Skip to content

Commit

Permalink
feat: migrating pointcloud types (autowarefoundation#6996)
Browse files Browse the repository at this point in the history
* feat: changed most of sensing to the new type

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* chore: started applying changes to the perception stack

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* feat: confirmed operation until centerpoint

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* feat: reverted to the original implementation of pointpainting

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* chore: forgot to push a header

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* feat: also implemented the changes for the subsample filters that were out of scope before

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* fix: some point type changes were missing from the latest merge from main

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* chore: removed unused code, added comments, and brought back a removed publish

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* chore: replaced pointcloud_raw for pointcloud_raw_ex to avoid extra processing time in the drivers

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* feat: added memory layout checks

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* chore: updated documentation regarding the point types

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* chore: added hyperlinks to the point definitions. will be valid only once the PR is merged

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* fix: fixed compilation due to moving the utilities files to the base library

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* chore: separated the utilities functions due to a dependency issue

* chore: forgot that perception also uses the filter class

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

* feature: adapted the undistortion tests to the new point type

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>

---------

Signed-off-by: Kenzo Lobos-Tsunekawa <[email protected]>
Co-authored-by: kminoda <[email protected]>
Co-authored-by: badai nguyen <[email protected]>
  • Loading branch information
3 people authored and Ariiees committed Jul 22, 2024
1 parent d8d3830 commit 23cf515
Show file tree
Hide file tree
Showing 35 changed files with 767 additions and 329 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,23 @@ enum ReturnType : uint8_t {
DUAL_ONLY,
};

struct PointXYZIRC
{
float x{0.0F};
float y{0.0F};
float z{0.0F};
std::uint8_t intensity{0U};
std::uint8_t return_type{0U};
std::uint16_t channel{0U};

friend bool operator==(const PointXYZIRC & p1, const PointXYZIRC & p2) noexcept
{
return float_eq<float>(p1.x, p2.x) && float_eq<float>(p1.y, p2.y) &&
float_eq<float>(p1.z, p2.z) && p1.intensity == p2.intensity &&
p1.return_type == p2.return_type && p1.channel == p2.channel;
}
};

struct PointXYZIRADRT
{
float x{0.0F};
Expand All @@ -75,25 +92,97 @@ struct PointXYZIRADRT
}
};

enum class PointIndex { X, Y, Z, Intensity, Ring, Azimuth, Distance, ReturnType, TimeStamp };
struct PointXYZIRCAEDT
{
float x{0.0F};
float y{0.0F};
float z{0.0F};
std::uint8_t intensity{0U};
std::uint8_t return_type{0U};
std::uint16_t channel{0U};
float azimuth{0.0F};
float elevation{0.0F};
float distance{0.0F};
std::uint32_t time_stamp{0U};

friend bool operator==(const PointXYZIRCAEDT & p1, const PointXYZIRCAEDT & p2) noexcept
{
return float_eq<float>(p1.x, p2.x) && float_eq<float>(p1.y, p2.y) &&
float_eq<float>(p1.z, p2.z) && p1.intensity == p2.intensity &&
p1.return_type == p2.return_type && p1.channel == p2.channel &&
float_eq<float>(p1.azimuth, p2.azimuth) && float_eq<float>(p1.distance, p2.distance) &&
p1.time_stamp == p2.time_stamp;
}
};

enum class PointXYZIIndex { X, Y, Z, Intensity };
enum class PointXYZIRCIndex { X, Y, Z, Intensity, ReturnType, Channel };
enum class PointXYZIRADRTIndex {
X,
Y,
Z,
Intensity,
Ring,
Azimuth,
Distance,
ReturnType,
TimeStamp
};
enum class PointXYZIRCAEDTIndex {
X,
Y,
Z,
Intensity,
ReturnType,
Channel,
Azimuth,
Elevation,
Distance,
TimeStamp
};

LIDAR_UTILS__DEFINE_FIELD_GENERATOR_FOR_MEMBER(azimuth);
LIDAR_UTILS__DEFINE_FIELD_GENERATOR_FOR_MEMBER(elevation);
LIDAR_UTILS__DEFINE_FIELD_GENERATOR_FOR_MEMBER(distance);
LIDAR_UTILS__DEFINE_FIELD_GENERATOR_FOR_MEMBER(return_type);
LIDAR_UTILS__DEFINE_FIELD_GENERATOR_FOR_MEMBER(time_stamp);

