Skip to content

Consistent Amortized Clustering via Generative Flow Networks

License

Notifications You must be signed in to change notification settings

BGU-CS-VIL/GFNCP

Repository files navigation

GFNCP: Consistent Amortized Clustering via Generative Flow Networks [AISTATS 2025]

Irit Chelly, Roy Uziel, Oren Freifeld and Ari Pakman.

arXiv


GFNCP Framework

Pytorch implementation of GFNCP.

Requirements

python 3
torch
numpy
wandb

How to use

To run the code:

python main.py --dataset MNIST --data_path '/your_path'

To use a pretrained model, use the load-model flag, and the latest checkpoint from saved_models folder will be used.

For tracking loss and metrics values during training and evaluation, use wandb flag to log these values to Weights and Biases.

Make sure to update wandb entity and project names in main.py:

def init_wandb(args, params):
    if has_wandb:
        wnb = wandb.init(entity='your_entity', project='your_project', name='experiment_name', config=args, settings=wandb.Settings(_service_wait=300))
        ...

Use params.py for setting batch_size, iterations number, and other hyper-parameters.

License

This project is released under the MIT license. Please see the LICENSE file for more information.

Citation

If you find this repository helpful, please consider citing our paper:

TBD

About

Consistent Amortized Clustering via Generative Flow Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published