forked from f1tenth/f1tenth_gym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
f110_env_backup.py
587 lines (522 loc) · 23.7 KB
/
f110_env_backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# MIT License
# Copyright (c) 2020 Joseph Auckley, Matthew O'Kelly, Aman Sinha, Hongrui Zheng
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
'''
Author: Hongrui Zheng
'''
# gym imports
import gym
from gym import error, spaces, utils
from gym.utils import seeding
# zmq imports
import zmq
# protobuf import
import sim_requests_pb2
# others
import numpy as np
from numba import njit
from scipy.ndimage import distance_transform_edt as edt
from PIL import Image
import sys
import os
import signal
import subprocess
import math
import yaml
import csv
# from matplotlib.pyplot import imshow
# import matplotlib.pyplot as plt
class F110Env(gym.Env, utils.EzPickle):
"""
OpenAI gym environment for F1/10 simulator
Use 0mq's REQ-REP pattern to communicate to the C++ simulator
ONE env has ONE corresponding C++ instance
Need to create env with map input, full path to map yaml file, map pgm image and yaml should be in same directory
should be initialized with a map, a timestep, and number of agents
"""
metadata = {'render.modes': []}
def __init__(self):
# simualtor params
self.params_set = False
self.map_inited = False
# params list is [mu, h_cg, l_r, cs_f, cs_r, I_z, mass]
self.params = []
# TODO: add multi agent stuff, need a _add_agent function of sth
self.num_agents = 2
self.timestep = 0.01
# TODO: clean up the map path stuff, right now it's a init_map function
self.map_path = None
self.map_img = None
# current_dir = os.path.dirname(os.path.abspath(__file__))
# map_path = current_dir + '/../../../maps/levine.yaml'
# default
self.ego_idx = 0
# TODO: also set these things in init function?
self.timeout = 120.0
# radius to consider done
self.start_thresh = 0.5 # 10cm
# env states
# more accurate description should be ego car state
# might not need to keep scan
self.x = None
self.y = None
self.theta = None
self.in_collision = False
self.collision_angle = None
# loop completion
self.near_start = True
self.num_toggles = 0
# race info
self.lap_times = [0.0, 0.0]
self.lap_counts = [0, 0]
# TODO: load the map (same as ROS .yaml format)
# if not map_path.endswith('.yaml'):
# print('Gym env - Please use a yaml file for map input.')
# sys.exit()
# load map img
# map_img_path = 'levine.png'
# self.map_img = cv2.imread(map_img_path, 0)
# self.map_img = cv2.flip(self.map_img, 0)
# self.map_img = np.array(Image.open(map_img_path).transpose(Image.FLIP_TOP_BOTTOM))
# self.map_img = self.map_img.astype(np.float64)
# self.map_img = self.map_img[::-1]
# self.map_img = np.dot(self.map_img[..., :3], [0.29, 0.57, 0.14])
# plt.imshow(self.map_img)
# plt.show()
# map metadata
# self.map_height = self.map_img.shape[0]
# self.map_width = self.map_img.shape[1]
self.map_height = 0.0
self.map_width = 0.0
self.map_resolution = 0.0
self.free_thresh = 0.0
self.origin = []
# load map metadata
# with open(map_path, 'r') as yaml_stream:
# try:
# map_metadata = yaml.safe_load(yaml_stream)
# self.map_resolution = map_metadata['resolution']
# self.origin = map_metadata['origin']
# # print(self.origin)
# # self.free_thresh?????
# except yaml.YAMLError as ex:
# print(ex)
# create zmq stuff
# port number range from 6666 - 6766
# max 100 tries to connect/bind
tries = 0
max_tries = 100
min_port = 6666
self.port = min_port
self.context = zmq.Context()
self.socket = self.context.socket(zmq.PAIR)
while tries < max_tries:
try:
self.socket.bind('tcp://*:%s' % str(min_port + tries))
# self.socket.connect('tcp://localhost:6666')
self.port = min_port + tries
break
except:
tries = tries + 1
# print('Gym env - retrying for ' + str(tries) + ' times')
print('Gym env - Connected env to port: ' + str(self.port))
