Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Facilitates experiment reproduction #2

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,13 @@ You must specify the name of the problem we wish to generate data for. Options a
* `2d_rot8`: 2-D data that is equivariant to 45-degree rotations.
* `2d_rot8_flip`: 2-D data that is equivariant to 45-degree rotations and flips.

Example:
Example (run `mkdir data` first to create output directory):
```sh
python generate_synthetic_data.py --problem rank1
```

In order to generate data for `2d_rot8` (17G) and `2d_rot8_flip` (6.6G), install PyTorch version `1.1` and use a machine with CUDA support and a large RAM size.

### Train
The file `train_synthetic.py` contains training and evaluation code. Specifying the argument `model` controls whether to use MSR, plain MAML, or something else.

Expand Down
5 changes: 5 additions & 0 deletions generate_all_synthetic_data.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
mkdir -p data && python generate_synthetic_data.py --problem rank1
mkdir -p data && python generate_synthetic_data.py --problem rank2
mkdir -p data && python generate_synthetic_data.py --problem rank5
mkdir -p data && python generate_synthetic_data.py --problem 2d_rot8
mkdir -p data && python generate_synthetic_data.py --problem 2d_rot8_flip
281 changes: 147 additions & 134 deletions train_synthetic.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,145 +20,158 @@


def train(step_idx, data, net, inner_opt_builder, meta_opt, n_inner_iter):
"""Main meta-training step."""
x_spt, y_spt, x_qry, y_qry = data
task_num = x_spt.size()[0]
querysz = x_qry.size(1)

inner_opt = inner_opt_builder.inner_opt

qry_losses = []
meta_opt.zero_grad()
for i in range(task_num):
with higher.innerloop_ctx(
net,
inner_opt,
copy_initial_weights=False,
override=inner_opt_builder.overrides,
) as (
fnet,
diffopt,
):
for _ in range(n_inner_iter):
spt_pred = fnet(x_spt[i])
spt_loss = F.mse_loss(spt_pred, y_spt[i])
diffopt.step(spt_loss)
qry_pred = fnet(x_qry[i])
qry_loss = F.mse_loss(qry_pred, y_qry[i])
qry_losses.append(qry_loss.detach().cpu().numpy())
qry_loss.backward()
metrics = {"train_loss": np.mean(qry_losses)}
wandb.log(metrics, step=step_idx)
meta_opt.step()
"""Main meta-training step."""
x_spt, y_spt, x_qry, y_qry = data
task_num = x_spt.size()[0]
querysz = x_qry.size(1)

inner_opt = inner_opt_builder.inner_opt

qry_losses = []
meta_opt.zero_grad()
for i in range(task_num):
with higher.innerloop_ctx(
net,
inner_opt,
copy_initial_weights=False,
override=inner_opt_builder.overrides,
) as (
fnet,
diffopt,
):
for _ in range(n_inner_iter):
spt_pred = fnet(x_spt[i])
spt_loss = F.mse_loss(spt_pred, y_spt[i])
diffopt.step(spt_loss)
qry_pred = fnet(x_qry[i])
qry_loss = F.mse_loss(qry_pred, y_qry[i])
qry_losses.append(qry_loss.detach().cpu().numpy())
qry_loss.backward()
metrics = {"train_loss": np.mean(qry_losses)}
wandb.log(metrics, step=step_idx)
meta_opt.step()


def test(step_idx, data, net, inner_opt_builder, n_inner_iter):
"""Main meta-training step."""
x_spt, y_spt, x_qry, y_qry = data
task_num = x_spt.size()[0]
querysz = x_qry.size(1)

inner_opt = inner_opt_builder.inner_opt

qry_losses = []
for i in range(task_num):
with higher.innerloop_ctx(
net, inner_opt, track_higher_grads=False, override=inner_opt_builder.overrides,
) as (
fnet,
diffopt,
):
for _ in range(n_inner_iter):
spt_pred = fnet(x_spt[i])
spt_loss = F.mse_loss(spt_pred, y_spt[i])
diffopt.step(spt_loss)
qry_pred = fnet(x_qry[i])
qry_loss = F.mse_loss(qry_pred, y_qry[i])
qry_losses.append(qry_loss.detach().cpu().numpy())
avg_qry_loss = np.mean(qry_losses)
_low, high = st.t.interval(
0.95, len(qry_losses) - 1, loc=avg_qry_loss, scale=st.sem(qry_losses)
)
test_metrics = {"test_loss": avg_qry_loss, "test_err": high - avg_qry_loss}
wandb.log(test_metrics, step=step_idx)
return avg_qry_loss
"""Main meta-training step."""
x_spt, y_spt, x_qry, y_qry = data
task_num = x_spt.size()[0]
querysz = x_qry.size(1)

