Low-code framework that simplifies model setup and requirements with config files. Improves productivity and saves time for ML practitioners by allowing them to plug in parameters and utilize different models according to their needs.
python main.py <filename>.yaml
YAML files
to know the parameters used, check the examples/
directory
roberta.yaml
- Roberta, pretrained modelpcnn.yaml
- Parallel CNN encoder parametersrnn-params.yaml
- RNN encoder parametersrnn.yaml
- RNN parameters used for text translationtransformer.yaml
- transformer model parametersmodelarch.yaml
- includes RNN encoder + combiner + RNNdecoder model architectureclass-news.yaml
- parameters used for news classification
preprocessed-data: preprocessed-data/
directory consists of preprocessed data of test, train and validation dataset files in .hdf5
format