# create cpp instance if create then need to pass port number
# subprocess call assumes directory structure
# init sim with arguments: [ex timestep num_agents port_num]
# TODO: include other car params in argument
# args = ['../build/sim_server', str(self.timestep), str(self.num_agents), str(self.port)]
# self.sim_p = subprocess.Popen(args)
self.sim_p = None
# print('Gym env - env created, waiting for params...')
def __del__(self):
"""
Finalizer, does cleanup
"""
if self.sim_p is None:
pass
else:
os.kill(self.sim_p.pid, signal.SIGTERM)
# print('Gym env - Sim child process killed.')
def _start_executable(self, path):
mu = self.params[0]
h_cg = self.params[1]
l_r = self.params[2]
cs_f = self.params[3]
cs_r = self.params[4]
I_z = self.params[5]
mass = self.params[6]
args = [path+'sim_server', str(self.timestep), str(self.num_agents), str(self.port), str(mu), str(h_cg), str(l_r), str(cs_f), str(cs_r), str(I_z), str(mass)]
self.sim_p = subprocess.Popen(args)
def _set_map(self):
"""
Sets the map for the simulator instance
"""
if not self.map_inited:
print('Gym env - Sim map not initialized, call env.init_map() to init map.')
# create and fill in protobuf
map_request_proto = sim_requests_pb2.SimRequest()
map_request_proto.type = 1
map_request_proto.map_request.map.extend((1. - self.map_img/255.).flatten().tolist())
map_request_proto.map_request.origin_x = self.origin[0]
map_request_proto.map_request.origin_y = self.origin[1]
map_request_proto.map_request.map_resolution = self.map_resolution
# TODO: double check if this value is valid
map_request_proto.map_request.free_threshold = self.free_thresh
map_request_proto.map_request.map_height = self.map_height
map_request_proto.map_request.map_width = self.map_width
# serialization
map_request_string = map_request_proto.SerializeToString()
# send set map request
# print('Gym env - Sending set map request...')
self.socket.send(map_request_string)
# print('Gym env - Map request sent.')
# receive response from sim instance
sim_response_string = self.socket.recv()
# parse map response proto
sim_response_proto = sim_requests_pb2.SimResponse()
sim_response_proto.ParseFromString(sim_response_string)
# get results
set_map_result = sim_response_proto.map_result.result
if set_map_result == 1:
print('Gym env - Set map failed, exiting...')
sys.exit()
def _check_done(self):
"""
Check if the episode is done
This is in terms of the ego car
For our case, whether the car ends up close enough to the starting point
And if accumulated time is over the timeout
return true if done, false if not
This assumes start is always (0, 0)
"""
# TODO: start not always 0, 0
# dist_to_start = math.sqrt((self.x-self.start_x) ** 2 + (self.y-self.start_y) ** 2)
left_t = 2
right_t = 2
timeout = self.current_time >= self.timeout
if self.double_finish:
poses_x = np.array(self.all_x)-self.start_xs
poses_y = np.array(self.all_y)-self.start_ys
delta_pt = np.dot(self.start_rot, np.stack((poses_x, poses_y), axis=0))
temp_y = delta_pt[1,:]
idx1 = temp_y > left_t
idx2 = temp_y < -right_t
temp_y[idx1] -= left_t
temp_y[idx2] = -right_t - temp_y[idx2]
temp_y[np.invert(np.logical_or(idx1, idx2))] = 0
dist2 = delta_pt[0,:]**2 + temp_y**2
closes = dist2 <= 0.1
for i in range(self.num_agents):
if closes[i] and not self.near_starts[i]:
self.near_starts[i] = True
self.toggle_list[i] += 1
elif not closes[i] and self.near_starts[i]:
self.near_starts[i] = False
self.toggle_list[i] += 1
done = (self.in_collision | (timeout) | np.all(self.toggle_list >= 4))
# only for two cars atm
self.lap_counts[0] = np.floor(self.toggle_list[0] / 2)
self.lap_counts[1] = np.floor(self.toggle_list[1] / 2)
if self.toggle_list[0] < 4:
self.lap_times[0] = self.current_time
if self.toggle_list[1] < 4:
self.lap_times[1] = self.current_time
return done, self.toggle_list >= 4
delta_pt = np.dot(self.start_rot, np.array([self.x-self.start_x, self.y-self.start_y]))
if delta_pt[1] > left_t: # left