inner_opt = inner_opt_builder.inner_opt

qry_losses = []
for i in range(task_num):
with higher.innerloop_ctx(
net, inner_opt, track_higher_grads=False, override=inner_opt_builder.overrides,
) as (
fnet,
diffopt,
):
for _ in range(n_inner_iter):
spt_pred = fnet(x_spt[i])
spt_loss = F.mse_loss(spt_pred, y_spt[i])
diffopt.step(spt_loss)
qry_pred = fnet(x_qry[i])
qry_loss = F.mse_loss(qry_pred, y_qry[i])
qry_losses.append(qry_loss.detach().cpu().numpy())
avg_qry_loss = np.mean(qry_losses)
_low, high = st.t.interval(
0.95, len(qry_losses) - 1, loc=avg_qry_loss, scale=st.sem(qry_losses)
)
test_metrics = {"test_loss": avg_qry_loss, "test_err": high - avg_qry_loss}
wandb.log(test_metrics, step=step_idx)
return avg_qry_loss


def main():
parser = argparse.ArgumentParser()
parser.add_argument("--init_inner_lr", type=float, default=0.1)
parser.add_argument("--outer_lr", type=float, default=0.001)
parser.add_argument("--k_spt", type=int, default=1)
parser.add_argument("--k_qry", type=int, default=19)
parser.add_argument("--lr_mode", type=str, default="per_layer")
parser.add_argument("--num_inner_steps", type=int, default=1)
parser.add_argument("--num_outer_steps", type=int, default=1000)
parser.add_argument("--inner_opt", type=str, default="maml")
parser.add_argument("--outer_opt", type=str, default="Adam")
parser.add_argument("--problem", type=str, default="rank1")
parser.add_argument("--model", type=str, default="conv")
parser.add_argument("--device", type=str, default="cpu")

if not os.path.exists(OUTPUT_PATH):
os.makedirs(OUTPUT_PATH)
wandb.init(project="weight_sharing_toy", dir=OUTPUT_PATH)
args = parser.parse_args()
wandb.config.update(args)
cfg = wandb.config
device = torch.device(cfg.device)
db = SyntheticLoader(device, problem=cfg.problem, k_spt=cfg.k_spt, k_qry=cfg.k_qry)

if cfg.problem in ["2d_rot8_flip", "2d_rot8"]:
c_o = 24 if cfg.problem == "2d_rot8" else 48
if cfg.model == "share_conv":
net = nn.Sequential(layers.ShareConv2d(1, c_o, 3, bias=False)).to(device)
elif cfg.model == "conv":
net = nn.Sequential(nn.Conv2d(1, c_o, 3, bias=False)).to(device)
else:
raise ValueError(f"Invalid model {cfg.model}")
elif cfg.problem in ["rank1", "rank2", "rank5"]:
if cfg.model == "lc":
net = nn.Sequential(layers.LocallyConnected1d(1, 1, 68, kernel_size=3, bias=False)).to(
device
)
elif cfg.model == "fc":
net = nn.Sequential(nn.Linear(70, 68, bias=False)).to(device)
elif cfg.model == "conv":
net = nn.Sequential(nn.Conv1d(1, 1, kernel_size=3, bias=False)).to(device)
elif cfg.model == "share_fc":
latent = {"rank1": 3, "rank2": 6, "rank5": 30}[cfg.problem]
net = nn.Sequential(layers.ShareLinearFull(70, 68, bias=False, latent_size=latent)).to(
device
)
else:
raise ValueError(f"Invalid model {cfg.model}")

inner_opt_builder = InnerOptBuilder(
net, device, cfg.inner_opt, cfg.init_inner_lr, "learned", cfg.lr_mode
)
if cfg.outer_opt == "SGD":
meta_opt = optim.SGD(inner_opt_builder.metaparams.values(), lr=cfg.outer_lr)
else:
meta_opt = optim.Adam(inner_opt_builder.metaparams.values(), lr=cfg.outer_lr)

start_time = time.time()
for step_idx in range(cfg.num_outer_steps):
data, _filters = db.next(32, "train")
train(step_idx, data, net, inner_opt_builder, meta_opt, cfg.num_inner_steps)
if step_idx == 0 or (step_idx + 1) % 100 == 0:
test_data, _filters = db.next(300, "test")
val_loss = test(
step_idx,
test_data,
net,
inner_opt_builder,
cfg.num_inner_steps,
)
if step_idx > 0:
steps_p_sec = (step_idx + 1) / (time.time() - start_time)
wandb.log({"steps_per_sec": steps_p_sec}, step=step_idx)
print(f"Step: {step_idx}. Steps/sec: {steps_p_sec:.2f}")