LIDAR_UTILS__DEFINE_FIELD_GENERATOR_FOR_MEMBER(channel);

using PointXYZIRCGenerator = std::tuple<
point_cloud_msg_wrapper::field_x_generator, point_cloud_msg_wrapper::field_y_generator,
point_cloud_msg_wrapper::field_z_generator, point_cloud_msg_wrapper::field_intensity_generator,
field_return_type_generator, field_channel_generator>;

using PointXYZIRADRTGenerator = std::tuple<
point_cloud_msg_wrapper::field_x_generator, point_cloud_msg_wrapper::field_y_generator,
point_cloud_msg_wrapper::field_z_generator, point_cloud_msg_wrapper::field_intensity_generator,
point_cloud_msg_wrapper::field_ring_generator, field_azimuth_generator, field_distance_generator,
field_return_type_generator, field_time_stamp_generator>;

using PointXYZIRCAEDTGenerator = std::tuple<
point_cloud_msg_wrapper::field_x_generator, point_cloud_msg_wrapper::field_y_generator,
point_cloud_msg_wrapper::field_z_generator, point_cloud_msg_wrapper::field_intensity_generator,
field_return_type_generator, field_channel_generator, field_azimuth_generator,
field_elevation_generator, field_distance_generator, field_time_stamp_generator>;

} // namespace autoware_point_types

POINT_CLOUD_REGISTER_POINT_STRUCT(
autoware_point_types::PointXYZIRC,
(float, x, x)(float, y, y)(float, z, z)(std::uint8_t, intensity, intensity)(
std::uint8_t, return_type, return_type)(std::uint16_t, channel, channel))

POINT_CLOUD_REGISTER_POINT_STRUCT(
autoware_point_types::PointXYZIRADRT,
(float, x, x)(float, y, y)(float, z, z)(float, intensity, intensity)(std::uint16_t, ring, ring)(
float, azimuth, azimuth)(float, distance, distance)(std::uint8_t, return_type, return_type)(
double, time_stamp, time_stamp))

POINT_CLOUD_REGISTER_POINT_STRUCT(
autoware_point_types::PointXYZIRCAEDT,
(float, x, x)(float, y, y)(float, z, z)(std::uint8_t, intensity, intensity)(
std::uint8_t, return_type,
return_type)(std::uint16_t, channel, channel)(float, azimuth, azimuth)(
float, elevation, elevation)(float, distance, distance)(std::uint32_t, time_stamp, time_stamp))
#endif // AUTOWARE_POINT_TYPES__TYPES_HPP_
9 changes: 9 additions & 0 deletions common/autoware_point_types/test/test_point_types.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,15 @@ TEST(PointEquality, PointXYZIRADRT)
EXPECT_EQ(pt0, pt1);
}

TEST(PointEquality, PointXYZIRCAEDT)
{
using autoware_point_types::PointXYZIRCAEDT;

PointXYZIRCAEDT pt0{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
PointXYZIRCAEDT pt1{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
EXPECT_EQ(pt0, pt1);
}

TEST(PointEquality, FloatEq)
{
// test template
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
<arg name="pedestrian_traffic_light_classifier_label_name" default="lamp_labels_ped.txt" description="classifier label filename"/>
<arg name="car_traffic_light_classifier_model_name" default="traffic_light_classifier_mobilenetv2_batch_6.onnx" description="classifier onnx model filename"/>
<arg name="pedestrian_traffic_light_classifier_model_name" default="ped_traffic_light_classifier_mobilenetv2_batch_6.onnx" description="classifier onnx model filename"/>
<arg name="input/cloud" default="/sensing/lidar/top/pointcloud_raw" description="point cloud for occlusion prediction"/>
<arg name="input/cloud" default="/sensing/lidar/top/pointcloud_raw_ex" description="point cloud for occlusion prediction"/>
<arg name="judged/traffic_signals" default="/perception/traffic_light_recognition/judged/traffic_signals"/>
<arg name="internal/traffic_signals" default="/perception/traffic_light_recognition/internal/traffic_signals"/>
<arg name="external/traffic_signals" default="/perception/traffic_light_recognition/external/traffic_signals"/>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -96,8 +96,9 @@ inline void ScanGroundFilterComponent::set_field_offsets(const PointCloud2ConstP
int intensity_index = pcl::getFieldIndex(*input, "intensity");
if (intensity_index != -1) {
intensity_offset_ = input->fields[intensity_index].offset;
intensity_type_ = input->fields[intensity_index].datatype;
} else {
intensity_offset_ = z_offset_ + sizeof(float);
intensity_offset_ = -1;
}
offset_initialized_ = true;
}
Expand Down Expand Up @@ -569,6 +570,7 @@ void ScanGroundFilterComponent::extractObjectPoints(
PointCloud2 & out_object_cloud)
{
size_t output_data_size = 0;