temp_y = delta_pt[1]-left_t
elif delta_pt[1] < -right_t: # right
temp_y = -right_t - delta_pt[1]
else:
temp_y = 0
dist2 = delta_pt[0]**2 + temp_y**2
close = dist2 <= 0.1
# close = dist_to_start <= self.start_thresh
if close and not self.near_start:
self.near_start = True
self.num_toggles += 1
elif not close and self.near_start:
self.near_start = False
self.num_toggles += 1
done = (self.in_collision | (timeout) | (self.num_toggles >= 4))
return done
def _check_passed(self):
"""
Returns the times that the ego car overtook the other car
"""
return 0
def _update_state(self, obs_dict):
"""
Update the env's states according to observations
obs is observation dictionary
"""
self.x = obs_dict['poses_x'][obs_dict['ego_idx']]
self.y = obs_dict['poses_y'][obs_dict['ego_idx']]
if self.double_finish:
self.all_x = obs_dict['poses_x']
self.all_y = obs_dict['poses_y']
self.theta = obs_dict['poses_theta'][obs_dict['ego_idx']]
self.in_collision = obs_dict['collisions'][obs_dict['ego_idx']]
self.collision_angle = obs_dict['collision_angles'][obs_dict['ego_idx']]
# TODO: do we do the ray casting here or in C++?
# if speed is a concern do it in C++?
# numba shouldn't be a dependency of gym env
def _raycast_opponents(self, obs_dict):
# find the angle of beam of each car in each other's fov
# set range of beams to raycast, ego and op
# raycast beams, two set
new_obs = {}
return new_obs
def step(self, action):
# can't step if params not set
if not self.params_set:
print('ERROR - Gym Env - Params not set, call update params before stepping.')
sys.exit()
# action is a list of steering angles + command velocities
# also a ego car index
# action should a DICT with {'ego_idx': int, 'speed':[], 'steer':[]}
step_request_proto = sim_requests_pb2.SimRequest()
step_request_proto.type = 0
step_request_proto.step_request.ego_idx = action['ego_idx']
step_request_proto.step_request.requested_vel.extend(action['speed'])
step_request_proto.step_request.requested_ang.extend(action['steer'])
# serialization
step_request_string = step_request_proto.SerializeToString()
# send step request
self.socket.send(step_request_string)
# receive response from sim instance
sim_response_string = self.socket.recv()
# print('Gym env - Received response for step request.')
# parse map response proto
sim_response_proto = sim_requests_pb2.SimResponse()
sim_response_proto.ParseFromString(sim_response_string)
# get results
# make sure we have the right type of response
response_type = sim_response_proto.type
# TODO: also check for stepping fail
if not response_type == 0:
print('Gym env - Wrong response type for stepping, exiting...')
sys.exit()
observations_proto = sim_response_proto.sim_obs
# make sure the ego idx matches
if not observations_proto.ego_idx == action['ego_idx']:
print('Gym env - Ego index mismatch, exiting...')
sys.exit()
# get observations
carobs_list = observations_proto.observations
# construct observation dict
# Observation DICT, assume indices consistent: {'ego_idx':int, 'scans':[[]], 'poses_x':[], 'poses_y':[], 'poses_theta':[], 'linear_vels_x':[], 'linear_vels_y':[], 'ang_vels_z':[], 'collisions':[], 'collision_angles':[]}
obs = {'ego_idx': observations_proto.ego_idx, 'scans': [], 'poses_x': [], 'poses_y': [], 'poses_theta': [], 'linear_vels_x': [], 'linear_vels_y': [], 'ang_vels_z': [], 'collisions': [], 'collision_angles': [], 'lap_times': [], 'lap_counts': []}
for car_obs in carobs_list:
obs['scans'].append(car_obs.scan)
obs['poses_x'].append(car_obs.pose_x)
obs['poses_y'].append(car_obs.pose_y)
if abs(car_obs.theta) < np.pi:
obs['poses_theta'].append(car_obs.theta)
else:
obs['poses_theta'].append(-((2 * np.pi) - car_obs.theta))
obs['linear_vels_x'].append(car_obs.linear_vel_x)
obs['linear_vels_y'].append(car_obs.linear_vel_y)
obs['ang_vels_z'].append(car_obs.ang_vel_z)
obs['collisions'].append(car_obs.collision)
obs['collision_angles'].append(car_obs.collision_angle)