parser = argparse.ArgumentParser()
parser.add_argument("--init_inner_lr", type=float, default=0.1)
parser.add_argument("--outer_lr", type=float, default=0.001)
parser.add_argument("--k_spt", type=int, default=1)
parser.add_argument("--k_qry", type=int, default=19)
parser.add_argument("--lr_mode", type=str, default="per_layer")
parser.add_argument("--num_inner_steps", type=int, default=1)
parser.add_argument("--num_outer_steps", type=int, default=1000)
parser.add_argument("--inner_opt", type=str, default="maml")
parser.add_argument("--outer_opt", type=str, default="Adam")
parser.add_argument("--problem", type=str, default="rank1")
parser.add_argument("--model", type=str, default="conv")
parser.add_argument("--device", type=str, default="cpu")

if not os.path.exists(OUTPUT_PATH):
os.makedirs(OUTPUT_PATH)
args = parser.parse_args()
project_name = "weight_sharing_toy"
group_name = "{}-{}".format(args.problem, args.model)
wandb_run = wandb.init(project=project_name, group=group_name, dir=OUTPUT_PATH)
wandb.config.update(args)
cfg = wandb.config
device = torch.device(cfg.device)
db = SyntheticLoader(device, problem=cfg.problem, k_spt=cfg.k_spt, k_qry=cfg.k_qry)

if cfg.problem in ["2d_rot8_flip", "2d_rot8"]:
c_o = 24 if cfg.problem == "2d_rot8" else 48
if cfg.model == "share_conv":
net = nn.Sequential(layers.ShareConv2d(1, c_o, 3, bias=False)).to(device)
elif cfg.model == "conv":
net = nn.Sequential(nn.Conv2d(1, c_o, 3, bias=False)).to(device)
else:
raise ValueError(f"Invalid model {cfg.model}")
elif cfg.problem in ["rank1", "rank2", "rank5"]:
if cfg.model == "lc":
net = nn.Sequential(layers.LocallyConnected1d(1, 1, 68, kernel_size=3, bias=False)).to(
device
)
elif cfg.model == "fc":
net = nn.Sequential(nn.Linear(70, 68, bias=False)).to(device)
elif cfg.model == "conv":
net = nn.Sequential(nn.Conv1d(1, 1, kernel_size=3, bias=False)).to(device)
elif cfg.model == "share_fc":
latent = {"rank1": 3, "rank2": 6, "rank5": 30}[cfg.problem]
net = nn.Sequential(layers.ShareLinearFull(70, 68, bias=False, latent_size=latent)).to(
device
)
else:
raise ValueError(f"Invalid model {cfg.model}")

inner_opt_builder = InnerOptBuilder(
net, device, cfg.inner_opt, cfg.init_inner_lr, "learned", cfg.lr_mode
)
if cfg.outer_opt == "SGD":
meta_opt = optim.SGD(inner_opt_builder.metaparams.values(), lr=cfg.outer_lr)
else:
meta_opt = optim.Adam(inner_opt_builder.metaparams.values(), lr=cfg.outer_lr)

start_time = time.time()
for step_idx in range(cfg.num_outer_steps):
data, _filters = db.next(32, "train")
train(step_idx, data, net, inner_opt_builder, meta_opt, cfg.num_inner_steps)
if step_idx == 0 or (step_idx + 1) % 100 == 0:
test_data, _filters = db.next(300, "test")
val_loss = test(
step_idx,
test_data,
net,
inner_opt_builder,
cfg.num_inner_steps,
)
if step_idx > 0:
steps_p_sec = (step_idx + 1) / (time.time() - start_time)
wandb.log({"steps_per_sec": steps_p_sec}, step=step_idx)
print(f"Step: {step_idx}. Steps/sec: {steps_p_sec:.2f}")

# save final model
model_file_name = "{}-{}-{}.pth".format(project_name, group_name, np.random.randint(low=0, high=100000))
model_file_dir = os.path.join(OUTPUT_PATH, "models")
if not os.path.exists(model_file_dir):
os.makedirs(model_file_dir)
model_file_path = os.path.join(model_file_dir, model_file_name)
torch.save(net.state_dict(), model_file_path)
artifact = wandb.Artifact("model", type="model")
artifact.add_file(model_file_path)
wandb_run.log_artifact(artifact)
wandb_run.join()

if __name__ == "__main__":
main()
main()