for (const auto & i : in_indices.indices) {
std::memcpy(
&out_object_cloud.data[output_data_size], &in_cloud_ptr->data[i * in_cloud_ptr->point_step],
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -161,6 +161,7 @@ class ScanGroundFilterComponent : public pointcloud_preprocessor::Filter
int y_offset_;
int z_offset_;
int intensity_offset_;
int intensity_type_;
bool offset_initialized_;

void set_field_offsets(const PointCloud2ConstPtr & input);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -289,13 +289,13 @@ void PointPaintingFusionNode::fuseOnSingleImage(
// tf2::doTransform(painted_pointcloud_msg, transformed_pointcloud, transform_stamped);

const auto x_offset =
painted_pointcloud_msg.fields.at(static_cast<size_t>(autoware_point_types::PointIndex::X))
painted_pointcloud_msg.fields.at(static_cast<size_t>(autoware_point_types::PointXYZIRCIndex::X))
.offset;
const auto y_offset =
painted_pointcloud_msg.fields.at(static_cast<size_t>(autoware_point_types::PointIndex::Y))
painted_pointcloud_msg.fields.at(static_cast<size_t>(autoware_point_types::PointXYZIRCIndex::Y))
.offset;
const auto z_offset =
painted_pointcloud_msg.fields.at(static_cast<size_t>(autoware_point_types::PointIndex::Z))
painted_pointcloud_msg.fields.at(static_cast<size_t>(autoware_point_types::PointXYZIRCIndex::Z))
.offset;
const auto class_offset = painted_pointcloud_msg.fields.at(4).offset;
const auto p_step = painted_pointcloud_msg.point_step;
Expand Down
24 changes: 23 additions & 1 deletion perception/lidar_apollo_instance_segmentation/src/detector.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@

#include "lidar_apollo_instance_segmentation/feature_map.hpp"

#include <sensor_msgs/point_cloud2_iterator.hpp>

#include <NvCaffeParser.h>
#include <NvInfer.h>
#include <pcl_conversions/pcl_conversions.h>
Expand Down Expand Up @@ -126,7 +128,27 @@ bool LidarApolloInstanceSegmentation::detectDynamicObjects(

// convert from ros to pcl
pcl::PointCloud<pcl::PointXYZI>::Ptr pcl_pointcloud_raw_ptr(new pcl::PointCloud<pcl::PointXYZI>);
pcl::fromROSMsg(transformed_cloud, *pcl_pointcloud_raw_ptr);
// pcl::fromROSMsg(transformed_cloud, *pcl_pointcloud_raw_ptr);

auto pcl_pointcloud_raw = *pcl_pointcloud_raw_ptr;
pcl_pointcloud_raw.width = transformed_cloud.width;
pcl_pointcloud_raw.height = transformed_cloud.height;
pcl_pointcloud_raw.is_dense = transformed_cloud.is_dense == 1;
pcl_pointcloud_raw.resize(transformed_cloud.width * transformed_cloud.height);

sensor_msgs::PointCloud2ConstIterator<float> it_x(transformed_cloud, "x");
sensor_msgs::PointCloud2ConstIterator<float> it_y(transformed_cloud, "y");
sensor_msgs::PointCloud2ConstIterator<float> it_z(transformed_cloud, "z");
sensor_msgs::PointCloud2ConstIterator<uint8_t> it_intensity(transformed_cloud, "intensity");

for (; it_x != it_x.end(); ++it_x, ++it_y, ++it_z, ++it_intensity) {
pcl::PointXYZI point;
point.x = *it_x;
point.y = *it_y;
point.z = *it_z;
point.intensity = static_cast<float>(*it_intensity);
pcl_pointcloud_raw.emplace_back(std::move(point));
}

