The source code of (Attention-guided Feature Distillation for Semantic Segmentation).
Also, see our previous work (Adaptive Inter-Class Similarity Distillation for Semantic Segmentation).
- Python3
- PyTorch (> 0.4.1)
- torchvision
- numpy
- scipy
- tqdm
- matplotlib
- pillow
- Datasets: [PascalVoc] [Cityscapes]
- Teacher model: [ResNet101-DeepLabV3+]
Download the datasets and teacher models. Put the teacher model in pretrained/
and set the path to the datasets in mypath.py
.
-
Without distillation
python train.py --backbone resnet18 --dataset pascal --nesterov --epochs 120 --batch-size 6
-
Distillation
python train_kd.py --backbone resnet18 --dataset pascal --nesterov --epochs 120 --batch-size 6 --attn_lambda 2
Comparison of results on the PascalVOC dataset.
Method | mIoU(%) | Params(M) |
---|---|---|
Teacher: Deeplab-V3 + (ResNet-101) | 77.85 | 59.3 |
Student: Deeplab-V3 + (ResNet-18) | 67.50 | 16.6 |
Student + KD | 69.13 ± 0.11 | 16.6 |
Student + Overhaul | 70.67 ± 0.25 | 16.6 |
Student + DistKD | 69.84 ± 0.11 | 5.9 |
Student + CIRKD | 71.02 ± 0.11 | 5.9 |
Student + LAD | 71.42 ± 0.09 | 5.9 |
Student + AttnFD (ours) | 73.09 ± 0.06 | 5.9 |
Comparison of results on the Cityscapes dataset.
Method | mIoU(%) | Accuracy(%) |
---|---|---|
Teacher: ResNet101 | 77.66 | 84.05 |
Student: ResNet18 | 64.09 | 74.8 |
Student + KD | 65.21 (+1.12) | 76.32 (+1.74) |
Student + Overhaul | 70.31 (+6.22) | 80.10 (+5.3) |
Student + DistKD | 71.81 (+7.72) | 80.73 (+5.93) |
Student + CIRKD | 70.49 (+6.40) | 79.99 (+5.19) |
Student + LAD | 71.37 (+7.28) | 80.93 (+6.13) |
Student + AttnFD (ours) | 73.04 (+8.95) | 83.01 (+8.21) |
If you use this repository for your research or wish to refer to our distillation method, please use the following BibTeX entry:
@article{mansourian2024attention,
title={Attention-guided Feature Distillation for Semantic Segmentation},
author={Mansourian, Amir M and Jalali, Arya and Ahmadi, Rozhan and Kasaei, Shohreh},
journal={arXiv preprint arXiv:2403.05451},
year={2024}
}
@article{mansourian2023aicsd,
title={AICSD: Adaptive Inter-Class Similarity Distillation for Semantic Segmentation},
author={Mansourian, Amir M and Ahmadi, Rozhan and Kasaei, Shohreh},
journal={arXiv preprint arXiv:2308.04243},
year={2023}
}
This codebase is heavily borrowed from A Comprehensive Overhaul of Feature Distillation . Thanks for their excellent work.