, "max_secs", "Max runs duration (seconds)", | ||
verbose); | ||
LOG_BENCHMARK_PARAM(float, "run_delay", "Inter-run delay (seconds)", verbose); | ||
LOG_BENCHMARK_PARAM(int32_t, "num_threads", "Num threads", verbose); | ||
LOG_BENCHMARK_PARAM(bool, "use_caching", "Use caching", verbose); | ||
LOG_BENCHMARK_PARAM(std::string, "benchmark_name", "Benchmark name", verbose); | ||
LOG_BENCHMARK_PARAM(std::string, "output_prefix", "Output prefix", verbose); | ||
LOG_BENCHMARK_PARAM(int32_t, "warmup_runs", "Min warmup runs", verbose); | ||
LOG_BENCHMARK_PARAM(float, "warmup_min_secs", | ||
"Min warmup runs duration (seconds)", verbose); | ||
} | ||
|
||
TfLiteStatus BenchmarkModel::PrepareInputData() { return kTfLiteOk; } | ||
|
||
TfLiteStatus BenchmarkModel::ResetInputsAndOutputs() { return kTfLiteOk; } | ||
|
||
Stat<int64_t> BenchmarkModel::Run(int min_num_times, float min_secs, | ||
float max_secs, RunType run_type, | ||
TfLiteStatus* invoke_status) { | ||
Stat<int64_t> run_stats; | ||
TFLITE_LOG(INFO) << "Running benchmark for at least " << min_num_times | ||
<< " iterations and at least " << min_secs << " seconds but" | ||
<< " terminate if exceeding " << max_secs << " seconds."; | ||
int64_t now_us = profiling::time::NowMicros(); | ||
int64_t min_finish_us = now_us + static_cast<int64_t>(min_secs * 1.e6f); | ||
int64_t max_finish_us = now_us + static_cast<int64_t>(max_secs * 1.e6f); | ||
|
||
*invoke_status = kTfLiteOk; | ||
for (int run = 0; (run < min_num_times || now_us < min_finish_us) && | ||
now_us <= max_finish_us; | ||
run++) { | ||
ResetInputsAndOutputs(); | ||
listeners_.OnSingleRunStart(run_type); | ||
int64_t start_us = profiling::time::NowMicros(); | ||
TfLiteStatus status = RunImpl(); | ||
int64_t end_us = profiling::time::NowMicros(); | ||
listeners_.OnSingleRunEnd(); | ||
|
||
run_stats.UpdateStat(end_us - start_us); | ||
util::SleepForSeconds(params_.Get<float>("run_delay")); | ||
now_us = profiling::time::NowMicros(); | ||
|
||
if (status != kTfLiteOk) { | ||
*invoke_status = status; | ||
} | ||
} | ||
|
||
std::stringstream stream; | ||
run_stats.OutputToStream(&stream); | ||
TFLITE_LOG(INFO) << stream.str() << std::endl; | ||
|
||
return run_stats; | ||
} | ||
|
||
TfLiteStatus BenchmarkModel::ValidateParams() { return kTfLiteOk; } | ||
|
||
TfLiteStatus BenchmarkModel::Run(int argc, char** argv) { | ||
TF_LITE_ENSURE_STATUS(ParseFlags(argc, argv)); | ||
return Run(); | ||
} | ||
|
||
TfLiteStatus BenchmarkModel::Run() { | ||
TF_LITE_ENSURE_STATUS(ValidateParams()); | ||
|
||
LogParams(); | ||
|
||
const double model_size_mb = MayGetModelFileSize() / 1e6; | ||
const auto start_mem_usage = profiling::memory::GetMemoryUsage(); | ||
int64_t initialization_start_us = profiling::time::NowMicros(); | ||
TF_LITE_ENSURE_STATUS(Init()); | ||
const auto init_end_mem_usage = profiling::memory::GetMemoryUsage(); | ||
int64_t initialization_end_us = profiling::time::NowMicros(); | ||
int64_t startup_latency_us = initialization_end_us - initialization_start_us; | ||
const auto init_mem_usage = init_end_mem_usage - start_mem_usage; | ||
|
||
if (model_size_mb > 0) { | ||
TFLITE_LOG(INFO) << "The input model file size (MB): " << model_size_mb; | ||
} | ||
TFLITE_LOG(INFO) << "Initialized session in " << startup_latency_us / 1e3 | ||
<< "ms."; | ||
|
||
TF_LITE_ENSURE_STATUS(PrepareInputData()); | ||
|
||
TfLiteStatus status = kTfLiteOk; | ||
uint64_t input_bytes = ComputeInputBytes(); | ||
listeners_.OnBenchmarkStart(params_); | ||
Stat<int64_t> warmup_time_us = | ||
Run(params_.Get<int32_t>("warmup_runs"), | ||
params_.Get<float>("warmup_min_secs"), params_.Get<float>("max_secs"), | ||
WARMUP, &status); | ||
if (status != kTfLiteOk) { | ||
return status; | ||
} | ||
|
||
Stat<int64_t> inference_time_us = | ||
Run(params_.Get<int32_t>("num_runs"), params_.Get<float>("min_secs"), | ||
params_.Get<float>("max_secs"), REGULAR, &status); | ||
const auto overall_mem_usage = | ||
profiling::memory::GetMemoryUsage() - start_mem_usage; | ||
|
||
listeners_.OnBenchmarkEnd({model_size_mb, startup_latency_us, input_bytes, | ||
warmup_time_us, inference_time_us, init_mem_usage, | ||
overall_mem_usage}); | ||
return status; | ||
} | ||
|
||
TfLiteStatus BenchmarkModel::ParseFlags(int* argc, char** argv) { | ||
auto flag_list = GetFlags(); | ||
const bool parse_result = | ||
Flags::Parse(argc, const_cast<const char**>(argv), flag_list); | ||
if (!parse_result) { | ||
std::string usage = Flags::Usage(argv[0], flag_list); | ||
TFLITE_LOG(ERROR) << usage; | ||
return kTfLiteError; | ||
} | ||
|
||
std::string unconsumed_args = | ||
Flags::ArgsToString(*argc, const_cast<const char**>(argv)); | ||
if (!unconsumed_args.empty()) { | ||
TFLITE_LOG(WARN) << "Unconsumed cmdline flags: " << unconsumed_args; | ||
} | ||
|
||
return kTfLiteOk; | ||
} | ||
|
||
} // namespace benchmark | ||
} // namespace tflite |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters