Skip to content

Ads2024/BMW-Stock-Analysis-Dashboard

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BMW Stock Analytics Dashboard 🚗

A modern, interactive dashboard built with Streamlit for analyzing BMW stock data. Features a UI with glassmorphism effects and dynamic starfield background animation.

Dashboard Preview

🌟 Features

  • Interactive Stock Analysis

    • Real-time candlestick charts
    • Volume analysis
    • Technical indicators (Moving Averages, Bollinger Bands)
    • RSI (Relative Strength Index) visualization
  • Advanced Analytics

    • Returns distribution analysis
    • Volatility tracking
    • Key statistical metrics
    • Technical pattern detection
  • Modern UI/UX

    • Glassmorphism effect
    • Dynamic starfield background
    • Responsive layout
    • Interactive controls
    • Custom styling and animations

🚀 Getting Started

Prerequisites

  • Python 3.8+
  • pip

Installation

  1. Clone the repository:
git clone https://github.com/Ads2024/bmw-stock-analytics.git
cd bmw-stock-analytics
  1. Create and activate a virtual environment (recommended):
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install required packages:
pip install -r requirements.txt

Running the Dashboard

streamlit run src/app.py

📁 Project Structure

bmw-stock-analytics/
├── .streamlit/
│   └── config.toml          # Streamlit configuration
├── assets/
│   └── giphy.webp          # Dashboard assets
├── data/
│   └── BMW_Data.csv        # Stock data
├── src/
│   ├── app.py              # Main application
│   └── styles.py           # Styling and animations
├── .gitattributes
├── .gitignore
├── LICENSE
└── README.md

🛠️ Built With

📊 Dashboard Components

  1. Main Price Chart

    • Candlestick visualization
    • Volume subplot
    • Customizable technical indicators
  2. Metrics Overview

    • Current price
    • Price change
    • Average volume
    • Volatility metrics
  3. Technical Analysis

    • RSI indicator
    • Moving averages
    • Bollinger Bands
    • Technical signals detection
  4. Statistical Analysis

    • Returns distribution
    • Rolling volatility
    • Key performance metrics

🎨 Customization

The dashboard's appearance can be customized by modifying:

  • src/styles.py - Contains styling and animation configurations
  • .streamlit/config.toml - Streamlit-specific settings

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages