Use the following command to complete the installation of Qcover
pip install Qcover
or
git clone https://github.com/BAQIS-Quantum/Qcover
pip install -r requirements.yml
python setup.py install
More example codes and tutorials can be found in the tests folder here on GitHub.
-
Using algorithm core module to generate the ising random weighted graph and calculate it's Hamiltonian expectation
from Qcover.core import Qcover from Qcover.backends import CircuitByQulacs from Qcover.optimizers import COBYLA from Qcover.utils import generate_graph_data, generate_weighted_graph import networkx as nx node_num, edge_num = 6, 9 p = 1 nodes, edges = generate_graph_data(node_num, edge_num) g = generate_weighted_graph(nodes, edges) # If you want to customize the Ising weight graph model, you can use the following code # g = nx.Graph() # nodes = [(0, 3), (1, 2), (2, 1), (3, 1)] # edges = [(0, 1, 1), (0, 2, 1), (3, 1, 2), (2, 3, 3)] # for nd in nodes: # u, w = nd[0], nd[1] # g.add_node(int(u), weight=int(w)) # for ed in edges: # u, v, w = ed[0], ed[1], ed[2] # g.add_edge(int(u), int(v), weight=int(w)) qulacs_bc = CircuitByQulacs() optc = COBYLA(options={'tol': 1e-3, 'disp': True}) qc = Qcover(g, p=p, optimizer=optc, backend=qulacs_bc) res = qc.run() print("the result of problem is:\n", res) qc.backend.optimization_visualization()
-
Solving specific binary combinatorial optimization problems, Calculating the expectation value of the Hamiltonian of the circuit which corresponding to the problem. for example, if you want to using Qcover to solve a max-cut problem, just coding below:
from Qcover.core import Qcover from Qcover.backends import CircuitByQiskit from Qcover.optimizers import COBYLA from Qcover.applications.max_cut import MaxCut node_num, degree = 6, 3 p = 1 mxt = MaxCut(node_num=node_num, node_degree=degree) ising_g, shift = mxt.run() qiskit_bc = CircuitByQiskit(expectation_calc_method="statevector") optc = COBYLA(options={'tol': 1e-3, 'disp': True}) qc = Qcover(ising_g, p=p, optimizer=optc, backend=qiskit_bc) res = qc.run() print("the result of problem is:\n", res) counts = qc.backend.get_result_counts(res['Optimal parameter value']) qc.backend.sampling_visualization(counts)
-
If you want to solve combinatorial optimization problems with real quantum computers on quafu quantum computing cloud platform, you can refer to the following example code
from Qcover.core import Qcover from Qcover.backends import CircuitByQulacs from Qcover.optimizers import COBYLA from Qcover.compiler import CompilerForQAOA import networkx as nx import matplotlib.pyplot as plt # Qcover supports real quantum computers to solve combinatorial optimization problems. # You only need to transform the combinatorial optimization problem into a weight graph, # and you can use the quafu quantum computing cloud platform (http://quafu.baqis.ac.cn/) # to solve the corresponding problem. The following is an example of a max-cut problem. # The weight graph corresponding to the combinatorial optimization problem and transformed it to networkx format. nodes = [(0, 1), (1, 3), (2, 2), (3, 1), (4, 0), (5, 3)] edges = [(0, 1, -1), (1, 2, -4), (2, 3, 2), (3, 4, -2), (4, 5, -1), (1, 3, 0), (2, 4, 3)] graph = nx.Graph() for nd in nodes: u, w = nd[0], nd[1] graph.add_node(int(u), weight=int(w)) for ed in edges: u, v, w = ed[0], ed[1], ed[2] graph.add_edge(int(u), int(v), weight=int(w)) # draw weighted graph to be calculated new_labels = dict(map(lambda x: ((x[0], x[1]), str(x[2]['weight'])), graph.edges(data=True))) pos = nx.spring_layout(graph) # pos = nx.circular_layout(g) nx.draw_networkx(graph, pos=pos, node_size=400, font_size=13, node_color='y') # nx.draw_networkx_edge_labels(g, pos=pos, edge_labels=new_labels, font_size=15) nx.draw_networkx_edges(graph, pos, width=2, edge_color='g', arrows=False) plt.show() # Using Qcover to calculate the optimal parameters of QAOA circuit. p = 1 bc = CircuitByQulacs() optc = COBYLA(options={'tol': 1e-3, 'disp': True}) qc = Qcover(graph, p=p, optimizer=optc, backend=bc) res = qc.run() optimal_params = res['Optimal parameter value'] # Compile and send the QAOA circuit to the quafu cloud. # Token parameter should be set according to your own account # For more introduction see https://github.com/ScQ-Cloud/pyquafu token = "E-SowFQdKJ427YhZDGdxoNmOk2SB02xpgODiz_4WtAS.9dDOwUTNxgjN2EjOiAHelJCLzITM6ICZpJye.9JiN1IzUIJiOicGbhJCLiQ1VKJiOiAXe0Jye" cloud_backend = 'ScQ-P20' qcover_compiler = CompilerForQAOA(graph, p=p, optimal_params=optimal_params, apitoken=token, cloud_backend=cloud_backend) task_id = qcover_compiler.send(wait=True, shots=5000, task_name='MaxCut') # If you choose wait=Ture, you have to wait for the result to return. # If you choose wait=False, you can execute the following command to query the result status at any time, # and the result will be returned when the task is completed. quafu_solver = qcover_compiler.task_status_query(task_id) if quafu_solver: counts_energy = qcover_compiler.results_processing(quafu_solver) qcover_compiler.visualization(counts_energy, problem='MaxCut', solutions=3)
The results obtained by running this example code are shown in the following two figures
For information on how to contribute, please send an e-mail to members of developer of this project.
When using Qcover for research projects, please cite
-
Wei-Feng Zhuang, Ya-Nan Pu, Hong-Ze Xu, Xudan Chai, Yanwu Gu, Yunheng Ma, Shahid Qamar, Chen Qian, Peng Qian, Xiao Xiao, Meng-Jun Hu, and Done E. Liu, "Efficient Classical Computation of Quantum Mean Value for Shallow QAOA Circuits", arXiv:2112.11151 (2021).
-
BAQIS Quafu Group, "Quafu-Qcover: Explore Combinatorial Optimization Problems on Cloud-based Quantum Computers", arXiv:2305.17979 (2023).
The first release of Qcover was developed by the quantum operating system team in Beijing Academy of Quantum Information Sciences.
Qcover is constantly growing and many other people have already contributed to it in the meantime.
Qcover is released under the Apache 2 license.