obs['lap_times'] = self.lap_times
obs['lap_counts'] = self.lap_counts
# TODO: do we need step reward?
reward = self.timestep
# update accumulated time in env
self.current_time = self.current_time + self.timestep
# TODO: donezo should be done in simulator? could be done here as well
self._update_state(obs)
if self.double_finish:
done, temp = self._check_done()
info = {'checkpoint_done': temp}
else:
done = self._check_done()
info = {}
# TODO: return obs, reward, done, info
return obs, reward, done, info
def reset(self, poses=None):
self.current_time = 0.0
self.in_collision = False
self.collision_angles = None
self.num_toggles = 0
self.near_start = True
self.near_starts = np.array([True]*self.num_agents)
self.toggle_list = np.zeros((self.num_agents,))
if poses:
pose_x = poses['x']
pose_y = poses['y']
pose_theta = poses['theta']
self.start_x = pose_x[0]
self.start_y = pose_y[0]
self.start_theta = pose_theta[0]
self.start_xs = np.array(pose_x)
self.start_ys = np.array(pose_y)
self.start_thetas = np.array(pose_theta)
self.start_rot = np.array([[np.cos(-self.start_theta), -np.sin(-self.start_theta)],
[np.sin(-self.start_theta), np.cos(-self.start_theta)]])
# create reset by pose proto
reset_request_proto = sim_requests_pb2.SimRequest()
reset_request_proto.type = 4
reset_request_proto.reset_bypose_request.num_cars = self.num_agents
reset_request_proto.reset_bypose_request.ego_idx = 0
reset_request_proto.reset_bypose_request.car_x.extend(pose_x)
reset_request_proto.reset_bypose_request.car_y.extend(pose_y)
reset_request_proto.reset_bypose_request.car_theta.extend(pose_theta)
reset_request_string = reset_request_proto.SerializeToString()
self.socket.send(reset_request_string)
else:
# create reset proto
self.start_x = 0.0
self.start_y = 0.0
self.start_theta = 0.0
self.start_rot = np.array([[np.cos(-self.start_theta), -np.sin(-self.start_theta)],
[np.sin(-self.start_theta), np.cos(-self.start_theta)]])
reset_request_proto = sim_requests_pb2.SimRequest()
reset_request_proto.type = 2
reset_request_proto.reset_request.num_cars = self.num_agents
reset_request_proto.reset_request.ego_idx = 0
# serialize reset proto
reset_request_string = reset_request_proto.SerializeToString()
# send reset proto string
self.socket.send(reset_request_string)
# receive response from sim
reset_response_string = self.socket.recv()
reset_response_proto = sim_requests_pb2.SimResponse()
reset_response_proto.ParseFromString(reset_response_string)
if reset_response_proto.reset_resp.result:
print('Gym env - Reset failed')
# TODO: failure handling
return None
# TODO: return with gym convention, one step?
vels = [0.0] * self.num_agents
angs = [0.0] * self.num_agents
action = {'ego_idx': self.ego_idx, 'speed': vels, 'steer': angs}
# print('Gym env - Reset done')
obs, reward, done, info = self.step(action)
# print('Gym env - step done for reset')
return obs, reward, done, info
def init_map(self, map_path, img_ext, rgb, flip):
"""
init a map for the gym env
map_path: full path for the yaml, same as ROS, img and yaml in same dir
rgb: map grayscale or rgb
flip: if map needs flipping
"""
self.map_path = map_path
if not map_path.endswith('.yaml'):
print('Gym env - Please use a yaml file for map initialization.')
print('Exiting...')