// generate feature map
std::shared_ptr<FeatureMapInterface> feature_map_ptr =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@
#include <lidar_apollo_segmentation_tvm/lidar_apollo_segmentation_tvm.hpp>
#include <tvm_utility/pipeline.hpp>

#include <sensor_msgs/point_cloud2_iterator.hpp>

#include <memory>
#include <string>
#include <vector>
Expand Down Expand Up @@ -168,7 +170,29 @@ std::shared_ptr<const DetectedObjectsWithFeature> ApolloLidarSegmentation::detec
sensor_msgs::msg::PointCloud2 transformed_cloud;
ApolloLidarSegmentation::transformCloud(input, transformed_cloud, z_offset_);
// convert from ros to pcl
pcl::fromROSMsg(transformed_cloud, *pcl_pointcloud_ptr_);
// pcl::fromROSMsg(
// transformed_cloud, *pcl_pointcloud_ptr_); // Manual conversion is needed since intensity
// comes as an uint8_t

auto pcl_pointcloud = *pcl_pointcloud_ptr_;
pcl_pointcloud.width = input.width;
pcl_pointcloud.height = input.height;
pcl_pointcloud.is_dense = input.is_dense == 1;
pcl_pointcloud.resize(input.width * input.height);

sensor_msgs::PointCloud2ConstIterator<float> it_x(input, "x");
sensor_msgs::PointCloud2ConstIterator<float> it_y(input, "y");
sensor_msgs::PointCloud2ConstIterator<float> it_z(input, "z");
sensor_msgs::PointCloud2ConstIterator<uint8_t> it_intensity(input, "intensity");

for (; it_x != it_x.end(); ++it_x, ++it_y, ++it_z, ++it_intensity) {
pcl::PointXYZI point;
point.x = *it_x;
point.y = *it_y;
point.z = *it_z;
point.intensity = static_cast<float>(*it_intensity);
pcl_pointcloud.emplace_back(std::move(point));
}

// inference pipeline
auto output = pipeline->schedule(pcl_pointcloud_ptr_);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,9 +125,9 @@ bool LowIntensityClusterFilter::isValidatedCluster(const sensor_msgs::msg::Point
RCLCPP_WARN(get_logger(), "Invalid point cloud data. point_step is less than 16.");
return true;
}
for (sensor_msgs::PointCloud2ConstIterator<float> iter(cluster, "intensity"); iter != iter.end();
++iter) {
mean_intensity += *iter;
for (sensor_msgs::PointCloud2ConstIterator<uint8_t> iter(cluster, "intensity");
iter != iter.end(); ++iter) {
mean_intensity += static_cast<float>(*iter);
}
const size_t num_points = cluster.width * cluster.height;
mean_intensity /= static_cast<double>(num_points);
Expand Down
14 changes: 10 additions & 4 deletions sensing/pointcloud_preprocessor/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -26,11 +26,13 @@ include_directories(

add_library(pointcloud_preprocessor_filter_base SHARED
src/filter.cpp
src/utility/memory.cpp
)

target_include_directories(pointcloud_preprocessor_filter_base PUBLIC
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>"
"$<INSTALL_INTERFACE:include/${PROJECT_NAME}>"
${autoware_point_types_INCLUDE_DIRS}
)

ament_target_dependencies(pointcloud_preprocessor_filter_base
Expand All @@ -41,6 +43,7 @@ ament_target_dependencies(pointcloud_preprocessor_filter_base
tf2_ros
autoware_universe_utils
pcl_ros
autoware_point_types
)

add_library(faster_voxel_grid_downsample_filter SHARED
Expand All @@ -59,7 +62,6 @@ ament_target_dependencies(faster_voxel_grid_downsample_filter
)

ament_auto_add_library(pointcloud_preprocessor_filter SHARED
src/utility/utilities.cpp
src/concatenate_data/concatenate_and_time_sync_nodelet.cpp
src/concatenate_data/concatenate_pointclouds.cpp
src/time_synchronizer/time_synchronizer_nodelet.cpp
Expand All @@ -82,6 +84,7 @@ ament_auto_add_library(pointcloud_preprocessor_filter SHARED
src/blockage_diag/blockage_diag_nodelet.cpp
src/polygon_remover/polygon_remover.cpp
src/vector_map_filter/vector_map_inside_area_filter.cpp
src/utility/geometry.cpp
)

target_link_libraries(pointcloud_preprocessor_filter
Expand Down Expand Up @@ -227,16 +230,19 @@ ament_auto_package(INSTALL_TO_SHARE
if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
find_package(ament_cmake_gtest)

ament_lint_auto_find_test_dependencies()

ament_add_gtest(test_utilities
test/test_utilities.cpp
)
ament_add_gtest(distortion_corrector_node_tests
test/test_distortion_corrector_node.cpp

ament_add_gtest(test_distortion_corrector_node
test/test_distortion_corrector_node.cpp
)

target_link_libraries(test_utilities pointcloud_preprocessor_filter)
target_link_libraries(distortion_corrector_node_tests pointcloud_preprocessor_filter)
target_link_libraries(test_distortion_corrector_node pointcloud_preprocessor_filter)


endif()
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ This node can remove rain and fog by considering the light reflected from the ob

![outlier_filter-return_type](./image/outlier_filter-return_type.drawio.svg)

Therefore, in order to use this node, the sensor driver must publish custom data including `return_type`. please refer to [PointXYZIRADRT](../../../common/autoware_point_types/include/autoware_point_types/types.hpp#L57-L76) data structure.
Therefore, in order to use this node, the sensor driver must publish custom data including `return_type`. please refer to [PointXYZIRCAEDT](../../../common/autoware_point_types/include/autoware_point_types/types.hpp#L95-L116) data structure.

Another feature of this node is that it publishes visibility as a diagnostic topic. With this function, for example, in heavy rain, the sensing module can notify that the processing performance has reached its limit, which can lead to ensuring the safety of the vehicle.

Expand Down Expand Up @@ -75,7 +75,7 @@ This implementation inherits `pointcloud_preprocessor::Filter` class, please ref
## Assumptions / Known limits

Not recommended for use as it is under development.
Input data must be `PointXYZIRADRT` type data including `return_type`.
Input data must be [PointXYZIRCAEDT](../../../common/autoware_point_types/include/autoware_point_types/types.hpp#L95-L116) type data including `return_type`.

## (Optional) Error detection and handling

Expand Down
11 changes: 1 addition & 10 deletions sensing/pointcloud_preprocessor/docs/ring-outlier-filter.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,16 +75,7 @@ This implementation inherits `pointcloud_preprocessor::Filter` class, please ref

## Assumptions / Known limits

It is a prerequisite to input a scan point cloud in chronological order. In this repository it is defined as blow structure (please refer to [PointXYZIRADT](https://github.com/tier4/AutowareArchitectureProposal.iv/blob/5d8dff0db51634f0c42d2a3e87ca423fbee84348/sensing/preprocessor/pointcloud/pointcloud_preprocessor/include/pointcloud_preprocessor/outlier_filter/ring_outlier_filter_nodelet.hpp#L53-L62)).

- X: x
- Y: y
- z: z
- I: intensity
- R: ring
- A :azimuth
- D: distance
- T: time_stamp
This nodes requires that the points of the input point cloud are in chronological order and that individual points follow the memory layout specified by [PointXYZIRCAEDT](../../../common/autoware_point_types/include/autoware_point_types/types.hpp#L95-L116).

## (Optional) Error detection and handling

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@

namespace pointcloud_preprocessor
{
using autoware_point_types::PointXYZI;
using autoware_point_types::PointXYZIRC;
using point_cloud_msg_wrapper::PointCloud2Modifier;

/** \brief @b PointCloudConcatenateDataSynchronizerComponent is a special form of data
Expand Down Expand Up @@ -169,7 +169,7 @@ class PointCloudConcatenateDataSynchronizerComponent : public rclcpp::Node
sensor_msgs::msg::PointCloud2::SharedPtr & concat_cloud_ptr);
void publish();

void convertToXYZICloud(
void convertToXYZIRCCloud(
const sensor_msgs::msg::PointCloud2::SharedPtr & input_ptr,
sensor_msgs::msg::PointCloud2::SharedPtr & output_ptr);
void setPeriod(const int64_t new_period);
Expand Down
Loading

0 comments on commit 23cf515

Please sign in to comment.