sys.exit()
# split yaml ext name
map_img_path = os.path.splitext(self.map_path)[0] + img_ext
self.map_img = np.array(Image.open(map_img_path).transpose(Image.FLIP_TOP_BOTTOM))
self.map_img = self.map_img.astype(np.float64)
if flip:
self.map_img = self.map_img[::-1]
if rgb:
self.map_img = np.dot(self.map_img[..., :3], [0.29, 0.57, 0.14])
# update map metadata
self.map_height = self.map_img.shape[0]
self.map_width = self.map_img.shape[1]
self.free_thresh = 0.6 # TODO: double check
with open(self.map_path, 'r') as yaml_stream:
try:
map_metadata = yaml.safe_load(yaml_stream)
self.map_resolution = map_metadata['resolution']
self.origin = map_metadata['origin']
except yaml.YAMLError as ex:
print(ex)
self.map_inited = True
# load waypoints
# self.csv_path = os.path.splitext(self.map_path)[0] + '.csv'
# with open(self.csv_path) as f:
# self.waypoints = [tuple(line) for line in csv.reader(f)]
# # waypoints are [x, y, speed, theta]
# self.waypoints = np.array([(float(pt[0]), float(pt[1]), float(pt[2]), float(pt[3])) for pt in self.waypoints])
def render(self, mode='human', close=False):
return
# def get_min_dist(self, position):
# wpts = self.waypoints[:, 0:2]
# # = position[0:2]
# nearest_point, nearest_dist, t, i = self.nearest_point_on_trajectory(position, wpts)
# # speed = self.waypoints[i, 2]
# return nearest_dist
# def nearest_point_on_trajectory(self, point, trajectory):
# '''
# Return the nearest point along the given piecewise linear trajectory.
# Same as nearest_point_on_line_segment, but vectorized. This method is quite fast, time constraints should
# not be an issue so long as trajectories are not insanely long.
# Order of magnitude: trajectory length: 1000 --> 0.0002 second computation (5000fps)
# point: size 2 numpy array
# trajectory: Nx2 matrix of (x,y) trajectory waypoints
# - these must be unique. If they are not unique, a divide by 0 error will destroy the world
# '''
# diffs = trajectory[1:,:] - trajectory[:-1,:]
# l2s = diffs[:,0]**2 + diffs[:,1]**2
# # this is equivalent to the elementwise dot product
# dots = np.sum((point - trajectory[:-1,:]) * diffs[:,:], axis=1)
# t = np.clip(dots / l2s, 0.0, 1.0)
# projections = trajectory[:-1,:] + (t*diffs.T).T
# dists = np.linalg.norm(point - projections,axis=1)
# min_dist_segment = np.argmin(dists)
# return projections[min_dist_segment], dists[min_dist_segment], t[min_dist_segment], min_dist_segment
def update_params(self, mu, h_cg, l_r, cs_f, cs_r, I_z, mass, exe_path, double_finish=False):
# if not self.sim_p is None:
# print('Gym env - Sim server exists, killing...')
# self.socket.send(b'dead')
# self.sim_p.kill()
# os.kill(self.sim_p.pid, signal.SIGINT)
# self.sim_p = None
# print('in update params')
self.params = [mu, h_cg, l_r, cs_f, cs_r, I_z, mass]
self.params_set = True
if self.sim_p is None:
# print('starting ex and setting map')
self._start_executable(exe_path)
self._set_map()
self.double_finish = double_finish
# print('before creating proto')
# create update proto
update_param_proto = sim_requests_pb2.SimRequest()
update_param_proto.type = 3
update_param_proto.update_request.mu = mu
update_param_proto.update_request.h_cg = h_cg
update_param_proto.update_request.l_r = l_r
update_param_proto.update_request.cs_f = cs_f
update_param_proto.update_request.cs_r = cs_r
update_param_proto.update_request.I_z = I_z
update_param_proto.update_request.mass = mass
# serialize reset proto
update_param_string = update_param_proto.SerializeToString()
# print('proto serialized')
# send update param request
self.socket.send(update_param_string)
# print('Gym env - Update param request sent.')
# receive response
update_response_string = self.socket.recv()
update_response_proto = sim_requests_pb2.SimResponse()
update_response_proto.ParseFromString(update_response_string)
if update_response_proto.update_resp.result:
print('Gym env - Update param failed')
return None
# print('Gym env - params updated.')
# start executable
# self._start_executable()
# call set map
# self._set_map()